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DESCRIPTION

Parallel Execution of Requests in OS] Agents

The present invention is concerned with the handling of Common
Management Information Protocol (CMIP) requests in an Open Systems
Interconnection (OSI) environment, and in particular with the execution of

such CMIP requests in so-calied OS| agents when several requests are

received or pending concurrently.

BACKGROUND

The OSI (Open Systems Interconnection) systems management is a standard
that provides mechanisms for the monitoring, control, and coordination of
resources such as storage units, databases, telecommunication switches,
communication links, etc., within the OSI environment and OS! protocol

standards for communicating information pertinent to those resources.

The OSI management standards define an "agent” as an application entity
that provides a standardized access {0 a resource, and a “manager” as an
application entity that performs management functions. A resource is
represented using standardized “managed object classes” and each
instantiation of a class is called a “managed object instance”. For example,
one managed object class may be a generally defined type of disk unit, and
each individual disk unit of that type then is one instance of this class. The
various operations in such a sy'stem are governed by a “Common

Management Information Protocol” or short CMIP,
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A manager application executes management operations on managed object
instances contained in an agent by sending CMIS (Common Management
Information Services) service requests to that agent over the network using
the CMIP protocol. Such service requests may include the following
operations: create, delete, set, get, action, cancel-get. The agent returns
responses and events to the manager, also using the CMIP protocol. The
configuration of such an OSI environment is shown generally in Fig. 1,
including, besides the communication network 1, an OSI manager 2, OSI
agent 3 with agent kernel 4, managed object instances 5-a, 5-b, 5-i, 5-n,

resources 6-a, 6-b to be accessed, and the flow of CMIP protocol messages.

The OSI| Systems Management standards and the related CMIP protocoi and
CMIS services are described in the following publications:

.= ISO/IEC 10040, Information Technology - Open Systems Interconnection

- Systems Management Overview, 1991.

— ISO/IEC 9595, Information Technology - Open Systems Interconnection
- Common Management Information Service Definition, 1991.

— ISO/IEC 9596, Information Technology - Open Systems Interconnection

- Common Management Information Protocol Definition, 1991.

— ISO/IEC 10165-1, Information Technology - Open Systems
Interconnection - Structure of Management Information - Part 1:
Management Information Model, 1992.

— ISO/IEC 10165-2, Information‘ Technology - Open Systems
Interconnection - Structure of Management Information - Definition of

Management Information, 1992.
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— ISO/IEC 10165-4, Information Technology - Open Systems
Interconnection - Guidelines for the Definition of Managed Obijects,
1992.

Multiple managers can be connected to an agent at the same time, and each
can send CMIP requests to the agent asynchronously. This results in the

following problem:

An OSI agent can receive multiple CMIP requests from multiple sources.
Some of these requests may incur long processing times — a typical
example is a CMIP “get” request to a managed object instance which may
result in a resource access (establish connection, wait for response, close
connection). Servicing CMIP requests sequentially may therefore cause long

delays and thus may result in poor performance.

Some help in the organization of servicing requests and accessing
resources may be the use of “threads”, a thread being a single flow of
control within a process, each thread having its own thread identifier (ID)
and the required resources to support a flow of control. In this context, a
function is provided called “mutex” (mutual exclusion) which allows multiple
threads to serialize their access to shared data; a thread can lock a mutex

and thereby becomes its owner until that same thread unlocks the mutex.

A description and definition of threads are given in the following

publications:

— A.Birrell: “An introduction to Programming with Threads”, in “Systems
Programming with Modula-3”, G.Nelson (Ed.), Prentice Hall, 1991, pp.
88-118;



10

15

20

25

30

WO 97/07621 _ PCT/IB95/00663

—  Draft Standard for Information Technology - Portable Operating System
interface (POSIX) - Part 1: Systems Application Program Interface
(AP1), Amendment 2: Threads Extension; IEEE, October 1993.

— U.S.Patent 5 247 676 "RPC Based Computer System Using Transparent
Callback and Associated Method”, disclosing a first calling thread, a
second called thread, and helper threads. However, this patent
concerns remote procedure calls (RPCs) and callbacks within a
computer system, and not the problem of handling multiple CMIP
requests in an OSI environment.

The utilization of threads and the mutex function as presented in the prior
art do allow serialization of accesses but per se do not solve the above
stated problem of possible long delays and poor performance when multiple
CMIP requests are received and resources have to be accessed.

OBJECTS OF THE INVENTION
It is therefore an object of the invention to devise a method for the
execution of CMIP requests which allows the handling of muitiple CMIP
requests by an agent without undue delays.
It is a further object to provide a method for CMIP request execution which
uses threads but avoids the disadvantages incurred when the locking of
objects result in long delays due to mutual exclusion.

These and other objects are achieved by the method defined in the claims.

An embodiment of the invention is described in the sequel with reference to

following drawings.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5
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LIST OF FIGURES

is a schematic representation of an OSI environment including
at least one manager, at ieast one agent with managed obijects,
resources, and CMIP protocol flows between a manager and an

agent;

is a flow diagram of the method as invented, showing the

operations in the main thread and in sub-threads;

is a schematic block diagram showing the interaction of various

portions of an OSI agent in which the invention is used;

is a block diagram of a particular example of an OSI system in

which the invention is used; and

is a schematic diagram showing the interaction of muitiple
sub-threads as well as an exampie of the object table used by

threads in the agent.

DETAILED DESCRIPTION

Basics of the Invention

Details of the invention are now described in connection with Figs. 2 and 3.

Fig. 2 is a fiow diagram illustrating the operations performed in an OSI

agent when handling CMIP requests, and Fig. 3 shows the interaction of

different portions of an OS| agent for CMIP request handling.
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- The gist of the invention is as follows. Each agent has a “main thread” that

is always active and performs a message dispatching function. It reads
messages from the network, and extracts messages (if any) from an internal
request queue that is provided for the main thread. For each CMIP request
that is to be executed in the agent, a separate sub-thread is started. in order
to prevent access to a managed object instance by more than one
sub-thread, each managed object instance has a lock. An object instance is
locked for one sub-thread as long as the respective CMIP request is
executed, and is unlocked when processing is complete. Note that beiow
and in the claims, the term “object” is used for designating a “managed
object instance”.

The following procedures are performed in an agent (cf. Fig.2).
A. Basic Procedure for the Main Thread:

1. Check whether there are any messages in the queue. For each
message in the internal request queue, perform procedure B
described below. If there are no messages queued, proceed to
step 2.

2. Wait for a CMIP request from the network. When a message is
received, perform procedure B described below, and then go back

to step 1.

B. Request Handling Procedure for the Main Thread:

1. If the request is a CMIP Create, go to step 3. Otherwise, check
whether the destination object is locked. If object is uniocked,
continue with step 2. If locked, place message into the internal
request queue (and return to procedure A).
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— Note that in the last step, either a message previously
extracted from the internal request queue is put back into the
queue, or a message newly received from the network is
placed newly into the queue.

Lock object.
Start sub-thread.
Return to procedure A.

C. Procedure for Sub-Threads:

1. Register sub-thread and the object it is working on with the thread
manager.
Process request. _
If request is NOT CMIP Create, induce main thread to unlock
object.

4. Terminate sub-thread, de-registering it from the thread manager.

Fig. 3 shows different portions in one OSI| agent and their interaction. A
main thread 7 is provided for handling CMIP requests received from the
communication network on input 8, or CMIP requests that are tsmporarily
stored in request queue 9. The CMIP requests are fo be processed in
managed objects 10-1 ... 10-i ... 10-n, which in turn are connected to
resources (storage units, switches, etc.). Thread manager 7 maintains an

object table 11 in which each active managed object is registered.

As can be seen from the block diagram of Fig. 3, a “thread manager” 12 is
provided in each OSI agent to keep track of the active sub-threads and the
objects each thread has locked and not yet unlocked (released). For this
purpose, a “thread information table” 13 is maintained which lists for each

active thread any object that the said thread has locked. By this, it can also
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be prevented that a sub-thread attempts to lock an object which was already
locked for itself. (Cf. also details in the later section on “multithreading”.)

The locking status of each object is maintained in the “object table” 11
shown in Fig. 3. This table contains a list of all objects present in the agent.
For each object entry in the table, the locking status of the object
(locked/unlocked) is indicated. A new entry is added to the object table
when an object is created. Likewise, when an object is deleted from the
agent, the corresponding entry in the object table is aiso deleted.

The reason for NOT locking a managed object when the request is a CMIP
Create is simply because the Create request is not directed at an object, but
rather instructs the agent to create one. After the creation of the object,
other CMIP operations can be sent to this object, and for those operations,
the object will have to be locked.

OSI System Management Example

One specific example of an application of the invention is now described in
connection with Fig. 4. The purpose of this example is to illustrate a simple
case of OSI systems management where two disk drives have to be
managed. For the purpose of the example, the disk drives are assumed to
be “inteiligent”, i.e. each is equipped with processing capability to check
consistency of its contents on command. Fig. 4 shows the configuration of
the system. This configuration includes OSI manager 14, OS| agent 15 with
managed objects 16, 17 and, as resources, disk drives 18, 19 (disk-1 and
disk-2). As required by OSI, an object class is defined to represent or model
a disk drive. Using OSI formalism (GDMO and ASN.1), an object class

“disk” can be defined as follows (unnecessary details omitted):
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disk MANAGED OBJECT CLASS
DERIVED FROM top;

ATTRIBUTES
checkdisk GET-REPLACE
L I I ]
REGISTERED AS {1 3 18 0 2 4 5 1};
checkdisk ATTRIBUTE
WITH ATTRIBUTE SYNTAX INTEGER;
BEHAVIOUR
checkdiskBehaviour BEHAVIOUR
DEFINED AS
"When set to 1, it will perform disk consistency check, and

then sets its value to the number of bytes scanned";;
REGISTERED AS {1 3 18 0 2 4 6 1}.

The two disk drives in this case, disk-1 and disk-2, are represented in the
0S| agent by two instances of the “disk” managed object class. When the
attribute “checkdisk” for a “disk” instance is set to a value of 1, a command
is sent to the actual! disk drive to start the consistency checking operation.
The command completes when the check is done, and returns the number of
bytes scanned. In other words, an OSI| set operation on the attribute will
only complete after the consistency check is completed, and wil return the

number of scanned bytes as the “set” value.

in this example, OSI manager 14 sends a single “scoped” CMIP Set request
to agent 15, with the instruction to set the value of “checkdisk” attfibute to 1
in each instance of “disk” managed object class within the scope. The agent
determines the set of instances that fall within the scope (in this example,
there are two instances), and issues for each selected instance 16 and 17
the set request, starting each request on a new sub-thread. (Before starting,
the agent’s main thread checks whether the instance is locked or uniocked).
This approach enables both requests to be processed in parallel, i.e.
sending the command to disk-1 18 will not block the agent, so that the
request to disk-2 19 can also be sent. At the same time, the agent is
available to respond to other queries while disk-1 and disk-2 are going
through their respective consistency checks. Until the operation is

completed, the managed object instances representing disk-1 and disk-2 are
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locked, and no new CMIP operations on these instances will be permitted to
start.

When disk-1 and, respectively, disk-2 complete their consistency checks, the
responses to the set (including the new value for the checkdisk attribute)
will be returned through agent 15 to manager 14 as a response to the
original scoped request. The CMIP set request in this case will result in
three responses to be returned to the OSI manager as required by OSI: two
linked-replies (each containing the value of the set attribute in each disk

instance), and an empty set response, indicating the end of response.

Multithreading Example

Fig. 5 illustrates an example where multiple sub-threads are operating and
one sub-thread has to access or use another object during its execution.
Fig. 5 is a block diagram of the OS| agent used in this example. it contains
three previously created managed obiect instances, 11 (20), 12 (21), and
13(22). Requests from one or more OS| managers arrive at input 23 of the
agent, and are delivered to main thread 24 sequentially in the order they

arrive. These messages are read one at a time by the main thread.

The lock/uniock status of each instance is kept in object table 25. This table
is accessible by any thread active in the agent. Note that a locked managed

object instance can only be unlocked by the thread that locked it.

in Fig. 5, a code segment 26 is shown from the implementation of instance
11. It is assumed that this segment is executed during the processing of

some requests made to |1. This example code

— accesses instance 12 (it tries to lock it for access),
— performs the required operation,
— on completion, releases (unlocks) instance 2.
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. In the specific example described here, two requests are received by the

agent in sequence. The first request, OP1, is destined for instance I1; the

second, OP2, is destined for I2. The following steps are executed:

— main thread receives OP1

— checks whether I1 is locked: it is unlocked;

— locks !1; starts sub-thread 27 to process OP1 (sub-thread A)

— main thread 24 receives OP2,

— checks whether 12 is locked: it is unlocked;

—  locks 12; starts sub-thread 28 to process OP2 (sub-thread B);

— sub-thread A enters the code segment shown in Fig. 5. It attempts to
access (lock) 12, but 12 is already locked. Sub-thread A is blocked
(temporarily).

— Sub-thread B completes processing OP2. It asks main thread 24 to
release 12, and terminates;

— main thread 24 uniocks 12;

— sub-thread A can now proceed (the underiying system unblocks
sub-thread A: 12 is now locked for sub-thread A).

— At the end of the code segment, sub-thread A releases (unlocks) 12;

— sub-thread A completes processing OP1. It asks main thread 24 to
release |1, and terminates.

—  Main thread 24 unlocks [1.

This example makes clear that several requests can be handled
simultaneously by separate sub-threads if they work on different managed
object instances. However, the locking prevents that on any managed object

instance, more than one sub-thread can operate.
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CLAIMS

1. In an OSI (Open Systems Interconnection) system including

at least one OSI manager,

managed objects executing CMIP (Common Management
Information Protocol) requests issued by any said OSI manager,
and

0S| agents each providing access to plural managed objects,

a method for organizing execution of CMIP requests, comprising the

following steps:

providing a main thread with each OS] agent for sequentially
starting execution of CMIP requests, ‘

for a CMIP request received by an OSI agent, checking by said
main thread whether the managed object addressed by said CMIP
request is locked and, if the managed object is not locked

locking said managed obiject,

starting a sub-thread to process said CMIP request with the
following steps:

= registering said sub-thread and said managed object,

— processing said CMIP request, ‘

— de-registering said sub-thread,

= unlocking said object when processing of said CMIP request

is completed,

whereby -a plurality of CMIP requests can be executed in paraliel by

simuitaneous sub-threads.

The method according to Claim 1, comprising the following additional

steps:
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providing a thread manager in each OSI agent for administering
sub-threads started by said main thread,

said thread manager maintaining a table registering each active
sub-thread and any managed object locked for it.

The method according to Claim 1, comprising the following steps:

providing a request queue for the main thread in each OS| agent,
and

storing any CMIP request received by the respective OS| agent in
said request queue when it cannot be handled immediately.

The method according to Claim 3, further including the following step:

if the main thread, when handling a CMIP request, detects that the
managed object addressed by said CMIP request is locked, it
returns the respective CMIP request into the request queue.

The method according to Claim 1, in which

said CMIP requests include Get, Set, Create, Delete, Action, and
Cancel-Get commands, and

if the CMIP request is of the Create command type, the main
thread immediately starts a sub-thread for executing the Create
request, without intermediate checking and locking steps.

The method according to Claim 1, including the following steps

whenever a sub-thread has to access a managed object other than the

managed object initially addressed by, and locked for, itself:

checking by the respective sub-thread whether said other managed
object is locked, and if it is not yet locked,

locking said other managed object by the respective sub-thread,
executing the required operations in said other managed object,
and

unlocking said other managed object by the respective sub-thread.
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