(19) **日本国特許庁(JP)**

(12) 特許公報(B2)

(11)特許番号

特許第3624406号 (P3624406)

最終頁に続く

(45) 発行日 平成17年3月2日(2005.3.2)

(24) 登録日 平成16年12月10日 (2004.12.10)

(51) Int.C1. 7 CO4B 35/16 CO3C 10/00 CO3C 14/00 CO4B 35/46 HO1B 3/02	FI CO4B CO3C CO3C CO4B HO1B	35/16 10/00 14/00 35/46 3/02	Z C A 請求項の数 8 (全 10 頁)
(21) 出願番号 (22) 出願日 (65) 公開番号 (43) 公開日 審査請求日	特願平7-94384 平成7年3月27日 (1995.3.27) 特開平8-259263 平成8年10月8日 (1996.10.8) 平成13年10月23日 (2001.10.23)	(73) 特許権者(72) 発明者(72) 発明者	者 000232243 日本電気硝子株式会社 滋賀県大津市晴嵐2丁目7番1号 渡辺 広光 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 馬屋原 芳夫 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 馬屋原 芳夫 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 前田 仁志

(54) 【発明の名称】ガラスセラミックス誘電体材料

(57)【特許請求の範囲】

【請求項1】

重量百分率でガラス粉末40~90%、セラミックス粉末60~10%からなり、該ガラ ス粉末がSiO。 10~35%、Ln。O。(ランタノイド系酸化物) 5~35%、T iO。 15~50%、RO(アルカリ土類金属酸化物) 3~45%、Bi₂O₃ 1~ 30%、ZrO₂ 0~25%含有することを特徴とするガラスセラミックス誘電体材料

【請求項2】

セラミックス粉末が、1GHzにおいて比誘電率9以上、且つ、誘電損失20×10⁻⁴以 下のセラミックス材料からなることを特徴とする請求項1のガラスセラミックス誘電体材 料。

【請求項3】

請求項1又は2のガラスセラミックス誘電体材料を含むことを特徴とするグリーンシート

【請求項4】

請求項1又は2のガラスセラミックス誘電体材料を焼成してなることを特徴とするガラス セラミックス焼成体。

【請求項5】

請求項3のグリーンシートを焼成してなることを特徴とするガラスセラミックス焼成体。 【請求項6】

20

R O - T i O $_2$ 系結晶、 L n $_2$ O $_3$ - T i O $_2$ 系結晶及び / 又はR O - L n $_2$ O $_3$ - T i O $_2$ 系 結晶が析出してなることを特徴とする請求項 4 又は 5 のガラスセラミックス焼成体。

【請求項7】

重量百分率で SiO_2 10~35%、 Ln_2O_3 (ランタノイド系酸化物) 5~35%、 TiO_2 15~50%、RO(PND) 土類金属酸化物) 3~45%、 Bi_2O_3 1~30%、 ZrO_2 0~25%含有するガラス粉末40~90重量%と、セラミックス粉末60~10重量%とを混合してガラスセラミックス誘電体材料を作製した後、焼成することにより、 $RO-TiO_2$ 系結晶、 $Ln_2O_3-TiO_2$ 系結晶を析出させることを特徴とするガラスセラミックス焼成体の製造方法。

10

【請求項8】

<u>ガラスセラミックス誘電体材料を用いてグリーンシートを作製した後、焼成することを特</u> 徴とする請求項7のガラスセラミックス焼成体の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】

本発明は、特にマイクロ波領域の周波数、具体的には、 0 . 1 G H z 以上の周波数において高い比誘電率と低い誘電損失を有し、マイクロ波用回路部品材料として好適なガラスセラミックス誘電体材料に関するものである。

[0002]

20

【従来の技術】

高度情報化時代を迎え、情報伝達は、より高速化、高周波化の傾向にある。自動車電話やパーソナル無線に代表される移動体通信機器、衛星放送、衛星通信、CATV等に代表されるニューメディア機器では、機器のコンパクト化が強く推し進められており、これに伴い誘電体共振器等のマイクロ波用回路素子に対しても小型化が強く望まれている。

[0003]

マイクロ波用回路素子の大きさは、使用電磁波の波長が基準になる。比誘電率 の誘電体中を伝播する電磁波の波長 は、真空中の波長を 0 とすると、

= 0 /

となる。回路素子は、 の平方根に反比例して小型化できるが、また素子の比誘電率が大きいと、電磁波エネルギーが素子内に集中するため、電磁波の漏れが少なくなるという利点もある。

[0004]

上記事情から近年では、回路部品材料として、マイクロ波領域の周波数において高い比誘電率を有するセラミックスが各種開発されている。

[0005]

また上記の周波数において高い比誘電率を有するガラス繊維によって樹脂を補強した材料 も開発され、特開平4-322007号公報、特開平4-367537号公報において具 体的に開示されている。

[0006]

40

30

【発明が解決しようとする課題】

上記したセラミックス材料として、例えばBaO-TiO2 系セラミック、BaO-Ln2 $О_3$ -Ti O_2 系セラミック、複合ペロブスカイト系セラミック、Zr O_2 -Ti O_2 -Sn O_2 -Sn O_2 -Sn O_2 -Sn O_2 -Sn O_2 -Sn O_3 -Ti O_3 -Sn O_4 -Sn O_5 -Sn O_6 -Sn O_7 -Sn O_8 一方状に成形し、複数枚を積層した後、焼成して積層型の高周波デバイスや回路基板を作製する場合、1200 以上の温度で焼成する必要があるため、電極や導体材料として銀や銅を使用することができず、より耐熱性に優れた高価な材料を使用する必要があり、材料コストが高くなるという欠点を有している。

[0007]

また上記したガラス繊維によって樹脂を補強した材料は、セラミックスに比べて切断、孔開け加工等の点で優れているが、0.1GHz以上の周波数で、10以上の比誘電率を得ようとすると、従来より回路基板に広く用いられてきたエポキシ樹脂に代えて、ポリフッ化ビニリデン(= 13)やシアノ樹脂(= 16~20)のような比誘電率の高い樹脂を使用する必要がある。しかしながらこのような樹脂は、高周波(特に100MHz以上)での誘電損失(tan)が高く、マイクロ波用回路基板材料としては性能が良くない。しかもこのような樹脂を使用した回路基板は、基本的に耐熱性が低いという欠点もある

[00008]

本発明の目的は、マイクロ波領域の周波数において高い比誘電率と低い誘電損失を有し、 且つ、低温で焼成可能であるため、電極や導体材料として銀や銅が使用可能であり、しか も機械的強度が高く、耐熱性が良好であり、マイクロ波用回路部品材料として好適なガラ スセラミックス誘電体材料を提供することである。

[0009]

【課題を解決するための手段】

本発明者等は種々の実験を重ねた結果、 SiO_2 、 Ln_2 O_3 、 TiO_2 、RO 、 Bi_2 O_3 を主成分とする結晶性のガラス粉末と、高誘電率、低誘電損失のセラミックス粉末とを組み合わせることにより、上記目的を達成できるガラスセラミックス材料が得られることを見いだし、本発明として提案するものである。

[0010]

即ち、本発明のガラスセラミックス誘電体材料は、重量百分率でガラス粉末 4~0~9~0%、セラミックス粉末 6~0~1~0% からなり、該ガラス粉末が $S~i~O_2~1~0~3~5\%$ 、 L $n_2~O_3~5~3~5\%$ 、 T $i~O_2~1~5~5~0\%$ 、 R $O_3~4~5\%$ 、 B $i_2~O_3~1~3~0\%$ 、 Z $r~O_2~0~2~5$ %含有することを特徴とする。

[0011]

本発明において、ガラス粉末とセラミックス粉末の割合を上記のように限定した理由は、ガラス粉末が40%より少ない(即ち、セラミックス粉末が60%より多い)と焼成時に緻密化し難いために、焼成体の強度が著しく低下したり焼成体内部に多数の気孔が生じて誘電率が低下する。一方、ガラス粉末が90%より多い(即ち、セラミックス粉末が10%より少ない)とガラス成分が焼成体表面から浮き出し、表面に印刷される導体との接着強度が低下する。

[0012]

またガラス粉末の組成限定理由は以下の通りである。

[0013]

 SiO_2 はガラスのネットワークフォーマーであり、その含有量は 10~35%、好ましくは 15~30%である。 SiO_2 が 10%より少ないとガラス化範囲より外れ、安定したガラスが得られなくなり、 35%より多いとガラスの比誘電率が低くなる。

[0014]

Ln2 O3 (La2 O3 、CeO2 、Pr6 O11、Nd2 O3 等のランタノイド系酸化物)は比誘電率を高める成分であるとともに析出結晶の構成成分となり、その含有量は合量で $5 \sim 3.5\%$ 、好ましくは $1.0 \sim 3.0\%$ である。 Ln2 O3の合量が 5.%より少ないと析出結晶量が少なくなり、比誘電率が低下するとともに焼成体の強度が低下し、 3.5%より多いとガラス成形時に失透し易くなる。

[0015]

T i O_2 も比誘電率を高める成分であるとともに析出結晶の構成成分となる。またS i O_2 と同じくガラスのネットワークフォーマーとなり、その含有量は 1 5 \sim 5 0 %、好ましくは 2 0 \sim 4 5 %である。 T i O_2 が 1 5 %より少ないと析出結晶量が少なくなって比誘電率が低下するとともに焼成体の強度が低下し、 5 0 %より多いとガラス成形時に失透し易くなる。

[0016]

40

20

RO(BaO、CaO、SrO等のアルカリ土類金属酸化物)も比誘電率を高める成分であるとともに析出結晶の構成成分となり、その含有量は合量で3~45%、好ましくは5~35%である。ROが3%より少ないと析出結晶が少なくなって比誘電率が低下するとともに焼成体の強度が低下し、また溶解性が悪くなる。ROが45%より多いとガラス成形時に失透し易くなる。

[0017]

なおROの各成分は、BaO 3~35%、CaO 0~15%、SrO 0~15%の 範囲であることが好ましく、特にBaO 5~30%、CaO 0~10%、SrO 0 ~10%であることが望ましい。

[0 0 1 8]

Bi $_2$ O $_3$ は比誘電率を高めるとともに溶解性を向上させる成分であり、その含有量は 1 ~ 3 0 %、好ましくは 3 ~ 2 5 %である。Bi $_2$ O $_3$ が 1 %より少ないと比誘電率が低下するとともに溶解性が悪くなり、 3 0 %より多いと析出結晶量が少なくなって焼結体の強度が低下する。

[0019]

Z r O_2 はガラスの化学的耐久性を高める成分であり、その含有量は 0 ~ 2 5 %、好ましくは 0 ~ 2 0 %である。 Z r O_2 が 2 5 %より多いと溶解性が悪くなる。

[0020]

またこれらの成分の他にPbOを30%まで添加しても差し支えない。

[0021]

本発明において使用するセラミックス粉末としては、高い比誘電率、低い誘電損失の材料であれば種々のものが使用できる。特に1GHzにおける比誘電率が9以上、且つ、誘電損失が20×10 $^{-4}$ 以下のセラミックス材料を使用することが好ましい。

[0022]

このようなセラミックス材料の好適な例として、Al $_2$ O $_3$ 、ZrO $_2$ 、ZrSiO $_4$ 、ZrTiO $_4$ 、TiO $_2$ 、BaTi $_4$ O $_9$ やBa $_2$ Ti $_9$ O $_2$ 0やCaTiO $_3$ やSrTiO $_3$ 等のRO-TiO $_2$ 系セラミック、Nd $_4$ Ti $_9$ O $_2$ 4やLa $_4$ Ti $_9$ O $_2$ 4等のLn $_2$ O $_3$ -TiO $_2$ 系セラミック、及びBaNd $_2$ Ti $_5$ O $_1$ 4やSrPr $_2$ Ti $_3$ O $_1$ 0等のRO-Ln $_2$ O $_3$ -TiO $_2$ 系セラミックの群より選択された1種又は2種以上組み合わせて使用することができる。

[0023]

【作用】

本発明のガラスセラミックス誘電体材料は、焼成することによりガラス中から B a $_2$ T i $_9$ O $_2$ $_0$ 、 C a T i O $_3$ 、 S r T i O $_3$ 等の R O - T i O $_2$ 系結晶や、 L a $_4$ T i $_9$ O $_2$ $_4$ 、 N d $_4$ T i $_9$ O $_2$ $_4$ 等の L n $_2$ O $_3$ - T i O $_2$ 系結晶や、 S r P r $_2$ T i $_3$ O $_1$ $_0$ 、 B a N d $_2$ T i $_5$ O $_1$ $_4$ 等の R O - L n $_2$ O $_3$ - T i O $_2$ 系結晶が析出する。 さらにこれらの系の結晶中に P b O や B i $_2$ O $_3$ が含まれる場合もある。 上記各結晶は、高い比誘電率、低い誘電損失及び高い機械的強度を有するため、 これらの特性に優れた焼成体を得ることができる。

[0024]

【実施例】

以下、本発明のガラスセラミックス誘電体材料を実施例に基づき説明する。

[0025]

表1は、本実施例で使用するガラス粉末(試料A~F)を示すものである。

[0026]

【表1】

20

10

30

20

30

40

		<u> </u>					T .
		A	В	С	D	E	F
	SiO2	28	21	1 5	17	20	16
ガ	La ₂ O ₃	22	_	_	_	17	
カラ	CeO2	_	10	_	_	_	_
ス	Pre Oii	_	_	30	<u></u>	10	20
組	Nd2O3	-	_	_	20	<u></u>	5
租成	TiO2	20	27	40	22	20	25
PX.	ВаО	10	20	5	5	18	9
a	CaO	5	5	_	_	4	
重量%	SrO	_	8		_	4	_
\mathcal{Z}	Bi ₂ O ₃	15	8	10	16	7	20
	ZrO2	-	1		20	-	_
	РbО	*****	-	_	_	_	5
比認	電率 [1GHz]	17.1	18.9	22.6	21.8	17.5	23.4
	損失 [10 ⁻⁴][1GHz]	15	18	20	1 9	17,	22
(張係数 ×10-7/℃) 30~300 ℃]	85	90	93	89	83	95
軟化	点 (℃)	835	792	860	874	824	809

[0027]

表1のガラス試料は以下のように調製した。

[0028]

まず原料として、純珪粉、酸化ランタン、酸化セリウム、酸化プラセオジウム、酸化ネオジウム、酸化チタン、炭酸バリウム、炭酸カルシウム、炭酸ストロンチウム、酸化ビスマス、酸化ジルコニウム、酸化鉛を準備し、表中の各組成となるように原料を調合した後、白金坩堝に入れて1400~1500 で3~6時間溶融してから、水冷ローラーによって薄板状に成形した。次いでこの成形体を粗砕した後、水を加えてボールミルにより湿式粉砕し、平均粒径が1.5~3.0μmの粉末とした。

[0029]

こうして得られたガラス粉末は、 1 G H z の周波数で 1 7 . 1 ~ 2 3 . 4 の比誘電率と 1 5 ~ 2 2 × 1 0 $^{-4}$ の誘電損失を有していた。

[0030]

また表 2 は、本実施例で使用するセラミックス粉末(試料 a ~ g)を示すものである。

[0031]

【表2】

g BaNd2 7	f BaTi4 (e TiO ₂				
BaNd ₂ Ti ₅ O ₁₄	ВаТі 4 Ов	`i 0 ₂		rTiO4	rSiO ₄	r S i O ₄	12 03 2 r O2 2 r S i O4 2 r T i O4
5 O ₁₄							
70.0	40.0	100.0		42.0	9. 0 42. 0	16. 0 9. 0 42. 0	9. 8 16. 0 9. 0 42. 0
3. 0	2.0	0.5		1.0			
90	90	80		65	45	1	1
1350 10	1400 10	1300		1550 10	1450 10 1550 10	1 4 5 0 1 5 5 0	1450
10	10	5		10	10	10	10

20

30

[0032]

表 2 中、試料 a の A 1_2 O 3 と試料 b の Z r O 2 は市販品を使用した。またそれ以外のセラミックス粉末は、原料として酸化ジルコニウム、純珪粉、酸化チタン、炭酸バリウム、酸化ネオジウムを準備し、表 2 のセラミックスとなるように各原料を調合した後、水を加えてボールミルにより 2 4 時間湿式混合し、次いで乾燥させてから、表中の焼成条件で焼成し、この焼成物をボールミルで平均粒径が 1 . 5 ~ 3 . 0 μ m になるまで粉砕することによって作製した。

[0033]

こうして得られたセラミックス粉末は、 1 G H z の周波数で、 9 . 0 ~ 1 0 0 . 0 の比誘電率と、 0 . 5 ~ 8 . 0 × 1 0 $^{-4}$ の誘電損失を有していた。

[0034]

表 3 、 4 は、表 1 のガラス粉末と、表 2 のセラミックス粉末とを混合して作製したガラスセラミックス誘電体材料(試料 N o . 1 ~ 1 6)を示すものである。

[0035]

【表3】

熱膨張係数 (X10-7/t) [30~300t]	曲げ強度 (kg/cm²)	務電損失(X10 ⁻⁴) [1GHz]	誘電率 [1GHz]	析出結晶	焼成時間(分)	焼成温度(°C)	1 1	オラン ツクス 禁米	ガラス粉末 (表1)	裁科Ma	
8 1	2100	1 4	16.5	La ₂ Ti ₂ O ₇	10	900	1	30%	7 0%	<u> </u>	
8 8	2100	1 5	22.6	Ba ₂ Ti ₈ O ₂₀	10	900		1 f %	8 5 %	ίδ	
8 3	1900	12	28. 9	Ba ₂ Ti ₈ O ₂₀	10	920	.	10%	9 0 %	ယ	
8 5	2000	18	17.0	CezTi300	10	900	l	3 0 %	B 70%	4	
88	2000	18	31.5	Ce _z Ti ₉ O ₉	1 5	900	_	e 1 0%	^т В 90%	5	
87	2300	16	27. 9	Ba ₂ Ti ₉ O ₂₀	15	900	d 5%	a 1 5%	В 80%	6	
9 5	2200	1 8	25.4	Pr ₂ Ti ₂ O ₇	10	900	ľ	20%	8 0 %	7	
90	2400	1 8	42.7	Pr ₂ Ti ₂ O ₇	10	920	% വ o	1 0%	8 5 %	8	(重量%)

[0036] 【表4】

40

10

20

熱膨張係数 (X10 ⁻⁷ /C) [30~300C]	⊪げ強度 (kg/cm²)	誘電損失(X10 ⁻⁴) [IGHz]	誘電率 [1GHz]	析出結晶	焼成時間(分)	焼成温度(°C)	(表2)	[('/	ガラス粉末 (表1)	机铁煤		
90	2400	20	42.1	Pr _z Ti _z O ₇	10	900	8 5%	a 5%	90% C	9		10
8 5	1900	20	18.5	NdaTi ₀ O2a	10	920	_	30%	D 70%	10		
90	2200	18	24.9	BaNd ₂ Ti ₅ O ₁₄	10	900	l	f 10%	D 9 0 %	1 1		00
82	2100	19	22. 3	BaNd ₂ Ti ₅ O ₁₄	15	900	5%	10%	D 85%	12		20
80	2000	16	23.7	LazTizO7	10	900	I	d 1 5%	8 5 %	1,3		
85	1900	16	27. 5	BazTi ₉ Ozo	10	920	1	10%	9 0 %	14		30
96	2500	22	46.8	Pr _z Ti _z O _τ	10	900	ţ	1 0%	9 0 %	1 5		
95	2300	2 1	51.2	BaPr ₅ Ti ₅ O ₂₂	20	920	U 04	%	90%	1 6	(軍軍%)	40

[0037]

これらのガラスセラミック誘電体材料からなるグリーンシートを作製し、その複数枚を積層し焼結させる方法を以下に述べる。

[0038]

まずガラス粉末とセラミック粉末を表中の割合で混合した後、所定量の結合剤、可塑剤及び溶剤を添加してスラリーを調製する。結合剤としては、例えばポリビニルブチラール樹脂、メタアクリル酸樹脂等、可塑剤としては、例えばフタル酸ジブチル等、溶剤としては、例えばトルエン、メチルエチルケトン等を使用することができる。

30

[0039]

次いで上記のスラリーをポリエステルフィルム上にドクターブレード法によって塗布し、厚みが約0.2mmのグリーンシートを作製する。その後、このグリーンシートを乾燥させ、所定寸法に切断してから、機械的加工を施してスルーホールを形成し、導体や電極となる低抵抗金属材料をスルーホール及びグリーンシート表面に印刷する。次いでこのようなグリーンシートの複数枚を積層し、熱圧着によって一体化する。

[0040]

このようにして得た積層グリーンシートを、約3 /分の速度で約500 まで昇温し、この温度で約30分保持することによってグリーンシート中の有機物質を除去する。その後、約10 /分の速度で表中の焼成温度まで昇温し、その温度で表中の焼成時間保持して焼結させる。

[0041]

表 3 、 4 から明らかなように、実施例の各試料は 9 0 0 ~ 9 2 0 の低温で焼成可能であり、得られた焼成体は 1 G H z の周波数で 1 6 . 5 ~ 5 1 . 2 の比誘電率と 1 2 ~ 2 2 × 1 0 $^{-4}$ の誘電損失を有していた。しかも曲げ強度が 1 9 0 0 k g / c m 2 以上と高く、熱膨張係数が 8 0 ~ 9 6 × 1 0 $^{-7}$ / であった。

[0042]

なお、表中の比誘電率と誘電損失は、インピーダンスアナライザーを使用し、25 の温度での値を求めた。熱膨張係数は、石英押棒式のディラトメーターを使用して測定した。また軟化点は、周知のファイバー法によって測定した。さらに曲げ強度は、10 × 45 × 1 m m の大きさとなるように作製した焼成体を3点荷重測定法によって測定した。

[0043]

また実施例では、本発明のガラスセラミックの製造方法として、グリーンシートの例を挙げたが、本発明はこれに限定されるものではなく、一般にセラミックの製造に用いられる各種の方法を適用することが可能である。

[0044]

【発明の効果】

以上のように本発明のガラスセラミックス誘電体材料は、1000 以下の低温で焼成することが可能であり、電極や導体材料として銀や銅を使用することができる。またマイクロ波領域の周波数において高い比誘電率と低い誘電損失を有し、しかも耐熱性と機械的強度が高いため、マイクロ波用回路部品材料として好適である。

フロントページの続き

(56)参考文献 特許第3381332(JP,B2)

特開平8-73239(JP,A)

特開平8-259264(JP,A)

特開平8-259265(JP,A)

(58)調査した分野(Int.CI.⁷, DB名)

CO3C 1/00-14/00

CO4B 35/16

CO4B 35/46

H01B 3/02