
United States Patent (19)
Simpson et al.

|||||||||
US005469549A

11 Patent Number:
(45) Date of Patent:

5,469,549
Nov. 21, 1995

54) COMPUTER SYSTEM HAVING MULTIPLE
ASYNCHRONOUS PROCESSORS
INTERCONNECTED BY SHARED
MEMORIES AND PROVIDING FULLY
ASYNCHRONOUS COMMUNICATION
THEREBETWEEN

75 Inventors: Hugo R. Simpson; Eric R. Campbell,
both of Stevenage, Great Britain

73 Assignee: British Aerospace Public Limited
Company, London, England

(21) Appl. No.: 778,073
(22) PCT Filed: Apr. 12, 1991
86 PCT No.: PCT/GB91/00578

S371 Date: Dec. 9, 1991

S 102(e) Date: Dec. 9, 1991

(87. PCT Pub. No.: WO91/16681

PCT Pub. Date: Oct. 31, 1991
(30) Foreign Application Priority Data
Apr. 12, 1990 (GB) United Kingdom 90083668

(51) Int. Cl. ... G06F 13/00
52 U.S. Cl. 395/200.08; 395/285; 395/308;

395/303; 395/474; 395/475; 395/476; 395/650,
395/200.03; 364/238.6; 364/239;364/DIG. 1;

364/270.5; 364/270.7; 364/939; 364/950.1
58) Field of Search 395/800, 600,

395/425, 325, 200, 250

56) References Cited

U.S. PATENT DOCUMENTS

3,566,363 2/1971 Driscoll, Jr.
4,264,953 4/1981 Douglas et al.
4,414,624 11/1983 Summer, Jr. et al. ... 395/650
4,543,627 9/1985 Schwab 395/200
4,547,880 10/1985 Devita et al. 370/91

... 395/425
... 395/400

4,567,560 1/1986 Polis et al. 364/84
4,631,667 12/1986 Zulian et al. 395/325
4,648,035 3/1987 Fava et al. 395/400

4,769,769 971988 Bolt et al. 395/250
4,845,744 7/1989 DeBenedictis 379,221

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

O123509 10/1984
125773 1/984
239324 971987
149062 11/1977 France.
8400221 1/1984 WIPO.

OTHER PUBLICATIONS

European Pat. Off..
European Pat. Off..
European Pat. Off..

Simpson, "Mascot Real Time Networks in Distributed Sys
tem. Design”, Nov. 1990, pp. 1-10.
Simpson, "Data Orientated Requirements Implementation
Scheme (DORIS)”, Oct., 1988, pp. 1-3.
Simpson, "Four-Slot Fully Asyncronous Communication
Mechanism', Jan. 1990, pp. 17-30.
IEEE Micro, vol. 6, No. 3, Jun. 1986 New York U.S.-pp.
72-77; Michael D. Rap: “Microstandards. P1296: The inter
processor communication standard'.
Review Of The Electrical Communication Laboratories. vol.
34, No. 5, Sep. 1986, Tokyo JP pp. 569-575; Akihiko
Matsumoto: "DIPS Computer complex”.
Michael D. Rap et al., “MicroStandards", IEEE, 1986,
72-77.

Primary Examiner-Thomas G. Black
Assistant Examiner-Paul Harrity
Attorney, Agent, or Firm-Cushman, Darby & Cushman
57 ABSTRACT

A multi-processing computer system has multiple comput
ing units. Each of the computing units includes a processor
linked to a private memory via a private data bus, and each
computing unit is linked to every other computing unit by a
respective separate independent shared memory area. The
shared memory areas are controlled by a communications
controller which can provide a fully asynchronous two-way
communication route through the memory area. The multi
tasking capabilities of the computer are further controlled by
a set of unit controllers in combination with respective
software task schedulers.

16 Claims, 2 Drawing Sheets

4,875,224
4,901230
4,922,418
4,943,911

U.S. PATENT DOCUMENTS

10/1989 Simpson
2/1990 Chen et al. ..
5/1990 Dolecek
7/1990 Kopp et al.

5,469,549
Page 2

375/371
... 395/325

395/575
395/375

5,027,271
5,123,094
5,167,028
5,179,665
5,214,759

6/991
6/1992
11/1992
1/1993
5/1993

Curley et al. 395/725
MacDougall 395/375
Shires 395/425
Roslund et al. 395/250
Yamaoka et al. 395/200

U.S. Patent Nov. 21, 1995 Sheet 1 of 2 5,469,549

FG.

43

PRIVATE
42

MEMORY H ADPM
44

ASYNC
DEVICE -48

46

45
SYNC
DEVICE

TIMER

FG.2

U.S. Patent Nov. 21, 1995 Sheet 2 of 2 5,469,549

REQUIREMENTS

DEFINITION
CORE

PROTOTYPNG ANALYSIS
MODELLING VERIFICATION
SIMULATION WALDATION
ANIMATON TESTING

MPLEMENTATION
DA

SYSTEMS(S)

FG.3

5,469,549
1

COMPUTER SYSTEM HAVING MULTIPLE
ASYNCHRONOUS PROCESSORS
INTERCONNECTED BY SHARED

MEMORIES AND PROVIDING FULLY
ASYNCHRONOUS COMMUNICATION

THEREBETWEEN

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to digital computer systems

and, more specifically, to systems having multiple indepen
dent processors.

2. Description of the Related Art
There is a continuing growth in the amount of computer

power required to support digital data processing applica
tions. One response to this problem is to develop larger,
faster and more complex single processors; another is to
couple multiple processors together, for example by high
speed data buses.
With existing forms of computer system using intercom

municating multiple processors, various problems arise and
the object of the present invention is to provide an alterna
tive multi-processor system, preferably incorporating an
integrated associated hardware/software system concept,
which may be preferred for some application areas.

SUMMARY OF THE INVENTION

According to the invention, there is provided a distributed
computer system comprising:

a plurality of asynchronous computer units each with a
data processor and a private data memory linked to the
processor by way of a private data bus;

shared data memory means having access ports linked to
respective ones of the computer units via the associated
private data buses for each computer unit to be able to
communicate with any other computer unit by way of
a respective two-way data route comprising a respec
tive individual area of shared data memory; and

communication control means connected to the private
data buses and the shared data memory means for
responding to control data issued by the processor of
any computer unit to initiate communication via a route
determined by the processor.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention, reference will
be made, by way of example, to the accompanying draw
ings, in which:

FIG. 1 is a diagram for explaining the general nature of
inter-process communication used in the present invention;

FIG. 2 is a simplified diagram of part of a computer
system; and

FIG. 3 is a diagram for explaining the use of the FIG. 2
system in the context of an integrated hardware/software
development environment.

DETALED DESCRIPTION OF THE
PRESENTLY PREFERRED EXEMPLARY

EMBODIMENTS

In connection with the system to be described, reference
will be made to a so-called Data Interaction Architecture
(DIA), following the emphasis on the data which lies

10

15

20

25

30

35

40

45

50

55

60

65

2
between concurrent system processes. The term Architecture
is used in the sense of the elements, and their interconnec
tion and grouping, which go to make up a digital data
processing system. Essentially these elements are the soft
ware processes and hardware processors which communi
cate through shared data areas declared in shared memory.
Thus, the DIA covers multi-tasking software as well as
multi-processing; hardware implementation. The DIA can
be seen as an integrating technology which provides a
framework for system and component design. It is a general
approach which is usable with a wide range of processor
types and programming languages.

In a computer system, inter-process and inter-processor
communication may be direct, i.e. in total synchronism with
the "reading and writing' processes being locked together at
the point of communication. Data independent of the pro
cesses cannot exist since there is no data area (or process)
which can hold information in transit. This is the rendezvous
style of communication which naturally introduces severe
timing interdependences between the two processes. A
monitor process can be interposed in the communication
path so as, in effect, to decouple the operation of the reader
and writer processes, but this is only at the expense of
significant additional overheads and cannot entirely remove
the timing interactions. -

The system to be described, i.e. DIA, comprises a real
time network where communication via shared memory, i.e.
it is indirect as shown in FIG. 1. This form of communica
tion is more flexible than those referred to above in that it
can be used to provide a wide range of communication
protocols including; fully and conditionally asynchronous,
loosely synchronous (the bounded buffer) and fully synchro
nous (the rendezvous) forms. Asynchronous and loosely
synchronous protocols avoid the tight interlocked timing
relationships implicit in the rendezvous, and significantly
reduce the risks of deadlock and severe performance deg
radation at run time. However, DIA does not prejudge the
optimum implementation form; all protocols are supported
so that the system designer can select the most appropriate
for the application in hand.

Software structure in DIA is modelled on the known
MASCOT (Modular Approach to Software Construction
Operation and Test) form of real time network. MASCOT is
a software design method based on data flow concepts and
Is described, for example, in the articles "Process Synchro
nisation in Mascot' by H. R. Simpson and K. Jackson,
Computer Journal, 1979, 22, (4), pp. 332-345 and in "The
Mascot Method' by H. R. Simpson, Software Engineering
Journal, 1986, 1, (3), pp 103-120. It has the important
advantage of allowing the distribution of system function
ality to be represented, so providing the means both of
controlling the mapping of software designs into distributed
hardware and of allowing real time properties to be analyzed
in terms of information propagation effects.

Individual MASCOT processes are known as ACTIVI
TIEs. Each ACTIVITY is conceptually independent, i.e. it
runs concurrently with all other ACTIVITIEs. In practice,
where ACTIVITIEs share a processor, a scheduler must be
provided together with the synchronization primitives to
support mutual exclusion and cross stimulation.
MASCOT shared data areas, through which the ACTIVI

TIES communicate, are known as Intercommunication Data
Areas (IDAs) and there are two principal classes. The POOL
form of IDA is used to hold reference data which is
maintained by one or more updating processes to be con
sulted by one or more using processes with minimal timing

5,469,549
3

interference. The CHANNEL form of IDA is used to pass
messages between one or more producing processes to one
or more consuming processes. POOLs are essentially asyn
chronous whereas CHANNELs are synchronous.
An important DIA extension to MASCOT is the ROUTE

concept. A ROUTE is used to provide communication
between a single writing process and a single reading
process, and it is equivalent to either a POOL (asynchronous
communication between an updater and a user) or a CHAN
NEL (synchronous communication between a producer and
a consumer). ROUTEs are used to express abstract commu
nication designs and can be mapped into the hardware in a
variety of forms which meet the communication require
ments regardless of the relative location of the ACTIVITIES
connected by the ROUTE. DIA provides special executive
software and hardware facilities to support the ROUTE
concept.
The DIA processing configuration is shown in FIG. 2.

Ideally the Central Processing Unit (CPU) 41 is a relatively
simple form of Reduced Instruction Set Computer (RISC) in
which no use is made of features which introduce non
deterministic timing effects such as interrupts, caching and
the like. More complex computers can be used but this will
make it more difficult to analyze run time properties.
The central vertical line 42 in FIG. 2 depicts the CPU's

private memory bus. This Elves access to: Private Memory
(containing private network elements) 43, Asynchronous
Devices (peripherals) 44, Synchronous Devices (peripherals
which can generate an external stimulus) 45, a series of
Asynchronous Dual Port Memories (ADPM-containing
shared IDA elements) 46 and two sorts of specialised VLSI
devices, namely a Kernel Executive Chip (KEC) 47 and for
each memory 46, a Comms Executive Chip (CEC) 48.
The KEC supports the multi-tasking facilities needed

when many activities are mapped into a single processor
(Processor=CPU+private memory). It is also able to accept
external stimuli which are demands for processing arising
outside the processor (e.g. from Synchronous Devices, Tim
ers, CECs, etc). External stimuli can be regarded as coop
erative interrupts; they allow external demands to be taken
into consideration at each reschedule point (the success of
this strategy is clearly dependent on the accurate prediction
of maximum slice times, and on the provision of special
processors to handle any fast reaction time requirements).
Different functions on the KEC are invoked by write or read
access to different addresses assigned to the chip (this allows
the chip to provide its function when interfaced to a wide
variety of CPU types).

Communication with an adjacent processor is provided by
an ADPM-CEC pair. Each ADPM has two entirely indepen
dent access paths to the memory locations, thus avoiding the
need for any form of arbitration at the basic hardware level
(data integrity is maintained by the CEC and software
executive (see below)). Like the KEC, selection of functions
on the CEC is by means of write and read operations to
specific addresses, with an additional facility to select one of
many CECs by use of a unique value in the data field of a
write operation. Some CEC operations generate external
stimuli which are passed to the KEC of an adjacent proces
sor (this is needed for the synchronous ROUTEs between
adjacent processor pairs). The two interfaces of a CEC, one
for each of the connected processors, provide identical
facilities and, like the ADPM, no arbitration is needed. Multi
tasking facilities, in the shape of KEC and software sched
uler, provide the means by which the CPU in each processor
is shared between resident ACTIVITIES.

O

15

20

25

30

35

40

45

50

55

60

65

4
The KEC is able to register demands for processing and

to Select the next ACTIVITY to be allocated CPU time. The
KEC currently available provides scheduling support for up
to 64 ACTIVITIEs arranged in 8 priority levels with 8
ACTIVITIES at each level. External stimuli are routed
through (indirectly) to the highest priority level. The selec
tion strategy consists of choosing an ACTIVITY from the
highest priority level containing a demand for processing;
where there is more than one demand at this level then a
round robin search is used to select the next ACTIVITY (the
chip remembers the last ACTIVITY scheduled at each
level). The chip indicates the next ACTIVITY to be sched
uled by returning a number in the range 0.63; if there is no
current demand then 64 is returned.

The KEC contains two primary control bits for each
ACTIVITY. The first is the start bit which must be set for an
ACTIVITY to be a candidate for scheduling. This provides
an overall control and can be used to implement the MAS
COT control commands. The second bit is the stim bit which
is used to denote a current demand for scheduling. External
stimuli are held on the chip and are entered into the schedule
at a suitable point (see below).
The principal form of interaction between the KEC and

the software scheduler make use of the following chip
operations (all of which execute in a single memory access,
although they are portrayed as PROCEDUREs or FUNC
TIONs for the purposes of explanation):

a. PROCEDURE kec suspend; The external stimuli are
accepted into the schedule (by setting the stim bit for
any outstanding external demand). The slim bit for the
current activity is reinstated, registering a request for
further processing.

b. PROCEDURE kec wait; Same as for kec suspend
except that the stim bit is not reinstated.

c. PROCEDURE kec stim (act: 0.63); This supports
internal stimuli whereby one ACTIVITY can set the
slim bit of another,

d. FUNCTION kec nextact: 0.64; This returns the num
ber of the next ACTIVITY to be scheduled and it clears
the external stimulus demands where these have been
accepted into the schedule, and it then clears the slim
bit of the ACTIVITY selected for scheduling.

The external stimuli are potentially asynchronous and the
KEC and associated software ensure that the attendant
metastability hazard is reduced to a negligible level (it is
effectively eliminated). This is achieved by the delay which
must exist between acceptance of the external stimuli by
kec suspend or kec wait, and the use of kec nextact to
Select the next ACTIVITY.
The software scheduler which interfaces with the KEC is

particularly straightforward. First we introduce some auxil
iary definitions:

a. WAR curract: 0.64; This is a variable which holds the
number of the currently scheduled ACTIVITY.

b. PROCEDURE save; This procedure saves the context
of the ACTIVITY whose number is indicated by the
value of curract. It is assumed that space has been set
aside for this purpose. The context of an ACTIVITY is
initialized so that the ACTIVITY is first entered at its
start point.

c. PROCEDURE restore; This procedure restores the
context of the ACTIVITY whose number is indicated
by the value of curract.

Scheduling primitives which interface directly with the
KEC by the value can now be formulated:

5,469,549

a. PROCEDURE suspend;
BEGIN

kec suspend;
Save,
curract := kec nextact;
restOre

END;
b. PROCEDURE wait;
BEGIN

keci wait,
Save,
curract := kec.nextact;
eSOe

END;
c. PROCEDURE stim (act: 0. 63);

BEGIN
kec stim (act)

END;

We are now in a position to see how cross stimulation and
mutual exclusion, the basic synchronization primitives, can
be provided.
A control node record type is introduced to provide a

control point at which an ACTIVITY may wait, to be
stimmed into operation by another ACTIVITY:

a. TYPE control node =
RECORD

activity : 0 . . 63;
waiting: BOOLEAN

END;

where waiting is initialized to FALSE. The cross stimulation
facility is provided thus:

b. PROCEDURE wait cn (VAR cn: control node);
BEGIN

cn.activity := curract;
cn-waiting :=TRUE;
wait

END;
c. PROCEDURE stim cn (VAR cn: control node);

BEGIN
IF cn.waiting THEN
BEGIN

stim (cnactivity);
cn-waiting := FALSE

END
END;

Mutual exclusion is a little more elaborate and some auxil
iary definitions are needed:

a. TYPE act queue; This is the type of variable capable
of holding a FIFO queue of ACTIVITY numbers.

b. PROCEDURE add back (VAR q: act queue); Adds
the current ACTIVITY to the back of the designated
act queue.

c. FUNCTION take front (VAR q: act queue): 0.63;
Takes the ACTIVITY off the front of the designated
act queue.

A control queue record type is introduced to provide
points at which ACTIVITIEs may be held in a FIFO queue
pending the availability of a "resource' which is also needed
by other ACTIVITIEs:

10

5

20

25

30

35

40

45

50

55

60

65

a. TYPE control queue =
RECORD

count: INTEGER;
queue : act queue

END;

where count is initialized to -1 and the queue is initialized
to empty. The mutual exclusion facility is provided thus:

b. PROCEDURE join cq (VAR cq : control queue);
BEGIN

cq-count := cq-count + 1,
IF cq-count <> 0 THEN
BEGIN

add back (cqqueue);
wait

END
END;

c. PROCEDURES leave cq (VAR cq : control queue);
BEGIN

IF cq-count <> 0 THEN
stim (take front (cqqueue));

cq-count := cq-count - 1
END;

The cross stimulation and mutual exclusion primitives
provide all that is needed to support synchronous interac
tions within a single processor. They are compact and simple
to implement.

Communication facilities, in the shape of CEC, ADPM,
ROUTE designs and software executive, provide the means
by which ACTIVITIEs in adjacent processors pass data from
one to another. Our description here will concentrate on this
particular shared memory configuration but it must be
stressed that a ROUTE is a design abstraction which,
without change to interface or process interaction properties,
can also represent communications between ACTIVITIES
within a single processor, and communication between
ACTIVITIEs located in processors which have no shared
memory. Also the ROUTE is but one possible form of IDA
communication, and alternative designs will often be needed
to meet particular application requirements.
The interfaces to a ROUTE may be either procedural or

dam, and in each case single items are inserted or extracted,
and pass through the ROUTE unchanged, i.e. the operation
of communicating through a ROUTE has no semantic effect
whatsoever. However there are various dynamic possibili
ties:

a. Fully Asynchronous. The ROUTE is effectively a
POOL where the writing and reading ACTIVITIEs can
insert or extract data at any time, and these operations
can be of any duration. The communication protocol is
that of the four slot mechanism (see EP Patent Speci
fication No 0292287) and data coherence and freshness
are guaranteed. This is known as an fs route.

b. Conditionally Asynchronous. The ROUTE is effec
tively a POOL operating a swung buffer protocol. Data
coherence is guaranteed provided that the duration of
reads is always less then the interval between writes
and vice versa. This is known as a ts route.

c. Loosely Synchronous. The ROUTE is effectively a two
item MASCOT standard CHANNEL. It provides a
message passing facility with a limited amount of
buffering. This is known as a bb route.

d. Fully Synchronous. The ROUTE is effectively operated
as a rendezvous between the communicating processes.

5,469,549
7

It provides a message passing facility with no apparent
buffering (although the ADPM space requirements for
loosely and fully synchronous forms are identical).
This is know as an rv route.

As has already been mentioned, a given CEC is selected
when its unique number appears in the data field of a
particular write operation (at the same time all other CECs
are deselected). In addition to the chip number in this write
operation, a channel number is also selected. Each side of
the current chip contains 16 channels, with each side of each
channel containing the logic for:

a. counter (two bit) stepping
b. counter (two bit) comparison
c. transmit stim (multiplexed)x2
d. receive stim (multiplexed)x2
e. two slot async send
f. two slot async receive
g. four slot aysnc send
h. four slot async receive

This logic supports:
a. 16xbb-route OR rv route, left to right OR right to left.
The CEC logic allows for a total of 16 possible syn
chronous ROUTES (bb route or rw route), each of
which either passes data in one direction or the other.
The choice of ROUTE type and direction is exercised
when the CEC logic is allocated to application com
munication functions. The counter stepping and inter
processor Stims for each channel are integrated on the
chip to give the most compact operation (see below).

b. 16x stim only, left to right AND right to left. A further
16 inter processor stims in both directions are provided
to allow additional synchronous ROUTEs to be built
(by software).

c. 16xts route and fs route, left to right AND right to
left. The CEC logic allows for 16 fully and 16 condi
tionally asynchronous ROUTEs in both directions, 64
ROUTES in all.

The chip and channel selection operation, needed at the
start of any communication procedure or data access involv
ing the CEC, also sets the mode' of the chip so that it can
execute the appropriate individual operations in support of a
particular communication protocol. The mode is defined as
follows:

a. TYPE mode=(stims, fs rd, fs wr, init, ts wr, ts rd,
test, sync);

The selection operation can now be written:
a. PROCEDURE cec select (chip: 0.7; chan: 0.31; m:

mode);
The chip parameter lies in the range 0.7 because the current
CEC allows 1 of 8 chips (all at the same address) to be
selected. The chan parameter lies in the range 0.31 because
transmit and receive stim facilities are 32 channels wide; 16
stims in each direction are intimately associated with the
counter stepping logic, with a further 16 in each direction
Supporting stim only.

All types of ROUTE require data space to be allocated
within the ADPM associated with the CEC. The reasonably
large number and variety of ROUTE types supported by the
CEC allows considerable flexibility in the choice of
ROUTEs. Like the KEC, CEC operations all execute in a
single memory access.
The CEC provides a number of operations to support a

four slot fully asynchronous protocol:
a. PROCEDURE cec fs rd pr1; This is the operation

which chooses a slot pair for reading.

10

15

20

25

30

35

40

45

50

55

60

65

8
b. PROCEDURE cec fs rd pr2; This is the operation

which chooses the slot within the pair for reading.
c. FUNCTION cec fs rd slot: 0.3; This is the opera

tion which returns the number of the slot to be read
from next. It is dependent on the results from the
previous two operations both of which are potentially
asynchronous, and hence in theory metastability is a
hazard. In practice, at computer rates of operation, the
chip design and the delay before the slot number is read
are such that metastability is effectively eliminated.

d. PROCEDURE cec fs wr pw; This is the operation
which indicates the slot containing the latest data in the
chosen pair, and which also determines the slot in the
chosen pair that will be written to next.

e. PROCEDURE cec fs wr pw2; This is the operation
which indicates the pair which contains the latest data
and which chooses the pair that will be written to next.

f. FUNCTION cec fs wr slot; This is the operation
which returns the number of the slot to be written to
next. It is dependent on the results from the previous
two operations, the second of which is potentially
asynchronous and hence again is theoretically vulner
able to metastability. In practice the chip design and
method of use eliminate this hazard.

All these operate on the chip, channel and mode prese
lected by cec select.
A fully asynchronous ROUTE requires an appropriate

four slot array to be declared in the ADPM, and we will
assume that the data to be passed is of type DATA. The
ROUTE can be represented thus:

a. WAR data: ARRAYIO .. 3) OF DATA
FUNCTION fs read: DATA;
BEGIN

cec select (chip, chan, fs rd);
Cec fs rd prl;
cec fs rd pr2,
fs read := data (cec fs rd slot

END;
b. PROCEDURE fs write (VAR item : DATA);

BEGIN
cec select (chip, chan, fs wr);
data Cec fs. Wr slot] := item;
cec fs wr pwl;
Cec fs wr pw2

END;

These reading and writing operations illustrate the inter
actions with the CEC. They do not indicate the way in which
the appropriate chip and chart parameters are associated
with the cec select calls; this is arranged by the network
building software and is beyond the scope of this applica
tion. A further important point concerns initialization, and it
is necessary to ensure that the data array in the ADPM is
initialized so that any read occurring before the first write
will not receive erroneous values.
The two slot conditionally asynchronous protocol has its

own special operations. On the reading side there is one
operation to choose the slot and one to return the number of
the next slot to be read. On the writing side, the indication
of the latest data and the return of the slot number for writing
are combined into a single operation. This means that the
writing procedure must remember the slot number between
calls (indicated by the OWN variable below). The ROUTE
can be represented thus (assuming appropriate initialization
and cec select parameterization):

5,469,549

a. WAR data: ARRAY (0. 1 OF DATA;
FUNCTION ts read: DATA;
BEGIN

cec select (chip, chan, ts.rd);
Cects rd pr;
ts read := data cects rd slot)

END;
PROCEDURE ts write (VAR item : DATA);
OWN next : 0 . . 1;
BEGIN

cec select (chip, chan, ts wr);
data (next := item;
next := cec ts wr pw slot

END;

The mechanism for handling inter processor stims
involves CEC and executive software functions. There are
two levels of external stim, primary and secondary. Primary
stims are generated by CEC operations on one side of the
chip and are transmitted through to the other to be held on
the KEC whence they are introduced into the schedule and
can cause an ACTIVITY to run (see above). There are 32
secondary stims associated with each primary stim and an
operation is provided to interrogate them:

a. FUNCTION cec next: 0.32;This is used to search for
secondary stims. The set of outstanding secondary
stims is latched on the preceding cec select operation
and each channel is examined in turn. When a stim is
found its number is returned, and at the same time it is
cleared. When there are no further secondary stims the
number 32 is returned.

This operation is used by an executive ACTIVITY whose
function it is to pass the secondary stim through to an
appropriate control node where it will in turn cause an
application ACTIVITY to be scheduled. This can be repre
sented thus:

a. WAR xstim: ARRAYO. .7, 0,... 3 OF control node,
ACTIVITY exec;
VAR next: 0.32;
BEGIN
WHILE TRUE DO
BEGIN

cec select (chip, chan, stims);
next := cec next;
WHLE next C 32 DO
BEGIN

stim cn (xstim (chip, next));
next = CeC next

END;
wait

END
END;

An exec ACTIVITY must be installed for each CEC, and
its initial context must be set into the context saving area so
that it is scheduled as a result of the first appropriate primary
external stim. Thereafter it will wait whenever it has com
pleted the task of interrogating the secondary stims, and
having rescheduled the relevant application ACTIVITIES
via the xstim array. Clearly there will be some uncertainty as
to the time taken between the raising of an external stim in
one processor and its use to schedule an ACTIVITY in
another. The outer bound of this delay is calculable from a
knowledge of the longest slice time (i.e. interval between
reschedule points) of all ACTIVITIEs in a processor,
together with the slice times of the other ACTIVITIEs at the
highest priority level. The xstim declaration assumes a full
complement of 8 CECs with a need for 32 channels on each.

10

15

30

35

40

45

50

55

60

65

10
It is extremely unlikely that this capacity could ever be
serviced by a single processor and the space allocated for
these control nodes would be kept to just that required for
the application in hand.
The synchronous ROUTEs between adjacent processors

make use of the inter processor stim facility just described,
and in addition they are supported by CEC logic in the form
of two bit counters, together with counter stepping and
testing operations:

a. FUNCTION cec inc stim; This increments the
counter for this side (i.e. from which the operation is
executed) of the selected channel on the selected chip,
and it generates an external stim (both levels). A
number in the range 0.1 is returned this being the new
counter value MOD 2, indicating the slot to be next
accessed for data transfer.

b. FUNCTION cec sync p0; This returns 0 if the
counter on this side equals the counter on the other side
plus zero, i.e. the two counters are the same; otherwise
1 is returned.

c. FUNCTION cec sync p2; This returns 0 if the
counter on this side equals the counter on the other side
plus two; otherwise 1 is returned.

The counters each step through the range 0.3 and are used
to indicate full and empty conditions in a two slot MASCOT
standard CHANNEL. Initialization of the counters is
effected using an operation which steps the counter without
generating a stim. For a bounded buffer ROUTE the
counters are initialized to zero, and the xstim array elements
(control nodes) associated with a synchronous ROUTE must
be initialized to the 'unstimmed' state. The ROUTE can be
represented thus (assuming appropriate cec select param
eterization and OWN variables initialized to zero):

a. WAR data: ARRAY (0... 1) OF DATA;
FUNCTION bb read: DATA;
OWN oc: 0 . . 1;
BEGIN

cec select (chip, chan, sync);
WHILE cec-sync p0= 0 D0
BEGIN

wait cn (xstim chip, chan);
cec select (chip, chan, sync)

END;
bb read := data oc);
oc := cec inc stim

END;
PROCEDUREbb write (VAR item: DATA);
OWNic: 0 . . 1;
BEGIN

cec select (chip, chan, sync);
WHILE cec sync p2 = 0 D0
BEGIN

wait cn (xstim (chip, chan));
cec select (chip, chan, sync)

END;
data ic := item,
ic := cec inc stim

END;

The implementation of a fully synchronous ROUTE is
found to be very similar to a loosely synchronous ROUTE.
The CEC must be initialized so that the counter on the
writing side is 1 and the counter on the reading side is 0.
Likewise the ie OWN variable must be initialized to 1. The
ROUTE is represented thus:

5,469,549
11

a. WAR data: ARRAY (O.. 1 OF DATA;
FUNCTION rv read : DATA;
WAR oc: O... 1
BEGIN

cec select (chip, chan, sync);
oc :e cec inc stin;
WHILE cec sync p0 = D0
BEGIN

wait. cn (xstim chip, chan)),
cec select (chip, chan, sync)

END;
rv read := data oc

END;
PROCEDURE rv write (VAR item : DATA);
OWN ic : 0 . . ;
BEGIN

cec select (chip, chan, sync);
data ic :e item;
ic := cec inc stim;
WHILE cec-sync p2 = 0 D0
BEGIN

wait. cn (xstim chip,chan),
Cec select (chip, chan, sync)

END
END;

It can now be seen that the counter logic on each side of
the CEC can be used to support ROUTEs in either direction
(but not both), and that each ROUTE can be programmed as
either a bb route oran rv route. The software build would
determine which of these options is chosen.
We have seen how the executive chips and lower level

software can be used to execute real time networks. We will
now briefly examine the way in which designs may be
created in a form suitable for loading into such an execution
environment.
The described and illustrated DIA system is preferably

used in conjunction with a software/digital system develop
ment which will be referred to herein by the acronym
DORIS (Data Orientated Requirements Implementation
Scheme). The emphasis in DORIS is on the data passed
between functions and components in a system. Exchange of
data is a unifying theme and, by applying; this principle right
through from Requirements Analysis to Implementation
Execution, traceability throughout the development process
is ensured. A very important further advantage is the ability
to analyse a proposed implementation for its performance
properties. This arises from the distributed nature of the
approach which immediately reduces the reliance on
dynamically managed shared resources, a well-known haz
ard and one which it may not be possible to resolve
satisfactorily in systems where many disjoint processing
functions are crammed into a small number of powerful and
complex computers, and where communications are multi
plexed onto a small number of high bandwidth links.
The essence of the DORIS approach is illustrated in FIG.

3. Requirements Analysis leading to top level System Defi
nition is carried out using CORE (COntrolled Requirements
Expression), a method which places great emphasis on
identifying the information exchanged between well-defined
functions. Information about CORE may be found in
"CORE -A method for Controlled Requirements Specifi
cation' by G. P. Mullery in the Proceedings of Fourth
International Conference on Software Engineering, 1979, pp
126-135. The Design phase is carried out in terms of an
adapted form of MASCOT. The principal extension to
MASCOT is the introduction of type parameters for tem
plates (a template is a design description used to institute
component elements in a system). The primary motivation
for this extension is to allow generic designs for ROUTEs

10

15

20

25

30

35

40

45

50

55

60

65

12
instead of having to create a new ROUTE template for every
type of data communicated in this way. The Implementation
phase is based on DIA as described herein.

FIG. 3 includes two further blocks. Prototyping, Model
ling, Simulation and Animations will assist with the creative
process of Definition and Design, and with the investigation
of proposed solutions by experimental Implementation.
Analysis, Verification, Validation and Testing are the means
by which the product of a phase of development may be
assessed for conformance with previous phases.
The real time network is a form of design abstraction

which in principle is free from implementation concerns. In
practice, in the field of real time embedded multi-processor
system, the design is likely to be quite heavily influenced by
performance considerations, and by the way in which the
design will have to be mapped into available execution
resources. Nevertheless we strive to maximize abstraction
for the clarity, flexibility, generality, maintainability, reus
ability, etc., which this brings.
ADORIS design is expressed as a pure network, with no

explicit relationship to execution hardware. The execution
environment is separately described using a Hardware
Description Language which allows the available processors
and memory, and their interconnections, to be defined. A
Mapping Description is then used to relate the network to the
hardware. This approach offers considerable promise for the
development of effective performance analysis tools.
The DORIS design mapping rules are very straightfor

ward:

a. An ACTIVITY must be contained with a single pro
CSSO.

b. An IDA design must exist for any inter-ACTIVITY
communication implied by the mapping of the
ACTIVITIES into the hardware.

The second rules arise because mapping is expressed
purely in terms of location of ACTIVITEs, with the
required form of the IDAs, in terms of their distribution in
the hardware, being derived from this. For example, if a
writer communicates with a reader through a ROUTE the
IDA design needed depends on whether the two processes
are in the same processor, or are in adjacent processors, or
are even further apart. The DORIS toolset handles this
situation by a Template Substitution technique. In network
terms the external specification and the function from the
application viewpoint remain the same whatever template is
substituted; however, the internal design differs and some
additional network connections to executive facilities may
be needed.

It has been stated that the process interaction properties of
a ROUTE remain the same regardless of how the ROUTE is
mapped into the execution hardware. This means that the
asynchronous forms remain asynchronous with the same
sort of timing constraints or lack of them, and likewise the
synchronous forms remain the same in terms of providing
buffering or rendezvous characteristics. However, informa
tion propagation delays will increase as the ROUTE
becomes distributed over wider areas. It is only the general
nature of the interaction which remains constant, but this is
important because it opens the door to generalized timing
analyzers which can work in terms of timing parameters
determined in a direct manner by consideration of the
execution environment and network distribution.

Each KEC 46 and each CEC 48 may comprise a custom
designed Integrated Circuit. To provide processor indepen
dence the chips CEC and KEC may have TTL compatible
Inputs and Outputs and be accessed via conventional
memory read and write operations.

5,469,549
13

The KEC supports the co-operative scheduling of activi
ties, within a single processor, under software control and
handles the asynchronous external stimuli that may be used
to replace the pre-emptive interrupts used in conventional
microprocessors. The KEC contains an activity matrix and
ripple search logic to identify the next schedulable, primed
activity against a fixed rule set. Activities are designated
schedulable and primed under software control. Asynchro
nous external stimuli are latched on chip, but can only be
prime activities In the matrix under software control. Not
until they have safely primed an activity in the matrix are
these latches cleared. The KEC uses an unconventional read
strobe to allow the chip logic to operate in parallel, asyn
chronously, one step ahead of the processor. The KEC uses
a novel design in the "round robin' member search logic
within the prioritised set search when selecting the next
activity.
As noted, each KEC 47 supports the scheduling of pro

cessing tasks, termed activities, for an individual, multi
tasking processor. It will provide, on request, the number of
the next activity to be allocated processing time, under
executive software control in the presence of external asyn
chronous stimuli.
By way of example, each KEC 47 might contain support

for sixty-four activities, eight of which are associated with
external stimuli. Activity numbers can be programmed to be
included or excluded as candidates for scheduling, but the
next activity number selection rules are fixed. There are
eight priority levels with eight activity numbers of each
priority. Search logic identifies the next included activity
number on a round robin basis, in the highest priority level
containing an included activity number.
The CEC enables asynchronous hardware coupling

between processor pairs, where each processor may be
operating in an independent time frame. Each CEC holds
and manipulates variables under software control from each
processor and generates an asynchronous external stimulus
to each side. Used in conjunction with Asynchronous Dual
PortMemory (ADPM), each CEC can support many parallel
asynchronous or synchronous software communication
routes, established in the ADPM between the processor
pairs.
Each CEC 48 may comprise a custom VLSI chip which

contains variables and logic to support the concurrent use of
various types of shared memory communication mecha
nisms, between a pair of asynchronously operating proces
sors. The mechanisms steer writing and reading processes to
data areas, termed slots, located in the Asynchronous Dual
Port Memory (ADPM) 46, that is connected in parallel with
the CEC. For example, the CEC may be designed to support
the concurrent use of sixteen inter-processor channels, each
channel supporting the concurrent use of: two four-slot
mechanisms (one in each direction); two two-slot mecha
nisms (one in each direction); and a message passing mecha
nism (that can be used in either direction). Handling for
sixty-four stimulii (thirty-two in each direction) may be
provided.

Preferably each CEC has two completely independent
processor interfaces designated L and R (Left and Right),
allowing connection between two asynchronous operating
processors, with no mutual access restrictions.
The CEC can be connected between two processors that

have independent clocks. Each processor is allowed free
access to its side of the CEC, without the need for hardware
exclusion, arbitration or synchronization. The CEC is struc
tured in two halves, with each half containing the circuitry
associated with each processor. This consists of stimulus

10

15

20

30

35

40

45

50

55

60

65

14
latches, shared bit variables and logic. Each stimulus latch
can only be set from one side and can only be copied when
identified to the processor. The latches that hold shared bit
variables can only be set and cleared from one side, but
accessed by the logic from both sides. The logic allows the
CEC to search the copied stimulus latches, manipulate the
stored variables in a particular fashion under software con
trol and generate the asynchronous external stimulus.
We claim:
1. A distributed computer system comprising:
a plurality of asynchronous computer units each including

a data processor and a private data memory linked to
said data processor by way of a private data bus;

shared data memory means having a plurality of access
ports linked between said private data buses of respec
tive ones of said plurality of asynchronous computer
units, said shared data memory means enabling any one
of said plurality of asynchronous computer units to
communicate with any other of said plurality of asyn
chronous computer units by way of a respective two
way data route comprising a respective individual area
of shared data memory in said shared data memory
means; and

communication control means connected to said private
data bus of each of said plurality of asynchronous
computer units and to said shared data memory means
for responding to control data issued by said processor
of any one of said plurality of asynchronous computer
units to initiate communication via a route determined
by said processor of said one of said plurality of
asynchronous computer units;

said shared data memory means and said communication
control means together providing a fully asynchronous
inter-communication channel to any two of said plu
rality of asynchronous computer units in which each of
said two of said plurality of asynchronous computer
units can access said respective shared data memory
area fully asynchronously with respect to accesses by
said other of said two of said plurality of asynchronous
computer units.

2. A distributed computer system according to claim 1,
wherein:

said shared data memory means comprises a plurality of
asynchronously operable dual port memories, one of
said plurality of dual port memories for each said
two-way data route, and

said communication control means comprises a plurality
of communication control units connected to control
respective ones of said plurality of dual port memories.

3. A distributed computer system according to claim 1,
wherein:

each of said plurality of asynchronous computer units is
programmed with activity scheduling software for ini
tiating a periodic reference by said associated processor
to a pre-designated memory area and for executing
activities selected in dependence upon a data signal
located at said pre-designated memory area;

said distributed computer system further including activ
ity control means operable for receiving demand sig
nals identifying respective activities to be carried out
by respective ones of said plurality of asynchronous
computer units and for registering said demand signals
in said pre-designated memory area.

4. A distributed computer system according to claim 3,
wherein said activity control means is connected to said
communication control means for receiving said demand

5,469,549
15

signals identifying activities including responses by
responding ones of said plurality of asynchronous computer
units to a communication request from other ones of said
plurality of asynchronous computer units.

5. A distributed computer system according to claim 3,
wherein said activity control means comprises, for each of
said plurality of asynchronous computer units, a respective
individual register unit connected to said associated private
data bus of said asynchronous computer unit and occupying
said pre-designated memory area associated with said asyn
chronous computer unit.

6. A distributed computer system according to claim 1,
wherein said plurality of asynchronous computer units are
programmed with activity scheduling software and with
respective sets of software modules for causing said plural
ity of asynchronous computer units to execute associated
predetermined activities, said software modules being
selected for running by said activity scheduling software and
said software modules including communication processes
which are operable for passing data between modules which
run in a same one of said plurality of asynchronous computer
units and for passing data between modules which run in
respective ones of two different ones of said plurality of
asynchronous computer units, by way of said two-way data
Oute.
7. A distributed computer system according to claim 6,

wherein said activity Scheduling software causes said com
puter units to generate predictably timed responses to asyn
chronous external demands to said plurality of asynchronous
computer units.

8. A distributed computer system according to claim 6,
wherein said activity scheduling software programming a
respective one of said plurality of asynchronous computer
units deschedules a software process needing to wait,
thereby freeing said respective one of said plurality of
asynchronous computer units to run other software pro
CCSSCS.

9. A distributed computer system according to claim 1,
wherein:

said shared data memory means and said communication
control means together make available to any two of
said plurality of asynchronous computer units a less
than fully asynchronous inter-communication channel
in which there is a least some synchronization of
accesses to said shared memory area by said two of said
plurality of asynchronous computer units, wherein at
least one of said fully asynchronous inter-communica
tion channel and said less than fully asynchronous
inter-communication channel is made available based
on data issued to said communication control means by
a respective one of said plurality of asynchronous
computer units which initiates a communication.

10. A distributed computer system according to claim 1,
wherein:

said communication control means and said shared
memory means cooperate to permit a first one of two of
said plurality of asynchronous computer units having a
communication route established therebetween to store
data to a respective individual area of shared data
memory in said shared data memory means indepen
dently of a second one of said two of said plurality of
asynchronous computer units and to permit said second
one of said two of said plurality of asynchronous
computer units to read data from said respective indi
vidual area of shared data memory in said shared data
memory means independently of said first one of said
two of said plurality of asynchronous computer units.

5

10

15

20

25

30

35

40

45

50

55

60

65

16
11. A distributed computer system according to claim 10,

wherein at least a portion of said storing by said first one of
said two Of said plurality of asynchronous computer units
and at least a portion of said reading by said second one of
said two of said plurality Of asynchronous computer units
are performed concurrently.

12. A distributed computer system according to claim 1,
wherein a timing of said shared memory means is indepen
dent from a timing of said plurality of asynchronous com
puter units, thereby substantially eliminating mutual timing
effects between any two of said plurality of asynchronous
computer units having a communication route established
therebetween.

13. A distributed computer system comprising:
a first and second asynchronous computer unit each

including a data processor and a private data memory
linked to said data processor by way of a private data
bus;

shared data memory means having a first access port
linked to said private data bus of said first asynchro
nous computer unit and having a second access port
linked to said private data bus of said second asynchro
nous computer unit, an individual area of shared data
memory of said shared data memory means enabling
two-way communications between said first asynchro
nous computer unit and said second asynchronous
computer unit; and

communication control means connected to said private
data bus of each of said first and second asynchronous
computer units and to said shared data memory means
for responding to control data issued by said processor
of any one of said first and second asynchronous
computer units to initiate said two-way communica
tions between said first and second asynchronous com
puter units;

said shared data memory means and said communication
control means together providing a fully asynchronous
inter-communication channel between said first and
second asynchronous computer units in which either
one of said first and second asynchronous computer
units can access said respective shared data memory
area fully asynchronously with respect to accesses by
the other other one of said first and second asynchro
nous computer units.

14. A distributed computer system according to claim 13,
wherein:

said shared data memory means comprises a plurality of
asynchronously operable dual port memories, one of
said plurality of dual port memories for each said
two-way data route; and

said communication control means comprises a plurality
of communication control units connected to control
respective ones of said plurality of dual port memories.

15. A distributed computer system according to claim 13,
wherein said first and second asynchronous computer units
are programmed with activity scheduling software and with
respective sets of software modules for causing said first and
Second asynchronous computer units to execute associated
predetermined activities, said software modules being
selected for running by said activity scheduling software and
said software modules including communication processes
which are operable for passing data between modules which
run in a same one of said first and second asynchronous
computer units and for passing data between modules which
run in both said first and second asynchronous computer
units, by way of said two-way data route.

5,469,549
17

16. A distributed computer system according to claim 13,
wherein:

said shared data memory means and said communication
control means together make available to said first and
second asynchronous computer units a less than fully 5
asynchronous inter-communication channel in which
there is a least some synchronization of accesses to said
shared memory area by said first and second asynchro
nous computer units, wherein at least one of said fully

18
asynchronous inter-communication channel and said
less than fully asynchronous inter-communication
channel is made available based on data issued to said
communication control means by a respective one of
said first and second asynchronous computer units
which initiates a communication.

