(19) 日本国特許庁(JP)

(12) 特許公報(B2)

(11) 特許番号

特許第3934320号 (P3934320)

(45) 発行日 平成19年6月20日 (2007.6.20)

- (24) 登録日 平成19年3月30日 (2007.3.30)
- (51) Int.Cl. F I HO1L 21/205 (2006.01) HO1L 21/205

	請求項の	数 22	(全)	22	自
--	------	------	-----	----	---

(21) 出願番号	特願2000-274555 (P2000-274555)	(73)特許権者	皆 000004237
(22) 出願日	平成12年9月11日 (2000.9.11)		日本電気株式会社
(62) 分割の表示	特願平10-62760の分割		東京都港区芝五丁目7番1号
原出願日	平成10年3月13日 (1998.3.13)	(74)代理人	100109313
(65) 公開番号	特開2001-148348 (P2001-148348A)		弁理士 机 昌彦
(43) 公開日	平成13年5月29日 (2001.5.29)	(74)代理人	100124154
審査請求日	平成12年9月11日 (2000.9.11)		弁理士 下坂 直樹
審判番号	不服2004-21749 (P2004-21749/J1)	(74)代理人	100111637
審判請求日	平成16年10月21日 (2004.10.21)		弁理士 谷澤 靖久
(31) 優先権主張番号	特願平9-59076	(72)発明者	砂川 晴夫
(32) 優先日	平成9年3月13日(1997.3.13)		東京都港区芝五丁目7番1号 日本電気株
(33) 優先権主張国	日本国(JP)		式会社内
		(72)発明者	碓井 彰
			東京都港区芝五丁目7番1号 日本電気株
			式会社内
		最終頁に続く	

(54) 【発明の名称】 GaN系半導体素子とその製造方法

(57)【特許請求の範囲】

【請求項1】

G a N 系半導体と格子定数や熱膨張係数が異なる基板表面、あるいは前記基板上に形成 された G a N 系半導体表面にパターニングされたマスク材料により成長領域を形成する工 程と、前記成長領域に G a N 系半導体がファセット構造を形成するように成長させ<u>るとと もに転位を曲げ</u>、隣接する成長領域の G a N 系半導体とともに前記マスク材料を覆い表面 を平坦化する工程と、前記 G a N 系半導体膜上に G a N 系半導体素子の積層構造を形成す る工程を有することを特徴とする G a N 系半導体積層構造の形成方法。 【請求項2】

GaN系半導体と格子定数や熱膨張係数が異なる基板表面、あるいは前記基板上に形成 10 されたGaN系半導体表面にパターニングされたマスク材料により成長領域を形成する工 程と、前記成長領域にGaN系半導体がファセット構造を形成するように成長させ<u>るとと もに転位を曲げ</u>、隣接する成長領域のGaN系半導体とともに前記マスク材料を覆い表面 を平坦化する工程と、前記GaN系半導体膜から少なくとも前記基板、マスク材料を除去 する工程と、前記GaN系半導体膜上にGaN系半導体素子の積層構造を形成する工程と を有することを特徴とするGaN系半導体積層構造の形成方法。 【請求項3】

G a N 系半導体と格子定数や熱膨張係数が異なる基板表面、あるいは前記基板上に形成 された G a N 系半導体表面にパターニングされたマスク材料により成長領域を形成する工 程と、前記成長領域に G a N 系半導体がファセット構造を形成するように成長させるとと

<u>もに転位を曲げ</u>、隣接する成長領域のGaN系半導体とともに前記マスク材料を覆い表面 を平坦化する工程と、前記GaN系半導体膜上にGaN系半導体素子の積層構造を形成す る工程と、前記GaN系半導体膜から少なくとも前記基板、マスク材料を除去する工程と を有することを特徴とするGaN系半導体積層構造の形成方法。 【請求項4】

前記GaN系半導体素子は、ダブルヘテロ構造を含むGaN系半導体発光素子であることを特徴とする請求項1乃至3にいずれかに記載のGaN系半導体積層構造の形成方法。 【請求項5】

前記GaN系発光素子がGaN系半導体レーザであることを特徴とする請求項4記載の GaN系半導体積層構造の形成方法。

【請求項6】

G a N 系半導体と格子定数や熱膨張係数が異なる基板と、前記基板表面、あるいは前記 基板上に形成されたG a N 系半導体表面に成長領域を形成するパターニングされたマスク 材料と、前記成長領域でファセット構造を形成しながら成長し<u>転位を曲げ、</u>G a N 系半導 体が隣接する成長領域のG a N 系半導体の成長とともに前記マスク材料を覆い、さらに前 記 G a N 系半導体の成長により前記ファセット構造が埋め込まれて平坦化されたG a N 系 半導体膜と、前記平坦化されたG a N 系半導体膜上にG a N 系半導体素子の積層構造が形 成されていることを特徴とするG a N 系半導体積層構造。

【請求項7】

前記GaN系半導体積層構造から少なくとも前記基板、マスク材料が除去されているこ 20 とを特徴とする請求項6記載のGaN系半導体積層構造。

【請求項8】

前記GaN系半導体素子は、ダブルヘテロ構造を含むGaN系半導体発光素子であることを特徴とする請求項6又は請求項7記載のGaN系半導体積層構造。

【請求項9】

前記GaN系発光素子がGaN系半導体レーザであることを特徴とする請求項8記載の GaN系半導体積層構造。

【請求項10】

G a N 系半導体と格子定数や熱膨張係数が異なる基板表面、あるいは前記基板上に形成 された G a N 系半導体表面にパターニングされたマスク材料により成長領域を形成する工 程と、前記成長領域に G a N 系半導体がファセット構造を形成するように成長させ<u>るとと もに転位を曲げ</u>、隣接する成長領域の G a N 系半導体とともに前記マスク材料を覆い表面 を平坦化する工程と、前記平坦化された G a N 系半導体膜上に G a N 系半導体素子を形成 する工程を有することを特徴とする G a N 系半導体素子の製造方法。

【請求項11】

GaN系半導体と格子定数や熱膨張係数が異なる基板表面、あるいは前記基板上に形成 されたGaN系半導体表面にパターニングされたマスク材料により成長領域を形成する工 程と、前記成長領域にGaN系半導体がファセット構造を形成するように成長させ<u>るとと</u> もに転位を曲げ、隣接する成長領域のGaN系半導体とともに前記マスク材料を覆い表面 を平坦化する工程と、前記GaN系半導体膜から少なくとも前記基板、マスク材料を除去 する工程と、前記平坦化されたGaN系半導体膜上にGaN系半導体素子を形成する工程 を有することを特徴とするGaN系半導体素子の製造方法。 【請求項12】

G a N 系半導体と格子定数や熱膨張係数が異なる基板表面、あるいは前記基板上に形成 された G a N 系半導体表面にパターニングされたマスク材料により成長領域を形成する工 程と、前記成長領域に G a N 系半導体がファセット構造を形成するように成長させ<u>るとと もに転位を曲げ</u>、隣接する成長領域の G a N 系半導体とともに前記マスク材料を覆い表面 を平坦化する工程と、前記平坦化された G a N 系半導体膜上に G a N 系半導体素子を形成 する工程と、前記 G a N 系半導体膜から少なくとも前記基板、マスク材料を除去する工程 とを有することを特徴とする G a N 系半導体素子の製造方法。

(2)

50

40

30

【請求項13】

前記GaN系半導体素子は、ダブルヘテロ構造を含むGaN系半導体発光素子であることを特徴とする請求項10乃至<u>12</u>のいずれかに記載のGaN系半導体素子の製造方法。 【請求項14】

(3)

前記GaN系発光素子がGaN系半導体レーザであることを特徴とする請求項13記載のGaN系半導体素子の製造方法。

【請求項15】

G a N 系半導体と格子定数や熱膨張係数が異なる基板と、前記基板表面、あるいは前記 基板上に形成されたG a N 系半導体表面に成長領域を形成するパターニングされたマスク 材料と、前記成長領域でファセット構造を形成しながら成長し<u>転位を曲げ、</u>G a N 系半導 体が隣接する成長領域のG a N 系半導体の成長とともに前記マスク材料を覆い、さらに前 記 G a N 系半導体の成長により前記ファセット構造が埋め込まれて平坦化された G a N 系 半導体膜と、前記平坦化された G a N 系半導体膜上に G a N 系半導体素子が形成されてい ることを特徴とする G a N 系半導体素子。

【請求項16】

前記GaN系半導体素子から少なくとも前記基板、マスク材料が除去されていることを 特徴とする請求項15記載のGaN系半導体素子。

【請求項17】

前記GaN系半導体素子は、ダブルヘテロ構造を含むGaN系半導体発光素子であることを特徴とする請求項15又は請求項16記載のGaN系半導体素子。

【請求項18】

前記GaN系発光素子がGaN系半導体レーザであることを特徴とする請求項17記載のGaN系半導体素子。

【請求項19】

前記GaN系半導体発光素子がアンドープ量子井戸活性層を有することを特徴とする請 求項4又は5記載のGaN系半導体積層構造の形成方法。

【請求項20】

前記GaN系半導体発光素子がアンドープ量子井戸活性層を有することを特徴とする請 求項8又は9記載のGaN系半導体積層構造。

【請求項21】

30

10

20

前記GaN系半導体発光素子がアンドープ量子井戸活性層を有することを特徴とする請 求項13又は14記載のGaN系半導体素子の製造方法。

【請求項22】

前記GaN系半導体発光素子がアンドープ量子井戸活性層を有することを特徴とする請 求項17又は18記載のGaN系半導体素子。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、半導体結晶のエピタキシャル成長方法に関し、格子定数や、熱膨張係数の異なる基板上にIII-V族化合物半導体結晶膜をエピタキシャル成長させる方法及びこの成 40 長方法これによって得られるIII-V族化合物半導体膜に関する。特に結晶欠陥の少な い半導体膜の形成が困難なGaN系半導体のエピタキシャル成長方法の適用に有効である

[0002]

さらにGaN系半導体素子及びその製造方法に関し、結晶欠陥の少ないGaN半導体膜上 に形成されたGaN系半導体素子及びその製造方法に関する。

【 0 0 0 3 】

【従来の技術】

III-V族化合物半導体で、例えば窒化ガリウム(GaN)は、禁制帯幅が3.4eV と大きく、かつ直接遷移型であることから青色発光素子材料として注目されている。

[0004]

この材料を用いた発光デバイスを作製するための基板材料としては、成長させるエピタキ シャル層と同じ物質のバルク結晶を用いることが望ましい。しかしながら、GaNのよう な結晶では、窒素の解離圧が高いことによりバルク結晶の作製が非常に困難であった。し たがってバルク結晶の作製が非常に困難な材料を用いてデバイスを作製する場合は、例え ばサファイア(A1₂O₃)基板などのような格子定数、熱膨張係数などの物理的性質や、 化学的性質も全く異なる基板が用いられてきた。

[0005]

【発明が解決しようとする課題】

このようなヘテロ基板上にエピタキシャル成長を行うと、基板や、エピタキシャル層に歪 10 みや、欠陥が発生し、特に厚い膜を成長した場合には、クラックが発生することが報告さ れている「ジャパニーズジャーナル オプ アプライド フィジックス第32巻(199 3)第1528-1533頁」(Jpn.J. Appl.Phys.Vol 32(1993) pp.1528-1533)。 このような場合には、デバイスとしての性能が極端に悪くなるばかりではなく、成長層が 粉々に破壊されるという結果をしばしば招いた。

[0006]

また格子不整合系のエピタキシャル成長において、転位密度が少ない高品質のエピタキシャル成長層を得るために、最初の結晶成長で1µmのSiO₂膜でストライプを形成したサファイア基板上にGaN膜の選択成長を行い、格子欠陥や転位を特定の領域に集中させることが特開平8-64791号公報の例ではSiO₂膜部分で成長が起こらないために全面に平坦な成長層を得ることができず、素子形成箇所に制約が生じていた。

20

30

[0007]

本発明の目的は、格子定数や熱膨張係数が異なるヘテロ基板を用いてエピタキシャル成長 を行っても、基板やエピタキシャル成長層への歪みや欠陥の発生が少なく、また厚い膜を 成長してもクラックが入りにくいエピタキシャル成長層を得るための成長方法を提供する ことにある。

 $\begin{bmatrix} 0 & 0 & 0 & 8 \end{bmatrix}$

さらに本発明の他の目的は、上記エピタキシャル成長をGaN系半導体の成長に利用し結 晶欠陥の少ないGaN系半導体膜を提供することにある。

【 0 0 0 9 】

また本発明の他の目的は、上記エピタキシャル成長により形成されたGaN系半導体膜上 にGaN系半導体素子構造(例えばGaN系半導体発光素子構造)を作製することにより 、優れた素子特性の得られるGaN系半導体素子(例えばGaN系半導体発光素子)を提 供することにある。

[0010]

【課題を解決するため手段】

本発明のGaN系半導体積層構造の形成方法は、GaN系半導体と格子定数や熱膨張係 数が異なる基板表面、あるいは前記基板上に形成されたGaN系半導体表面にパターニン グされたマスク材料により成長領域を形成する工程と、前記成長領域にGaN系半導体が ファセット構造を形成するように成長させ<u>るとともに転位を曲げ</u>、隣接する成長領域のG aN系半導体とともに前記マスク材料を覆い表面を平坦化する工程と、前記GaN系半導 体膜上にGaN系半導体素子の積層構造を形成する工程を有することを特徴とする。 【0011】

また、本発明のGaN系半導体積層構造の形成方法は、GaN系半導体と格子定数や熱 膨張係数が異なる基板表面、あるいは前記基板上に形成されたGaN系半導体表面にパタ ーニングされたマスク材料により成長領域を形成する工程と、前記成長領域にGaN系半 導体がファセット構造を形成するように成長させ<u>るとともに転位を曲げ</u>、隣接する成長領 域のGaN系半導体とともに前記マスク材料を覆い表面を平坦化する工程と、前記GaN 系半導体膜から少なくとも前記基板、マスク材料を除去する工程と、前記GaN系半導体

(4)

膜上にGaN系半導体素子の積層構造を形成する工程とを有することを特徴とする。ある いは、GaN系半導体と格子定数や熱膨張係数が異なる基板表面、あるいは前記基板上に 形成されたGaN系半導体表面にパターニングされたマスク材料により成長領域を形成す る工程と、前記成長領域にGaN系半導体がファセット構造を形成するように成長させ<u>る</u> とともに転位を曲げ、隣接する成長領域のGaN系半導体とともに前記マスク材料を覆い 表面を平坦化する工程と、前記GaN系半導体膜上にGaN系半導体素子の積層構造を形 成する工程と、前記GaN系半導体膜から少なくとも前記基板、マスク材料を除去する工 程とを有することを特徴とする。

【0012】

さらに、本発明のGaN系半導体積層構造の形成方法は、前記GaN系半導体素子は、ダ 10 ブルヘテロ構造を含むGaN系半導体発光素子であることを特徴とする。また前記GaN 系発光素子がGaN系半導体レーザであることを特徴とする。

【0013】

本発明のGaN系半導体積層構造は、GaN系半導体と格子定数や熱膨張係数が異なる 基板と、前記基板表面、あるいは前記基板上に形成されたGaN系半導体表面に成長領域 を形成するパターニングされたマスク材料と、前記成長領域でファセット構造を形成しな がら成長し<u>転位を曲げ、</u>GaN系半導体が隣接する成長領域のGaN系半導体の成長とと もに前記マスク材料を覆い、さらに前記GaN系半導体の成長により前記ファセット構造 が埋め込まれて平坦化されたGaN系半導体膜と、前記平坦化されたGaN系半導体膜上 にGaN系半導体素子の積層構造が形成されていることを特徴とする。さらに、前記Ga N系半導体積層構造から少なくとも前記基板、マスク材料が除去されていることを特徴と する。

20

30

40

[0014]

また、本発明のGaN系半導体積層構造は、前記GaN系半導体素子は、ダブルヘテロ構 造を含むGaN系半導体発光素子であることを特徴とする。さらに、前記GaN系発光素 子がGaN系半導体レーザであることを特徴とする。

【0015】

本発明のGaN系半導体素子の製造方法は、GaN系半導体と格子定数や熱膨張係数が 異なる基板表面、あるいは前記基板上に形成されたGaN系半導体表面にパターニングさ れたマスク材料により成長領域を形成する工程と、前記成長領域にGaN系半導体がファ セット構造を形成するように成長させ<u>るとともに転位を曲げ</u>、隣接する成長領域のGaN 系半導体とともに前記マスク材料を覆い表面を平坦化する工程と、前記平坦化されたGa N系半導体膜上にGaN系半導体素子を形成する工程を有することを特徴とする。 【0016】

また、本発明のGaN系半導体素子の製造方法は、GaN系半導体と格子定数や熱膨張 係数が異なる基板表面、あるいは前記基板上に形成されたGaN系半導体表面にパターニ ングされたマスク材料により成長領域を形成する工程と、前記成長領域にGaN系半導体 がファセット構造を形成するように成長させ<u>るとともに転位を曲げ</u>、隣接する成長領域の GaN系半導体とともに前記マスク材料を覆い表面を平坦化する工程と、前記GaN系半 導体膜から少なくとも前記基板、マスク材料を除去する工程と、前記平坦化されたGaN 系半導体膜上にGaN系半導体素子を形成する工程を有することを特徴とする。あるいは 、GaN系半導体と格子定数や熱膨張係数が異なる基板表面、あるいは前記基板上に形成 されたGaN系半導体表面にパターニングされたマスク材料により成長領域を形成する工 程と、前記成長領域にGaN系半導体がファセット構造を形成するように成長させ<u>るとと</u> もに転位を曲げ、隣接する成長領域のGaN系半導体とともに前記マスク材料を覆い表面 を平坦化する工程と、前記平坦化されたGaN系半導体膜上にGaN系半導体素子を形成 する工程と、前記GaN系半導体膜から少なくとも前記基板、マスク材料を除去する工程 とを有することを特徴とする。

【0017】

さらに、本発明のGaN系半導体素子の製造方法は、前記GaN系半導体素子は、ダブル 50

ヘテロ構造を含むGaN系半導体発光素子であることを特徴とする。また、前記GaN系 発光素子がGaN系半導体レーザであることを特徴とする。

【0018】

本発明のGaN系半導体素子は、GaN系半導体と格子定数や熱膨張係数が異なる基板 と、前記基板表面、あるいは前記基板上に形成されたGaN系半導体表面に成長領域を形 成するパターニングされたマスク材料と、前記成長領域でファセット構造を形成しながら 成長し<u>転位を曲げ、</u>GaN系半導体が隣接する成長領域のGaN系半導体の成長とともに 前記マスク材料を覆い、さらに前記GaN系半導体の成長により前記ファセット構造が埋 め込まれて平坦化されたGaN系半導体膜と、前記平坦化されたGaN系半導体膜上にG aN系半導体素子が形成されていることを特徴とする。また、前記GaN系半導体素子か ら少なくとも前記基板、マスク材料が除去されていることを特徴とする。

[0019]

さらに前記GaN系半導体素子は、ダブルヘテロ構造を含むGaN系半導体発光素子であることを特徴とする。前記GaN系発光素子がGaN系半導体レーザであることを特徴とする。

[0020]

本発明のGaN系半導体積層構造およびその形成方法において、GaN系半導体発光素子 がアンドープ量子井戸活性層を有することを特徴とする。

[0021]

本発明のGaN系半導体素子およびその製造方法において、GaN系半導体発光素子がア 20 ンドープ量子井戸活性層を有することを特徴とする。

【 0 0 2 2 】

【発明の実施の形態】

本発明の実施の形態について、図面を用いて以下に説明する。

【 0 0 2 3 】

(第1の実施の形態)

本発明の第1の実施の形態について、III-V族化合物半導体のエピタキシャル成長を 例に図1を参照して説明する。

【0024】

初めに、基板材料とは性質を異にし、その次の工程で成長する材料と同じか、あるいはそ 30 の材料と格子定数や熱膨張係数の似た性質を有するIII-V族化合物半導体12を基板 上に成長し、その表面上にフォトリソグラフィー法とウエットエッチング法を用いて基板 上の成長領域を制限するマスク14を形成する。マスクの形状はストライプとし、このと きマスク14の厚さは10nmから2µm程度であり、成長領域13およびマスク14の ストライプ幅は、通常0.1µmから10µm程度とした。(図1(a))。 【0025】

次に、成長領域に対しIII-V族化合物半導体膜のエピタキシャル成長を行う。マスク 14の付いた基板をエピタキシャル装置の反応管に挿入して、水素ガス、窒素ガス、また は、水素と窒素の混合ガスとV族原料ガスを供給しながら基板11を所定の成長温度まで 昇温する。温度が安定してからIII族原料を供給して、成長領域13にIII-V族化 合物半導体15を成長する。結晶成長方法は、好ましくはIII族原料に塩化物を用いる 塩化物輸送法による気相成長(VPE:Vapor Phase Epitaxy)で行うが、III族原 料に有機金属を用いる有機金属化合物気相成長(MOCVD:Metal Organic Vapor P hase Epitaxy)を用いてもよい。

[0026]

III - V族化合物半導体15は、初期段階ではマスク14上に成長せず、成長領域13 のみで結晶成長が起こり、成長領域上のIII-V族化合物半導体15にはファセット構造が形成される。このときのIII-V族化合物半導体15の成長条件はファセット構造が形成されるよう650 から1100 の成長温度、IIII族原料の供給量に対し等倍から200000倍を供給するV族原料の供給量の範囲で行う。(図1(b))。 40

[0027]

さらにエピタキシャル成長を続けると、III - V族化合物半導体15はファセット構造の面に対して垂直な方向に成長が進むため、成長領域だけでなくマスク14を覆うようになる。そして隣接する成長領域のIII - V族化合物半導体15のファセット構造と接触する(図1(c))。

(7)

【0028】

さらにエピタキシャル成長を続けると、ファセット構造が埋め込まれ(図1(d))、最 終的には、平坦な表面を有するIII-V族化合物半導体膜15を得ることができる(図 1(e))。

【0029】

10

通常、基板上に格子定数や熱膨張率の異なるIII - V族化合物半導体の結晶成長を行う と、基板との界面で発生した結晶欠陥にともなう転位は、界面と垂直方向に伸びるために 、たとえエピタキシャル膜を厚くしても、転位の低減は見られない。

【 0 0 3 0 】

本実施の形態による方法では、選択成長により成長領域にファセット構造を形成している 。このファセットは成長速度が他の面より遅いために現れる。ファセットの出現により転 位がファセットに向かって進み、基板と垂直に伸びていた転位が垂直な方向へ伸びること ができなくなる。結晶欠陥はファセットの成長とともに横方向に曲げられ、エピタキシャ ル膜の膜厚増加に伴い、成長領域では結晶欠陥が減少していき、結晶の端に出てしまうか 、閉ループを形成することがわかった。これにより、エピタキシャル膜内の欠陥の低減が 計られる。このようにファセット構造を形成して成長することで、結晶欠陥を大幅に減ら せる。

20

【0031】

特にIII族原料に塩化物を用いる塩化物輸送法による気相成長では、III - V族化合物半導体15の成長が速いため、ファセット構造のうち基板面と同じ面が消えるのがはやい。したがって基板と垂直に伸びる転位は、はやくからファセット構造のうち基板面と異なる面の方向に伸びることになりIII - V族化合物半導体15における垂直に伸びる転位を大幅に減らすことができる。

【0032】

なお、III族原料に有機金属を用いる有機金属化合物気相成長は塩化物輸送法による気 30 相成長と比べて成長速度が遅くなるが、上述のようにのIII - V族化合物半導体15の ファセット構造のうち基板面と同じ面がはやく消えるようにすればよい。例えば成長領域 に対するマスクの面積を大きくすればマスク上からの成長種の供給量が増えるため成長領 域におけるIII - V族化合物半導体15の成長をはやめることができる。

【0033】

(第2の実施の形態)

本発明の第2の実施の形態について、III-V族化合物半導体のエピタキシャル成長を 例に図5を参照して説明する。

【0034】

図5(a)~(b)までは第1の実施の形態の図1(a)から(e)と同様な工程で作製 40 しているため説明を省略する。第2の実施の形態では、III-V族化合物半導体のエピ タキシャル成長を行い成長層を平坦化した後に、第2のマスクを設け(図5(c))、第 1の実施の形態と同様にファセット構造を形成し、平坦化を行っている(図5(d))。 【0035】

第2の実施の形態では、図1(a)から(e)の作製工程を繰り返すことにより形成した III-V族化合物半導体膜の欠陥密度をさらに低減することができる。

【0036】

第1の実施の形態あるいは第2の実施の形態は、基板と格子定数や熱膨張係数の異なる材料を結晶成長する場合に有効であり、Al₂O₃,Si,SiC,MgAl₂O₄,LiGaO₂,ZnO等の基板への、GaN、GaAlN、InGaN、InN等のIII-V族

化合物半導体の成長に適用できる。

【0037】

また図1あるいは図5では基板にその次の工程で成長する物質と同じ、あるいはその物質 と格子定数や熱膨張係数の似た性質を有するIII・V族化合物半導体膜表面にマスクを 形成した例を示したが、基板11表面に直接マスクを形成して図1(b)~(e)あるい は図5(b)~(d)のプロセスを行っても同様な効果が得られる。

【 0 0 3 8 】

さらに本実施の形態ではマスク14としてストライプ状のパターンを用いた成長領域について説明を行ったが、これに限られるものではなく、ファセット構造が現れるものであれば、成長領域の形状が矩形状、丸状、又は三角状となるマスクでもよい。

[0039]

(第3の実施の形態)

次に、本発明の第3の実施の形態について説明する。第3の実施の形態は、第1の実施の 形態あるいは第2の実施の形態で説明したIII - V族化合物半導体のエピタキシャル成 長をGaN系半導体の成長に利用しGaN系半導体膜を形成するものである。

【0040】

第3の実施の形態は、第1の実施の形態あるいは第2の実施の形態で説明したエピタキシャル成長をGaN系半導体に利用したものであり、共通する箇所については説明を簡略化する。

[0041]

20

10

はじめに、GaN系半導体と熱膨張係数や格子定数の異なる基板材料上に、フォトリソグ ラフィー法とウエットエッチング法を用いて基板上の成長領域を制限するマスクを形成す る。

【0042】

次に成長領域に対しGaN系半導体のエピタキシャル成長を行う。成長領域に成長するG aN系半導体の結晶成長方法は、III族原料にガリウム(Ga)と塩化水素(HCl) の反応生成物である塩化ガリウム(GaCl)とV族原料にアンモニア(NH₃)ガスを 用いる塩化物輸送法による気相成長(VPE:Vapor Phase Epitaxy)であるハイド ライドVPE法や、Ga原料に有機金属を用いる有機金属化合物気相成長(MOCVD: Metal Organic Vapor Phase Epitaxy)を用いる。成長温度は650 から1100

30

40

で行い、V族原料の供給量はIII族原料の供給量に対し等倍から20000倍を供給すればよい。

【0043】

G a N 系半導体層のエピタキシャル成長は、第1の実施の形態と同様に、G a N 系半導体 が初期段階ではマスク上に成長せず成長領域のみで結晶成長が起こり、成長領域上のG a N 系半導体膜には基板の面方位とは異なる面方位のファセット構造が形成される。

【0044】

エピタキシャル成長を続けると、 G a N 系半導体はファセット構造の面に対して垂直な方 向に成長が進むため、成長領域だけでなくマスクを覆うようになる。そして隣接する成長 領域の G a N 系半導体のファセット構造と接触する。さらにエピタキシャル成長を続ける と、 G a N 系半導体によりファセット構造が埋め込まれ、最終的には、平坦な表面を有す る G a N 系半導体膜を得ることができる。

[0045]

G a N はバルク結晶の作製が困難なため、従来のG a N 系半導体の結晶成長では基板とし てサファイア基板、SiC基板等を用いてきたが、これらの基板はG a N 系半導体とは格 子定数や熱膨張率が異なっている。このためG a N 系半導体のエピタキシャル成長を行う と、基板との界面で発生した結晶欠陥にともなう転位が界面と垂直方向に伸び、たとえエ ピタキシャル膜を厚くしても転位の低減は見られなかった。

【0046】

本実施の形態によるエピタキシャル成長方法では、GaN系半導体と熱膨張係数や格子定 50

数の異なる基板材料上のマスク材料により選択的に形成された成長領域に、基板面方位と は異なる面方位のファセット構造を有するGaN系半導体をエピタキシャル成長している 。このファセットは成長速度が他の面より遅いために現れ、ファセットの出現により、基 板とGaN系半導体の界面付近から発生した転位がファセットに向かって進むようになり 、基板と垂直に伸びていた転位が垂直な方向へ伸びることができなくなる。

【0047】

したがってGaN系半導体の結晶欠陥はファセットの成長とともに横方向に曲げられ、G aN系半導体のエピタキシャル成長による膜厚の増加に伴い、成長領域では結晶欠陥が減 少していき、結晶の端に出てしまうか、閉ループを形成する。これにより、エピタキシャ ル膜内の欠陥の低減が計られる。

【0048】

このように基板上にマスクにより選択的に形成された成長領域にファセット構造を有する GaN系半導体膜を成長することで、GaN系半導体膜の結晶欠陥を大幅に減らすことが 可能となる。

【0049】

さらに、第3の実施の形態で得られるGaN系半導体膜は膜厚を所望の厚さに成長してから基板(サファイア基板等)とマスクとGaN系半導体の一部を除去することで、結晶欠陥の少ないGaN系半導体膜の基板として用いることができる。このようなGaN系半導体膜上にGaN系半導体素子を作製することで、GaN系半導体素子の積層構造の結晶性を改善することができる。

[0050]

20

10

またGaN系半導体素子がGaN系半導体発光素子の場合は、サファイア基板等で問題と なっていたGaN系半導体発光素子における基板裏面への電極形成が可能になる。

【0051】

さらにGaN系半導体発光素子がGaN系半導体レーザの場合は、GaN系半導体とへき 開面が異なるヘテロ基板上にレーザ構造を形成しても、へき開による共振器ミラーの作製 が可能になる。

【0052】

なお、第3の実施の形態におけるGaN系半導体膜の形成は説明上第1の実施の形態のエ ピタキシャル成長を用いた記載としたが、第2の実施の形態でも適用可能である。 【0053】

第3の実施の形態の説明では、GaN系半導体と格子定数や熱膨張係数の異なる基板表面 に直接マスクを形成する例を示したが、基板上にGaN系半導体を成長した後に、該Ga N系半導体表面にマスクを形成しても同様な効果が得られる。

[0054]

さらに本実施の形態に用いるマスクとしては第1の実施の形態あるいは第2の実施の形態 と同様な材料、寸法、形状を適用することができる。また本実施の形態におけるGaN系 半導体膜としてはGaN、AlGaN、InGaN等があげられるがGaNが最も好ましい。

【 0 0 5 5 】

40

30

またGaN系半導体素子としては、GaN系半導体レーザやGaN系LED等のGaN系 半導体発光素子の他にFETやHBTなどのデバイスにも適用可能である。

【 0 0 5 6 】

(第4の実施の形態)

本発明の第4の実施の形態について、図6を参照して説明する。

【0057】

第4の実施の形態は、GaN系半導体と熱膨張係数や格子定数が異なる基板上に、第1の 実施の形態のエピタキシャル成長を利用してGaN系半導体厚膜を成長し、さらにこのG aN系半導体厚膜上にGaN系半導体素子を作製するものである。

[0058]

第4の実施の形態ではGaN系半導体膜上のGaN系半導体素子としてGaN系半導体発 光素子を用いた場合について説明する。

【 0 0 5 9 】

はじめに、基板表面にマスクを形成し、フォトリソグラフィー法とウエットエッチングで マスクと成長領域に分離する。基板には、GaN系半導体と熱膨張係数や格子定数の異な る基板材料上にGaN系半導体が形成された基板を用いる。

【 0 0 6 0 】

マスク及び成長領域の形状としては、第1の実施の形態の説明のように成長領域のGaN 系半導体にファセットが出現する形状とする。

【0061】

10

次に成長領域に対しGaN系半導体のエピタキシャル成長を行う。GaN系半導体の成長 法は、III族原料にガリウム(Ga)と塩化水素(HCl)の反応生成物である塩化ガ リウム(GaCl)とV族原料にアンモニア(NH₃)ガスを用いるハイドライドVPE 法が好ましいが、有機金属化学気相成長法(MOVPE)を用いてもよい。

【0062】

G a N 系半導体のエピタキシャル成長は、第1の実施の形態と同様に、G a N 系半導体が 初期段階ではマスク上に成長せず成長領域のみで結晶成長が起こり、成長領域上のG a N 系半導体には基板の面方位とは異なる面方位のファセット構造が形成される。

【0063】

エピタキシャル成長を続けると、GaN系半導体はファセット構造の面に対して垂直な方 20 向に成長が進むため、成長領域だけでなくマスクを覆うようになる。そして隣接する成長 領域のGaN系半導体膜のファセット構造と接触する。さらにエピタキシャル成長を続け ると、GaN系半導体によりファセット構造が埋め込まれ、最終的には、平坦な表面を有 するGaN系半導体膜を得ることができる。

【0064】

次にG a N 系半導体膜上にG a N 系半導体発光素子の素子構造を作製する。G a N 系半導体膜を形成した後、G a N 系半導体膜が形成された基板をMOCVD装置にセットし、所定の温度、ガス流量、V / I I I I 比で、n型G a N 層、n型A 1 G a N クラット層、n型G a N 光ガイド層、アンドープI n G a N 量子井戸層とアンドープI n G a N 障壁層からなる多重量子井戸構造活性層、p型A 1 G a N 層、 p型G a N 光ガイド層、 p型A 1 G a N 層、 p型G a N 光ガイド層、 p型A 1 G a N 層、 C D 0 6 5 】

30

次に、レーザー構造を形成した基板を研磨器にセットし、基板、SiO₂マスク、および GaN系半導体膜の一部を研磨してGaN系半導体膜を露出させる。露出したGaN系半 導体膜の面、すなわちGaN系半導体発光素子裏面側にn型電極を形成し表面側にp型電 極を形成する。

【0066】

第4の実施の形態により以下の効果が得られる。

【0067】

第1の実施の形態のエピタキシャル成長で得られたGaN系半導体膜上にGaN系半導体 40 素子構造を成長することにより、従来のサファイア基板を用いた成長で問題となっていた GaN系半導体素子構造におけるエピタキシャル成長膜の結晶性が改善でき、GaN系半 導体素子特性を向上させることができる。

【0068】

さらにGaN系半導体素子がGaN系半導体発光素子の場合においては、裏面に電極を形成することができるため、従来のようにドライエッチング等複雑な作製工程で電極をGaN系半導体膜の表面に形成することなく素子を作製でき電極作製工程が簡略化できる。 【0069】

またGaN系半導体発光素子がGaN系半導体レーザの場合は、結晶欠陥が少ないGaN 系半導体厚膜を形成した後に基板、マスクを除去することで、へき開によりGaN系半導

体レーザ構造の共振器ミラー面を形成できる。このため従来のドライエッチング等による 複雑な工程で共振器ミラー面を形成したものに比べ大幅に簡略化でき歩留まりも大幅に向 上できる。 [0070]なお、第4の実施の形態は上記の説明に限定されるものではなく、必要に応じて他の構成 、成長法を採ることが可能である。 [0071]例えば、GaN系半導体膜のエピタキシャル成長は第1の実施の形態だけでなく、第2の 実施の形態の適用もできる。 さらにGaN系半導体膜上にGaN系半導体素子の積層構造を作製した後に基板、マスク を除去したが、GaN系半導体膜形成後に基板、マスクとGaN系半導体膜の一部を除去 した後にGaN系半導体素子の積層構造を作製してもよい。 [0073]なお、GaN系半導体膜から基板、マスクを除去した例を説明したが、GaN系半導体膜 上に形成されたGaN系半導体素子の結晶性の効果だけ得たいのであれば、基板、マスク の除去を行わず、GaN系半導体素子表面側に電極を形成する構成としてもよい。 [0074]さらに本実施の形態に用いるマスクとしては第1の実施の形態あるいは第2の実施の形態 と同様な材料、寸法、形状を適用することができる。また本実施の形態におけるGaN系 半導体膜としてはGaN、A1GaN、InGaN等があげられるがGaNが最も好まし ι١, [0075] またGaN系半導体素子としては、GaN系半導体レーザやGaN系LED等のGaN系 半導体発光素子の他にFETやHBTなどのデバイスにも適用可能である。 [0076] 【実施例】 次に本発明の実施例について図面を参照して説明する。 [0077](第1の実施例) 本発明の実施例について、図1を参照して説明する。本実施例では、基板として、(00 01)面サファイア(A1₂O₃)基板11上に1µm程度の膜厚のGaN膜12をあらか じめ形成した基板を用いた。このGaN膜12表面にSiOヶ膜を形成し、フォトリソグ ラフィー法とウエットエッチングでマスク14と成長領域13に分離した。成長領域13

プ方向は<11-20>方向とした((図1(a))。

成長領域13に成長するGaN膜15は、III族原料にガリウム(Ga)と塩化水素(HC1)の反応生成物である塩化ガリウム(GaC1)とV族原料にアンモニア(NH。

およびマスク14は、それぞれ5μmおよび2μmの幅のストライプ状である。ストライ

)ガスを用いるハイドライドVPE法を用いた。基板11をハイドライドの成長装置に セットし、水素雰囲気で成長温度1000 に昇温する。成長温度が安定してから、HC 1流量を20cc/毎分で供給し、NH₃流量1000cc/毎分で5分程度供給するこ とで、成長領域13にGaN膜15の{1-101}面からなるファセット構造を成長さ せた(図1(b))。さらに、20分間程度エピタキシャル成長を続け、マスク14を覆 うまでファセット構造16を発達させた(図1(c))。

【0079】

エピタキシャル成長を続けることによりファセット構造を埋め込み(図1(d))、最終 的には、5時間の成長で200µm程度の平坦な表面を有するGaN膜を形成させた(図 1 (e))。 G a N 膜 1 5 を形成後、アンモニアガスを供給しながら、常温まで冷却し成 長装置より取り出した。

50

40

10

20

 $\begin{bmatrix} 0 & 0 & 8 & 0 \end{bmatrix}$

第1の実施例では成長領域を制限する選択成長により、側壁が{1-101}面からなる ファセットを形成して結晶成長を行っている。このファセットは成長速度が他の面より遅 いために現れてくる。ファセットが現れる前は、基板と垂直に伸びていた転位が、ファセ ットの出現でこの方向へ伸びることができなくなる。

【0081】

本発明により成長した結晶を詳細に調べると、ファセットの出現で、横方向に曲げられ、 エピタキシャル膜の膜厚増加に伴い、結晶の端に出ることがわかった。これにより、エピ タキシャル膜内の欠陥の低減が計られる。

[0082]

10

20

30

40

第1の実施例によって形成されたGaN膜15には、サファイア基板11と格子定数や熱 膨張係数が違うにもかかわらずクラックが入っていないことが確認された。しかも、厚膜 成長を行ったGaN膜には、欠陥が非常に少なく、欠陥密度は10⁶cm²程度であった。 【0083】

本実施例で成長したGaN膜は欠陥が非常に少なく、この上にレーザ、FET、およびH BTなどの高品質なデバイス構造を成長することで、デバイス特性を向上させることが可 能となる。

[0084]

さらにサファイア基板11を研磨等によって除去することで、 GaN膜15を基板材料と して用いることもできる。

【0085】

第1の実施例では、GaN膜のエピタキシャル成長にハイドライドVPE法を用いて形成 したが、有機金属化合物気相成長法(MOCVD)を用いても同様な効果が得られる。ま たAl₂O₃基板11を用いたが、Si基板、ZnO基板、SiC基板、LiGaO₂基板 、MgAl₂O₄基板等を用いても同様な効果が得られる。さらにAl₂O₃基板11上にG aN膜12をあらかじめ形成したが、基板11上に直接マスクを形成してもよい。

【 0 0 8 6 】

またマスク14としてSiO₂を用いたがこれに限られるものではなく、SiN_x等の絶縁 体膜でもよい。この実施例ではマスク14の幅を2µmとしたが、マスクを埋め込むこと のできる幅であれば同様な効果が得られる。さらにストライプを<11-20>方向に形 成したが、ファセットが形成されれば、これと垂直の方向<1-100>でもよく、これ らの方向から傾けた角度であっても結晶成長の条件により、成長領域にファセット構造を 形成することができる。なおファセット構造が形成される結晶成長の条件は材料によって それぞれ異なる。

[0087]

またGaNのエピタキシャル成長について述べたが、InGaN膜、AIGaN膜、In N膜をエピタキシャル成長しても同様な効果が得られる。さらに成長するIII - V族化 合物に不純物の添加しても同様な効果が得られる。

【 0 0 8 8 】

(第2の実施例)

本発明の第2の実施例について、第1の実施例と同じく図1を参照して説明する。

【0089】

第2の実施例では、基板として、(0001)面SiC基板11上に1µm程度の膜厚の Al_{0.1}Ga_{0.9}N膜12をあらかじめ形成した結晶を用いた。このAl_{0.1}Ga_{0.9}N膜1 2表面にSiO₂膜を形成し、フォトリソグラフィー法とウエットエッチングでマスク1 4と成長領域13に分離した。成長領域13、およびマスク14は、それぞれ2µm、お よび10µmの幅のストライプ状である。ストライプ方向は<1-100>方向とした((図1(a))。 【0090】

成長領域13に成長するGaN膜15は、III族原料にガリウム(Ga)と塩化水素(50

HC1)の反応生成物である塩化ガリウム(GaC1)とV族原料にアンモニア(NH₃)ガスを用いるハイドライドVPE法を用いた。基板11をハイドライドの成長装置にセットし、水素雰囲気で成長温度1000 に昇温する。成長温度が安定してから、HC1 流量を20cc/毎分で供給し、NH₃流量2000cc/毎分で5分程度供給すること で、成長領域13にGaN膜15の{1-101}面からなるファセット構造を成長させ た(図1(b))。

【0091】

さらに、20分間程度エピタキシャル成長を続け、マスク14を覆うまでGaNのファセット構造15を発達させた(図1(c))。

【0092】

10

エピタキシャル成長を続けることによりファセット構造を埋め込み(図1(d))、最終的には、5時間の成長で200µm程度の平坦な表面を有するGaN膜を形成させた(図1(e))。GaN膜15の形成後、NH₃ガスを供給しながら常温なで冷却し、成長装置より取り出す。

【0093】

第2の実施例によって形成されたGaN膜15には、SiC基板11との格子定数や熱膨 張係数が違うにもかかわらずクラックが入っていないことが確認された。しかも、厚膜成 長を行ったGaN膜には、欠陥が非常に少なく欠陥密度は10⁶cm²程度であった。 【0094】

本実施例で成長したGaN膜は欠陥が非常に少なく、この上にレーザ、FET、およびH 20 BTなどの高品質なデバイス構造を成長することで、デバイス特性を向上させることが可 能となる。

【0095】

また、 S i C 基板 1 1 を研磨等によって除去することで、 G a N 膜 1 5 を基板材料として 用いることもできる。

【0096】

[0097]

第2の実施例では、GaN膜のエピタキシャル成長にハイドライドVPE法を用いて形成 したが、有機金属化合物気相成長法(MOCVD)を用いても同様な効果が得られる。ま た本実施例では、SiC基板11を用いたが、Si基板、ZnO基板、Al₂O₃基板基板 、LiGaO₂基板、MgAl₂O₄基板等を用いても同様な効果が得られる。さらにSi C基板11上に膜厚のGaN膜12をあらかじめ形成したが、基板11上に直接マスクを 形成してもよい。

30

40

またマスク14としてSiO₂を用いたがこれに限られるものではなく、SiN_x等の絶縁 体膜でもよい。この実施例ではマスク14の幅を10µmとしたが、マスクを埋め込むこ とのできる幅であれば同様な効果が得られる。さらにストライプを<1-100>方向に 形成したが、ファセットが形成されれば、これと垂直の方向<1-120>でもよく、こ れらの方向から傾けた角度であっても結晶成長の条件により、成長領域にファセット構造 を形成することができる。なおファセット構造が形成される結晶成長の条件は材料によっ てそれぞれ異なる。

【0098】

またさらに基板11上の膜としてA1組成0.1のA1GaNを用いたが、この組成は任意のものでよく、この膜としてその他にA1N、InGaNなどを用いても同様な効果が得られる。さらにGaNのエピタキシャル成長について述べたが、InGaN膜、A1GaN膜、InN膜をエピタキシャル成長しても同様な効果が得られる。また成長するIIII・V族化合物に不純物の添加しても同様な効果が得られる。

【 0 0 9 9 】

(第3の実施例)

本発明の第3の実施例について、図2を参照して説明する。

[0100]

(14)

第3の実施例では、基板として、(1111)面のMgAl₂О₄基板21を用いた。この基板21表面にSiО₂膜23を形成し、フォトリソグラフィー法とウエットエッチングでマスク23と成長領域22に分離した。成長領域22、およびマスク23は、それぞれ4μm、および3μmの幅のストライプ状である。ストライプ方向は<11-20>方向とした((図2(a))。

【0101】

G a N 膜の成長は、マスク23上に多結晶のG a N が付着を抑制するのに適したハイドラ イド V P E 法を用いた。この手法では、III族原料にガリウム(G a)と塩化水素(H C 1)の反応生成物である塩化ガリウム(G a C 1)と、 V 族原料にアンモニア(N H₃)ガスを用いる。

【0102】

まず、基板21を成長装置にセットし、水素ガスを供給しながら1000 程度の高温で 熱処理した後、500 に降温させ、HC1流量を0.5cc/毎分で供給し、NH₃ 流量1000cc/毎分で5分程度供給することで、結晶成長領域23に約20nmの膜 厚のGaNバッファ層24を形成する(図2(b))。

【0103】

この状態で、NH₃ガスを供給しながら1000 に昇温する。成長温度が安定してから、HCl流量を20cc/毎分で供給し、NH₃流量1500cc/毎分で5分程度供給 することで、成長領域22のGaNバッファー層24上にGaNの{1-101}面から なるファセット構造25を成長させた(図2(c))。

[0104]

さらに、エピタキシャル成長を続け、マスク23を覆うまでGaN膜25のファセット構造を発達させた後、ファセット構造を埋め込みながら成長を続け、最終的には、5時間の 成長で200µm程度の平坦な表面を有するGaN膜25を形成させた(図2(d))。 GaN膜25の形成後、NH3ガスを供給しながら常温まで冷却し成長装置より取り出す

。 【0105】

第3の実施例によって形成されたGaN膜25には、MgAl₂O₄基板21との格子定数 や熱膨張係数が違うにもかかわらずクラックが入っていないことが確認された。しかも、 厚膜成長を行ったGaN膜には、欠陥が非常に少なく、10⁶ cm²程度であった。 【0106】

本実施例で成長したGaN膜は欠陥が非常に少なく、この上にレーザ、FET、およびH BTなどの高品質なデバイス構造を成長することで、デバイス特性を向上させることが可 能となる。またMgAl₂O₄基板21を研磨等によって除去することで、GaN膜25を 基板材料として用いることもできる。

【0107】

第3の実施例では、GaN膜のエピタキシャル成長にハイドライドVPE法を用いて形成 したが、有機金属化合物気相成長法(MOCVD)を用いても同様な効果が得られる。ま た実施例では、MgAl₂O₄基板21を用いたが、Si基板、ZnO基板、SiC基板、 LiGaO₂基板、Al₂O₃基板等を用いても同様な効果が得られる。さらにMgAl ₂O₄21上に直接マスクを形成したが、基板21上にGaN膜をあらかじめ形成しても よい。

[0108]

またマスク14としてSiO₂を用いたがこれに限られるものではなく、SiN_x等の絶縁 体膜でもよい。さらにマスク24の幅を10µmとしたが、マスクを埋め込むことのでき る幅であれば同様な効果が得られる。本実施例では、ストライプを<11-20>方向に 形成したが、ファセットが形成されれば、これと垂直の方向<1-100>でもよく、こ れらの方向から傾けた角度でも結晶成長の条件により、成長領域にファセット構造を形成 することができる。なお、ファセット構造が形成される結晶成長の条件は材料によってそ れぞれ異なる。 20

10

(15)

[0109]

また本実施例では基板上に低温バッファ層を設けた後にGaN膜の成長を行っているため、結晶欠陥をより少なくすることが可能となる。

【0110】

さらに、実施例では、GaNのエピタキシャル成長について述べたが、InGaN膜、A IGaN膜、InN膜をエピタキシャル成長しても同様な効果が得られる。さらに成長す るIII-V族化合物に不純物の添加しても同様な効果が得られる。

[0 1 1 1 **]**

(第4の実施例)

本発明の第4の実施例について、図3、図4を参照して説明する。図3は選択的にエピタ 10 キシャル成長する成長領域の形状を丸形状、三角形状及び矩形状とした概略図である。 【0112】

本実施例では、基板として(0001)面のAl₂O₃基板41上に1µm程度の膜厚のG aN膜42をあらかじめ形成した結晶基板を用いた。

【0113】

この G a N 膜 4 2 表面に S i O 2 膜を形成し、フォトリソグラフィー法とウエットエッチ ングでマスク 4 3 と成長領域 4 4 に分離した。成長領域 4 4 は、 4 µ m の直径の丸状(図 3 (a))、一辺が 3 µ m の三角形状(図 3 (b))、および 5 µ m 角の矩形状(図 3 (c))の 3 種類となるマスクをそれぞれ用いた。

[0114]

形成した成長領域44に成長するGaN膜45は、III族原料にトリメチルガリウム(TMGa)及びトリメチルアルミニウム(TMA1)とV族原料にアンモニア(NH₃) ガスを用いる有機金属化合物気相成長法を用いた。

【0115】

図4は図3の成長領域を形成した基板上に気相成長法を用いてIII-V族化合物半導体 膜を形成する工程の概略図である。基板41を有機金属化合物気相成長装置にセットし、 水素ガスとNH₃ガスを供給しながら1050の成長温度に昇温する。成長温度が安定 してから、トリメチルガリウム流量を5cc/毎分で供給し、NH₃流量5000cc/ 毎分で10分程度供給することで、成長領域44にGaN膜45の{1-101}面から なるファセット構造を成長させた(図4(a))。

[0116]

さらに、30分間程度エピタキシャル成長を続け、マスク43を覆うまでGaN層45の ファセット構造を発達させた(図4(b))。

[0 1 1 7 **]**

エピタキシャル成長を続けることによりGaN層45のファセット構造を埋め込み(図4 (c))、最終的には、12時間の成長で100µm程度の平坦な表面を有するGaN膜 45を形成させた(図4(d))。

[0118]

3種類の形状の成長領域に形成したGaN膜45は、成長領域の形状によらず平坦な表面 が得られ、サファイア基板41にクラックが入っていないことが確認された。また、本実 40 施例では成長領域の形状を丸状、三角形状、および矩形状の3種類としたが、マスク領域 を埋め込むことのできる形状であれは多角形の形状、大きさによらず同様の効果がある。 【0119】

本実施例で成長したGaN膜は欠陥が非常に少なく、この上にレーザ、FET、およびH BTなどの高品質なデバイス構造を成長することで、デバイス特性を向上させることが可 能となる。

【0120】

さらにサファイア基板 4 1 を研磨等によって除去することで、 G a N 膜 4 5 を基板材料と して用いることもできる。

【0121】

20

第4の実施例では、GaN膜のエピタキシャル成長にハイドライドVPE法を用いて形成 したが、有機金属化合物気相成長法(MOCVD)を用いても同様な効果が得られる。ま たAl₂O₃基板41を用いたが、Si基板、ZnO基板、SiC基板、LiGaO₂基板 、MgAl₂O₄基板等を用いても同様な効果が得られる。さらにAl₂O₃基板41上に膜 厚のGaN膜42をあらかじめ形成したが、基板41上に直接マスクを形成してもよい。 【0122】

またマスク43としてSiO2を用いたがこれに限られるものではなく、SiN_x等の絶縁 体膜でもよい。

【0123】

またGaNのエピタキシャル成長について述べたが、InGaN膜、AIGaN膜、In 10 N膜をエピタキシャル成長しても同様な効果が得られる。さらに成長するIII-V族化 合物に不純物の添加しても同様な効果が得られる。

[0124]

(第5の実施例)

本発明の第5の実施例について、図5を参照して説明する。

【0125】

基 板 5 1 には、 1 μ m の 膜 厚 の G a N 膜 5 2 が 形 成 さ れ た (0 0 0 1) 面 の サ フ ァ イ ア 基 板 5 1 を 用 い た 。

【0126】

この基板 5 1 表面に S i O₂膜を形成し、フォトリソグラフィー法とウエットエッチング 20 で第 1 のマスク 5 3 と第 1 の成長領域 5 4 に分離した。第 1 の成長領域 5 4 、および第 1 のマスク 5 3 は、それぞれ 2 µm、および 5 µmのストライプ状とした。ストライプ方向 は、<11-20>とした(図 5 (a))。

【0127】

第1の成長領域54に成長する第1のGaN膜55は、上記の実施例1と同様にIII族 原料にガリウム(Ga)と塩化水素(HC1)の反応生成物である塩化ガリウム(GaC 1)とV族原料にアンモニア(NH₃)ガスを用いるハイドライドVPE法を用いた。基 板51をハイドライドの成長装置にセットし、水素雰囲気で成長温度1000 に昇温す る。650 の温度から基板51をNH₃ガス雰囲気にする。成長温度が安定してから、 HC1流量を10cc/毎分で供給し、NH₃流量4000cc/毎分で60分間の成長 で、第1の実施例で説明した図1の(a)から(e)の成長工程を経て、第1のマスク5 3を埋め込んだ第1のGaN膜55を形成する(図5(b))。第1のGaN膜55を形 成後、NH₃ガス雰囲気で常温まで冷却し、成長装置より取り出す。

[0128]

次に、 G a N 膜 5 5 上に再び S i O₂ 膜を形成し、第 2 の成長領域 5 6 と第 2 のマスク 5 7 を形成する。それぞれのストライプ幅は、 2 µ m、および 5 µ mであり、ストライプ方 向は < 1 1 - 2 0 > とした(図 5 (c))。この基板 5 1 上に、再び、第 1 の実施例で説 明した図 1 の (a)から (e)の成長工程を経て、第 2 のマスク 5 7 を埋め込み、およそ 1 5 0 µ mの第 2 の G a N 層 5 8 を成長させ平坦化した表面を得た(図 5 (d))。 【 0 1 2 9 】

40

30

成長した第2のGaN膜58の欠陥を断面透過電子顕微鏡で調べた結果、欠陥が10⁵ cm²以下と極めて少ないものであった。ここでは、2段階の選択成長について述べたが、 上記工程を繰り返すことでさらに欠陥密度を減少させることができる。

【0130】

第5の実施例では、GaN膜のエピタキシャル成長にハイドライドVPE法を用いて形成 したが、有機金属化合物気相成長法(MOCVD)を用いても同様な効果が得られる。ま たAl₂O₃基板51を用いたが、Si基板、ZnO基板、SiC基板、LiGaO₂基板 、MgAl₂O₄基板等を用いても同様な効果が得られる。さらにAl₂O₃基板51上にG aN膜52を成長した後にマスクを形成したが、これに限らず、基板上にGaN膜52を 成長せず、直接第1のマスク53を成長してもよい。 [0131]

またマスク53としてSiO。を用いたがこれに限られるものではなく、SiN、等の絶縁 体膜でもよい。さらに成長領域がストライプとなるようにパターニングされたマスクを用 いたが、これに限らず、丸形状、矩形状、三角形状でもよい。またGaNのエピタキシャ ル成長について述べたが、InGaN膜、AIGaN膜、InN膜をエピタキシャル成長 しても同様な効果が得られる。さらに成長するIII-V族化合物に不純物の添加しても 同様な効果が得られる。

(17)

[0132]

本発明の各実施例ではGaN系のIII-V族化合物半導体を用いた例について述べたが 、これに限られるものではなく、基板と格子定数あるいは熱膨張係数が異なるIII-V 10 族化合物半導体の成長に適用可能であることはいうまでもない。

[0133]

(第6の実施例)

本発明の第6の実施例について、図6を参照して説明する。図6は本発明のエピタキシャ ル成長をGaN膜の成長に用い、さらにこのGaN膜上にGaN系半導体レーザを製造す る工程を説明するための概略図である。

[0134]

図6に示す基板61には、1µmの膜厚のGaN膜62が形成された(0001)面のサ ファイア基板61を用いた。この基板61表面にSiO。膜を形成し、第1から第4の実 施例と同様にフォトリソグラフィー法とウエットエッチングで第1のマスク63と第1の 20 成長領域64に分離した。第1の成長領域64、および第1のマスク63は、それぞれ5 μm、および2μmのストライプ状とした。ストライプ方向は、<11-20>方向から 10度傾けて形成した(図6(a))。

[0135]

第1の成長領域64に成長する第1のGaN膜65は、上記の実施例1と同様にIII族 原料にガリウム(Ga)と塩化水素(HC1)の反応生成物である塩化ガリウム(GaC 1)とV族原料にアンモニア(NH。)ガスを用いるハイドライドVPE法を用いた。基 板61をハイドライドの成長装置にセットし、水素雰囲気で成長温度1000 に昇温す る。650の温度から基板51をNH。ガス雰囲気にする。成長温度が安定してから、 HC1流量を40cc/毎分で供給し、NH₃流量1000cc/毎分、およびシラン(S i H₄)流量0.01 c c / 毎分で150分間の成長で、第1の実施例で説明した図1 の(a)から(e)の成長工程を経て、第1のマスク63を埋め込んだ膜厚200μmの 第1のGaN膜65を形成する(図5(b))。第1のGaN膜65を形成後、NH₃ガ ス雰囲気で常温まで冷却し、成長装置より取り出す。GaN膜65は、n型で、1×10 ¹⁸ c m⁻³以上のキャリア濃度であった。

[0136]

次に、GaN系半導体レーザ構造の作製には、有機金属化学気相成長法(MOVPE)を 用いて作製した。GaN膜65を形成後、MOCVD装置にセットし、水素雰囲気で成長 温度1050 に昇温する。650 の温度からNH₃ガス雰囲気にする。Siを添加し た1µmの厚さのn型GaN層66、Siを添加した0.4µmの厚さのn型Al。 15G 40 a_{0.85}Nクラット層 67、Siを添加した0.1µmの厚さのn型GaN光ガイド層 68 、2.5nmの厚さのアンドープIn。₂Ga。ョN量子井戸層と5nmの厚さのアンドー プIn_{0.05}Ga_{0.95}N障壁層からなる10周期の多重量子井戸構造活性層69、マグネシ ウム(Mg)を添加した20nmの厚さのp型Al_{0.2}Ga_{0.8}N層70、Mgを添加した 0.1µmの厚さのp型GaN光ガイド層71、Mgを添加した0.4µmの厚さのp型 Al_{0.15}Ga_{0.85}Nクラッド層72、Mgを添加した0.5µmの厚さのp型GaNコン タクト層73を順次形成しレーザー構造を作製した。p型のGaNコンタクト層73を形 成した後は、HN。ガス雰囲気で常温まで冷却し、成長装置より取り出す(図6(c)) 。 2 . 5 n m の 厚 さ の ア ン ド ー プ I n _{0.2} G a _{0.8} N 量 子 井 戸 層 と 5 n m の 厚 さ の ア ン ド ー プIn_{0.05}Ga_{0.95}N障壁層からなる多重量子井戸構造活性層69は、780 の温度で

50

形成した。

【0137】

次に、レーザー構造を形成したサファイア基板61を研磨器にセットし、サファイア基板 61、GaN層62、SiO₂マスク63、およびGaN膜65の50µm研磨してGa N膜65を露出させる。露出したGaN層65面には、チタン(Ti) - アルミ(A1) のn型電極74を形成し、p型のGaN層73上にはニッケル(Ni) - 金(Au)のp 型電極75を形成する(図6(d))。

[0138]

図6に示すレーザ構造では、裏面にn型電極が形成されており、従来のようにドライエッ チング等複雑な作製工程でn型の電極を窒化物表面に形成することなく素子を形成できる 10 ため電極作製工程が簡略化できる。

【0139】

- また、サファイアとG a N 系半導体とは結晶のへき開面が異なるため、従来サファイア基 板上に作製したレーザ構造の共振器ミラーはへき開により形成することが困難であった。 【0140】
- これに対し、本実施例では結晶欠陥が少ないGaN層65を厚く成長することができるため、サファイア基板やマスク材料を除去してもGaN65上に形成したGaN系半導体のレーザ構造には影響がなく、またGaN層65上のレーザ構造はへき開により共振器ミラー面を形成できる利点を持っているため、従来のドライエッチング等による複雑な工程で 共振器ミラー面を形成したものに比べ大幅に簡略化でき歩留まりも大幅に向上した。 【0141】

20

本実施例では、 G a N 層 6 5 上にレーザー構造形成してから、サファイア基板 5 1 、 G a N 膜 6 2 、 S i O₂マスク 6 3 を研磨したが、レーザー構造を作製する前にサファイア基 板 6 1 、 G a N 膜 6 2 、 S i O₂マスク 6 3 を研磨しても同様な効果が得られる。

【0142】

また、本実施例では、サファイア基板61、GaN層62、SiO2 マスク63の研磨、 およびGaN膜65の一部を研磨して、n型の電極を形成したが、研磨を行わずにドライ エッチングによりn型のGaN層66または65まで除去しn型電極を形成し、共振器ミ ラー面を形成することで従来の構造を作製することもできる。

【0143】

【発明の効果】

30

以上説明したように、本発明によるIII - V族化合物半導体の成長方法は、初期成長段 階で、マスクにより基板上の成長領域を制限し、ファセット成長を促すことで、成長する III - V族化合物半導体層と基板結晶の熱膨張係数差、および格子定数差によって生じ るクラックを抑え、欠陥の導入を抑制して、高品質のIII - V族化合物半導体層を形成 することができる。従って、本発明による結晶を用いれば、この上に高品質の半導体素子 、例えばレーザ構造や、トランジスタ構造を作製することができ、その特性が飛躍的に向 上することが期待される。

【図面の簡単な説明】

- 【図1】本発明のIII-V族化合物半導体の形成方法を説明する工程概略図である。 40 【図2】A1GaN膜が形成されたMgA1₂O₄基板上にハイドライドVPE法を用いて 、GaN膜を形成する工程の概略図である。
- 【図3】選択的にエピタキシャル成長する成長領域の形状を丸形状、三角形状、及び矩形 状に形成した概略図である。
- 【図4】図3の丸形状、三角形状、及び矩形状の成長領域を形成した基板上に気相成長法 を用いてIII-V族化合物半導体膜を形成する工程の概略図である。
- 【図5】本発明の成長方法を2回繰り返して形成したGaN膜の概略図である。
- 【図6】本発明の成長方法を用いて形成したGaN膜上にGaN系半導体レーザー構造を 形成する工程の概略図である。

【符号の説明】

1 1 12 基板に形成された I I I - V 族化合物半導体膜 13 III-V族化合物半導体を成長させる成長領域 14 マスク 15 エピタキシャル成長した I I I - V 族化合物半導体膜 16 Ⅰ Ι Ι Ι - V 族化合物半導体のファセット構造 21 (0001)面のサファイア基板 22 G a N 膜 23 マスク 2.5 エピタキシャル成長したGaN膜 31 (111)面のMgAl₂O₄基板 32 1 µ m の G a N 膜、または A 1 G a N 膜 32 基板上に形成された成長領域 33 基板上に形成した SiO, 膜のマスク 34 エピタキシャル成長したGaNバッファ層 35 ハイドライドVPE法で成長したGaN膜 43 マスク 4.4 成長領域 51 (0001)面のサファイア基板 53 第1のマスク 54 第1の成長領域 55 第1のGaN層 5 6 第 2 の 成長領域 57 第2のマスク 58 第2のGaN層 65 n型GaN膜 66 n型GaN層 67 n 型 A l _{0.15} G a _{0.85} N クラット層 n 型 G a N 光ガイド層 68 69 10周期の多重量子井戸構造活性層 70 p型Al₀ 2Ga₀ 8N層 p 型 G a N 光ガイド層 71 72 p 型 A l _{0.15} G a _{0.85} N クラット層 73 p型GaNコンタクト層 74 Ti-Alのn型電極 75 Ni-Auのp型電極

基板

10

20

【図2】

(ь)

【図3】

【図4】

【図6】

(d)

フロントページの続き

合議体

審判長 岡 和久 審判官 正山 旭

審判官 綿谷 晶廣

(56)参考文献 特開昭58-159322(JP,A) 特開平8-64791(JP,A) 特開平4-315419(JP,A) 特開平8-264894(JP,A) 特開平11-135770(JP,A) 特開平6-216037(JP,A)