PCT

WORLD INTELLECI'UAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
HO04L 29/06 Al

(11) International Publication Number:

(43) International Publication Date:

WO 97/07621

27 February 1997 (27.02.97)

(21) International Application Number: PCT/IB95/00663

(22) International Filing Date: 18 August 1995 (18.08.95)

(71) Applicant: INTERNATIONAL BUSINESS MACHINES
CORPORATION [US/US]; Old Orchard Road, Armonk,
NY 10504 (US).

(72) Inventors: FERIDUN, Metin; Sonnenbergstrasse 7, CH-8800
Thalwil (CH). VAN BERKEL, Cornelis; 59 Fonthill Road,
Hove, Brighton BN3 6HB (GB). PARKER, David, William;
"Lindsell" St. Georges Road, Salfords, Surrey RH1 SRD
(GB).

(74) Agent: BARTH, Carl, Otto; International Business Machines
Corporation, Siumerstrasse 4, CH-8803 Riischlikon (CH).

(81) Designated States: JP, European patent (AT, BE, CH, DE, DK,
ES, FR, GB, GR, [E, IT, LU, MC, NL, PT, SE).

Published
With international search report.

(54) Title: PARALLEL EXECUTION OF REQUESTS IN OSI AGENTS

(57) Abstract

This invention concemns a
method for organizing the execution
of Common Management Information
Protocol (CMIP) requests in an

12| [s-THREAD B}*°

N\

Open Systems Interconnection (OSI) 27
environment by providing main threads

i’ ~(

S-THREAD A

(24) and sub-threads (27, 28) within
each main thread for simultaneous
processing of multiple CMIP requests.

I3

In brief, a main thread (24) is started
sequentially for executing incoming eratlon>

Aooass (12)

o

CMIP requests, the main thread checks ease(l2)

whether a particular managed objects

(20, 21) is available, i.e. not locked, /
locks it, and starts a sub-thread to é

process the CMIP request in this 2

managed object. This allows the main

thread to start another sub-thread, thus

providing for the parallel execution of

a plurality of CMIP requests.

MAIN
THREAD
OBJEC

T TABLE

F__"'-_

ll:unlocked

12:unlocked

= o= o = -

I3:unlocked

applications under the PCT.
AM Armenia

AT - Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

CI Cote d’Ivoire
cM Cameroon

CN China

Cs Czechoslovakia
CZ Czech Republic
DE Germany

DK Denmark

EE Estonia

ES Spain

FI Finland

FR France

GA Gabon

Codes used to identify States

FOR THE PURPOSES OF INFORMATION ONLY

GB
GE
GN
GR
HU
IE

IT

Jp

KE
KG

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

party to the PCT on the front pages of pamphlets publishing international

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

X

10

156

20

30

WO 97/07621 . ‘ PCT/IB95/00663

DESCRIPTION

Parallel Execution of Requests in OS] Agents

The present invention is concerned with the handling of Common
Management Information Protocol (CMIP) requests in an Open Systems
Interconnection (OSI) environment, and in particular with the execution of

such CMIP requests in so-calied OS| agents when several requests are

received or pending concurrently.

BACKGROUND

The OSI (Open Systems Interconnection) systems management is a standard
that provides mechanisms for the monitoring, control, and coordination of
resources such as storage units, databases, telecommunication switches,
communication links, etc., within the OSI environment and OS! protocol

standards for communicating information pertinent to those resources.

The OSI management standards define an "agent” as an application entity
that provides a standardized access {0 a resource, and a “manager” as an
application entity that performs management functions. A resource is
represented using standardized “managed object classes” and each
instantiation of a class is called a “managed object instance”. For example,
one managed object class may be a generally defined type of disk unit, and
each individual disk unit of that type then is one instance of this class. The
various operations in such a sy'stem are governed by a “Common

Management Information Protocol” or short CMIP,

10

15

20

25

30

WO 97/07621 . PCT/IB95/00663

A manager application executes management operations on managed object
instances contained in an agent by sending CMIS (Common Management
Information Services) service requests to that agent over the network using
the CMIP protocol. Such service requests may include the following
operations: create, delete, set, get, action, cancel-get. The agent returns
responses and events to the manager, also using the CMIP protocol. The
configuration of such an OSI environment is shown generally in Fig. 1,
including, besides the communication network 1, an OSI manager 2, OSI
agent 3 with agent kernel 4, managed object instances 5-a, 5-b, 5-i, 5-n,

resources 6-a, 6-b to be accessed, and the flow of CMIP protocol messages.

The OSI| Systems Management standards and the related CMIP protocoi and
CMIS services are described in the following publications:

.= ISO/IEC 10040, Information Technology - Open Systems Interconnection

- Systems Management Overview, 1991.

— ISO/IEC 9595, Information Technology - Open Systems Interconnection
- Common Management Information Service Definition, 1991.

— ISO/IEC 9596, Information Technology - Open Systems Interconnection

- Common Management Information Protocol Definition, 1991.

— ISO/IEC 10165-1, Information Technology - Open Systems
Interconnection - Structure of Management Information - Part 1:
Management Information Model, 1992.

— ISO/IEC 10165-2, Information‘ Technology - Open Systems
Interconnection - Structure of Management Information - Definition of

Management Information, 1992.

10

15

20

25

30

WO 97/07621 : PCT/IB95/00663

— ISO/IEC 10165-4, Information Technology - Open Systems
Interconnection - Guidelines for the Definition of Managed Obijects,
1992.

Multiple managers can be connected to an agent at the same time, and each
can send CMIP requests to the agent asynchronously. This results in the

following problem:

An OSI agent can receive multiple CMIP requests from multiple sources.
Some of these requests may incur long processing times — a typical
example is a CMIP “get” request to a managed object instance which may
result in a resource access (establish connection, wait for response, close
connection). Servicing CMIP requests sequentially may therefore cause long

delays and thus may result in poor performance.

Some help in the organization of servicing requests and accessing
resources may be the use of “threads”, a thread being a single flow of
control within a process, each thread having its own thread identifier (ID)
and the required resources to support a flow of control. In this context, a
function is provided called “mutex” (mutual exclusion) which allows multiple
threads to serialize their access to shared data; a thread can lock a mutex

and thereby becomes its owner until that same thread unlocks the mutex.

A description and definition of threads are given in the following

publications:

— A.Birrell: “An introduction to Programming with Threads”, in “Systems
Programming with Modula-3”, G.Nelson (Ed.), Prentice Hall, 1991, pp.
88-118;

10

15

20

25

30

WO 97/07621 _ PCT/IB95/00663

— Draft Standard for Information Technology - Portable Operating System
interface (POSIX) - Part 1: Systems Application Program Interface
(AP1), Amendment 2: Threads Extension; IEEE, October 1993.

— U.S.Patent 5 247 676 "RPC Based Computer System Using Transparent
Callback and Associated Method”, disclosing a first calling thread, a
second called thread, and helper threads. However, this patent
concerns remote procedure calls (RPCs) and callbacks within a
computer system, and not the problem of handling multiple CMIP
requests in an OSI environment.

The utilization of threads and the mutex function as presented in the prior
art do allow serialization of accesses but per se do not solve the above
stated problem of possible long delays and poor performance when multiple
CMIP requests are received and resources have to be accessed.

OBJECTS OF THE INVENTION
It is therefore an object of the invention to devise a method for the
execution of CMIP requests which allows the handling of muitiple CMIP
requests by an agent without undue delays.
It is a further object to provide a method for CMIP request execution which
uses threads but avoids the disadvantages incurred when the locking of
objects result in long delays due to mutual exclusion.

These and other objects are achieved by the method defined in the claims.

An embodiment of the invention is described in the sequel with reference to

following drawings.

10

15

20

25

30

WO 97/07621

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

PCT/IB95/00663

LIST OF FIGURES

is a schematic representation of an OSI environment including
at least one manager, at ieast one agent with managed obijects,
resources, and CMIP protocol flows between a manager and an

agent;

is a flow diagram of the method as invented, showing the

operations in the main thread and in sub-threads;

is a schematic block diagram showing the interaction of various

portions of an OSI agent in which the invention is used;

is a block diagram of a particular example of an OSI system in

which the invention is used; and

is a schematic diagram showing the interaction of muitiple
sub-threads as well as an exampie of the object table used by

threads in the agent.

DETAILED DESCRIPTION

Basics of the Invention

Details of the invention are now described in connection with Figs. 2 and 3.

Fig. 2 is a fiow diagram illustrating the operations performed in an OSI

agent when handling CMIP requests, and Fig. 3 shows the interaction of

different portions of an OS| agent for CMIP request handling.

10

15

20

25

30

WO 97/07621 : PCT/IB95/00663

- The gist of the invention is as follows. Each agent has a “main thread” that

is always active and performs a message dispatching function. It reads
messages from the network, and extracts messages (if any) from an internal
request queue that is provided for the main thread. For each CMIP request
that is to be executed in the agent, a separate sub-thread is started. in order
to prevent access to a managed object instance by more than one
sub-thread, each managed object instance has a lock. An object instance is
locked for one sub-thread as long as the respective CMIP request is
executed, and is unlocked when processing is complete. Note that beiow
and in the claims, the term “object” is used for designating a “managed
object instance”.

The following procedures are performed in an agent (cf. Fig.2).
A. Basic Procedure for the Main Thread:

1. Check whether there are any messages in the queue. For each
message in the internal request queue, perform procedure B
described below. If there are no messages queued, proceed to
step 2.

2. Wait for a CMIP request from the network. When a message is
received, perform procedure B described below, and then go back

to step 1.

B. Request Handling Procedure for the Main Thread:

1. If the request is a CMIP Create, go to step 3. Otherwise, check
whether the destination object is locked. If object is uniocked,
continue with step 2. If locked, place message into the internal
request queue (and return to procedure A).

10

15

20

25

30

WO 97/07621 _ PCT/IB95/00663

— Note that in the last step, either a message previously
extracted from the internal request queue is put back into the
queue, or a message newly received from the network is
placed newly into the queue.

Lock object.
Start sub-thread.
Return to procedure A.

C. Procedure for Sub-Threads:

1. Register sub-thread and the object it is working on with the thread
manager.
Process request. _
If request is NOT CMIP Create, induce main thread to unlock
object.

4. Terminate sub-thread, de-registering it from the thread manager.

Fig. 3 shows different portions in one OSI| agent and their interaction. A
main thread 7 is provided for handling CMIP requests received from the
communication network on input 8, or CMIP requests that are tsmporarily
stored in request queue 9. The CMIP requests are fo be processed in
managed objects 10-1 ... 10-i ... 10-n, which in turn are connected to
resources (storage units, switches, etc.). Thread manager 7 maintains an

object table 11 in which each active managed object is registered.

As can be seen from the block diagram of Fig. 3, a “thread manager” 12 is
provided in each OSI agent to keep track of the active sub-threads and the
objects each thread has locked and not yet unlocked (released). For this
purpose, a “thread information table” 13 is maintained which lists for each

active thread any object that the said thread has locked. By this, it can also

10

15

20

25

30

WO 97/07621 : PCT/IB95/00663

be prevented that a sub-thread attempts to lock an object which was already
locked for itself. (Cf. also details in the later section on “multithreading”.)

The locking status of each object is maintained in the “object table” 11
shown in Fig. 3. This table contains a list of all objects present in the agent.
For each object entry in the table, the locking status of the object
(locked/unlocked) is indicated. A new entry is added to the object table
when an object is created. Likewise, when an object is deleted from the
agent, the corresponding entry in the object table is aiso deleted.

The reason for NOT locking a managed object when the request is a CMIP
Create is simply because the Create request is not directed at an object, but
rather instructs the agent to create one. After the creation of the object,
other CMIP operations can be sent to this object, and for those operations,
the object will have to be locked.

OSI System Management Example

One specific example of an application of the invention is now described in
connection with Fig. 4. The purpose of this example is to illustrate a simple
case of OSI systems management where two disk drives have to be
managed. For the purpose of the example, the disk drives are assumed to
be “inteiligent”, i.e. each is equipped with processing capability to check
consistency of its contents on command. Fig. 4 shows the configuration of
the system. This configuration includes OSI manager 14, OS| agent 15 with
managed objects 16, 17 and, as resources, disk drives 18, 19 (disk-1 and
disk-2). As required by OSI, an object class is defined to represent or model
a disk drive. Using OSI formalism (GDMO and ASN.1), an object class

“disk” can be defined as follows (unnecessary details omitted):

10

15

20

25

30

WO 97/07621 : PCT/IB95/00663

disk MANAGED OBJECT CLASS
DERIVED FROM top;

ATTRIBUTES
checkdisk GET-REPLACE
L I I]
REGISTERED AS {1 3 18 0 2 4 5 1};
checkdisk ATTRIBUTE
WITH ATTRIBUTE SYNTAX INTEGER;
BEHAVIOUR
checkdiskBehaviour BEHAVIOUR
DEFINED AS
"When set to 1, it will perform disk consistency check, and

then sets its value to the number of bytes scanned";;
REGISTERED AS {1 3 18 0 2 4 6 1}.

The two disk drives in this case, disk-1 and disk-2, are represented in the
0S| agent by two instances of the “disk” managed object class. When the
attribute “checkdisk” for a “disk” instance is set to a value of 1, a command
is sent to the actual! disk drive to start the consistency checking operation.
The command completes when the check is done, and returns the number of
bytes scanned. In other words, an OSI| set operation on the attribute will
only complete after the consistency check is completed, and wil return the

number of scanned bytes as the “set” value.

in this example, OSI manager 14 sends a single “scoped” CMIP Set request
to agent 15, with the instruction to set the value of “checkdisk” attfibute to 1
in each instance of “disk” managed object class within the scope. The agent
determines the set of instances that fall within the scope (in this example,
there are two instances), and issues for each selected instance 16 and 17
the set request, starting each request on a new sub-thread. (Before starting,
the agent’s main thread checks whether the instance is locked or uniocked).
This approach enables both requests to be processed in parallel, i.e.
sending the command to disk-1 18 will not block the agent, so that the
request to disk-2 19 can also be sent. At the same time, the agent is
available to respond to other queries while disk-1 and disk-2 are going
through their respective consistency checks. Until the operation is

completed, the managed object instances representing disk-1 and disk-2 are

10

15

20

25

30

WO 97/07621 : PCT/1B95/00663

-10 -

locked, and no new CMIP operations on these instances will be permitted to
start.

When disk-1 and, respectively, disk-2 complete their consistency checks, the
responses to the set (including the new value for the checkdisk attribute)
will be returned through agent 15 to manager 14 as a response to the
original scoped request. The CMIP set request in this case will result in
three responses to be returned to the OSI manager as required by OSI: two
linked-replies (each containing the value of the set attribute in each disk

instance), and an empty set response, indicating the end of response.

Multithreading Example

Fig. 5 illustrates an example where multiple sub-threads are operating and
one sub-thread has to access or use another object during its execution.
Fig. 5 is a block diagram of the OS| agent used in this example. it contains
three previously created managed obiect instances, 11 (20), 12 (21), and
13(22). Requests from one or more OS| managers arrive at input 23 of the
agent, and are delivered to main thread 24 sequentially in the order they

arrive. These messages are read one at a time by the main thread.

The lock/uniock status of each instance is kept in object table 25. This table
is accessible by any thread active in the agent. Note that a locked managed

object instance can only be unlocked by the thread that locked it.

in Fig. 5, a code segment 26 is shown from the implementation of instance
11. It is assumed that this segment is executed during the processing of

some requests made to |1. This example code

— accesses instance 12 (it tries to lock it for access),
— performs the required operation,
— on completion, releases (unlocks) instance 2.

10

15

20

25

30

WO 97/07621 . PCT/IB95/00663

-11 -

. In the specific example described here, two requests are received by the

agent in sequence. The first request, OP1, is destined for instance I1; the

second, OP2, is destined for I2. The following steps are executed:

— main thread receives OP1

— checks whether I1 is locked: it is unlocked;

— locks !1; starts sub-thread 27 to process OP1 (sub-thread A)

— main thread 24 receives OP2,

— checks whether 12 is locked: it is unlocked;

— locks 12; starts sub-thread 28 to process OP2 (sub-thread B);

— sub-thread A enters the code segment shown in Fig. 5. It attempts to
access (lock) 12, but 12 is already locked. Sub-thread A is blocked
(temporarily).

— Sub-thread B completes processing OP2. It asks main thread 24 to
release 12, and terminates;

— main thread 24 uniocks 12;

— sub-thread A can now proceed (the underiying system unblocks
sub-thread A: 12 is now locked for sub-thread A).

— At the end of the code segment, sub-thread A releases (unlocks) 12;

— sub-thread A completes processing OP1. It asks main thread 24 to
release |1, and terminates.

— Main thread 24 unlocks [1.

This example makes clear that several requests can be handled
simultaneously by separate sub-threads if they work on different managed
object instances. However, the locking prevents that on any managed object

instance, more than one sub-thread can operate.

10

15

20

25

30

WO 97/07621 ' PCT/IB95/00663

-12-

CLAIMS

1. In an OSI (Open Systems Interconnection) system including

at least one OSI manager,

managed objects executing CMIP (Common Management
Information Protocol) requests issued by any said OSI manager,
and

0S| agents each providing access to plural managed objects,

a method for organizing execution of CMIP requests, comprising the

following steps:

providing a main thread with each OS] agent for sequentially
starting execution of CMIP requests, ‘

for a CMIP request received by an OSI agent, checking by said
main thread whether the managed object addressed by said CMIP
request is locked and, if the managed object is not locked

locking said managed obiject,

starting a sub-thread to process said CMIP request with the
following steps:

= registering said sub-thread and said managed object,

— processing said CMIP request, ‘

— de-registering said sub-thread,

= unlocking said object when processing of said CMIP request

is completed,

whereby -a plurality of CMIP requests can be executed in paraliel by

simuitaneous sub-threads.

The method according to Claim 1, comprising the following additional

steps:

10

15

20

25

30

WO 97/07621 , PCT/IB95/00663

-13 -

providing a thread manager in each OSI agent for administering
sub-threads started by said main thread,

said thread manager maintaining a table registering each active
sub-thread and any managed object locked for it.

The method according to Claim 1, comprising the following steps:

providing a request queue for the main thread in each OS| agent,
and

storing any CMIP request received by the respective OS| agent in
said request queue when it cannot be handled immediately.

The method according to Claim 3, further including the following step:

if the main thread, when handling a CMIP request, detects that the
managed object addressed by said CMIP request is locked, it
returns the respective CMIP request into the request queue.

The method according to Claim 1, in which

said CMIP requests include Get, Set, Create, Delete, Action, and
Cancel-Get commands, and

if the CMIP request is of the Create command type, the main
thread immediately starts a sub-thread for executing the Create
request, without intermediate checking and locking steps.

The method according to Claim 1, including the following steps

whenever a sub-thread has to access a managed object other than the

managed object initially addressed by, and locked for, itself:

checking by the respective sub-thread whether said other managed
object is locked, and if it is not yet locked,

locking said other managed object by the respective sub-thread,
executing the required operations in said other managed object,
and

unlocking said other managed object by the respective sub-thread.

PCT/IB95/00663

WO 97/07621

1/4

i

q-9

u-g Ig ¢ 14
\ |

N __/

[m===—====

O

8
O

A

3INHIN
IN3IOV

Lb14

S1HOd3H IN3JAT+
S3ISNOJS3H dIND

>
%V\w/\J

4
N

o/
«©

Kol

wn

®
0

AHOMLIN

<

S1S3ND3YH dIND

HIOVNVN
ISO

WO 97/07621

2/4

PCT/IB95/00663

MESSAGE Y
IN QUEUE?
_wN
WAIT FOR
MESSAGE A
MESSAGES | Y
RECEIVED
S sttt A RN
v
CMIP
CREATE?
RETURN/ | wN
] PLACE | " BESTINATION
MESSAGE LOCKED? B.
IN QUEUE ey
LOCK
OBJECT
START
SUB-THREAD;Ti
REGISTER | 1 2... N
SUB-THREAD
AND OBJECT
PROCESS
REQUEST
I C.
WAS REQU. | Y
A CREATE?
w N __,] TERMINATE AND
INDUCE UNL| DEREGISTER |
OF OBJECT —® SUB-THREAD

Fig.2

PCT/IB95/00663

WO 97/07621

3/4

£'b14

b

u-0}
/
304NOS3H
<-— — u 193rg0
O.._., v/
\
\
\ r
-0l \
/L ang | !
<4— - 1 193rg80 A|@ !
: L
1HVIS
/
/
/
1-01 /
/ /
304NOS3Y >
<- - I 193rg90
ol

™ 37gvl103rgo
¢k B MDOINA PMOIHO H L
- _ _\ _ Z
Javye | (19)

NOILVWHOANI |
_ @vIdHL 5007C8) qvauny le
@h @ [“Ts Tmvis(Ee NIV
"HOW QVIHHL @ e _

3IN3ND 1S3INO3Y

\

6 (S1S3IND3Y dIND)

AHOMLIN WNOHA

WO 97/07621

PCT/IB95/00663

14 15 16
/ \ \ 18
CMIP | B2 % 4
0S|l |¢—p %
MANAGER ~ @ « o
. T
/
17
Fig.4
21
12| |s-tHReAD B}
/ ~.
27JS-THREAD A [(
AR .' L
...... AN N / 4
Access (12) . 04 ob
<Operation> I 1(MAIN
Re ease(l2) THREAD
...... OBJECT TABLE
/AN
. 20 Oy
26 25 ______
I1:unlocked
| 12: unlocked
23 I3: unlocked
Fig.5

INTERNATIONAL SEARCH REPORT

aternational Applicaton No

PCT/IB 95/00663

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 HO4L29/06

According to Intematonal Patent Classificaton (IPC) or to both national classificanon and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classificabon system followed by classificaton symbols)

IPC 6 HO4L GO6F

Documentation searched other than mimmum documentation to the extent that such documents are included 1n the fields searched

Electronic data base consulted during the intematonal search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropnate, of the relevant passages

X EP,A,0 381 655 (IBM) 8 August 1990 1-6
see page 4, line 11 - line 31

see page 7, line 42 - page 8, line 48
X US,A,5 247 676 (OZUR MARK C ET AL) 21 1-6
September 1993

cited in the application

see column 2, line 57 - column 7, line 27

A US,A,5 261 097 (SAXON PAUL D) 9 November 1-6
1993

see column 1, line 11 - column 2, line 20
see column 3, line 1 - column 5, line 11

A US,A,4 274 139 (HODGKINSON SUSAN D ET AL) 1
16 June 1981

see column 3, Tine 29 - column 5, line 44

Relevant to claim No.

-/__

Further documents are listed in the continuation of box C.

Patent family members are listed 1n annex.

° Speaal categonies of ated documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E” earlier document but published on or after the international
filing date

"L" document which may throw doubts on prionty claim(s) or
which 15 cited to establish the publicaton date of another
citation or other special reason (as specified)

"0" document refernng to an oral disclosure, use, exhibition or
other means

"P" document published prior to the internatonal filing date but
later than the pnonty date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the applicaton but
cited to understand the pninciple or theory underiying the
invention

“X" document of particular relevance; the claimed inventon
cannot be considered novel or cannot be considered to
involve an inventive step when the document 15 taken alone

"Y" document of particular relevance; the claimed 1nventon
cannot be considered to involve an inventve step when the
document 1s combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art,

"&" document member of the same patent famly

Date of the actual completion of the internauonal search

28 May 1996

Date of mailing of the intematonal search report

11.06.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (- 31-70) 340-3016

Authonzed officer

Goossens, A

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

“aternational Application No

PCT/IB 95/00663

 INTERNATIONAL SEARCH REPORT

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citaton of document, with indication, where appropnate, of the relevant passages Reievant to claim No.

A EP,A,0 463 764 (DIGITAL EQUIPMENT CORP) 2 1
January 1992

see page 3, line 53 - page 4, line 12

Form PCT/ISA218 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

‘ternational Applicaton No

. PCT/IB 95/00663

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0381655 08-08-90 JP-C- 1856975 07-07-94

JP-A- 2231640 13-09-90
US-A- 5319782 07-06-94

- = P TS T R e e e e R S R S S R S S R R S R S G e e Y 4R R

US-A-5247676 21-09-93 US-A- 5430876 04-07-95
US-A-5261097 09-11-93 NONE
US-A-4274139 16-06-81 GB-A- 2023314 28-12-79

EP-A,B 0006216 09-01-80
JP-C- 1203660 25-04-84
JP-A- 55001000 07-01-80
JP-B- 58035297 02-08-83
EP-A-0463764 02-01-92 CA-A- 2044022 29-12-91
JP-A- 6083649 25-03-94
JP-B- 8027726 21-03-96
US-A- 5452433 19-09-95

T
¢

)
1

Form PCT/ISA 210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

