O 01/86384 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

15 November 2001 (15.11.2001) PCT WO 01/86384 A2
(51) International Patent Classification’: GO6F (74) Agents: QUINE, Jonathan, Alan et al.; The Law Of-
fices of Jonathan Alan Quine, P.O. Box 458, Alameda, CA
(21) International Application Number: PCT/US01/15263 94501 (US).
(22) International Filing Date: 8 May 2001 (08.05.2001) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(25) Filing Language: English CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
L. . LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
26 P bl t L : E 1 h 9] b b 9 9 9 9 9 9 b 9
(26) Publication Language nets MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S, SK,
L. SL, T], TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
(30) Priority Data: TW
60/202,730 8 May 2000 (08.05.2000) US '
60/202,731 8 May 2000 (08.05.2000) US
60/202,736 8 May 2000 (08.05.2000) US (84) Designated States (regional): ARIPO patent (GH, GM,
60/225,956 17 August 2000 (17.08.2000) US KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
60/230,341 6 September 2000 (06.09.2000) US patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
(71) Applicant (for all designated States except US): ENVOII EFC’}L(I:JI’ 1(\:41\(/:[’ gk’ g{\’r SCI}E\’NTII\{/I)i‘OQl};I Iz%erétléB;,)B%GCF,
[US/US]; 145 Vallejo Street, San Francisco, CA 94111 » R ’ ? ’ ’ ? YT EED K)-
(US).
Published:
(72) Inventors; and — without international search report and to be republished

(75) Inventors/Applicants (for US only): TOLSON, Michael
[US/US]; 11 Manzanito Court, Corte Madera, CA 94925
(US). ARNULFO, Jean-Christophe [FR/FR]; 114, av-
enue Philippe Auguste, F-75011 Paris (FR). RIVE, Brice

[FR/FR]; F-Paris (FR).

upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR A PORTABLE INFORMATION AGENT

(57) Abstract: A method and system for providing enhanced intelligent agents that are moveable by a user from a browser applica-
tion to a desktop. In specific embodiments, agents provide advanced interactive graphics and communications back to a server.

10

15

20

25

30

WO 01/86384 PCT/US01/15263

METHOD AND APPARATUS FOR A PORTABLE INFORMATION AGENT
CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit of priority from provisional patent application
60/202,736 filed May 8, 2000, incorporated herein by reference.

[0002] This application claims benefit of priority from provisional patent -application
60/202,731 filed May 8, 2000, incorporated herein by reference.

[0003] This application claims benefit of priority from provisional patent application
60/202,730 filed May 8, 2000, incorporated herein by reference.

[0004] This application claims benefit of priority from provisional patent application
60/225,956 filed August 17, 2000, incorporated herein by reference.

[0005] This application claims benefit of priority from provisional patent application

60/230,341 filed September 6, 2000, incorporated herein by reference.

. COPYRIGHT NOTICE
[0006] Pursuant to 37 C.F.R. 1.71(e), applicant notes that a portion of this disclosure contains

material that is subject to copyright protection (such as, but not limited to, source code listings,
screen shots, user interfaces, or user instructions, or any other aspects of this submission for which
copyright protection is or may be available in any jurisdiction.). The copyright owner has no
objection to the facsimile reproduction by anyone of the patent document or patent disclosure, as it
appears in the Patent and Trademark Office patent file or records, but otherwise réserves all

copyright rights whatsoever.

FIELD OF THE INVENTION

[0007] The present invention relates to the field of information and/or data handling methods
and systems. In specific embodiments, the present invention involves methods and/or systems
directed to providing distributable active content that can exist in a variety of software

environments.

BACKGROUND OF THE INVENTION

[0008] Familiarity with information and data handling methods and techmiques is
characteristic of practitioners in the art and is presumed of the reader. At the present time, many
people are familiar with accessing information over a data network. The WWW is a public data
network that is becoming increasingly used for accessing multi-media information. This
information can be one-way, passively experienced information, or two-way information

including two-way text, audio, or video data.

10

15

20

25

30

WO 01/86384 PCT/US01/15263

[0009] At the present time, there is a desire to enrich the user experience. One particular
aspect of typical WWW interactions is that interactions take place within the confines of an
application, such as a browser. In order to access the information, a user must be at a computer
system with a particular type of application for user access. Generally, an interactive application is
limited to a particular platform, such as a particular operating system or information handling
device.

[0010} The Internet comprises computers and computer networks that are interconnected
through communication links. The interconnected computers exchange information using various
services, such as electronic mail, ftp, the World Wide Web (“WWW?”), and other services
including secure services. The WWW service can be understood as allowing a server computer
system (e.g., a Web server or a Web site) to send Web pages of information to a remote client
computer system. The remote client computer system can then display the Web pages. Generally,
each resource (e.g., computer or Web page) of the WWW is uniquely identifiable by a Uniform
Resource Locator (“URL”). To view a specific Web page, a client computer system specifies the
URL for that Web page in a request. The request is forwarded to the Web server that supports that
Web page. When that Web server receives the request, it sends that Web page to the client
computer system. When the client computer system receives that Web page, it typically displays
the Web page using a browser. A browser is a special-purpose application program that effects the
requesting of Web pages and the displaying of Web pages.

[0011] Currently, Web pages are typically defined using a Hyper Text Markup Language
(“HTML”) or similar language. HTML provides a standard set of tags that define how a Web page
is to be displayed. When a user indicates to the browser to display a Web page, the browser sends
a request to the server computer system to transfer to the client computer system an HTML
document that defines the Web page. When the requested HTML document is received by the
client computer system, the browser displays the Web page as defined by the HTML document.
The HTML document contains various tags that control the displaying of text, graphics, controls,
and other features. The HTML document may contain URLs of other Web pages available on that
server computer system or other server computer systems.

[0012] The World Wide Web is especially conducive to providing information services over
the internet. Services can include items (e.g., music or stock quotes) that are delivered
electronically to a purchaser over the Internet. Services can also include handling orders for items
(e.g., groceries, books, or chemical or biologic compounds, etc.) that may be delivered through
conventional distribution channels (e.g., a common carrier). Services may also include handling
orders for items, such as airline or theater reservations, that a purchaser accesses at a later time. A

-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

server computer system may provide an electronic version of an interface that lists items or

services that are available.

SUMMARY

[0013] The present invention, in various aspects, involves a method and/or system and/or
apparatus for providing an enhanced user interaction in an information processing environment. In
various specific embodiments, aspects of the invention enable the presentation to users of a
portable information agent (PIA) (at times, referred to herein as an Envoii™) which can provide
enhanced user interactions with graphical objects. Particular aspects of the invention further
comprise systems, components, and/or methods allowing an agent to be portable over different
platforms.

[0014] In the present discussion, information available over a public network may be referred
to as contaiged in documents or presentations or compositions. It should be understood that the
terms information or document refer to any type of digitally-encoded data that can be presented or
transmitted by a computer or other digital device including, but not limited to, text, graphics,
photos, executable files, data tables, audio, video, three dimensional data, or multimedia data that
is a combination of any of these.

[0015] In a further embodiment, the invention comprises a new method for allowing an agent
supplier to enhance and track user interaction with an agent and for communicating information
between an agent supplier and an agent. In a further embodiment, the invention comprises a new
method for allowing an agent to be moved from a browser application to a desktop or to another
platform. In a further embodiment, the invention comprises a new method for tracking and
reporting back user interactions with an enhanced agent. In a further embddiment, the invention
involves a new method and system allowing an agent to move from an initial application to a new
location without requiring specific user input. In a further embodiment, the invention involves a
new method and system allowing composeability of PIA (or Envoii) objects, by allowing a one
Envoii agent to be connected to another Envoii agent, thereby providing additional functions.
[0016] In further embodiments, the present invention may be understood in the context of
user systems in communication with external data systems over a communication media. An
important application for the present invention, and an independent embodiment, is in the field of
providing a persistent object that can be initially accessed through a browser and that can move to
other software platforms, such as other programs, a desktop, or other devices. In particular
embodiments, services according to specific embodiments of the invention can be accessed using

an agent over the Internet, optionally using Internet media protocols and formats, such as HTTP,

-3-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

RTTP, XML, HTML, dHTML, VRML, as well as image, audio, or video formats etc. However,
using the teachings provided herein, it will be understood by those of skill in the art that the
methods and apparatus of the present invention could be advantageously used in other related
situations where it is desirable to have a persistent agent.

[0017] The invention and various specific aspects and embodiments will be better understood
with reference to the following drawings and detailed descriptions. In different figures, similarly
numbered items are intended to represent similar functions within the scope of the teachings
provided herein. In some of the drawings and detailed descriptions below, the present invention is
described in terms of the important independent embodiment of a system operating on a digital
data network. This should not be taken to limit the invention, which, using the teachings provided
herein, can be applied to other situations, such as cable television networks, wireless networks, etc.
For purposes of clarity, this discussion refers to devices, methods, and concepts in terms of
specific examples. However, the invention and aspects thereof may have applications to a variety
of types of devices and systems. It is therefore intended that the invention not be limited except as
provided in the attached claims. Furthermore, it is well known in the art of internet applications
and software systems that particular file formats, languages, and underlying methods of operation
may vary. The disclosure of a particular implementation language or format of an element should
not be taken to limit the invention to that particular impiementation unless so provided in the
attached claims. The invention will be better understood with reference to the following drawings
and detailed description.

[0018] Furthermore, it is well known in the art that logic systems and methods such as
described herein can include a variety of different components and different functions in a modular
fashion. Different embodiments of the invention can include different mixtures of elements and
functions and may group various functions as parts of various elements. For purposes of clarity,
the invention is described in terms of systems that include many different innovative components
and innovative combinations of innovative components and known components. No inference
should be taken to limit the invention to combinations containing all of the innovative components
listed in any illustrative or example embodiment in this specification. The functional aspects of
the invention that are implemented on a computer, as will be understood from the teachings herein,
may be implemented or accomplished using any appropriate implementation environment or
programming language, such as C, C++, Pascal, Java, Java-script, HTML, XML, dHTML,
assembly or machine code programming, etc. Source code examples used herein are given for
example purposes. It will be understood to those of ordinary skill in the art that many different

source code examples could be used to implement aspects of the invention. All references,

A-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

publications, patents, and patent applications cited herein are hereby incorporated by reference in

their entirety for all purposes.

BRIEF DESCRIPTION OF THE DRAWINGS I

FIG. 1 illustrates an example graphical display showing a method of moving an Envoii
PIA from a browser window to a desktop according to specific embodiments of the invention.
FIG. 2 illustrates an example graphical display showing an Envoii PIA residing on a

desktop after closing a browser window and illustrating that an Envoii PIA has a sustained

~ connection, so that when a client restarts a machine, an Envoii can remain on the desktop where

the user left it, according to specific embodiments of the invention.

FIG. 3 illustrates an example graphical display showing an Envoii PIA providing
active links to two different URLSs through launched browser windows according to specific
embodiments of the invention.

FIG. 4 illustrates an example graphical display showing an Envoii PIA activating an
associated function, such as an email sending program, according to specific embodiments of the
invention.

FIG. 5 illustrates an example graphical display showing an Envoii PIA being
associated with a composable function according to specific embodiments of the invention.

FIG. 6 illustrates an example graphical display showing an Envoii PIA moved to
multiple information devices according to specific embodiments of the invention.

FIG. 7 illustrates an example business method according to specific embodiments of
the invention wherein a services provider can keep in touch with multiple customers using an
Envoii PIA.

FIG. 8 illustrates an architecture of a component oriented system according to specific
embodiments of the invention.

FIG. 9 is a diagram providing additional details regarding the architecture shown in
FIG. 8.

FIG. 10 is a block diagram showing sending a message using SkinVoiis into the same
PlaceVoii according to specific embodiments of the invention.

FIG. 11 is a block diagram showing sending a message using SkinVoiis into a local
but different PlaceVoii according to specific embodiments of the invention.

FIG. 12 is a block diagram showing sending a message using SkinVoiis into a remote

PlaceVoii according to specific embodiments of the invention.

10

15

20

25

30

WO 01/86384 PCT/US01/15263

FIG. 13 is a block diagram showing a representative example of tracking Envoii PIA
actions according to specific embodiments of the invention.

FIG. 14 is a block diagram showing a representative example of a push server
according to specific embodiments of the invention.

FIG. 15 is a block diagram showing a representative example of a community server
according to specific embodiments of the invention.

FIG. 16 is a block diagram showing a representative example of a TrackVoii
requesting a player ID according to specific embodiments of the invention.

FIG. 17 is a block diagram showing posting of a tracking event according to specific
embodiments of the invention.

FIG. 18 is a block diagram showing an example of tracking file processing according
to specific embodiments of the invention.

FIG. 19 is a block diagram showing a representative example of tracking data being
forwarded to a third-party database server (such as Oracle), according to specific embodiments of
the invention.

FIG. 20 is a block diagram of a hierarchy for a desktop PlaceVoii according to specific
embodiments of the invention.

FIG. 21 is a block diagram illustrating a graphical user interface showing an example
menu for a desktop PlaceVoii according to specific embodiments of the invention.

FIG. 22 and following figures illustrate an example Desktop Refreshing Algorithm
according to specific embodiments of the present invention, with FIG. 22 illustrating the initial
move of an example sphere Envoii.

FIG. 23 illustrates render, mask, and save steps of an example Desktop Refreshing
Algorithm according to specific embodiments of the present invention.

FIG. 24 illustrates render and mask steps of an example Desktop Refreshing
Algorithm according to specific embodiments of the present invention.

‘ FIG. 25 illustrates concluding steps of an example Desktop Refreshing Algorithm
according to specific embodiments of the present invention.

FIG. 26 is a block diagram illustrating operation of an Object Request Broker (ORB)
during a create instance according to specific embodiments of the invention.

FIG. 27 is a block diagram illustrating the operation of a load resource according to
specific embodiments of the invention.

FIG. 28 is a block diagram illustrating a Unified Modeling Language (UML)

description for an ORB according to specific embodiments of the invention.

-6-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

FIG. 29 is a block diagram illustrating assignment of a Player ID from a server
according to specific embodiments of the invention.

FIG. 30 is a block diagram illustrating a top level software architecture at a client
machine according to specific alternative embodiments of the invention.

FIG. 31 is a block diagram showing a representative example logic device in which

various aspects of the present invention may be embodied.

DESCRIPTION OF SPECIFIC EMBODIMENTS

[0019] According to specific embodiments, the present invention extends and transforms user
interactions over the internet by providing portable information agents (PIAs) that can be initially
accessed in a first interface or window (such as an HTML browser window or an email message
window), but that can move or be moved to another software location, such as a desktop. Once
moved to another location, a PIA according to specific embodiments of the present invention,

maintains for the most part the functionality and connections that it had in the initial location.

1. User Interaction Methods and Operation

[0020] According to specific embodiments, the present invention can be understood with
regards to a user’s experience interacting with a PIA. This discussion will therefore begin with the
user interaction, which contains many novel elemeénts. Following this discussion is given
particular examples of implementation details according to specific embodiments of the invention.
Many of these details will not be visible to the user and it will be understood from the teachings
herein that other implementations are possible within the scope of the invention.

[0021] FIG. 1 illustrates an example graphical display showing a method of moving an Envoii
PIA from a browser window to a desktop according to specific embodiments of the invention. As
shown in the figure, an Envoii 10 (in this case displayed as a business card of a bank representative
Jill Smith) can be dragged from its initial location 20, which in this example is within a browser
window, and can be moved to a new location 30, which in this example is on a desktop, such as a
Windows Operating System desktop.

[0022] As will be further understood from the discussion below, the technology according to
specific embodiments of the invention allows active content to be brought to the desktop without
application installations. Envoiis can be dragged from the browser to the desktop or to any
Envoii-enabled place. Envoiis can pull data from external sources in response to a user's actions or
can be designed to move to a new location without requiring user action.

[0023] FIG. 2 illustrates an example graphical display showing an Envoii PIA residing on a

desktop after closing a browser window and illustrating that an Envoii PIA has a sustained

-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

connection, so that when a client restarts a machine, an Envoii can remain on the desktop where
the user left it, according to specific embodiments of the invention. According to specific
embodiments of the invention, Envoiis can exist independent of the browser and other applications
and can freely travel from place to place and the experiences and functionalities found within
Envoiis migrate from place to place without fragmentation. Thus, in this example, when Jill's
clients restart their machines, her card appears on their desktops, just as they left it. The Envoiis,
according to specific embodiments of an enabling system as described herein, can contain
lightweight, rich graphics and interactive effects and can also contain functionality or links to
external functions. In further embodiments, Envoiis have the ability to wrap third-party content,
such as Flash, 3d files, video formats and audio.

[0024] FIG. 3 illustrates an example graphical display showing an Envoii PIA providing
active links to two different URLs through launched browser windows according to specific
embodiments of the invention. In this example, on example PIA 10 are two links 12a and 12b that
allow selection to URL locations.

[0025] FIG. 4 illustrates an example graphical display showing an Envoii PIA activating an
associated function, such as an email sending program, according to specific embodiments of the
invention. In particular embodiments, virtually any application can be launched from an Envoii.
Thus, Envoiis can extend a client’s brand (such as, in this example, First Union Bank) to many
platforms and environments and provide links to their services. In this embodiment, with two-way
communications, Jill can remain in touch with client's and contacts at all times. The Envoii can
launch an email client 50 for sending and receiving emails. While these figures show an Envoii
initially distributed from a browser window, Envoiis can also be distributed via email.

[0026] FIG. 5 illustrates an example graphical display showing an Envoii PIA being
associated with a composable function according to specific embodiments of the invention. Thus,
according to specific embodiments of the invention, Envoiis can become part of another Envoii
and users can personalize their experience, configuring services as needed. Businesses can easily
add or update services provided to Envoiis. An authoring environment, according to specific
embodiments of the invention, allows new Envoiis to be "snapped together" for easy
expandability. As shown in the figure, a user can select from a group of free services Envoiis 60 or
premium service Envoiis 62. In this example, these Envoiis are represented as dots (such as 60a)
with text indicating a service. When dragged to an appropriate Envoii PIA, the dots graphically
snap into slots or groove on the business card Envoii 10. Once snapped in, the service Envoiis
remain associated with the business card Envoii and is activated along with the business card

Envoii.

10

15

20

25

30

WO 01/86384 PCT/US01/15263

[0027] FIG. 6 illustrates an example graphical display showing an Envoii PIA moved to
multiple information devices according to specific embodiments of the invention. According to
specific embodiments of the invention, Envoiis run on the most popular operating systems and can
migrate seamlessly from platform to platform. Thus, content created in the Envoii authoring
environment is targeted to live on any platform.

[0028] FIG. 7 illustrates an example business method according to specific embodiments of
the invention wherein a services provider can keep in touch with multiple customers using an
Envoii PIA. According to specific embodiments of the invention, the invention allows Multicast
and Peer to Peer communications. Persistent connections can be established between any two
Envoiis wherever they are. Connections between Envoiis can be used for Instant Messaging, data
exchange, file sharing and collaborations. For example, in this case Jill's clients might be able to
share stock tips with one another.

[0029] The present invention has thus far been described in terms of general methods and
devices. The previous description is a full and complete description sufficient to allow an ordinary
practitioner in the art to make and use the invention as described. It will be understood to those of
skill in the art from the teachings provided herein that the described invention can be implemented
in a wide variety of specific programming environments and logical systems (such as UNIX,
Windows, Solaris, Oracle, etc.) using a wide variety of programming languages (such as SQL,
Visual Basic, Pascal, C++, Basic, Java, etc.) and wide variety of file formats.

[0030] What follows are descriptions of example systems and methods that embody various
aspects of the present invention and that describe further novel aspects of particular embodiments.
The following discussion is included, in part, in order to disclose particularly preferred modes
presently contemplated for practicing the invention. It is intended, however, that the previous
discussion and the claims not be limited by the examples that follow. It is further intended that the
attached claims be read broadly in light of the teachings provided herein. Where specific examples
are described in detail, no inference should .be drawn to exclude other known examples or
examples described briefly from the broad description of the invention or the language of the
claims. It is therefore intended that the invention not be limited except as provided in the attached

claims and equivalents thereof.

2. Architecture Enabling Envoiis According to Specific Embodiments
of the Invention

[0031] In further embodiments, the invention comprises a distributed component architecture

that facilitates methods discussed above. From the teachings provided herein, it will be understood

9-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

that this is one example architecture and that other architectures according to specific embodiments
of the invention as previously described, are possible. This architecture can be understood as
based on an aggregation model as opposed to an inheritance model. The design offers maximum
flexibility and adaptability to environments that cannot always be predicted, without placing undue
constraints on what is possible.

[0032] FIG. 8 illustrates an architecture of a component oriented system according to specific
embodiments of the invention. FIG. 9 is a diagram providing additional details regarding the
architecture shown in FIG. 8. As will be seen from these figures, an example architecture
according to specific embodiments of the invention, includes a mumber of different components in
a connected architecture as further described below. In the model shown, a "MetaVoii" is an
executable component that is generally transparent to an end-user and that allows Envoiis PIAs to
operate. A MetaVoii 100 has several services attached as parts: Tracking, Communications, ORB
and Security. The parent of a MetaVoii on a client machine can be a remote server MetaVoii 101,
such as one located at Envoii.com. A PlaceVoii 110 allows an Envoii PIA to exist in a particular
place, such as a browser window or a desktop. In FIG. 8 there are two PlaceVoiis, the one on the
left has three children or “kid” connections 112. In this case, these are each connections to Envoiis
120 that have a visual component are a perceivable, such as a CreditCardVoii, a BusinessCardVoii,
a BottleVoii, or a LogoVoii. In the indicated sub-composition 120c, there are 2 skins attached, for
example a tracking skin connected to the tracking manager and a skin setting properties on a viz.
The other indicated composition is an example of a quite simple composition with a MetaVoii and
two places, with a very few non-structural connections indicated as dotted arrows.

[0033] In FIG. 9 is explained the various symbols used in the architecture illustrated in FIG.
8. An "Envoii," as an instance of a class, provides generic graph interface. The connection points
are representative of open set of "ports" which enable connections to other Envoiis. A “Kid"
connection, which is a specialization of a "Part" connection, is the primary glue used by designers
in building compositions. It effectively helps implement a tree-hierarchy as in the current system.
Part connections are structural, and enforce a part/part-of protocol. A dynamic connection can be
an transient connection or not. A skin or SkinVoii bears a part-of relationship to an Envoii. A viz
bears a part-of relationship to an Envoii. A DisplayManager is a part of an Envoii which provides
arendering service. An "Event Service" is also indicated, as described below.

[0034] According to specific embodiments of the invention, the architecture can be
understood as a node-based architecture, with a number of “Envoiis.” Envoiis, as described
further herein, include active components that can be either MetaVoiis, PlaceVoiis, or Envoiis.

Envoiis can be of various types, generally with various functionality and with particular and

-10-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

characteristic visual components. For example, a BusinessCardVoy is illustrated in FIG. 1 through
FIG. 7. As shown in those figures and described above, the BusinessCardVoy has the appearance
of a business card and connects to appropriate services. Other Envoiis can include such things as
an advertising item (such as a soft-drink bottle that provides interesting user interactivity), a credit
card, a representation of a globe, etc.

[0035] An example implementation of an interactive graphical object or agent (herein referred
to as an Envoii) according to the invention provides the following services: (1) Envoiis, using
built-in traversal capabilities, can perform service retrieval. This means one can ask an Envoii:
“Find me service Foo” and the Envoii will return a reference to a service of type Foo, if one is
available. In particular embodiments, service requests are propagated from child Envoiis up to
parent Envoiis. In some embodiments, a top level parent will be an external server that provides a
library or references to all available services. (2) Effectively, the semantics (real-world behaviors
like rendering, animation, etc.) are implemented through Envoii services. (3) Envoiis provide
support for an arbitrary number of connection points, referred to herein as “ports.” These ports can
be named, and provide type signatures, etc., in the form of interface specifications. (4) Envoiis are
constructed and added to a tree composition. (5) Envoiis are connected to one-another through the
use of objects called “connections.” Connections are generally from port to port, and have explicit
references to two ports. (6) Mechanisms are provided for search and traversal of Envoii hierarchy.
[0036] Generally, relations between Envoiis are based on the same connection mechanism.
Interfaces - Each Envoii supports a set of interfaces identified with a unique interface ID. All
Envoiis will inherit default Interfaces and add their own specific Interfaces. When a client Envoii
wants to establish a connection to another Envoii’s Interfaces, it needs to have a reference to that
server Envoii. Either it already has that reference (for example because it structurally knows the
server Envoii) or it will get the reference through the Service Discovery mechanism. Using that
reference, the client Envoii will query the server Envoii to check that the Envoii actually supports
the desired interface. At that point the communication between the Envoiis can be established.
The communication is asymmetric in the sense that it has a client/server aspect. Symmetric
communication can be established between two Envoiis by establishing two connections. The
standard Interfaces include the Service Discovery support, symmetric communication protocols,
etc.

[0037] Ports - Both ends of the communication are managed symmetrically by ports using a
channel. Because an Envoii can have several connections to the same interface, each connection
needs to have it’s own port. In a sense, a port on the server side is an instantiation of the interface.
The port on the client side it conceptually similar to a proxy.

-11-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

[0038] Channel - The actual communication between the Envoiis will be encapsulated by the
ports to travel through a communication channel. The channel is responsible for transporting the
interface method calls and their parameters. It also transports direct communication between the
ports themselves. The type of channel transport will depend on the relative location of the Envoiis
(in process, inter process, remote). Envoii (or Enode) references are uﬁique inside of their

identification space.

PlaceVoiis ,
[0039] In particular embodiments, an architecture according to the invention further
comprises PlaceVoiis and MetaVoiis as described below. PlaceVoiis can be understood as a type
of Envoii that allows other Envoiis to operate in a particular place. A computer system that first
encounters a graphical Envoii through a particular browser (such as Netscape Navigator™, for
example), will receive a PlaceVoii allowing existence of that graphical Envoii within Navigator. If
a user drags the graphical Envoii to a different application (or if the Envoii is triggered to move
spontaneously), such as Internet Explorer™, for example, a different PlaceVoii will be invoked to
enable existence within that different application. Likewise, if an Envoii is dragged onto a
desktop, a PlaceVoii appropriate for that desktop (in the particular operating system) will be

downloaded (if necessary) and invoked.

MetaVoiis

[0040] A MetaVoii is an Envoii that exists at the highest level within a user’s particular
operating system. It detects relocation of a graphical Envoii to a new location and triggers the
downloading and invocation of necessary PlaceVoiis to allow existence in different locations. In
particular embodiments, a MetaVoii can trigger the loading and invocation of other MetaVoiis for
different platforms, such as when an Envoii is relocated from a desktop computer to a PDA or to a
different desktop computer on a network.

[0041] In particular embodiments according to the present invention, a graphical Envoii
always has an ancestor that is a PlaceVoii, and a PlaceVoii always has a parent that is a MetaVoii.
A MetaVoii generally has a parent that is a remote authoritative server for providing available
PlaceVoiis, services, or other architectural entities. Generally, MetaVoiis and PlaceVoiis will not

be associated with graphical objects directly and will operate transparently to users.

Connections
[0042] According to specific embodiments of the present invention, a connection specifies a
relationship between two Envoiis. In this context, an Envoii can be understood as both an agent

with which a user interacts and as a node in the Envoii architecture that supports that agent and

-12-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

may be transparent to a user. Nodes in the architecture provide formalized connection points for

various Envoiis and supporting infrastructure.

Special Connections Examples
[0043] There are several types of connections that are peculiar to an Envoii system, according

to specific embodiments. (1) Part/Part-of Connection is the structural glue that holds together
“compositions.” It is a directed connection that says, “B is part-of A.” The intention here is to
provide a formal method for identifying what gets “dragged along” when an Envoii is
disconnected from its parent. (2) Kid: The Kid or “Child-of” connection is a special case of the
Part/Part-of connection. It will be used to implement hierarchy within Envoii compositions. (3)
Special Part Envoiis: All structural connections to an Envoii that are not Kids or Parents are Parts

which facilitates service search procedures.

Visuals (Viz)
[0044] A Viz is a visual part of an Envoii that is normally perceivable by a user. A Viz

subscribes to services such as: (1) Display manager; (2) Spatial Manager.

SkinVoiis (or Skins)

[0045] A skin (or SkinVoii) is a part that subscribes to events (user or otherwise) and, in

general, operates on the properties of compositions or visuals. A skin can be understood as
executable logic that provides interface functions for one or more Envoiis. According to specific
embodiments of the invention, because a skin is a part, there is no limit to the number of skins that
can be associated with a viz through its connected Envoii. Some of the services that are provided
internally as methods to skins in some implementations can also be factored out to. Focus
management is one example. Those skins that are interested in “focus” will obtain and connect to a
special service called a “Focus Manager”. (This is an example of a Skin that is also a service).

[0046] SkinVoiis are responsible for interactions between the user and the Envoiis as well as
interaction between Envoiis. They implement the behavior of Envoiis. In that sense, they mostly
translate events into property value changes. SkinVoiis are parts. As such, a SkinVoii is directly
attached to an Envoii and does not have parts or kids. A SkinVoii interacts with the rest of the
system through its parent Envoii (service connections, access to property tree, etc.) When an
Envoii is serialized (persistence, cut and paste, etc.), its SkinVoiis are also automatically serialized.
[0047] According to specific embodiments of the invention, SkinVoiis are event clients. Once
attached to an Envoii, a SkinVoii will generally respond to a ConnectServices call (defined in the
nvINode interface) by connecting to an event manager. A given SkinVoii may connect to other

services to implement its specific behavior. (Note the spelling is some figures and examples may

-13-

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

represent an older spelling using the final syllable “voy.” In this discussion, this is equivilant to
spellings using the final syllable “voii,” which is the currently preferred spelling.) Example code
follows: ConnectService(IID_nvIEvtMgr, (void**)&myIEvtMgr);

[0048] Once connected to an event manager, SkinVoiis register as event handlers for a set of

events defined by a 32-bit mask, as follows:

myIEvtMgr->RegisterForEvent (m_EventMask, (nvISkin*)this);
[0049] The event manager will then call their PostEvent method anytime an event specified in

the mask occurs. SkinVoiis also need to deregister and disconnect from the event manager when

the DisconnectServices method is called. Example code follows:

if (myIEvtMgr) { myIEvEMgr -
sDeregisterForEvent ((nvISkin*) this) ;
Disconnect (myIEvtMgr) ;
myIEvtMgr=0; }

SkinVoiis modify property trees
[0050] When the SkinVoii is attached to its parent Envoii (for example, using SetParent) it is

able to get access to the property tree of that Envoii. It is through that property tree that the

SkinVoii can modify the state of its Envoii (or parts or kids, etc.).

// get property tree
if (m pTree==0) m pTree = new nvPropertyTree (0);
myEnvoiiAsANode->GetPropertyTree (m_pTree) ;

Communication done through SkinVoii ,
[0051] According to specific embodiments of the present invention, the Envoii-to-Envoii

communication model allows Envoiis to communicate even if they are not running in the same
thread of execution (or even on the same machine). Because the software implementation
according to specific embodiments of the invention is neither asynchronous nor re-entrant,
communication between Envoiis needs to be synchronized by the event loop of the players. This
means that messages between Envoiis should be carried by events, which indicates that
communication between Envoiis has to be done through SkinVoiis. From the point of view of the
SkinVoii, the communication manager is an auxiliary to the event manager which provides

information that completes the communication event itself.

3. Services

[0052] According to specific embodiments of the invention, the Envoii architecture is
associated with a number of functions referred to as services. Services can be nested. This is
especially desirable in the case of the display service, and implicit in the spatial service. All of the
functions of an Envoii player (as discussed herein) can be cast as services. Services need not be
local. This happens without further effort if one follows the chain of Envoiis up past the MetaVoii

level at the local machine to the server level MetaVoii. Example services that may be associated

-14-

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

with Envoiis according to specific embodiments of the invention include such things as the
Communication Manager, Display Manager, Events Manager, Focus Manager, Memory
Management, Tracking Manager, and Security Manager. Not all of these services will be included

in each implementation.

4. Communication Manager

[0053] The Communication manager allows a skin (or SkinVoii) to communicate with
another skin. This skin can be located in the same PlaceVoii, in an other PlaceVoii within the same
client or in a remote PlaceVoii. This section discusses the functionality implemented within the
Communication Manager (ComMgr) component. The Communication manager (ComMgr) is
instantiated at the level of the MetaVoii. In particular embodiments, it inherits from nvNode and is
attached as a part of the MetaVoii. The ComMgr is not an Envoii, as it does not have any parent
/child connection. The part mechanism allow each Envoii of a composition tree to access this
service through the ConnectService method implemented in the nvNode interface. There will be
an instance of ComMgr component for each instance of the MetaVoii within one client.

[0054] The communication manager allows skins to send and receive messages, with each
message an instance of SkinMessage class. This class contain the message send between skin and

routing/addressing information.

The nvIComMegr interface

[0055] Each Envoii in the composition tree can request a connection from the ComMgr

service (interface). An example embodiment source code is provided below.

//* Definition of the class/interface nvIComMgr
class nvIComMgr : public nvIUnknown { public:
// Interfaces used by the MetaVoii of the Communication Manager
virtual NVSTATUS Init()=0;
virtual wvoid RegisterMetaVoii (IMetaVoii *theMetaVoii)=0;
// Interfaces used by the PlaceVoii
virtual NVSTATUS ForwardedMsg (unsigned long MsgId)=0;
virtual NVSTATUS SkinRemoved(unsigned long skinId)=0;
virtual NVSTATUS OnDeath()=0;
// Interfaces used by SkinVoii/oldvoy
virtual NVSTATUS SendMsg(SMSG SCOPE scope, SkinMessage sMsgToSend)=0;
virtual NVSTATUS SendMsg(const char *ipaddr, unsigned long port,
SkinMessage sMsgToSend)=0;
virtual NVSTATUS GetSkinMsg(unsigned long MsgId, SkinMessage
&sMsgToGet)=0; };
[0056] The MetaVoii creates an instance of ComMgr, initializes it, and registers itself with

this component (back pointer to the MetaVoii interface). @ The PlaceVoii received
WM_CM_SKINMSG in its event loop. If the Msgld parameter is zero, the PlaceVoii forwards the
message directly to its instance of ComMgr. If Msgld is not zero and the skin requested by this

-15-

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

message is registered for event in this PlaceVoii, it will translate it as NV_SKINMSG event and
send it to requested skin event loop. '

[0057] The communication manager offers two methods to send messages from one skin to
the other. If the skin initiator does not know the specific location of the destination skin, it uses a
sendMsg with a scope of search. The scope can take the following value: SAME _PLACEVOII;
LOCAL_PLACEVOII; REMOTE_PLACEVOIIL If the skin knows the IP address and the port

number of the PlaceVoii, it uses the second form of the sendMsg.

Sending messages
[0058] FIG. 10 is a block diagram showing sending a message using SkinVoiis into the same

PlaceVoii according to specific embodiments of the invention. In this and the related Figures,
triangles with “Sn” notation inside denote skins, pentagons with an “E” inside denote Envoiis, and
ovals with a “V” inside denote Vizes (or visuals) According to specific embodiments of the
invention, for the skin S1 (skin with id 1) to send a local message to the skin S2, it will create a

skinMessage and send it the ComMgr as follow:

SkinMessage sMsg;
sMsg.SetMsgType (SkinMessage: : SKIN MSG_SMSG); // type of this message

sMsg.SetRequestedId(2); // identifier of the skin
s2

sMsg.SetRequestorId (GetSkinId()); // requestor id

sMsg.SetParaml (250) ; // the message we want to send
to

myComMgr - >SendMsg (nvIComMgr :: SAME PLACEVOII, sMsg);
[0059] When the send method is called, the ComMgr will ask its PlaceVoii if the requested

skin is registered for events. If so, the ComMgr will store the message into a shared memory list,
generate a Msgld and then using the MetaVoii interface will post a WM_CM_SKINMSG with a
Msgld and a Skinld as a parameter. Upon reception of this message the PlaceVoii will convert the
message into a NV_SKINMSG and send it to the event loop of the requested skin. On reception of

the NV_SKINMSG the skin will proceed as follow:

SkinMessage sMsg ;
myComMgr->GetSkinMsg (MsgId, sMsg);
if (sMsg.GetParaml ()>250)

// do what ever you have to do with that

[0060] FIG. 11 is a block diagram showing sending a message using SkinVoiis into a local
but different PlaceVoii according to specific embodiments of the invention. Upon reception (step
1) of a SkinMessage with a SAME_PLACEVOII scope, the ComMgr will store the message into a
sha{red memory array 200 and assign it a message Id (step 2). Then, from the list of PlaceVoiis
provided by the MetaVoii it will post a WM_CM_SKINMSG to all the PlaceVoiis (except itself)

with a message Id and requested skin Id as a parameter (step 3). Upon receiving this message, the

-16-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

PlaceVoii looks if the requested skin is registered for the event; if so, it forwards the message to
the event loop of the skin (step 4). It is possible with this method that two PlaceVoiis receive the
same message. If both of them have the requested skin, the first one that called GetSkinMsg will
received the SkinMessage. This figure also illustrates an alternative embodiment wherein there
can be multiple instances of the MetaVoy on a client inachine, one for each different PlaceVoii.
[0061] FIG. 12 is a block diagram showing sending a message using SkinVoiis into a remote
PlaceVoii according to specific embodiments of the invention. Skin S1 wants to send a message to
S2 using a REMOTE_PLACEVOII scope (step 1). On reception of this message, the ComMgr
stores the message into a shared memory array (not shown). Then. ComMgr éreates an
IS_YOUR_SKIN SkinMessage message type and broadcasts it on the local area network (step 2).
When the broadcaster receives an IS YOUR_SKIN message, it forwards it to all the local
PlaceVoiis (step 3). When the PlaceVoii receives this message, it checks if the requested skin id is
registered for events in its environment, if so, it changes the message type from IS_YOUR_SKIN
to SKIN_FOUND and updates the connection port to this PlaceVoii. The message is then sent
back to the origin (step 4). Using the IP address and the port contained in the reply message the
ComMegr establishes a connection to the remote PlaceVoii (step 6). Once the connection is
established, it sends the message stored into shared memory using this connection. This process is
only made once per requested skinld. The next time S1 wants to send a message to S2, the
ComMgr will check first if it already had a connection to this skin, and then send the message
directly through this connection object. Search scopes can be combined using, the OR operator. For
a SAME PLACEVOII] LOCAL_PLACEVOIl] REMOTE_PLACEVOII scope request, the
ComMgr will first look in the current PlaceVoii for the availability of the requested skin. If not
available, it will then look at all the local PlaceVoiis, and then if the requested skin Id is not found
within the local client, it will look for a remote client. The skin will not know if the message is sent
locally or remotely.

[0062] Bach ComMgr instantiates a Broadcaster object. A Broadcaster object creates a
connectionless socket (such as using UDP) to a specific port (e.g. 1234). Each instance of the
broadcaster has the ability to broadcast messages to a local area network. The first instance of the
broadcaster will create a listening thread that will receive all the incoming broadcast messages.
Upon reception of those messages, it will forward this message to all the PlaceVoiis within this
client. In the current implementation the only message received on this port are IS YOUR_SKIN
message. Each instance of the ComMgr will create a thread which will be listening to pending

connection. This thread is also in charge of checking all the connection object for incoming

-17-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

messages. Incoming messages are stored in the shared memory array and then the PlaceVoii is

notified through its event loop.

5. Push Server

[0063] FIG. 14 is a block diagram showing a representative example of a push server
according to specific embodiments of the invention. A Push server provides content on demand for
Envoiis that are push enabled; a push enabled Envoii has in its properties the address of a push
server to which it connects periodically (the period can be defined in the Envoii) to check for
updates. There can also be a push protocol, such that if the server has updates, it sends them to the
Envoii for immediate refresh. For example, a softdrink bottle Envoii can catry an advertising
message and subscribe to a push server for message updates. This and following Figures contain

other elements of external communications that are not part of all embodiments.

6. Community Server

[0064] FIG. 15 is a block diagram showing a representative example of a community server
according to specific embodiments of the invention. A Community server provides a way for
Envoii users to find each other and communicate with each other. Napster or Icq are examples of
community-based connections that are similar to Envoii community servers. This facility provides

a powerful way for clients to do community marketing.

7. Tracking Manager

[0065] Tracking is the ability for a player to gather data about how the user interacts with
Envoiis, and then to send this information through tracking servers. For example, tracking how
many times the user has clicked on an Envoii in a certain period of time, how long he left his
mouse above it, etc. Tracking is completely anonymous. That means the system never makes any
link between the data collected and the machine or the person who originated that data. Also, there
is only tracking of Envoii deployed objects, no information is collected on the end user.

[0066] FIG. 13 is a block diagram showing a representative example of tracking Envoii PIA
actions according to specific embodiments of the invention. This is the normal topology for
tracking. Each player talks to three different servers: the Envoii server provides the Envoii
components; the Customer server provides the content and customized components; and the
Tracking server collects the tracking data for all players in the world. In these and other figures,
communications with remote servers or players will be understood from the teachings provided

herein to be over any available data communication channel, such as the world-wide Internet.

-18-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

[0067] According to specific embodiments of the invention, a tracking system tracks events.
It can use a special tracking SkinVoii that records specific events and forward them to a Tracking
Manager at the player side. The Tracking Manager stores the data in a local file. Periodically, the

Tracking Manager connects to the Tracking Server and sends reports.

Envoii identity
[0068] For tracking information to be relevant, according to specific embodiments of the

invention, the system provides a method for tracking the source Envoii. There are different
possible levels of identification according to specific embodiments of the invention: (1) Envoii
class level: for example, a graphical soft drink bottle Envoii. The system can track all clicks on all
the bottle Envoiis in the world. (2) Envoii object level: e.g. to differentiate the clicks on two
bottles living in the same place, for example a web page. (3) Player level: to differentiate a bottle
on one user’s desktop from a bottle on another user’s desktop. (4) World level to identify a
specific instance of a bottle Envoii throughout the world. To provide all these levels of
identification, according to specific embodiments of the invention, a tracking system uses different
kinds of IDs with different allocation methods. The way these IDs are allocated and propagated is
linked to the Envoii life cycle, and Ids can be predefined properties with a special property type.

Player ID
[0069] To identify players throughout the world, according to specific embodiments of the

invention, every player when installed registers with the Envoii server for a new Id. To do that, the
invention delivers "virgin" players, i.e. players without an Id. During the first installation, the
installer or bootstrap will try to connect to the Envoii server and request a new ID. FIG. 16 is a
block diagram showing a representative example of a TrackVoii requesting a player ID according
to specific embodiments of the invention. The Envoii server holds a player ID database. If a
player ID is not received at installation, the local system still collects tracking data. A background
process called TrackVoii will regularly check if the local system is online or not and if online
without a player ID, it will request one to the Envoii server.

[0070] According to specific embodiments of the invention, player Ids can be stored with 4
bytes, which allows 2 players in the world. A redirection mechanism on the server (e.g. in the
CGI script) can be used to allow multiple servers, or to handle temporary server unavailability.
The ID database can also count how many player Ids have been allocated per platform. On the end
user machine, player Ids can be stored in different places, such as one of the player components
(for example, the ORB (discussed herein) through a patch to DLLs). Ids may also be stored in the

registry, though this location is liable to loss or modification by the user. Another option is the

-19-

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

data directory, but this presents some of the same problems as the registry. According to specific
embodiments of the invention, both in the registry and in the data directory is one choice.

Customer ID
[0071] According to specific embodiments of the invention, it is essential that Envoii

customers (for Example, First Union Bank as described above) get tracking data on Envoiis
deployed by those customers only. That means Envoiis must know to which customer they belong.
According to specific embodiments of the invention, each customer has a customer ID (which can
include a convenient number of bits, such as two bytes) and that id is stored by Envoii creation
tools in the Envoii at compile time.

Class ID
[0072] According to specific embodiments of the invention, customers can differentiate

tracking data for different types or classes of Envoiis (for example a bottle Envoii versus a logo
Envoii). This is done using the Envoii Class ID. Envoii class Ids are allocated by the content
creators that will keep track of the allocated Envoii class Ids.

Envoii local ID
[0073] The Envoii local ID is a local number inside a place. Envoiis of the same class ID and

same customer ID have different local Ids in the same place (web page, desktop, etc). This ID can
be set at compile time for objects that will be created when the composition is created. For
dynamically created Envoiis, local Ids can be allocated automatically, or with the help of specific
scripting functions.

Normal Envoeii ID
[0074] Normally, Envoiis do not need unique identification throughout the world. So the

normal ID is simply the combination customer ID : Envoii class ID : local ID. In one example
embodiment, the total size is 6 bytes. When a normal Envoii is copied, the Envoii ID is copied and
a new local ID is allocated. When a normal Envoii is moved (Cut & Paste), the Envoii ID is
unchanged. This will happen in the Copy/Paste and Drag & Drop operations.

Global Envoii ID
[0075] According to specific embodiments of the present invention, a Global Envoiis can be

created with a unique identification throughout the world. This is accomplished using UUIDs
(similar to those used for C++ class Ids). UUIDs are a 16 byte structure made from the following
numbers: (1) The current date and time (2) A clock sequence and related persistent state to deal
with retrograde motion of clocks (3) A forcibly incremented counter to deal with high-frequency
allocations (4) The truly globally unique IEEE machine identifier, obtained from a network card
(the implementation does not require a network card; if no network card is present, a machine

identifier can be synthesized from highly variable machine states and stored persistently.) (The

-20-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

allocation algorithm is defined in Chapter 10 of "DEC/HP Network Computing Architecture
Remote Procedure Call RunTime Extensions Specification Version OSF TX1.0.11" by Steven
Miller , July 23 1992. This is part of the OSF DCE documentation.) When a normal Envoii is
copied, a new Global Envoii ID needs to be allocated. When a global Envoii is moved (Cut &
Paste), the Global Envoii ID is unchanged. This will happen in the Copy/Paste and Drag&Drop
operations. Global Envoiis have to define which life cycle operations they allow. For instance,
they could refuse to be copied. Thus, a Global ID can comprise the combination customer ID :
Envoii class ID : UUID.

[0076] The Envoii ID can be stored according to specific embodiments using properties,
which will provide a standard way to access the Envoii ID. According to specific embodiments of
the invention, a special type of property (nvPropertyEnvoiiID) is in scripting, using a
reserved property name called EnvoiiID. Envoiis IDs generally are encrypted before

serialization.

Tracking Reports

[0077] The tracking components on the player side collect all the tracking events sent by the
SkinVoiis and store them into a local database. Once in a while, the local database is packed into
tracking reports and sent over the Internet to the Tracking Server. These reports are called Reports
of Transactions. In terms of implementation, reports of transaction need to be compact but
extensible and secure. To verify data integrity, reports use checksums on each packet, plus one

checksum on the report header.

Tracking SkinVoiis/Tracking Service

[0078] Tracking data is collected at the skin level. A SkinVoii inherits the capabilities of a
base SkinVoii to do tracking. Tracking can be triggered per Envoii. The Envoii is tagged for
tracking and needs to have a valid Envoii ID. The tracking flag is a reserved property called
_trackable. This may be an integer working like a boolean: 1 = tracking enabled, 0 = tracking
disabled. Other values are also possible. When a SkinVoii is connected to its Envoii, it reads the
_EnvoiiID and _trackable properties. If the Envoii is trackable, the SkinVoii connects to the
Tracking Manager service. On event reception (in PostEvent), the SkinVoii can decide to post a
tracking event to the tracking service, using the TrackEvent() method of the
nvITrackingMgr interface: wvoid TrackEvent (nvPropertyEnvoiiID& Id,
nvTrackingEvent& Event);

[0079] FIG. 17 is a block diagram showing posting of a tracking event according to specific

embodiments of the invention. A tracking event has a type and a piece of data. The meaning of the

21-

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

data depends on the event type. Event types are stored in 32bits. Value between 1 and 10000

(included) are reserved for Envoii Inc. Above 10000 are user defined events.

enum { EVENT_UNKNOWN =0,
// Envoii reserved events
EVENT CLICK =1,
EVENT CLONE = 2, // for example
EVENT KILL= 3, // for example
EVENT MAILTO = 4, // for example

// user events are used to extend tracking events. SkinVoiis can post
// specific user events with a value > EVENT USER. These events will
// be sent to the tracking server in RTA packets of class History.
EVENT USER = 10000 }i

[0080] Each player (= each process) will dump its tracking data into a different file (Process
Tracking Data). This is to avoid using any file locking mechanism that would be non-portable to
MacOS. This file is a collection of fixed length records with records added at the end. According
to specific embodiments of the invention, every 5 minutes or so, the tracking service will rename
its tracking data file with a different extension (for example .rdy) and start dumping into a new
file. The tracking service is waked up every minute by the PlaceVoii (using the PlaceVoii timer).
[0081] FIG. 18 is a block diagram showing an example of tracking file processing according
to specific embodiments of the invention. The Tracking Manager (TrackVoii.exe) is a separate
process that will poll for the .rdy files and process them. Again, using a separate process will
avoid any locking mechanism between the processes. The application is called TrackVoii. There
is not needed any interprocess communication. PlaceVoiis will automatically start a tracking
manager process every N minutes. According to specific embodiments of the invention, only one
tracking manager can be running at a time. Thus, unnecessary tracking managers will die
immediately. Every Z minutes, the tracking manager terminates. With this very simple mechanism,
tracking managers will be running only when needed. They will die automatically to make sure
there is no unnecessary overhead. They also die when the system shuts down. To do so, they create
an invisible top window and process the WM_QUERYENDSESSION and WM_ENDSESSION
messages.

[0082] Files are created and parsed using the nvArchive object. That will ensure correct byte
ordering, and provide a easy way to transfer data between the binary file and the structures in
memory without bothering about byte alignment (which changes a lot across platforms). Raw data
files are comprised of a header and a collection of fixed length records. A tool called rdydmp can
be used to dump .rdy files into text files. According to specific embodiments of the invention, each
record includes the following fields: Place Type, CustomerID, ClassID, LocallD, GloballD,
EventType, EventTimestamp, and EventData.

22.

10

15

20

25

30

WO 01/86384 PCT/US01/15263

[0083] For processing a .rdy file according to specific embodiments of the invention, read
every record, and update the RT database correspondingly. When the file has been processed, it's
deleted. Also, check for out of date raw data files, that is files that were never renamed into .rdy
files, because the player was not terminated correctly.

[0084] In order to make the reporting mechanism as simple and reliable as possible, according
to specific embodiments of the invention the invention uses an HTTP request because it is simple,
reliable, allows a 2-way communication, and goes easily through firewalls. The report is sent in the
data of the HTTP request and results are retrieved in the HTTP answer. On the Web server, there is
a CGI script that saves the report to a file on the server. A separate reads this file and adds the
corresponding data into a database (such as Oracle). This procesé will run asynchronously to the
CGI seript.

[0085] The Report Receiver will verify the integrity of the report. If the report is correct, a
file name is allocated and the report is saved in that file. The receiver answers OK to the Tracking
Manager. The Tracking Manager can delete the report from his local database. If the report is
corrupted, the receiver logs an incorrect report incident (with some information on the report), and
them answers ERROR to the Tracking Manager. In case of an error, either from Report Receiver
or in the protocol with the Web Server, the Tracking Manager keeps the report for retry.
According to specific embodiments of the invention, there may be a mechanism to discard
incorrect reports in case they were corrupted on the player side and the Tracking Manager can

check the integrity of the report with the same routine than the Reports Receiver.

8. Security Manager

[0086] Security is designed to ensure that the system as a whole is protected against malicious
attacks as well as against internal mistakes. Important factors in assessing the need for security are:
How much would a failure cost? How much does protecting against that failure cost? What is the
perception of users? While there is always a way for a motivated and talented hacker to subvert a
system and there is no way to reduce the talent level, the motivation level is pretty much under

control of system design.

Components integrity

[0087] Components are chunks of executable code that will be loaded and run by the players.
As such they are capable of doing anything an executable is allowed to do on the clients’ systems.
This clearly pini)oints them as preferred targets for malicious attacks. In one design, according to
specific embodiments of the invention, an authoritative server is the only source of components.

This provides some added security.

23-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

[0088] With a highly controlled Envoii server as the only source of components for the users,
this scheme cannot be subverted as long as the address from which components are to be fetched
only comes from the Envoii server (as opposed to: comes from a page content). In addition to the
single-source protection, components can carry a Verisign (or somesuch) identification to comfort
users. Thus, the address used to fetch Components must be defined only by components.

Components should use a system like Verisign Components safety.

Scripting
[0089] Scripts, just like components, contain executable code. However, there are two big
differences: Scripts come from many sources. Scripts do not run in native code on a user’s system
but in the Envoii byte code inside a virtual machine. The first point makes security more difficult,
and the second allows greater security measures to be taken. Because, according to specific
embodiments of the invention, anybody can become a source for scripts simply by putting some
Envoii content that refers to such script on a Web page. This means that, at least theoretically,
anybody can run byte code inside of the Envoii virtual machine. Thus, the invention according to
specific embodiments of the invention takes special care in defining the kind of access to the host

machine’s resources that is granted in the scripting language.

Tracking
[0090] Tracking also includes security against the emission by a tampered component of fake

tracking reports. While the motivation for that is low unless there is some kind of reward attached
to interacting with an Envoii and this kind of reward mechanism should only be implemented
through communication, not tracking. To have any kind of significant impact on the overall
reports, the fake reports would need to be very numerous. This kind of oddity should be very easy
to spot on the tracking server side with basic statistical analysis and further the system can include
a very low-level filter for impossible reports at the level of the tracking service just to make things

a little more difficult for a hacker.

Communications

[0091] Communication channels established between Envoiis on users’ systems and clients’
severs might carry sensitive information so there is a risk (as for any transaction on the internet) of
eavesdropping. User/client transactions therefore are encoded using the highest levels of

encryption available (SSL or such).

-24-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

9. Other Components

Display Manager

[0092] Executable code that enables display of Viz in different locations. Generally, there is
one DM for each PlaceVoii.

Events Manager

[0093] Can either be per platform or in some cases additional events managers can exist in

various local nodes on the tree.

Focus Manager

[0094] Not all Envoiis and their attached skins care about focus. Those that do register with a

skin that is a focus manager.

Memory Manager

[0095] In specific embodiments, this can happen in a nested way, so that Envoiis get their
own local memory manager which requests a block of memory from its (parent) memory manager.
A system may need to override C++ constructors to use this system to have a clean way of

cleaning up after disconnecting an Envoii.

Namespace Management

[0096] This manager provides support for global referencing to various nodes or leaves in an
Envoii component-oriented architecture. This is related to Envoii identity. Each Envoii is assigned
a locally and/or globally unique identifier. This identifier is used for: (1) Tracking —a compact key
for generating reports (2) Finding mobile Envoiis. Identifier is used by remote ORB as search key.
Mobile Envoiis need to report place changes to ORB hierarchy. (3) PlaceVoiis will need to know
that they are in a special kind of place, like a Mac or PC or PDA. The services they request will
need to be instantiated on the basis of their “place identity.” PlaceVoiis ask for services like:

“MacPlace.EventServer.”

10. Service Discovery In Envoii Architecture

[0097] When an Envoii is connected to its parent, or connected to any of its “grandparents”, it
needs to discover and be wired up to a set of services, which will vary from Envoii to Envoii. One
primary interface that Envoiis include is service discovery. In specific embodiments, the féllowing
method is used: (1) if you are an Envoii, ask your parts first,, then ask your parent, (2) if you are a
part, ask your Envoii. Thus requests for services flow upstream or laterally (to parts), but not

downstream. This is the reason for the distinction between parts and kids. Because, according to

225.

10

15

20

25

30

WO 01/86384 PCT/US01/15263

specific embodiments of the present invention, services are nestable (multiple instance of the same
service within the tree), the first service encountered is generally the one that is used, unless a
particular service at a particular level is asked for by name (like: “.././eventService” or

“foo.eventService”.

11.User Desktop Experience Example Implementation

[0098] According to specific embodiments of the present invention, the desktop experience in
windows is based on two different modules: bootdesk and PlaceVoii. Bootdesk is a bootstrap (an
executable) module that creates a transparent window to be used as a desktop PlaceVoii. Bootdesk
can be started on its own, or it will be started automatically when an Envoii is dropped on the
desktop. When bootdesk is running, an icon appears in the taskbar. According to specific
embodiments of the present invention, a right click on that icon gives access to a menu with
different options to control bootdesk. FIG. 21 is a block diagram illustrating a graphical user
interface showing an example menu for a desktop PlaceVoii according to specific embodiments of

the invention.

Transparent window

[0099] Envoiis need a place to live. Basically, a place is a window. In a web browser, the
window is provided by the browser. In the application bootstrap, the browser Envoii can be created
in a regular window with a caption and a menu bar. For the desktop, according to specific
embodiments of the present invention, a window is also needed, but in specific embodiments the
window covers the whole screen, without obscuring the desktop. While one solution could be to
use the desktop window itself, this does not work (under Windows) because one cannot subclass a
window that was created in a different thread.

[0100] To meet this problem. the invention cregted a window that is made invisible and
disabled in order not to disturb the desktop. If this window is created as a regular top-level
window, there can be three problems: the window can be minimized automatically by the system,
the window can appear above other applications, and a bootdesk application button will appear in
the taskbar (at the bottom of the screen). To solve these problems, the window is created as a child
of the program manager window, more precisely a child of the SysListView32 window (the
window displaying the icons over the wallpaper).

[0101] FIG. 20 is a block diagram of a hierarchy for a desktop PlaceVoii according to specific
embodiments of the invention. Grayed windows are the ones that actually display something on

the screen. The Desktop window is the mother of all other windows. It is responsible for drawing

-26-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

the wallpaper. The Shell TrayWnd window is the task bar. Example code to find these windows is

provided below, using the window class names:

HWND hWndProgman = FindWindow ("Progman",NULL) ;
HWND hWndShell = FindWindowEx (hWndProgman, NULL, "SHELLDLL DefView",NULL) ;
hWwndShell = FindWindowEx (hWndShell,NULL, "SysListView32",NULL) ;

Desktop PlaceVoii

[0102] How to draw in the created invisible and disabled window and how to handle the

mouse inputs is the job of the desktop PlaceVoii. The desktop PlaceVoii uses the same
subclassing technique as the plugin and the bootapp PlaceVoii. Subclassing of a window means
that the original window procedure is replaced with a new procedure. The window procedure is a
function called for every message received by the window. There are two major problems solved
by this embodiment of the present invention. The first is how to draw Envoii objects on the
desktop and have them move over it smoothly. The second is how to receive user inputs (mouse &

keyboard) as well as repaint messages, given that the window is invisible.

Drawing On The Desktop

[0103] Drawing a sphere on the desktop is fairly straightforward. Using a regular alpha
channel or a blue-screen, one can blit any image with a mask so that only the required pixels go to
the screen. For example, that can be done using the SRCAND and SRCPAINT operators of the
BitBlit or StretchBlit APIs. The harder problem to solve is how to repaint what was behind a
sphere when it is moved. In other places, a PlaceVoii can use a special background mask that
always renders itself first. On the desktop, there can be no background, otherwise the desktop
would be obscured.

[0104] While the invention could ask the desktop to repaint itself when needed, e.g. when
damages are pasted to the display manager, that is tricky for two reasons. The first is that there is
no easy way to ask the desktop to paint itself without causing a lot of flickering. The second is-that
Envoiis are painted asynchronously, so it is almost impossible to repaint the desktop (with the
icons and everything) in the same way.

[0105] Therefore, the invention has to paint the desktop itself. To do that, according to
specific embodiments of the present invention, an algorithm saves the pixels of the desktop when
and where needed, and then does the compositing between the Envoii rendering cache, the desktop
cache and the alpha channel (see appendices for a detailed description).

[0106] If a window comes over the desktop PlaceVoii, the desktop PlaceVoii will be clipped
automatically by the system, so any drawing in the rectangle of that window will not appear. As

soon as that window disappears, because the system will send a WM_PAINT to the desktop

-27-

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

windows, the desktop will repaint itself. When this is done, the PlaceVoii needs to repaint itself,
That is done with system Hooks and is also a good moment to grab the pixels of the desktop,
refresh the Envoii cache and paste the Envoii composition on screen.

[0107] Hooks are procedures that the system calls before or after executing certain system
tasks like dispatching message. One can place a hook on a specific thread or on all threads.
According to specific embodiments of the present invention, the invention places a hook on the
Windows manager's application thread. For the repaint issue, hook the GetMessage() API to
intercept all the WM_PAINT events on the desktop. When a WM_PAINT is intercepted, block the
timer event in the PlaceVoii, so nothing is rendered while the desktop is repainting, and start
another timer. As long as WM_PAINT is received, keep resetiné that timer and merge all the
update spans that are repainted. When the system goes idle (no more pending WM_PAINT), it
means the desktop has finished repainting. The set timer will then come to an end, and the
PlaceVoii will repaint on the accumulated spans. Before repainting, grab the new pixels on the
screen. When that is complete, restart the main timer of the PlaceVoii so that animations can start

again.

Receiving Mouse And Keyboard Input

[0108] The PlaceVoii window is invisible and disabled so it does not receive any mouse or
keyboard input. This ensures that the desktop behaves as usual. To receive input on Envoiis, the
invention employs a trick (under Windows) to create a hook that is a callback function that the
system will call on every mouse input over a specific thread. In our case, set a hook on the

program manager thread. To get the thread id of the program manager, do the following call:

hThread = GetWindowThreadProcessId (hShellwnd) , NULL)
[0109] Then set a hook:

HookMouseProc = SetWindowsHookEx (WH _MOUSE, (HOOKPROC)MouseProc, hInst,
hThread,NULL)) ;

[0110] In the MouseProc() function, forward the mouse messages to the Envoiidesktop window
using PostMessage(). Generally, only the following messages are forwarded:

WM _LBUTTONDOWN
WM_LBUTTONUP
WM_RBUTTONDOWN
WM _RBUTTONUP
WM_MOUSEMOVE

[0111] Use the same technique to set a hook on keyboard events to forward WM_KEYUP
and WM_KEYDOWN messages. Both for the mouse and the keyboard, once the message is
received in the PlaceVoii, check if some Envoii is interested in that message. For a mouse
message, make sure the message is on a the shape of one of the Envoiis. For a keyboard message,

check that one of the Envoii has the keyboard focus (= Envoii has a skin expecting keyboard

8-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

events + Envoii was given focus by a click in his shape). If an Envoii wants the messages, set the

capture of events to the PlaceVoii window, so that the desktop does not handle them in parallel.

Desktop moving or resizing

[0112] The desktop window used as a parent to the PlaceVoii window can be resized or
moved in two different ways: (1) When the one of the dockable windows, like the task bar, is
docked on a differeélt side of the screen; (2) When the screen resolution is changed (display
properties). In both situations, the PlaceVoii needs to be aware of the changes and resize the
PlaceVoii window accordingly. The PlaceVoii window does not need to move the window to a
different position because as a child of the program manager window, it is moved automatically.
The PlaceVoii sets another hook on the window procedure of the program manager window. The
set hook that will be called when the window procedure returns. If the message is WM_SIZE,
resize the PlaceVoii window using the Windows API SetWindowPos() an then invalidate both the
PlaceVoii window and the desktop window. SetWindowPos() will send a WM_SIZE message to
the PlaceVoii window. The invention handles that message in the OnSize() method of

nvPlaceVoiiOS.

Persistence
[0113] If the user logs off or shut down Windows, the desktop PlaceVoii should serialize its
Envoiis in a file, and next time there is a log on (or boot), start bootdesk automatically and
deserialize that file. There are three issues: how to serialize/deserialize the desktop, how to detect

shutdown, how to start automatically.

Serialization / Deserialization
[0114] To serialize all the Envoiis on the desktop in a file, serialize the PlaceVoii in an

archive and write that archive to a file. Because serialization is recursive, all the kids and parts of

the PlaceVoii will get serialized, as well as all their descendants. Example code follows:

// serialize PlaceVoii

PlaceVoii->SerializeProperties (&Arch);

// save archive to desktop file in datadir

nvFile File;

File.bOpen (DesktopFileName,nvFile: :WRITE) ;

Arch.bToFile (&File) ;

File.Close();

[0115] To deserialize, first read the file in an archive and call placevoii-

>DeserializeProperties (). This method will create all the Envoiis recursively. Before

deserializing the PlaceVoii, existing Envoiis are deleted using PlaceVoii->RemoveAll ().

-29-

10

15

25

30

35

WO 01/86384 PCT/US01/15263

Shutdown detection
[0116] When Windows is shutting down or the user is logging off, the

WM_QUERYENDSESSION message is sent to all top-level windows. Applications must return
TRUE to allow the shutdown procedure to go on, FALSE to interrupt it. When everybody has
returned, Windows sends a WM_ENDSESSION message to every top-level window again, to
confirm or cancel the shutdown. If it is confirmed, this is the last message; after that, Windows
terminates the application. Because the desktop PlaceVoii window is not a top-level window, it
does not receive all these messages. To address this issue, the invention can create a hidden top-
level window and use the WS_EX TOOLWINDOW extended style to prevent the system from
creating a button on the taskbar. CreateWindowEx(WS_EX TOOLWINDOW,
"EnvoiiDesktopTopWnd", "", WS_POPUP|WS_DISABLED, 0, 0, ...); In the window procedure
the invention handles WM_QUERYENDSESSION and WM_ENDSESSION. On WM_QUERYENDSESSION, return
TRUE to accept shutdown. On WM_ENDSESSION, serialize the desktop, set the system parameters to

restart bootdesk automatically (see next paragraph) and destroy the PlaceVoii.

Automatic restart (autoboot)
[0117] If bootdesk is started with —boot in the command line, the desktop data file will be

deserialized automatically. So call “bootdesk —boot* when Windows is booting or a new user is
logging on. The invention does not use the usual Startup folder because it is language dependent
and also it is easy for a user to remove the autoboot by mistake. Instead, add an entry in the
resgistry at a key such as: HKEY CURRENT USER\Software\Microsoft\Windows\
CurrentVersion\Run. The entry is a command line to execute at boot time. It is a full path to
bootdesk with the —boot option. That entry can be verified directly in the registry or use
msconfig.exe (check the startup folder).

Forbid multiple instances of Bootdesk

[0118] To prevent Bootdesk from being started several times (thru icons, shortcuts, etc),
bootdesk creates a named mutex at the beginning. If that mutex already exists, bootdesk displays a

warning message and exits. Example code follows:

// create a name mutex to prevent 2 instances of bootdesk
hMutex = CreateMutex (NULL,TRUE, "EnvoiiDesktop") ;
if (GetLastError () ==ERROR_ALREADY EXISTS)
{ MessageBox (NULL, "The Envoii Desktop is already running.","Envoii
Message",MB_OK) ;
return false;}

Desktop Refreshing Algorithm
[0119] FIG. 22 to FIG. 25 illustrate an example where a sphere Envoii is moved from position

n to position n+I as shown in FIG. 22. Just before rendering position n+1, save the desktop pixels

-30-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

in the span n+1, minus the pixels in the mask of position n. An example is shown in FIG. 23. Now
render position n+1 and compute the corresponding mask as shown in FIG. 23. An example is
shown in FIG. 24. Then, perform the compositing between render n+1 and the desktop cache n+1
using the mask n+1. An example is shown in FIG. 25. For each pixel, it’s a simple switch of

source depending on the pixel value in the mask. Finally blit the result to the screen.

12. CORBA Example Implementation - ORB (Object Request Broker)

[0120] According to specific embodiments of the present invention, the invention can be

implemented using in part standards-based architectures and protocols for component-based
programming. One such standard is known as CORBA (Common Object Request Broker
Architecture), which has been developed by the 500+ member Object Management Group (OMG).
Another such standard is the Component Object Model (COM), developed by Microsoft.
According to specific embodiments of the present invention, the invention can be implemented in
either of these standards-based environments. Some knowledge of these standards is presumed in
the discussion below.

[0121] An Object Request Broker is a special component. It also provides objects, but in
general the ORB does not build the objects itself. Instead, the ORB finds a component for the class
needed and asks the component to allocate the object. In other words, the ORB is a kind of
component manager. In a particular architecture according to specific embodiments of the
invention, the ORB is a service. Any Envoii can request that service at any level. The ORB
provides anonymous objects and named objects. In a particular OS, the ORB is implemented in a
dll. Tt is loaded only once in memory but there is a separate data segment for each process. If the
ORB needs to share data across processes, it can use classic shared memory techniques, though
this is not required in all implementations. All objects are provided by components. An object
class is identified by a unique ID called a CLSID (CLasS ID). CLSID according to specific
embodiments of the invention is a random number that is intended to be unique in the world.
According to specific embodiments of the invention, the invention uses the COM format for IDs
(128 bits) and the COM id generator GUIDGEN.EXE. The ORB finds objects by name or by
unique identifier. If persistent objects move from place to place, they need to register that fact with
ORB. ORB exists at Meta level and generally will be nested. Generally, there will be a top-level
(e.g. at Envoii.com) ORB for providing new components, primitives, efc., to various user sites.
[0122] nvorb is the project implementing the ORB (for VC++, load
/sre/nvorb/win/nvorb.dsp) Using the ORB is generally done in two steps. First, get an ORB

interface to use ORB services. The following is sample code to do that:

31-

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

nvIOrb *pOrb ;

// get path to ORB library

char szPath[255+1];

nGetORBLibraryPath (szPath,sizeof (szPath)) ;
// load ORB library

1ibOrb.nSetName (szPath) ;

libOrb.nLoad() ;

// get orb factory address

pEnGetORB nGetORB;

1ibOrb.nGetProcAddress (GETORBFUNCNAME, (void#**) &nGetORB) ;
// call the factory to get an orb interface
nGetORB ((void**) &pOxrb) ;

[0123] With the ORB interface, one can call its methods. An example method is
nCreatelnstance(), as provided in the example below. In this method, specify a class id, an
interface id and a pointer to receive the interface. The ORB will find the component that
implements clsid (provided it is in clsid.cfg), load it, create an instance of clsid, and ask this

instance for an iid interface. This is returned in pObj.

// create an Envoii

nvIEnvoii *pObj;

pOrb-> nCreateInstance (NULL, kCLSID PlaceVoii, kIID Envoii, &pObj):;

[0124] The ORB makes the link between the clients and the components by using a

correspondence table between CLSID and components. According to specific embodiments of the
present invention, this table is built locally in a file according to a proprietary format. Whenever a
new component is downloaded, the component registers its CLSIDs in that table. Later, the ORB is
able to communicate with other ORBs to locate named objects (like CORBA ORBs do). The ORB
also includes a loader to download components from a component server and resolve
dependencies. FIG. 26 is a block diagram illustrating operation of an Object Request Broker

(ORB) during a create instance according to specific embodiments of the invention.

Loader
[0125] The ORB dll contains another object called the Loader. When a client asks the ORB to
create an instance of an object, the ORB looks first into the CLSID table (the clsid.cfg file on
disk). If that CLSID is unknown, or its component is missing (deleted by the user for instance), the
ORB asks the loader to find that component. Now the loader needs an IP address for an ENVOII
server or any other server that can talk with him. The CLSID table provides a list of such servers,
in the [SERVERS] section. The communication takes place using the HTTP protocol so as to go
through most firewalls without any change in the client configuration. On the server, there is an
HTTP server running, which is generally already present because ENVOII servers will have HTTP
to provide HTML pages and Envoiis. The Loader connects to the HTTP port of a web server and
asks him to execute a CGI program called CGISTUB with the needed CLSID. FIG. 27 is a block

-32-

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

diagram illustrating the operation of a load resource according to specific embodiments of the
invention.

[0126] CGISTUB will now scan the CLSID table on the server for that CLSID. The
CGISTUB can provide the web server with his response, which will be transmitted to the Loader.
The response is a formatted block of text, with a mime header so that a browser can display it.
Upon receipt of the reply, the Loader skips the mime header and parses the response. Zero, one or
more components can be specified for download. For each one of them, the Loader checks that it
does not have it on the client already. If not, it sends another query to the web server for a direct
download of the component. The component is then saved to the ExeDir. When the loader returns,
if the component that handles the CLSID has been found and downloaded correctly, the ORB

loads that component (and its dependencies) and creates the object and finishes.

CLSID repository
[0127] To find the component that implement a clsid, the ORB uses a CLSID repository. This

repository can be implemented as a platform independent text file called clsid.cfg, located in the

/common subdirectory of the Envoii data directory. This is an example of clsid.cfg

[CLSID]
{40940D81-0772-11D4-8DAE-0050DAC05D0A}=skeleton.dll

[0128] As an example, for Windows: the Envoii data directory is specified in the registry at
the following key: HKEY LOCAL_MACHINE\Software\Envoii\Player\2.0\Data; the Envoii
executable directory is specified in the registry at the following key:
HKEY LOCAL_MACHINE\Software\Envoii\Player\2.0\ExeDebug; other components are located
at HKEY LOCAL_MACHINE\Software\Envoii\Player\2.0\ExeRelease.

Resources
[0129] Resources are the data files needed by Envoiis to run correcily. For example, images,
sounds, music files, etc. Those files can be located on the local disk, when designing new Envoiis,
for instance, or they can be located on a web server, just like resources of a web page. Access to
resources is generally transparent. To do so, the system uses the nvResource class. For each
resource, the system: creates a nvResource object (through the ORB), gives it a name (that will be
used in scripting) and a location (local file name or URL), loads the resource, gets a pointer on the
data and the data size. Then, once done with the data, frees the resource. Example code is as

follows:

// create an instance of nvResource

nvIRessource *pRes;

gpOrb->nCreateInstance (NULL, CLSID nvRessource,
IID _nvIRessource, (void**) g&pRes);

if (pRes!=NULL)

-33-

10

15

20

25

30

35

40

45

50

WO 01/86384 PCT/US01/15263

{ // load local ressource
pRes->SetAll ("totol","C: ", "\\my
documents\\wrk2.0\\test\\common\\totol.txt", false) ;
pRes->nLoadRessource () ;
const char *pBuffer = pRes->pGetBuffer();
pRes->Free() ;
// load distant ressource
pRes->SetAll ("toto2","192.168.37.3","/test/toto2.txt", true);
pRes->nLoadRessource () ;
pBuffer = pRes->pGetBuffer();
pRes->Free() ;

Ceate an object with the ORB interface.

[0130] To use the ORB services, code first needs an ORB interface. Here is an example code

to do that :

// no error handling to simplify reading
nvIOrb *pOrb;

// get path to ORB library

char szPath[255+1];
nGetORBLibraryPath (szPath, sizeof (szPath)) ;
// load ORB library

1libOrb.nSetName (szPath) ;

libOrb.nLoad () ;

// get orb factory address

pfnGetORB nGetORB;

1libOrb.nGetProcAddress (GETORBFUNCNAME, (void*#*) &nGetORB) ;
// call the factory to get an orb interface
nGetORB ((void#**) &pOrD) ;

[0131] With an ORB interface, code can call its methods. Here specify a class id, an interface
id and a pointer to receive the interface. The ORB will find the component that implements clsid,
load it, create an instance of clsid, and ask this instance for an iid interface. Which is what you

receive in pObj. An example method is nCreatelnstance():

// let’s create an Envoii

nvIEnvoii *pObj ;

pOrb-> nCreatelInstance (NULL, kCLSID PlaceVoii, kIID Envoii, &pObj);

[0132] All interfaces inherit a base interface called nvIUnknown that implements reference

counting and interface querying.

class nvIUnknown { private:
// reference count
long m RefCnt;
public:
// comstructor
nvIUnknown (void) {m_RefCnt=0;}
// destructor
virtual ~nvIUnknown();
// add a reference to the object
virtual long AddRef (void);
// release a reference to the object (auto delete if not referenced any
more)
virtual long Release (void) ;
// query interface
virtual int QueryInterface(const IID & iid, void **ppObj) = 0; }:

-34-

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

[0133] In specific embodiments, reference counting is not only defined but also implemented
inside this class. Thus objects implementers do not need to do it themselves every time. So the
only method that needs to be implemented is Querylnterface(). In specific embodiments, there is
also provided a class factory interface called nvIFactory, used to build class factories objets in
components. The ORB used class factories to create object instances. The algorithm to create an

instance is the following:

int nvOrb::nCreateInstance (nvIUnknown *pOuter, const CLSID &clsid, const
IID &iid, void **ppObj)
{ .. // 1-£ind a component for clsid
// 2-get compomnent factory provider
// 3-call the component factory provider to get factory object for
clsid
// 4-lock factory server
// 5-create instance of clsid and get iid interface
// 6-unlock server
// 7-release factory .. }

13. Further Example Implementation Details

Player and Player Installer

[0134] In order for Envoii PIAs to exist on a client system according to specific embodiments of
the invention, an Envoii player is placed on the client machine to handle Envoii PIAs. The Player,
according to specific embodiments of the present invention, is made of several elements, the active
components of which are discussed below. A set of elements according to specific example
embodiments comprises: nvcore.dll, nvorb.dll, Envoii.dll, PlaceVoii.dll, MetaVoii.dll,
commgr.dll, bootdesk.exe.

Bootstrap
[0135] According to specific embodiments of the invention, Bootstrap is begun the first time

a user encounters Envoii content and may also start the first time an application is started.
Bootstrap is platform and context dependant. It instantiates the ORB/Loader first and then executes
the following boot sequence: (1) Instantiate a MetaVoii; (2) Instantiate a PlaceVoii to match the
bootstrap context; (3) Tell the PlaceVoii to instantiate a root Envoii either from persistence data

(for example from an HTML page) or from the MetaVoii’s clipboard.

Installer
[0136] In an alternative implementation, a player is installed with user input. An installer is an

executable module that, once downloaded on the client machine, will install the Envoii player in a
specific directory, chosen by the user, and setup all the required parameters for the Player to run.
This method of executable installation is typical for personal computer type-systems. The installer -
according to specific embodiments of the invention is used for 3 different tasks: (1) Do the very
first install of an Envoii player; (2) Do an update of the Envoii player; and (3) Redo the setup in

case the registry or the data directory is lost. The following files need to be in the same directory as

-35.

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

the installer: all the components; an information file called Envoii-installer.inf (with the list of
components); a table of CLSIDs called Envoii-installer.cfg.
[0137] Installing proceeds according to one example generally as follows:

1. Compare the source and destination directory (the source directory is where

installer.exe started). If they are the same, assume that the user is trying to redo a setup

after a loss of the registry or the data directory.

Create the data directory (if it does not already exist).

Create the executable directory (if it does not already exist).

4. Update the registry (release number, data dir, exe dir, player ID, proxy settings) and if a
player ID is already in the registry, keep it.

5. Copy the Envoii plugin into Netscape and Internet Explorer directories if those

directories are present.

Copy nvcore.dll and oldcore.dll to the Windows system directory.

If a re-setup, go to 12.

Copy installer files to the executable directory, to allow a re-setup if necessary.

Copy all the components specified in the installation file (Envoii-installer.inf) to the

executable directory.

10. Create or update the CLSID table (clsid.cfg) and after that register all the existing
components.

11. If installing a virgin player, attempt to get a player ID from the Envoii server.

12. Register plugin with IE and Netscape to handle .nvo files.

Rl

oo ~No

Plaver ID allocation

[0138] FIG. 29 is a block diagram illustrating assignment of a Player ID from a server
according to specific embodiments of the invention. For installing a virgin player (first installation
on the client machine), the install needs to allocate a player ID. This is done through a
communication with the Envoii server. Once an Envoii player is on a client machine, the Envoii
system is able to update any part of that player. This is different from user-defined components
update. The player update process can be divided in 3 main steps: (1) detect availability of an

update on a server; (2) download the update; and (3) install the update.

14. Example Drag & Drop Implementation

[0139] According to specific embodiments of the invention, drag and drop is the ability
provided to allow Envoii PIAs to be transported between “places” using an indication method,
such as a pointing device such as a mouse. According to specific embodiments of the invention, a
user can click on an Envoii, drag it on the screen while keeping the mouse button down, and
finally release a pointer to drop the object somewhere else. The place where a user picks up an
object is called the drop source. The place where a user drops the object is called the drop target.
The object used between the drop source and the drop target is called the data object.

[0140] Typically, drop sources and targets are windows from one or more applications,

though targest, especially, can be indications of other connected machines. Typically, applications

-36-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

involved in a drag and drop do not have to know each other. They can pass objects to each other
provided they share some of the formats that these objects can take. These formats are usually
called clipboard formats. There are some predefined formats for simple texts, bitmaps, files,
GIFs, etc. When an object is dropped somewhere, if a user indicates to delete the original object,
and this is called a move. If the original object is kept in place, it’s called a copy. Move or Copy is
called the drop effect. During the drag and drop operation, a user generally needs some feedback.
For instance, he needs to know when dragging starts, or what object is being dragged. Also, when
he moves his cursor over different windows, he needs to know which one is a potential drop target,
and for which drop effect (copy or move). These operations must be performed by the drop source
and the drop target. Also, the drop source and the potential drop targets need to know what is
going on during the dragging. For instance, the drop source wants to know when the object is
dropped, and with which drop effect. On the other side, the drop target needs to know which
formats are available for the objects being dragged over him. Depending on the formats, he will or
will not accept the drop.

[0141] To preserve a good interoperability between applications, as well as a coherent look
and feel, the communication protocols between the drop source, the drop target and the data object,
are usually defined by the system. For instance, drag and drop under Windows is done using OLE,
which itself is based on COM. Applications implementing drag and drop often use system

libraries.

Envoii Implementation of Drag&Drop

[0142] According to specific embodiments of the invention, because Envoiis perform cross-
platform, the invention, rather than including its own drag and drop libraries wraps the system drag
and drop features inside classes. According to specific embodiments of the invention, there are 4
of these classes: (1) nvDropSource implements a drop source; (2) nvDropTarget implements a
drop target; (3) nvDataObject implements a data object; and (4) nvDataSource is a convenience
class to ease the creation of the data object at the drop source. nvDropSource and nvDropTarget
are base classes that are derived to implement some virtual methods. nvDataObject and

nvDataSource are convenience classes that can be used as is. All these classes are defined in

' dragdrop.h, dragdropwin.h, dragdropwin.cpp (available in /common).

nvDropSource
[0143] nvDropSource is used to define the behavior of the drop source during dragging. The

methods defined here are called repeatedly by the system during the operation. The drop source is

the one who controls when a drag an drop ends (by a drop or a cancellation). Also, it can reflect

-37-

10

15

20

25

30

35

40

45

50

WO 01/86384 PCT/US01/15263

the status of the dragging in any manner via the OnGiveFeedback() method. A drop source must
be linked to a window, and this window must be registered with the system as a potential source of
drag and drop. This is performed with the method Register(). Example code follows:

class nvDropSource
{ public:

// register a window as the drop source

bool Register (NVWINDOW hWnd) {m_hWnd=hWnd; return true;}

// unregister a window

void Revoke(void) {m hWnd=NULL;}

// get acces to window handle

NVWINDOW GetWindow(void) const {return m hWnd;}

// After dragging has begun, this function is called repeatedly by the
framework until the drag operation is either canceled or
completed. Override this function if you want to change the point
at which dragging is canceled or a drop occurs.

// The default implementation initiates the drop or cancels the drag as
follows. It cancels a drag operation when the ESC key or the
right mouse button is pressed. It initiates a drop operation when
the left mouse button is raised after dragging has started.
Otherwise, it returns S _OK and performs no further operations.

virtual eDRAGRESULT OnQueryContinueDrag(bool bEscapePressed, unsigned
long dwKeyState) ;

// Called by the framework after calling OnDragOver or DragEnter.

// Override this function to provide feedback to the user about what
would happen if a drop occurred at this point.

// The default implementation uses the OLE default cursors.

virtual bool OnGiveFeedback (unsigned long dwDropEffect); };

nvDropTarget
[0144] nvDropTarget defines the behavior on the target side, so there is a little more to do

than on the source. A drop target must be linked to a window, and this window must be registered
with the system as a potential target of drag and drop. This is performed with the method

Register(). Example code follows:

class nvDropTarget
{ public:

// register a window as a potential drop target

bool Register (NVWINDOW hWwnd) ;

// unregister a window as a potential drop target

void Revoke (void);

// get acces to window handle

NVWINDOW GetWindow(void) const {return m_hWnd;}

// Called by the framework when the cursor is first dragged into the
window. Override this function to allow drop operations to occur
in the window. The default implementation calls
CView: :OnDragEnter, which simply returns

// NV_DROPEFFECT NONE by default.

virtual unsigned long OnDragEnter (nvDataObject *pObj, long x, long vy,
unsigned long dwKeyboard) ;

// Called by the framework when the cursor is dragged over the window.

// This function should be overridden to allow drop operations to occur
in the window. The default implementation of this function returns
DROPEFFECT NONE by default. Because this function is called
frequently during a drag-and-drop operation, it should be
optimized as much as possible.

-38-

10

15

20

25

30

35

40

45

WO 01/86384 PCT/US01/15263

virtual eDROPEFFECT OnDragOver (nvDataObject *pObj, long x, long y,
unsigned long dwKeyboard) ;

// Called by the framework when the user releases a data object over a
valid drop target. The default implementation is to do an
assertion. Override this function to implement the drop. Returns
true if ok

virtual bool OnDrop (nvDataObject *pObj, eDROPEFFECT dropEffect, long x,
long y, unsigned long dwKeyboard) ;

// Called by the framework when the cursor leaves the window while a
dragging operation is in effect. Override this function if you
want special behavior when the drag operation leaves the specified
window. The default implementation of this function does nothing

virtual void OnDragLeave(void) {} };

nvDataObject
[0145] nvDataObject is a wrapper around the real data object. It provides two simple

methods: one to retrieve the available formats for the object, and another to retrieve the object
itself, in a specific format. The object is returned as a handle, which is a more general object
descriptor than a pointer. Each implementation of nvDataObject will need to define its
NVOBJECTDATA type (for Windows, it’s a HGLOBAL). Same thing for clipboard formats with
NVOBJECTFORMAT (for Windows it’s a CLIPFORMAT). Example code follows:

class nvDataObject

{ // retrieve a handle to the object data in a specific format
NVOBJECTDATA GetGlobalData (NVOBJECTFORMAT cfFormat) ;
// request if a specific format is available in the data object
bool IsDataAvailable (NVOBJECTFORMAT cfFormat);
// attach the data object to the system clipboard
bool AttachClipboard(); };

nvDataSource
[0146] nvDataSource is another wrapper for a data object, but on the source side. One builds

an object by calling CacheGlobalData() one or more times (once for each format you want to
provide). Then you start the drag and drop by calling DeDradDrop(). The SetClipboard() method

is discussed later in this document.

class nvDataSource
{// stack some data in the nvDropSource object
void CacheGlobalData (NVOBJECTFORMAT cfFormat, NVOBJECTDATA hGlobal);
// start drag and drop on a drop source
// if pDropSource!=NULL you do not need to provide a hWnd, just give
NULL. This because the drop source has already registered a hWnd
eDROPEFFECT DoDragDrop (NVWINDOW hWnd, nvDropSource* pSrc, unsigned long
dwEffects) ;
// attach the data source with the system clipboard.
// the data source must be dynamically allocated
bool bSetClipboard(void); };

Other functions

[0147] Three more functions are provided to initialize an Envoii system drag and drop

libraries (OLE) according to specific embodiments of the invention, to be called once in the

-39-

10

15

20

25

30

35

40

45

WO 01/86384 PCT/US01/15263

application. DD_bRegisterClipboardFormat() is needed to register proprietary clipboard formats
with the system (so that different applications will not use the same format identifier).

// initialize drag n drop

bool DD_bInitDragAndDrop (void) ;

// terminate drag n drop

void DD_EndDragAndDrop (void) ;

// register a clipboard format. returns true if ok

bool DD bRegisterClipboardFormat (const char *pszFormatName,
NVOBJECTFORMAT& Format) ;

Using The Drag & Drop Classes
[0148] Using The Drag & Drop Classes is fairly straightforward. First, identify the windows

that will be used for drop sources and targets. There will probably be a C++ object wrapping those
windows where one will implement drag and drop. Then, derive nvDropTarget to implement the
target side. The minimum done for enabling an Envoii is to override OnDragOver() and
OnDrop(). As an example, in OnDragOver(), return the drop effect that will occur in case of a
drop. To do that, check what formats are available in the data object. In this example, the only one

known is CF_TEXT. If it is there, accept a move or a copy. Example code follows:

eDROPEFFECT nvMyDroptarget::OnDragOver (nvDataObject *pObj, long x, long
y, unsigned long dwKeyboard)
{// if the object has a CF_TEXT format available, we accept COPY and
MOVE
if (pObj->IsDataAvailable (CF_TEXT))
{// if ALT is pressed, we consider it’s a move
if (dwKeyboard&NV_ALT)
return NV_DROPEFFECT MOVE;
else
return NV_DROPEFFECT COPY; 1
// if we do not find any acceptable format for us, we refuse a
potential drop
return NV_DROPEFFECT NONE; }

[0149] OnDrop() is called when the data object is dropped on your drop target. Here it is
necessary to check the available formats again, and retrieve the data in a format that we can

handle:

bool nvMyDroptarget::0nDrop (nvDataObject *pObj, eDROPEFFECT dropEffect,
long %, long y, unsigned long dwKeyboard)
{// do we have a CF_TEXT?
if (pObj->IsDataAvailable (CF_TEXT))
{// we are accepting a drop, so get a handle on the object being
dropped
// in a CF_TEXT format (for this example)
HGLOBAL hText = pObj->GetGlobalData (CF_TEXT) ;
// get what's inside and display it
char *p=(char*)GlobalLock (hText) ;
wsprintf (gszText,"%s (%1d,%1d)",p,x,y);
GlobalUnlock (hText) ;
GlobalFree (hText); }
// update window
HWND hWnd=GetWindow() ;

-40-

10

15

20

25

30

35

40 -

45

WO 01/86384 PCT/US01/15263
InvalidateRect (hWWnd, NULL, TRUE) ;
return true; }

[0150] One needs to instantiate those two classes and register them, which means associate

them with windows, and register the whole thing with the system drag and drop. Usually, one
instantiates the drop source and the drop target in the object that wraps the window. Usually, a
drag and drop is started on every click with the left mouse button. The DoDragDrop() method will
take care not to start the drag and drop before a certain delay, or until you move the mouse (with
the button down) outside a specific rectangle around the original click point. So, doing a simple
click on a object, the drag does not start and the click is handled normally. Before starting the drag

and drop operation, build a data object and wrap it in an instance of nvDataSource. Then start the

drag by calling nvDataSource::DoDragDrop(). Example code follows:

void BeginDragAndDrop (HWND hwWnd)
{ nvDataSource DataSrc;
HGLOBAL hGlobal;
// allocate global data and copy some text in it

hGlobal=MakeGlobalObject (gszText, strlen(gszText)+1);

// store data in data source
DataSrc.CacheGlobalData (CF_TEXT,hGlobal) ;
// start drag and drop

eDROPEFFECT res = DataSrc.DoDragDrop (NULL, &DropSrc) ;

// check result
switch(res)
{ case NV_DROPEFFECT MOVE:
// the object has been moved
DeletelocalObject () ;
break;
case NV _DROPEFFECT COPY:
// the object has been copied
break;
case NV_DROPEFFECT NONE:
// drag and drop did not start
DoASimpleLeftClick (hWnd) ;
// £all thru
case NV_DROPEFFECT CANCEL:

// dréé and drop started but no drop occurred so we need

// to free the data
GlobalFree (hGloball) ;
GlobalFree (hGlobal2) ;
break;

default:
break; } }

Interaction with system Clipboard

[0151] With an nvDataObject in which the invention can store whatever is necessary and pass
it across applications, it is easy to use the system Clipboard and provide the usual Copy/Cut and

Paste feature. Information on clipboard formats is available for various operating systems.

Predefined values do not need to be registered.

-41-

10

15

20

25

30

35

40

45

WO 01/86384 PCT/US01/15263

Copy/Cut
[0152] To copy, the invention responds to a CTRL+C (under Windows), builds a data source

as for drag and drop, and calls the bSetClipboard() method of nvDataSource. Now the object is on
the clipboard. Any application can paste it using CTRL+V. The invention does not delete the
nvDataSource object because the clipboard needs it. Deletion will occur automatically when the
reference counting reach 0. To cut is exactly the same procedure, but deleting the local object.

Example code follows:

void CopyToClipboard(bool bCut)
{ nvDataSource *pDataSrc;
HGLOBAL hGlobal;
// need to allocate a data source because it must stay alive on the
clipboard
pDataSrc = new nvDataSource; // ref count set to 1
// allocate global data and copy some text in it
h@lobal=MakeGlobalObject (gszText, strlen(gszText)+1l);
pDataSrc->CacheGlobalData (CF_TEXT, hGlobal) ;
// copy to clipboard
pDataSrc->bSetClipboard() ;
// is this a Cut?
if (bCut)DeleteLocalObject () ; }

Paste
[0153] To answer a CTRL+V, the invention builds an nvDataObject and calls the
AttachClipboard() method. The invention can then ask for available formats with
IsDataAvailable() and retrieve the data with getGlobalData(). When the nvDataObject is deleted,

the reference to the clipboard is released. Example code follows:

void PasteFromClipboard ()
{ nvDataObject Obj;
// attach the data object to the system clipboard
Obj.AttachClipboard() ;
// do we have a CF_TEXT?
if (Obj.IsDataAvailable (CF_TEXT))
{ // do a paste the same way we did a drop in OnDrop ()

// release clipboard
Obj.Release(); }

Drag and Drop Typedefs to Support Cross-platform Operation
[0154] Because the upper level code must be cross-platform, some basic types of the drag and

drop libraries are redefined. Example code follows:

// cross platform keyboard state
typedef enum { NV_LBUTTON = MK _LBUTTON, // left mouse button is down
NV_RBUTTON = MK_RBUTTON, // right mouse button is down
NV_SHIFT = MK _SHIFT, // shift key is down
NV_CONTROL = MK_CONTROL, // Ctrl key is down
NV_MBUTTON = MK_MBUTTON, // middle mouse button is down
NV_ALT = MK_ALT // Alt key is down } eKEYBOARD;
// cross platform drag result

42~

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

typedef enum { NV_DRAG OK=S OK, // drag and drop must continue
NV_DRAG CANCEL=DRAGDROP_S_CANCEL, // drag and drop must be cancelled
NV_DRAG_DROP=DRAGDROP_S_DROP // a drop must occur

1 eDRAGRESULT;

// cross platform drop effect

typedef enum { NV_DROPEFFECT_ NONE = DROPEFFECT NONE,
NV_DROPEFFECT_ COPY DROPEFFECT_COPY,
NV_DROPEFFECT MOVE DROPEFFECT MOVE,
NV_DROPEFFECT LINK DROPEFFECT_LINK, // not used
NV_DROPEFFECT SCROLL= DROPEFFECT SCROLL, // not used
NV_DROPEFFECT CANCEL } eDROPEFFECT;

// cross platform window handle

typedef HWND NVWINDOW;

// cross platform object data handle

typedef HGLOBAL NVOBJECTDATA;

nnaun

15. Composability.

[0155] According to specific embodiments of the present invention, the invention provides
PIAs with a compositional model of content. This means that an Envoii web page, for example, is
a hierarchical composition of various envoiis. The root of this hierarchy is the special envoii called
PlaceVoii, because it represents a place that envoiis can exist. The children of this PlaceVoii are
other envoiis.

[0156] Further, according to specific embodiments of the present invention, any envoii can
dynamically become a child (part of) any other envoii. This capability is referred to herein as
composability. Since each envoii in a composition is self-contained and autonomous, this enables a
new model of software construction: (1) Users can personalize their experience and compose and
aggregate useful envoiis in any configuration without loss of functionality. (2) Businesses can
dynamically add new functionality, or upgrade old functionality in already deployed applications
simply by sending new envoiis to their users. (3) Businesses can offer premium services, embodied
as envoiis, to their users. Because of envoiis’ built-in tracking capability, these services can be
offered on an ASP or per-usé basis. (4) Designers can rapidly develop new envoiis by “snapping

together” already existing envoiis and customizing.

16. Further Implementation Examples According To Specific
Embodiments (C++ Projects)

Bootstraps
[0157] According to further embodiments, bootstraps can be used to automatically install

player components when an Envoii is encountered. Bootstraps are small applications or plugins
that can instantiate the Envoii player. There is usually one bootstrap for each kind of place. The

first thing that a bootstrap does is to locate the ORB and load it. From there, it calls the ORB to

-43-

WO 01/86384

PCT/US01/15263

instantiate different player objects that are needed to run (MetaVoii, PlaceVoii). Usually, the

bootstrap transfers some data called boot data to the player. For example, a .nvx file.

Project Name | Output Description

Bootapp bootapp.exe Bootstrap to test the player with a .nvo file on the command
line (-nvo xxx.nvo)

Bootdesk bootdesk.exe Bootstrap for the desktop (see Desktop Implementation
Section)

Bootplugin ntnvo.dll Bootstrap for IE or Netscape. It’s a Netscape plugin. It
should be copied in your plugin directory.

Bootpalm bootpalm.exe Palm proxy, used to drop Envoiis and send them to the Palm.

Bootstore bootstore.exe |Storage application for users to keep the Envoiis they like.
It's like bootapp but looks better and automatically persists
the Envoiis in it.

BootAcx bootacx.dll Envoii ActiveX control. Can be used in web pages but also in
‘Word documents, Excel Sheets, etc.

BootCGI bootcgi.exe Bootstrap to run ServerVoys on the Envoii server. This

executable implements the CGI protocol used by web
servers.

Components

[0158]

Components are dynamic link libraries exposing a standard set of functions that the

ORB can call to instantiate objects. Each component provides a set of objects referenced through

their class Ids, and used through interfaces. Only the ORB should load components.

Project Name | Output Description

ComMgr commgr.dll Provides the ComManager object (see Communication
Manager Section)

Envoii Envoii.dll Provides SkinVoiis, Vizvoys, Envoiis (see SkinVoiis
Section) and all the basic runners.

EJVM ejvm.dll Java virtual machine

MetaVoii MetaVoii.dll |Provides the MetaVoii object. The MetaVoii is the top level
object. It holds a list of all the PlaceVoiis on the machine.

Midivoy midivoy.dll |Provides Midistartervoy to play midi files

Nvorb nvorb.dll Provides the ORB object with which you can instantiate any
object from any component (see ORB and Components
section)

Oldvoylib oldvoylib.dll | Provides all oldvoys (sphere, liberty, explosion, etc)

OpenGLVoy |openglvoy.dll | Wraps the OpenGL Api in an Envoii (see /samples/runners
for examples)

PlaceVoii PlaceVoii.dll | Provides the different PlaceVoii objects (app, desktop, plugin

-44.

10

WO 01/86384 PCT/US01/15263

& palm proxy)

PluginVoy pluginvoy.dll | Provides the pluginvoy object which can wrap any Netscape
plugin (tested with RealVideo, Quicktime, Flash, Cult 3D)

RunnersLib runnerslib.dl | More runners (the basic ones are in Envoii.dll)

1
Skeleton skeleton.dll |Component skeleton. Can be used to create a new component
Widgets widgets.dll | All widgets skins are implemented here (forms, buttons,

sliders, check boxes, radio buttons, text, etc).

Core Libraries

[0159] Core libraries are statically linked to other dils, mainly components, but also

applications. That means Core libraries are loaded automatically by the system, which implies that

they generally must be accessible by the system before starting the player with a bootstrap.

Project Name | Output Description
Core nvcore.dll All shared classes are compiled and exported in nvcore
(nvstring, nvarray, nvlist, etc)
Oldcore oldcore.dll All shared classes from the old player. Used by Oldvoylib
only.
Applications
[0160] Applications live on the client side or the server side. Some of them are launched by

the client. Others can be launched by the player itself. On the server side, applications can be

started by the administrator, or by any service like a web server, for example.

Project Name | Output Description

Installer installer.exe Installs the player on a client machine. Copy the files at the
right place, set up the registry, etc. (see Player Installer
section). Is also used to check for player update (see Player
Update section), and display the control panel (called from
BootDesk).

TrackVoii TrackVoii.exe Tracking manager. The one who gathers tracking data and
send it to the tracking server. Started periodically by
Envoii.dll (see Tracking section)

NvDev nvdev.exe Development Environment for Envoii compositions.

Jikes jikesdll.dll Java compiler object used by NvDev

ServerVoys

[0161] ServerVoys are Envoii services running on the Envoii Server. Those objects are
created and used by BootCGI on HTTP requests from clients. ServerVoys are used for tracking,

playerID registration, component download, player update & Community servers.

-45-

10

15

20

25

30

WO 01/86384 PCT/US01/15263

Project Name | Output Description

s_Envoii s_Envoii.exe |Implements all basics services (iracking, playerID
registration, component download, player update) for SQL
Server 2000.

TrackServ trackserv.dll | NT Service to read tracking reports and insert the
corresponding records in our SQL Server 2000 database.

17. Further Implementation Examples According To Specific
Embodiments Of The Invention

Components
[0162] A component is a piece of executable code that provides objects. If one needs a
FooBar object, there is provided a standard way to ask a component for that class of object
(usually an exported function of a dll). One provides some kind of class identifier, some interface
identifier and the component provides a pointer on an object. When the object is not needed any

more, one of its methods is called to release it.

Objects and interfaces
[0163] An object can be seen as a simple C++ object, that is an instantiation of a C++ class.

Each class has a unique identifier (throughout the world) that provides for class identity. A
component can implement several classes. An interface is a set of methods to access an object.
The same interface can be used on different classes. A class can implement several interfaces.
When a component is asked to create an object it does not return a pointer on the object but an
interface to it. Most of the time it is the same, but sometimes not. In a particular embodiment,
interfaces are C++ abstract classes. All interfaces inherit a base interface called nvIUnknown that
implements reference counting and interface querying. In this example, this class can be defined in

/common/nvcom.h.

class nvIUnknown { private:
// reference count
long m RefCnt;
public:
// constructor
nvIUnknown (void) {m RefCnt=0;}
// destructor
virtual ~nvIUnknown();
// add a reference to the object
virtual long AddRef (void);
// release a reference to the object (auto delete if not referenced any
more)
virtual long Release(void);
// query interface
virtual int QueryInterface(const IID & iid, void **ppObj) = 0; };

-46-

10

15

20

25

30

35

WO 01/86384 PCT/US01/15263

Unique identifiers
[0164] Unique identifiers are pseudo-random numbers that are unique in the world.

According to specific embodiments of the present invention a COM-like format can be used for
IDs (128 bits) and the COM ID generator GUIDGEN.EXE can be used to generate IDs. IDs are
stored in a GUID structure taken from COM, such as the example below:

// structure for unique identifiers
typedef struct _GUID

{ unsigned long Datal;
unsigned short Data2l;

unsigned short Data3;

unsigned char Data4l[8]; } GUID ;

Example of a clsid:

#define CLSID FooBar {0x70£73d81, 0x662, Oxlld4, 0x8d, Oxae, 0x0, 0x50,
0xda, 0xc3, 0x5d, Oxa}

Class factory
[0165] Components do not export functions to create objects directly. This is because it

would not work for out-processor components (executables). So instead they provide class objects,
also called factories. These factories are C++ objects with a default interface called nvIFactory
(defined in nvcom.h). Their method nCreatelnstance() is the one who provides the objects
themselves. There is one factory for each class implemented by a component. That is why the

method nCreatelnstance() shown below does not have a class id parameter.

class nvIFactory : public nvIUnknown { public:
// Returns an iid interface on a clsid object. When done with the
object,
virtual int nCreateInstance (nvIiUnknown *pOuter, const IID & iid, wvoid
**ppObj) = 0;
// lock factory
virtual int LockServer (bool bLock) = 0; };

[0166] An example of the steps to create a FooBar object are the following: (1) ask the
component for a FooBar factory; (2) ask the FooBar factory object to create an instance of FooBar
and return an interface on it; (3) release the factory object. FooBar can have multiple interfaces. In
step 2, specify one of them. If later it another interface is desired on the same FooBar object, call
the QueryInterface() method of the FooBar object itself. Generally, it is necessary to release
ALL the interfaces that you get, either with nCreatelnstance() or QueryInterface().

// query interface
int nvIUnknown::QueryInterface({const IID & iid, void **ppObj);
Building a component
[0167] /src/skeleton is an example of a component. It implements two classes: Skeleton and
Skeleton2, and two interfaces: ISkeleton and ISkeletonFoo. The source are organized as follow:

File Objectives
nversion.h version information for your component
nvtracepr.h debugging levels for your component

47-

10

15

20

WO 01/86384 PCT/US01/15263

dllmainwin.cpp | system dependent file that implements the entry points of the dll. There is nothing to
change in here, except the declaration of the nvDIlIComponent object.

dllcomp.h definition of class nvDIIComponentXXXX. this class inherits nvDlIComponent defined
in nvcom.h and provides the DIlGetFactory method .

dllcomp.cpp implementation of nvDIIComponentXXXX defined in dllcomp.h. Here you Just need to
add the classes of your component in the nD1liGetFactory method

skeleton.h this .h is the only .h that the client should need to use a Skeleton object.It contains the
definition of all the interfaces provided by the component, as well as the class ids and
interface ids to provide the ORB with.

Of course, you should rename this file.

gkelimp.h definition of class Skeleton and its factory
skelimp.cpp implementation of class Skeleton and its factory
skel2imp.h definition of class Skeleton2 and its factory
skel2imp.cpp implementation of class Skeleton2 and its factory

[0168] nvObject - This is the root class. All classes inherit from it. It gives the ability to
have a central access point to all objects in the code. For example, allowing the code to modify the
way objects memory allocation is handled, or provide polymorphic persistence mechanisms.

Indexed list - Can use resizable indexed lists as they are faster to traverse and lighter in memory.

18. COM-like example architecture

[0169] Below is a discussion of a COM-like example architecture according to specific

embodiments of the present invention. This discussion provides a very basic example of how to
define classes that will work in Envoii components according to specific embodiments of the
present invention and be usable by the ORB and provides further information regarding processing
behind the scenes. This document is a wrapper for a C++ file. According to specific embodiments
of the invention, this particular architecture defines three different classes: class Node; ‘class
Envoii, which inherits class Node; class PlaceVoii, which inherits class Envoii, and for each class,
the equivalent interface: class Inode; class IEnvoii; class IPlaceVoii. Two functions to create the
right objects are created: GetPlaceVoii and GetEnvoii. In reality, this is done by the ORB which

gets factories from the components and ask those factories to create the objects.

Important rules

[0170] To design classes and interfaces that will work in this example COM-like, the

following rules should be respected:
1. All interface inherits class nvIUnknown, as stipulated in COM. This is to allow anybody
who has an interface on an object (= a pointer) to query another interface using the

QueryInterface method of nvIUnknown.

-48-

10

15

20

25

30

35

40

45

WO 01/86384 PCT/US01/15263

2. Because PlaceVoii and Envoii objects inherits the Node object, and because there must be
only one reference counter per object, reference counting is implemented only once, in the

base class Node.

3. Because of inheritance between interfaces, define the AddRef and Release method in

every class. They can either bounce on the base class, or do the same job.

4. TFor the same reason, define QuerylInterface for every class. Each Querylnterface should
only return a pointer for its own interfaces and call the base class QueryInterface for the
others. This is to allow the this pointer to be casted correctly.(= offsetted to the right
virtual table).

5. A QueryInterface that succeeds should do an AddRef().

6. All methods of all interfaces must be virtual. Destructors MUST be virtual too.

Example code (oop.cpp)

// fake interface ids (just enums)
enum { IID UNKNOWN,IID NODE, IID ENVOII, IID ENVOIIBIS, IID PLACEVOII,
IID PLACEVOIITER, IID PLACEVOIIBIS };
// interface definition (fake QueryInterface)
// All interfaces inherit nvIUnknown. This is the only part of the code
that a client would get in a separate.h)
class nvIUnknown { public:
virtual int AddRef (void) = 0;
virtual int Release(void) = 0;
virtual int QueryInterface(void **ppObj, int nInterf) = 0; };
class INode: public nvIUnknown { public:
virtual int FuncInode(void) = 0; };
class IEnvoii: public nvIUnknown { public:
virtual int FuncEnvoii(void) = 0; };
class IEnvoiiBis: public nvIUnknown { public:
virtual int FuncEnvoiiBis(void) = 0; };
class IPlaceVoii: public nvIUnknown { public:
virtual int FuncPlaceVoii(void) = 0;
virtual int FuncPlaceVoii2(void) = 0; };
// example of interface inheriting another interface (interface
extension)
class IPlaceVoiiBis: public IPlaceVoii { public:
virtual int FuncPlaceVoiiBis(void) = 0; };
// example of interface inheriting another interface (interface
extension)
// with 2 levels of inheritance
class IPlaceVoiiTer: public IPlaceVoiiBis { public:
virtual int FuncPlaceVoiiTer(void) = 0; };

" // Class definition: known and compiled only in the component. Only the

very base class implements reference counting. All classes inherit
their interface, plus the base classes that they need. All
destructors need to be virtual (this is for the Release to work)
AddRef (), Release() and QueryInterface() must be defined in each

-49.-

10

15

20

25

30

35

40

45

50

55

WO 01/86384 PCT/US01/15263

class All QueryInterface() should bounce on the base class but
only for the interfaces that they inherited wvia the base class.
When a class inherits multiple interface (like class Envoii), the
QueryInterface should cast the this pointer accordingly

class Node : public INode { private:
int m Foo;
protected:
// reference counter implemented only once
int m_ RefCnt;
public:
// comnstructor of very base class only should set ref counter to 0
Node (void) : m _RefCnt(0) {}
virtual ~Node();
virtual int FuncInode(void);
// nvIUnknown interface implementation
int QueryInterface(void **ppObj, int nInterf);
int AddRef (void) ;
int Release(void); };
// example of multiple interface inheritance
class Envoii : public IEnvoii, public IEnvoiiBis, public Node {int
bidule;
public:
virtual ~Envoiil();
int FuncEnvoii (void);
int FuncEnvoiiBis (void);
// nvIUnknown interface implementation
int QueryInterface(void **ppObj, int nInterf);
int AddRef (void) ;
int Release(void); };:
class Place : public Envoii { int chose;
public:
virtual ~Place() {}
int FuncPlace(void); };
// WARNING: here the order of the inheritance is very important.
// The interfaces should appear first, and then the inherited classes
class PlaceVoii : public IPlaceVoiiTer, public Place { int chose;
public: :
virtual ~PlaceVoiil();
int FuncPlaceVoii (void);
int FuncPlaceVoii2 (void);
int FuncPlaceVoiiTer (void);
int FuncPlaceVoiiBis (void);
// nvIUnknown interface implementation
int QueryInterface(void **ppObj, int nInterf);
int AddRef (void);
int Release(void); };
// here we just make thing a little more complex
// by inheriting PlaceVoii without adding any interface
class PlaceVoiiDesktop : public PlaceVoii
{ private:
int DeskSpecific; };

Node: : ~Node ()

{ int u=0; }

int Node::FuncInode (void)

{ return 3; }

int Node::QueryInterface(void **ppObj, int nInterf)

-50-

10

15

20

25

30

35

40

45

50

55

WO 01/86384

{

switch(nInterf) {
case IID UNKNOWN:
case IID NODE:

*ppObj = this; break;
default:

return -1; }
AddRef () ;
return 0; }

int Node::AddRef (void)
{ // we implement ref counting in the very base class only

return ++m_RefCnt; }

int Node::Release(void)
{ // we implement ref counting in the very base class only

m_RefCnt--;

PCT/US01/15263

// WARNING: delete this will work because all destructors are virtual

if (m_RefCnt==0) {delete this; return 0;}

return m_RefCnt; }

int Envoii::FuncEnvoii (void)

{

return 1; }

int Envoii::FuncEnvoiiBis (void)

{

int Envoii::QueryInterface(void **ppObj, int nInterf)

{

return 111; }

switch(nInterf)
{ case IID ENVOII:

// the cast here is very important.

// this is why the multiple inherited interfaces work.

ppObj = (IEnvoii¥)this;
break;

case IID ENVOIIBIS:
*ppObj = (IEnvoiiBis¥)this;
break;

default:

return Node: :QueryInterface(ppObj, nInterf);

AddRef () ;
return 0; }

Envoii::~Envoii ()

{

int u=0; }

int Envoii::AddRef (void)

{

return Node::AddRef(); }

int Envoii::Release(void)

{

{

int PlaceVoii::FuncPlaceVoii2 (void)

{

return Node::Release(); }

return 2; }

return 20; }

int PlaceVoii::FuncPlaceVoiiTer (void)

{

return 30; }

int PlaceVoii::FuncPlaceVoliiBis (void)

{

int PlaceVoii::QueryInterface(void **ppObj, int nInterf)

{

return 40; }

switch(nInterf)

{ case IID PLACEVOII:
case IID PLACEVOIITER:
case IID PLACEVOIIBIS:

}

e e e R R e e e R e e e R e e v e ey M e e e e e e e R e e et et R e e et e M e e e e e e

int PlaceVoii::FuncPlaceVoii (void)

// here we do not need to cast the pointer because interfaces inherit

each other

-51-

10

15

20

25

30

35

40

45

50

55

WO 01/86384 PCT/US01/15263

*ppObj = this;
break;
default:
return Envoii::QueryInterface(ppObj, nInterf); }
AddRef () ;
return 0; } :
int PlaceVoii: :AddRef (void)
{ return Envoii::AddrRef(); }
int PlaceVoii::Release(void)
{ return Envoii::Release(); }
PlaceVoii::~PlaceVoii ()
{ int u=0; }
// Factory functions
void GetPlaceVoii (void **ppObj, int nInterf)
{ PlaceVoiiDesktop *p = new PlaceVoiiDesktop;
p->QueryInterface (ppObj, nInterf); }
B SRS SO RSSO
void GetEnvoii (void **ppObj, int nInterf)
{ Envoii *p = new Envoii;
p->QueryInterface (ppObj, nInterf); }
// Code that would be on the client side
int WINAPI WinMain (HINSTANCE , HINSTANCE , LPSTR , int)
{ // create a PlaceVoii and request an INode interface
INode *pObj;
GetPlaceVoii ((void#**) &pObj, IID_ NODE) ;
// now call methods of the INode interface on the PlaceVoii object
if (pObj->FuncInode () !=3) {assert(0);}
// now ask the object for another interface, an IEnvoii interface
IEnvoii *pObj2;
pObj->QueryInterface ((void#**) &pObj2,IID ENVOII) ;
// we can release the INode interface
pObj->Release();
// now we can call methods of the IEnvoii interface on the PlaceVoii
object
if (pObj2->FuncEnvoii()1=1) { assert(0);}
// now ask the object for another interface, an IEnvoii interface
IEnvoiiBis *pObjé6;
pObj2->QueryInterface ((void**) &pObj6,IID ENVOIIBIS) ;
// we can release the INode interface
pObj2->Release() ;
// now we can call methods of the IEnvoii interface on the PlaceVoii
object
if (pObj6->FuncEnvoiiBis () 1=111) {assert(0);}
// now ask the object for another interface, an IPlaceVoii interface
IPlaceVoii *pObj3;
pObj6-~>QueryInterface((void*+#*) &pObj3,IID PLACEVOII) ;
// we can release the IEnvoii interface
pObj6-~>Release();

// now we can call methods of the IPlaceVoii interface on the PlaceVoii

object
if (pObj3->FuncPlaceVoii() 1=2) {assert(0);}
if (pObj3->FuncPlaceVoii2 () 1=20) {assert(0);}

// now ask the object for another interface, an IPlaceVoiiTer interface

IPlaceVoiiTer *pObj4;

pObj3->QueryInterface ((void#**)&pObj4,IID PLACEVOIITER) ;

// we can release the IPlaceVoii interface, the PlaceVoii is deleted
pObj3-~>Release() ;

-52-

10

15

20

25

30

35

40

WO 01/86384 PCT/US01/15263

// now we can call methods of the IPlaceVoiiTer interface on the
PlaceVoii object

if (pObj4->FuncPlaceVoiiTer () !=30) {assert(0);}

// now ask the object for another interface, an IPlaceVoiiBis interface

IPlaceVoiiBis *p0Obj5;

pObj4->QueryInterface ((void**) &pObj5,IID PLACEVOIIBIS) ;

// we can release the IPlaceVoiiTer interface

pObj4->Release() ; .

// now we can call methods of the IPlaceVoiiBis interface on the
PlaceVoii object

if (pObj5->FuncPlaceVoiiBis () 1=40) {assert(0);}

// we can release the IPlaceVoiiBis interface, the PlaceVoii is deleted

pObj5->Release() ;

// let's create a Envoii and request an IEnvoii interface

GetEnvoii ((void**) &pObj2,IID_ENVOII) ;

// now we can call methods of the IEnvoii interface on the Envoii
object

if (pObj2->FuncEnvoii () I=1) {assert(0);}

// now ask the object for another interface, an INode interface

pObj2->QueryInterface((void#*+*) &pObj, IID NODE) ;

// we can release the IEnvoii interface

pObj2->Release() ;

// now we can call methods of the INode interface on the Envoii object

if (pObj->FuncInode() !=3) {assert(0);}

// we can release the INode interface, the Envoii is deleted

pObj->Release() ;

return 0;}

19. Further Example Architecture

[0171] FIG. 30 is a block diagram illustrating a top level software architecture at a client
machine according to specific alternative embodiments of the invention. Shown in FIG. 30 are
many of the components discussed above. According to this specific embodiment, however, both
MetaVoiis and the ORB exist in multiple instances at a user site to interact with different

PlaceVoiis.

20. Embodiment in a Programmed Information Appliance

[0172] FIG. 31 is a block diagram showing a representative example logic device in which
various aspects of the present invention may be embodied. As will be understood to practitioners
in the art from the teachings provided herein, the invention can be implemented in hardware and/or
software. In some embodiments of the invention, different aspects of the invention can be
implemented in either client-side logic or server-side logic. As will be understood in the art, the
invention or components thereof may be embodied in a fixed media program component
containing logic instructions and/or data that when loaded into an appropriately configured
computing device cause that device to perform according to the invention. As will be understood
in the art, a fixed media containing logic instructions may be delivered to a viewer on a fixed

media for physically loading into a viewer’s computer or a fixed media containing logic

-53-

10

15

25

30

WO 01/86384 PCT/US01/15263

instructions may reside on a remote server that a viewer accesses through a communication
medium in order to download a program component.

[0173] FIG. 31 shows an information appliance (or digital device) 700 that may be
understood as a logical apparatus that can read instructions from media 717 and/or network port
719, which can optionally be connected to server 720 having fixed media 722. Apparatus 700 can
thereafter use those instructions to direct server or client logic, as understood in the art, to embody
aspects of the invention. One type of logical apparatus that may embody the invention is a
computer system as illustrated in 700, containing CPU 707, optional input devices 709 and 711,
disk drives 715 and optional monitor 705. Fixed media 717, or fixed media 722 over port 719,
may be used to program such a system and may represent a disk-type optical or magnetic media,
magnetic tape, solid state dynamic or static memory, etc.. In specific embodiments, the invention
may be embodied in whole or in part as software recorded on this fixed media. Communication
port 719 may also be used to initially receive instructions that are used to program such a system
and may represent any type of communication connection.

[0174] The invention also may be embodied in whole or in part within the circuitry of an
application specific integrated circuit (ASIC) or a programmable logic device (PLD). In such a
case, the invention may be embodied in a computer understandable descriptor language, which

may be used to create an ASIC, or PLD that operates as herein described.

21. Other Embodiments

[0175] The invention has now been described with reference to specific embodiments. Other

embodiments will be apparent to those of skill in the art. In particular, a viewer digital information
appliance has generally been illustrated as a personal computer. However, the digital computing
device is meant to be any information appliance for interacting with a remote data application, and
could include such devices as a digitally enabled television, cell phone, personal digital assistant,
etc.

[0176] In addition, channels have been described primarily as traditional network
connections, with the appropriate corresponding hardware. However, channels are meant to be any
channels capable of carrying data, including wireless channels, optical channels, and electrical
channels.

[0177] It is understood that the examples and embodiments described herein are for
illustrative purposes and that various modifications or changes in light thereof will be suggested by
the teachings herein to persons skilled in the art and are to be included within the spirit and

purview of this application and scope of the claims.

-54-

10

WO 01/86384 PCT/US01/15263

[0178] All publications, patents, and patent applications cited herein or filed with this
application, including any references filed as part of an Information Disclosure Statement, are
incorporated by reference in their entirety.

Conclusion

[0179] The invention has now been explained with regard to specific embodiments.
Variations on these embodiments and other embodiments will be apparent to those of skill in the
art. The invention therefore should not be limited except as provided in the attached claims. It is
understood that the examples and embodiments described herein are for illustrative purposes only
and that various modifications or changes in light thereof will be suggested to persons skilled in
the art and are to be included within the spirit and purview of this application and scope of the
appended claims. All publications, patents, and patent applications cited herein are hereby

incorporated by reference in their entirety for all purposes.

-55-

10

15

20

25

WO 01/86384 PCT/US01/15263

WHAT IS CLAIMED IS:

1. A method of providing a portable information agent comprising:
presenting a graphical representation associated with said portable information agent in a
composition accessed by an initial application, said portable information agent having
state and having one or more possible external connections;
allowing relocation of said graphical object to a location outside of said initial application;
and
thereafter moving said portable information agent to said outside location, preserving state

of said portable information agent.

2. The method according to claim 1 wherein said portable information agent, once

relocated, will persist and maintain state after termination of said initial application.

3. The method according to claim 1 wherein said initial application is a web browser and

said composition is a web page.

4. The method according to claim 1 wherein said initial application is an email client and

said composition is an email message.

5. The method according to claim 1 wherein said initial application is a desktop provided

by an operating system.

6. The method according to claim 1 wherein said relocation may be repeated from a

current location to any number of additional platforms.

7. The method according to claim 5 wherein said desktop provided by an operating
system is an interface of a platform, said platform selected from the group consisting of: a
windows PC, a Macintosh PC, a unix-type operating system, a set-top box, a wireless logic
appliance, internet appliance, a personal digital assistant, or any other device connected to a

network.

8. The method according to claim 1 wherein said new location is selected from the group
consisting of: a desktop providing by an operating system; a different application: a different

computer platform with a different operating system.

-56-

10

15

20

25

WO 01/86384 PCT/US01/15263

9. The method according to claim 1 wherein said portable information agent includes one
or more user interface components and wherein said components are preserved after a

relocation.

10. The method according to claim 1 wherein said portable information agent includes one
or more connections to one or more external entities and wherein said connections are

preserved after a relocation.

11. The method according to claim 1 wherein said allowing relocation comprises allowing

a user to select and drag said graphical object.

12. The method according to claim 1 wherein said allowing relocation comprises allowing

a user to discontinuous select said graphical object and place said object in & new location.

13. The method according to claim 1 wherein said allowing relocation comprises allowing

a graphical object to move to a new location without an action by a user.

14. The method according to claim 10 wherein said one or more external entities are
selected from the group consisting of: web servers, other applications, background processes,

and other remote processes.

15. A method of interacting with a portable information agent:

providing a portable information agent object in a composition accessed by an initial
application;

allowing a user to select said portable information agent object and relocate said object
outside of said initial application;

upon detecting said relocating, determining if sufficient infrastructure logic exists to allow
said object to operate in a new location;

if said determining indicates that sufficient infrastructure does not exist, contacting an agent
server to request necessary infrastructure logic;

downloading and installing necessary infrastructure logic; and

thereafter moving said graphic object to said new location.

16. The method according to claim 15 wherein said initial application is a web browser

and said composition is a web page.

-57-

10

15

20

25

WO 01/86384 PCT/US01/15263

17. The method according to claim 15 wherein said new location is selected from the
group consisting of: a desktop providing by an operating system; a different application: a

different computer platform with a different operating system.

18. The method according to claim 15 wherein said portable information agent is
associated with a graphic object constructed from presentation primitives that allow user

interaction with said object.

19. The method according to claim 15 wherein said graphic agent object includes logic

allowing communication with a data server for tracking user interaction.

20. The method according to claim 19 wherein said graphic agent object and said
infrastructure allow communication with a data server for tracking user interaction after said

object is moved to a new location desktop.

21. A method of providing a composeable information agents comprising:

presenting a graphical representation associated with an first information agent in a
composition accessed by an initial application, said information agent having state and
having one or more possible external connections;

presenting one or more graphical representations associated with one or more second
information agents in a composition accessed by an application;

allowing connection to be made by graphically connecting one or more of said graphical
representations associated with one or more second information agents with said
graphical representation of said first information agent; and

connecting functionality of said one or more second information agesnt with said first

information agent.

22, The method according to claim 21 wherein said information agent can be relocated to

-anew environment and will take all of its associated second agents with it.

23, The method according to claim 21 wherein said initial application is a web browser

and said composition is a web page.

24, The method according to claim 21 wherein said initial application is an email client

and said composition is an email message.

-58-

10

15

20

25

WO 01/86384 PCT/US01/15263

25. The method according to claim 21 wherein said initial application is a desktop
provided by an operating system and wherein said second information agents are presented in

a different application but may be connected to a first information on a desktop.

26. The method according to claim 25 wherein said desktop provided by an operating
system is an interface of a platform, said platform selected from the group consisting of: a
windows PC, a Macintosh PC, a unix-type operating system, a set-top box, a wireless logic
appliance, internet appliance, a personal digital assistant, or any other device connected to a

network.

27. A method of providing interactive targeted advertising comprising:
providing an interactive graphic object carrying an advertising message:
providing a component at said interactive graphic object able to track and measure user
attention to said interactive graphic object;
transmitting measurements of said user attention to a server; and
at said server, determining a charge to an advertiser based on a measurement of user

attention.

28. The method according to claim 27 wherein said user attention comprises user

interaction with active graphical elements on said object.

29. The method according to claim 27 wherein said user attention comprises moving said
object to a desktop.
30. The method according to claim 27 wherein said object on a desktop remains in

communication with a server and may receive data from said server for updating an

advertising message.

31. The method according to claim 27 wherein said object on a desktop provides a desired

functionality to a user.

32. Alogic architecture comprising:
a plurality of Envoiis in a parent/child tree structure, each Envoii an object that handles
requests for services and having connections to other objects;

a standard service request protocol for distributing services; and

-59.

10

15

20

25

30

WO 01/86384 PCT/US01/15263

a plurality of generalizable connections for providing communication between Envoiis and

between an Envoii and an external entity.

33. A logic architecture providing for object portability on a platform comprising:

a MetaVoii able to detect movement of portable objects and able to trigger installation of
necessary components;

one or more PlaceVoiis, each PlaceVoii allowing existence of portable objects within a
particular logical environment;

one or more skins, attached to a PlaceVoii or a portable object, providing interface, display,
connectivity, behavioral, or interactivity functions;

one or more portable objects;

a standard service request protocol for distributing services; and

a plurality of generalizable connections for providing communication between Envoiis and

between an Envoii and an external entity.

34. A method for providing portable graphical agents comprising:

providing a top-level authoritative server for distributing system architecture components;

providing a plurality of operating system agents, for a plurality of different operating
systems, for communicating with said server and detecting events in their operating
systems; and

within a particular platform, providing an expandable architecture of services and
application agents managed by said operating system agent;

wherein said operating system agent detects a request to move a portable graphical agent to
anew location and triggers downloading and installation of necessary services and

agents.

35. The method according to claim 34 such that a user interacting with an agent will
experience the agent as an independent object capable of moving among different logic

environments.

36. A method for generalizing requests for services comprising:
at insertion of an object, requesting any necessary services from said object’s parent;
querying parts available at said parent for said requested services and providing said

services back to said object when present;

-60-

WO 01/86384 PCT/US01/15263

if not present, at said parent, initiating a request by said parent to said parent’s parent for
said service;
when a parent is encountered with said service, establishing a connection to said object for

transmitting said service.

37. The method according to claim 36 wherein said querying and said initiating a request
are performed recursively until a parent is encountered that has access to said service or until

failure.

38. The method according to claim 36 wherein said recursive requesting continues until a

top level external server is reached with access to all available services.

-61-

WO 01/86384 PCT/US01/15263
a0 B
Network iy Computer

- | hitp:iveww firstunion.com/makeperson?eustomer=jiilsmith&d

welcome to

JON" firstunion.com

Nelghborhood

. o
3
wE 5
|

Recycling Bin

your gulde to the financial world

them to your card .
Free ‘Services

»Chmose from the following servlces and simply drag

; Premlum Services

'O BREAKING NEWS

+Personal Finance

| DINASDAQ * Q) PORTFOLIO WATCHER ' |
elelcl 7 “Q PORTFOLIO ALERTS .
() S&P: © QO NETWORTHWATCH =+ |

Fhaont

from one of the following: JiLL SMlTH :
| All Services i 10 Perosonal Banker
—_— js@firstunion.com

212:424.5099.

2 Small Business

| 1 | 11
%I!
o o
Network My Computer
Neighborhood
L L:*"].J'] T, _'\::]
Recycling Bin -~ My Documents
JILL SMITH
10 Perosonal Banker
30 “js@firstunion.com
- 212.424.5099 i
KINEXUS

FIG. 2

WO 01/86384

PCT/US01/15263

* [http:tiwvow firstunion,

.com/cardvail

firstunion.com

welcome to

your guide to the financial world

Please choose an online ser|
from onc of the foliowing’

All Servicss

.Free Services

. Premium Services .

Signuo | Leam more,

1:'}:.51 |

P

My Computer

JILL SMITH
Perosonal Banker

js@firstunion.com
212.424.5099

© KINSXUS

0 NASDAQ
W Dow

"3 sap,

1) BREAKING NEWS : .

* 2 PORTFOLIO WATCHER *
' PORTFOLIO ALERTS
* O NETWORTH WATCH

<]

Total Weallh Intelligence KIne .
v |

FIG. 3

']E_ilg EditVlew- Insert ¥ Format Tools Actions Help

o, ha@ﬁr.s&unlun.mm

-

o

Perosonal
R e

JILL SMITH

gcJ|

Banker

185 AN

Dear Jill,

info. Thanks.

John Customer]

30

Thanks for sending me your card. It was really easy to set up. I'm very
interested in your personal banking services. Please e-mail me with further

<]

FIG. 4

WO 01/86384

PCT/US01/15263

hagnAhem to your card

e ‘ 60a
fisor NASD.
JLL SMITH ,
Perosonal Banker N
js@firstunion.com N
= 2024245099 o
. . {] o
¢ . KInexus

(1]

l_http://MNw.ﬁrstunion.comlcardvoii

welcome to

AN° - firstunion.com

Ny

S

Elas Sk
Please choose an online ser
from one of the following:

Al Services

Search the sile or ask a general question.
{Example: "What are the benefits of anline banking?")

| B3

Powered by Ask Jeeves

7

QChoos'e from the following services and: simply drag
| Premium Services

O-PORTFOLIO WATCHER'

L. Free Services:

O DOW 60 PORTFOLIO ALERTS
O ssp ‘O NETWORTH WATCH ~ :
QO BREAKING NEWS -~ 62

your guide to the financial world

» Sianup | Learnmore |

4]

FIG. 5

JILESMITH
Perosonal Banker
js@firstunion.com

"10a

T 212.424.509
New [S[nInlu]n] 8

00=00Q.

WO 01/86384 PCT/US01/15263

WO 01/86384 PCT/US01/15263

5/14

101 O Note that in this model, the parent of a

This is an example of a simple composition with a metavoii Metavoii can become Envoii.com.
and two places, with a very few non-structural connections
indicated as dotted arrows.lt is clear from this example the
importance of the ability to track and manage connections.

This (100} is what we have been
(¢ calling a "Metavoii". It has several
J 100 @ services attached as parts: Tracking,

Communications, ORB and security.

AN This (110) is an example of
N a "placevoii". It has an event
112 S~ server and Display Manager

“~ 112 attached, but is empty. To
the left is another placevoii
with three children.

In this sub-composition Envoii (120c) there
are two skins attached, one which is a
tracking skin and is connected to the
tracking manager and one which is setting
properties on a viz

FIG. 8

WO 01/86384 PCT/US01/15263

6/14

These are Envoiis (or "Enodes"). As an instance of a class, it provides generic graph
interface. The connection points are representative of open set of "ports” which

enable connections to other enodes.

This is a "Kid" connection, which is a specialization of a "Part" connection. it is the
primary glue which is used by designers in building compositions. It effectively hel|

¢ implement a tree-hierarchy as in the current system.

This is a "Part" connection. Part connectiions are structural, and enforce a part/part-o

@)
L
O\D protocol.

Q. . " \\Q This is a representative dynamic connection. Some such connections may be
S transient, and others not.

A This is a "skin", and it bears a part-of relationship to an envoy.

o5 This is a "Viz" and it bears a part-of relationship to an envoy.

TN
PoR
0

This is a "DisplayManager”. It is a part of an envoy which provides a rendering
service.

@ This is an "Event Service".

FIG. 9

WO 01/86384 PCT/US01/15263

714

ComMgr L Metavoy

Placevoy

1 (=Y

2 LN D,
LN D,
FIG. 10
2
Shared Mem array /ZL
-~
3
N,
R L] Metavoy
ComMgr l

Placevoy Placevoy

WO 01/86384 PCT/US01/15263

8/14

Broadcaster Broadcaster
Transmitter 2 >< Transmitter

Broadcaster 4 Broadcaster
Metavoy \ Receiver v Receiver 3 Metavoy
Message Message .
s N

Connection Connection
Placevoy Listener \’ Listener Placevoy
ComMgr ComMgr

7 1 &
D PN = D PN

FIG. 12

Customer
Server

Tracking
Server

Envoii
Server

Tracking
Server

compeonents

ck for
updates

FIG. 14

WO 01/86384

9/14

Envoii

Tracking
Server

Data

FIG. 15

Player side Envoii Server

virtual or direct
connection

PCT/US01/15263

Community

Web

1 Server
Trackvoy [——getplayerio—> [nstaller (1S Apache etc)-

Player ID
Allocator
(cgistub.exe)

ID
Database

Tracking Service

Player Process

Tracking
Service

Placevoy

/’/’-

PpétEvent

\\ /T;aékEvent
\\~)

Bootapp 1

___ - Tracking Manager

Bootapp 2

1/ Server

__ - » Collector Link
;

Plugin

RT Database

Bootdesk

(.pkt)

FIG. 18

Add resord

Process
Tracking
Data

Web

(11S,Apache,etc}

RT

Database
(.0k)

WO 01/86384 PCT/US01/15263

10/14

Data transfer to the tracking server
Player side Tracking Server

Web Reports
TRACKING ’1/ Server L 3l Recetver - Oracle

MANAGER (IIS Apache etc) (cgitrack.exe) Interface

ORACLE
Database

FIG. 19
Desktop "& :

Program Manager

SHELLDLL_DefView
SysListView32
EnvoiiDesktop

Shell_TrayWnd .

FIG. 20
/ repaint the desktop (will fix all drawing problems)

) // load the persisted desktop (as if we were booting)

|————— save the desktop (same file than the one we load when booting)

Clear ~ —
. Divable aifobost __ |

clear desktop placevoy (all envoys are deleted)

it | disable autoboot {(grayed when autoboot is already disabled)

T terminate Envoii desktop

FIG. 21
7 7

n vy

FIG. 22

Y

WO 01/86384

11/14

PCT/US01/15263

desktop cache n+1

render n mask n
() n desktop cache n+1
SAVE |y
screen n
%//
n
/ i
i
FIG. 23
render n+1 mask n+1
RENDER v
Ll ;‘ n
FIG. 24
render n+1
N
n] mask n+1 screen n+1
B4
COMPOSITE N N

Client
Process

FIG. 25

(Tracking \ (OldCore \ (ComponentX\

L

J

L

)

Createlnstance —»

ORB

+—load P

LOADER

——

component

find

g

register
new
component

FIG. 26

Web
Server CGIStub
(liS,Apache,etc)
find
component

<" =
CLSID
Table

WO 01/86384

12/14

PCT/US01/15263

toto.bmp
pGetBuffer
___J
Client —LoadResource»] ORB [—downlead» LOADER ’_1'/ Svc;/r?/tér
Process
(lIS,Apache,etc)
load read / write
Component
Repository
FIG. 27
Orb Creator NodeDescList NodeDesc
O}— Ko>—— K> 1-N——
ComponentArray Component CLSID
K >——— K >>—1-N——| kK>—1-N——o
——nCreatelnstance —p
Webloader WebResponse
Ko>———] K>
RegCLSID
K>—
read / write
—
Repository
Player side Envoii Server
woner Web Player ID
e Installer /¢P Server ” (cA!?L?t?t;);e)
- I .
(IS, Apache,etc) g o
D
M

FIG. 29

WO 01/86384

Resource cache

Clsid table

Only one DIl of Metavoli 1s loaded but three
Metavoii are created. Metavoii uses shared memory for sharing
data between its inslance. Orb is used in a same way except

that it uses data on client disk for sharing inwrmation between

instances of itself.

N
resource shared by

all the
instance of Orb

PCT/US01/15263

dummy.htm!

Boot Application

Boot Browser

DIl

of

Application Placevoii

Event Manager
{nvIEviMgr}

FIG. 30

—

Copy/Paste
Clipboard

R T Gl LW

resource shared by

Metavoil

N\

all the instances

Desktop Placevoil

Envoil

Browser Placevoii

Visual Manager
{nviVizMgr)

of Metavoit N

Drag/Drop
Clipboard

TS A S

Placevoli List

WO 01/86384 PCT/US01/15263

14/14
Df 720 ~ x— 700
705 717
~
720 7 N 719

¥,
<Communlcatlon [L—l\
Medium
W ﬁ\

FIG. 31

711

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

