
„2)UK Patent Application „8>GB ,„>2569430 (,3,A
(43) Date of A Publication 19.06.2019

(21) Application No: 1816892.2

(22) Date of Filing: 17.10.2018

(30) Priority Data:
(31) 1717295 (32) 20.10.2017 (33) GB

(71) Applicant(s):
Graphcore Limited
6th Floor, 11-19 Wine Street, BRISTOL, BS1 2PH,
United Kingdom

(72) Inventor(s):
Simon Christian Knowles
Daniel John Pelham Wilkinson
Richard Luke Southwell Osborne
Alan Graham Alexander
Stephen Felix
Jonathan Mangnall
David Lacey

(74) Agent and/or Address for Service:
Page White & Farrer
Bedford House, John Street, London, WC1N 2BF,
United Kingdom

(51) INT CL:
G06F 9/52 (2006.01) G06F 9/30 (2018.01)
G06F 15/173 (2006.01)

(56) Documents Cited:
US 5754789 A US 5434861 A
US 20140006724 A1

(58) Field of Search:
INT CL G06F, G06N
Other: EPODOC, WPI, INSPEC, Patent Fulltext,
XPESP, XPIEE, IP.COM, XPI3E, XPMISC, XPLNCS,
XPRD, XPSPRNG, TDB

(54) Title of the Invention: Synchronization in a multi-tile processing array
Abstract Title: Data synchronisation between processing units governed by common clock

(57) Computer comprising processing units 4 each having instruction storage 12, execution unit, data storage 22 and
input 224 and output 226 interfaces comprising sets of wires; switching fabric 34 connected to each processing unit
by the respective output wires and connectable to each of the processing units by the respective input wires via
switching circuitry controllable by each processing unit; synchronisation module to generate a synchronisation
signal to control the computer to switch between computer phase and exchange phase; wherein the processing
units execute local programs according to a common clock, the local programs such that in the exchange phase at
least one processing unit executes a send instruction from its local program to transmit onto its output set of
connection wires at a transmit time a data packet destined for a recipient processing unit but having no destination
identifier, and at a predetermined switch time the recipient processing unit controls its switching circuitry to connect
its input set of wires to the fabric to receive the packet at a receive time; the transmit, switch and receive times
being governed by the common clock with respect to the synchronisation signal. Also provided is a method of
computing a function.

G
B

2569430
A

IP.COM

1 /11

kC-

Fi
gu

re
 1

2/11

3/11

4/11

5/11

ϊΐδϊΓ)ΪΧ?Ι:Ϊ3Ν·3

«b

I
I
I
I
I
I
I
I
I
I

Fi
gu

re
 5

(TGilOail)dXiA! 13NS

4
u

& Ο Γ.; n V W <£> r- « O S 3 ΰ 3 5 S S £ 3 5 8 3 8 S & S3 S g

6/11

7/11

72
b

31313000 0»)
........-........

Fig
ur

e 7

8/11

PU
T

i -
M

U
Xp

tr

9/11

EX
C

H

0

Ό

co
sc
D
D
< ..
0
Z
S
O

o O
”~'Ί h~ z

a
£L 00 X

CM
CM

O
CM

10/11

11 / 11

SE
LE

C
T S

EL
EC

T 13
00

1

Synchronization in a Multi-Tile Processing Array

Technical Field

The present disclosure relates to synchronizing the workloads of multiple different tiles in a

processor comprising multiple tiles, each tile comprising a processing unit with local memory.

Particularly, the disclosure relates to bulk synchronous parallel (BSP) computing protocol,

whereby each of a group of tiles must complete a compute phase before any of the tiles in the

group can proceed to an exchange phase.

Background

Parallelism in computing takes different forms. Program fragments may be organised to

execute concurrently (where they overlap in time but may share execution resources) or in

parallel ’where they execute on different resources possibly at the same time.

Parallelism in computing can be achieved in a number of ways, such as by means of an array

of multiple interconnected processor tiles, or a multi-threaded processing unit, or indeed a

multi-tile array in which each tile comprises a multi-threaded processing unit.

When parallelism is achieved by means of a processor comprising an array of multiple tiles

on the same chip (or chips in the. same integrated circuit package), each tile comprises its

own separate respective processing unit with local memory (including program memory and

data memory). Thus separate portions of program code can be run concurrently on different

tiles. The tiles are connected together via an on-chip interconnect which enables the code run

on the different tiles to communicate between tiles. In some cases the processine unit on each

tile may take the form of a barrel-threaded processing unit (or other multi-threaded

processing unit). Each tile may have a set of contexts and an execution pipeline such that

each tile can run multiple interleaved threads concurrently.

In general, there may exist dependencies between the portions of a program running on

different tiles in the array. technique is therefore required to prevent a piece of code on one

tile running ahead of data upon which it is dependent being made available by another piece

of code on another tile. There are a number of possible schemes for achieving this, butrvi' me

ζ

ς*ϊ·scheme of interest herein is known as “bulk synchronous parallel” (BSP). According to BSP,

each tile performs a compute phase and an exchange phase in an alternating manner. During

the compute phase each tiie performs one or more computation tasks locally on tile, but does

not communicate any results of its computations with any others of the tiles. In the exchange

phase each tile is allowed to exchange one or more results of the computations from the

preceding compute phase to and/or from one or more others of the tiles in the group, but does

not yet begin a new compute phase until that tile has finished its exchange phase. Further,

according to this form of BSP principle, a barrier synchronization is placed at the juncture

transitioning from the compute phase into the exchange phase, or transitioning from the

exchange phases into the compute phase, or both. That is it say, either: (a) all tiles are

required to complete their respective compute phases before any in the group is allowed to

proceed to the next exchange phase, or (b) all tiles in the group are required io complete their

respective exchange phases before any tile in the group is allowed to proceed to the next

compute phase, or (cl both. When used herein the phrase “between a compute phase and an

exchange phase” encompasses all these options.

An example use of multi-threaded and/or multi-tiled parallel processing is found in machine

intelligence. As will be familiar to those skilled in the art of machine intelligence, machine

intelligence algorithms “are capable of producing knowledge models” and using the

knowledge model to run learning and inference algorithms. A machine intelligence model

incorporating the knowledge model and algorithms can be represented as a graph of multiple

interconnected nodes. Each node represents a function of its inputs. Some nodes receive the

inputs to the graph and some receive inputs from one or more other nodes. The output

activation of some, nodes form the inputs of other nodes, and the output of some nodes

provide the output, of the graph, and the inputs to the graph provide the inputs to some nodes.

Further, the function at each node is parameterized by one or more respective parameters, e.g.

weights. During a learning stage the aim is, based on a set of experiential input data, to find

values for the various parameters such that the graph as a whole will generate a desired

output for a range of possible inputs. Various algorithms for doing this are known in the art,

such as a back propagation algorithm based on stochastic gradient descent. Over multiple

iterations the parameters are gradually tuned to decrease their errors, and thus the graph

converges toward a solution. In a subsequent stage, the learned model can then be used to

make predictions of outputs given a specified set of inputs or to make inferences as to inputs

Μ

(causes) given a specified set of outputs, or other introspective forms of analysis can be

The implementation of each node will involve the processing of data, and the

interconnections of the graph correspond to data to be exchanged between, the nodes.

Typically, at least some of the processing of each node can be carried out independently of

some or all others of the nodes in the graph, and therefore large graphs expose opportunities

for huge parallelism.

Summary
As mentioned above, a machine intelligence model representing the knowledge model and

algorithmic information about how the knowledge model is used for learning and inference

can generally be represented by a graph of multiple interconnected nodes, each node having a

processing requirement on data. Interconnections of the graph indicate data to be exchanged

between the nodes and consequently cause dependencies between the program fragments

r.executed at the nodes. Generally, processing at a node can be carried out independently of

another node, and therefore large graphs expose huge parallelism. A highly distributedS’
parallel machine is a suitable machine structure for computation of such machine intelligence

models. This feature enables a machine to be designed to make certain time deterministic

guarantees.

A factor of knowledge models which is exploited in the present disclosure is the generally

static nature of the graph. That is to say that the structure of nodes and graph comprising the

graph does not usually change during execution of machine intelligence algorithms. The

inventors have made a machine which makes certain time deterministic guarantees to

optimise computation on machine intelligence models. This allows a compiler to partition

and schedule work across the nodes in a time deterministic fashion. It is this time

determinism which is utilised in following described embodiments for significant

optimisations in designing a computer optimised to process workloads based on knowledge

models.

According to an aspect of the invention there is provided a computer comprising a plurality

of processing units each having instruction storage holding a local program, an execution unit

executing the local program, data storage for holding data; an input interface with a set of

4

input wires, and an output interface with a set of output wires; a switching fabric connected to

each of the processing units by the respective set of output wires and connectable to each of

the processing units by the respective input wires via switching circuitry controllable by each

processing unit; a synchronisation module operable ίο generate a synchronisation signal to

control the computer to switch between a compute phase and an exchange phase, wherein the

processing units are configured to execute their local programs according to a common clock,

the local programs being such that in the exchange phase at least one processing unit executes

a send instruction from its local program to transmit at a transmit time a data packet onto its

output set of connection wires, the data packet being destined for at least one recipient

processing unit but having no destination identifier, and at a predetermined switch time the

recipient processing unit executes a switch control instruction from its local program to

control its switching circuitry to connect its input set of wires to the switching fabric, to

receive the data packet at a receive time, the transmit time and, switch time and receive; time

being governed by the common clock with respect to the synchronisation signal.

Another aspect of the invention provides a method of computing a function in a computer

comprising: a plurality of processing units each having instruction storage holding a local

program, an execution unit for executing the local program, data storage for holding data, an

input interface with a set of input wires and an output interface with a set of output wires; a

switching fabric connected to each of the processing units by the respective sets of output

wires and connectable to each of the processing units by their respective input wires via

switching circuitry controllable by each processing unit; and a synchronisation module

operable to generate a synchronisation signal to control the computer to switch between a

compute phase and an exchange phase, the method comprising: the processing units

executing their local programs in the compute phase according to a common clock, wherein

at a predetermined time in the exchange phase at least one processing unit executes a send

instruction from its local program to transmit at a transmit time a data packet onto its output

set of connection wires, the data packet being destined for at least one recipient processing

unit but having no destination identifier, and at a predetermined switch time the recipient

processing unit executing a switch control instruction from its local program to control the

switching circuitry to connect its input set of wires to the switching fabric to receive the data

packet at a receive time, the transmit time and switch time and being governed by the

common clock with respect to the synchronisation signal.

■&

5

In principle, the synchronisation signal could be generated to control the switch from a

compute phase into the exchange phase, or from the exchange phase into the compute phase.

For the time deterministic architecture defined herein, however, it is preferred if the

synchronisation signal is generated to commence the exchange phase. In one embodiment.

each processing unit indicates to the synchronisation module that its own compute phase i

complete, and the synchronisation signal is generated by the synchronisation module when all

processing units have indicated that their own compute phase is complete, to commence the

exchange phase.

The transmit time should be predetermined to enable the time deterministic exchange to be

properly completed. It can be determined by being a known number of clock cycles after the

time at which the send instruction is executed, assuming that the time at which the send
> o

instruction is executed is predetermined. Alternatively, the transmit, time could be a know

delay, determined in some other way, from a time known from execution of the send

instruction. What is important is that the transmit time is known relative to the receive time

on an intended recipient processing unit.

Features of the send instruction can include that the send instruction explicitly defines the

send address identifying a location in the data storage from which the data packet is to be

sent. Alternatively, no send address is explicitly defined in the send instruction, and the data

packets are transmitted from a send address defined in a register implicitly defined by the

send instruction. The local program can include a send address update instruction for

updating the send address in the implicit register.

In the embodiments described herein, the switching circuitry comprises a multiplexer having

an exit set of output wires connected to its processing unit, and multiple sets of input wires

connected to the switching fabric, whereby one of the multiple sets of input wires is selected

as controlled by the processing unit. Each set can comprise 32 bits. When 64-bit datum are

utilised, a pair of multiplexes can be connected to a processing unit and controlled together

In the described embodiment the recipient processing unit is configured to receive the data

packet and load it into the data storage at a memory location identified by a memory pointer.

1 he memory pointer can be automatically incremented after each data packet has been loaded

mto the data storage. Alternatively, the local program at the recipient processing unit can

6

include a memory pointer update instruction which updates the memory pointer.

The send instruction may be configured io identify a number of data packets to be sent,

wherein, each data packet is associated with a different transmit time, because they are sent

serially from the processing unit.

One of the sets of input wires of the multiplexer can be controlled to be connected to a null

input. This could be used to ignore datum otherwise arriving at that processing unit.

The recipient processing unit which is intended to receive a particular data packet could be

the same processing unit that executed a send instruction at an earlier time, whereby the same

processing unit is configured to send a data packet and receive that data packet at a later time.

The purpose of a processing unit ‘sending to itself’ might be to adhere an arrangement in its

memory of incoming data interleaved with data received from other processing units.

In some embodiments at least two of the processing units may cooperate in a transmitting

pair wherein a first data packet is transmitted from a first processina unit of the pair via its

output set of connection, wires, and a second data packet is transmitted from the first

processing unit of the pair via the output set of connection wires of the second processing unit

of the pair to effect a double width transmission. In some embodiments at least two of the

processing units may operate as a receiving pair wherein each processing unit of the pair

controls its switching circuitry to connect its respective input set of wires to the switching

fabric to receive respective data packets from respective tiles of a sending pair.

The multiple processing units may be configured to execute respective send instructions to

transmit respective data packets, wherein at least some of the data packets are destined for no

recipient processing units.

The function which is being computed may be provided in the form of a static graph

comprising a plurality of interconnected nodes, each node being implemented by a codelet of

the local programs. A codelet defines a vertex (node) in the graph, and can be considered as

an atomic thread of execution, discussed later in the description. In the compute phase, each

codelet may process data to produce a. result, wherein some of the results are not required for

a subsequent compute phase and are not received by any recipient processing unit. They are

effectively discarded, but without the need to make any positive discard action. In the

~7I
exchange phase the data packets are transmitted between processing units via the switching

fabric and the switching circuitry. Note that in the exchange phase some instructions are

executed from the local program to implement the exchange phase. These instructions

include the send instruction. While the compute phase is responsible for computations, note

that it might, be possible to include some arithmetic or logical functions during the exchange

phase, provided that these functions do not include data dependency on the timing of the local

program so that it remains synchronous.

The time deterministic architecture described herein is particularly useful in contexts where

the graph represents a machine intelligence function.

The switching fabric can be configured such that in the exchange phase data packets are

transmitted through it in a pipeline fashion via a sequence of temporary stores, each store

holding a data racket for one cvcle of the common clock. A

■&>According to another aspect, there is provided a computer implemented method of generating

multiple programs to deliver a computerised function, each program to be executed in a

processing unit of a computer comprising a plurality of processing units each having

instruction storage for holding a local program, an execution unit for executing the loca

program and data storage for holding data, a switching fabric onnectea ico an output interface

of each processing unit and connectable to an input interface of each processing unit by

switching circuitry controllable by each processing unit, and a synchronisation module

operable to generate a synchronisation signal, the method comprising: generating a local

program for each processing unit comprising a sequence of executable instructions;

&determining for each processing un. t a relative time of execution of instructions of each local

program whereby a local program allocated to one processing unit is scheduled to execute

with a predetermined delay relative to a synchronisation signal a send instruction to transmit

at least one data packet at a predetermined transmit time, relative to the synchronisation

signal, destined for a recipient processing unit but having no destination identifier, and a local

program allocated to the recipient processing unit is scheduled to execute at a predetermined

switch time a switch control instruction to control the switching circuitry to connect its

processing unit wire to the switching fabric to receive the data packet at a receive time.

In some embodiments, the processing units have a fixed positional relationship with respect

to each other, and the step of determining comprises determining a fixed delay based on the

positional relationship between each pair of processing units in the computer.

in some embodiments, the fixed positional relationship comprises an array of rows and

columns, wherein each processing unit has an identifier which identifies its position in the

In some embodiments, the switching circuitry comprises a multiplexer having an output set of

wires connected to its processing unit, and multiple set of input wires connectable to the

switching fabric, the multiplexor located on the computer at a predetermined physical

location with respect to its processing unit, and wherein the step of determining comprises

determining the fixed delay for the switch control instruction to reach the multiplexer and an

output data packet from the multiplexer to reach the input interface of its processing unit.

In some embodiments, the method comprises the step of providing in each program a

synchronisation instruction which indicates to the synchronisation module that a compute

phase at the processing unit has completed.

In some embodiments, the step of determining comprises determining for each processing

unit a fixed delay between a synchronisation event on the chip and receiving back at the

processing unit an acknowledgement that a synchronisation event has occurred.

In some embodiments, the step of determining comprises accessing a look-up table holding

information about delays enabling the predetermined send time and predetermined switch

time to be determined.

In some embodiments, the computerised function is a machine learning function.

In some embodiments, the switching circuitry comprises a multiplexer having an output set of

wires connected to its processing unit, and multiple set of input wires connectable to the

switching fabric, the multiplexor located on the computer at a predetermined physical

location with respect to its processing unit, and wherein the step of determining comprises

determining the fixed delay for the switch control instruction to reach the multiplexer and an

output data packet from the multiplexer to reach the input interface of its processing unit.

9

In some embodiments, the step of providing in each program a synchronisation instruction

which indicates to the synchronisation module that a compute phase at the processing unit has

completed.

In some embodiments, the step of determining comprises determining for each processing

unit a fixed delay between a synchronisation event on the chip and receiving back at the

processing unit an acknowledgement that a. synchronisation event has occurred.

In some embodiments, the step of determining comprises accessing a look-up table holding

information about delays enabling the predetermined send time and predetermined switch

time to be determined.

In some embodiments, the computerised function is a machine learning function.

According to another aspect, there is provided a compiler having a processor programmed to

carry out a method of generating multiple programs to deliver a computerised function, each

program to be executed in a processing unit of a computer comprising a plurality of

processing units each having instruction storage for holding a local program, an execution

unit for executing the local program and data storage for holding data, a switching fabric

connected to an output interface of each processing unit and connectable io an input interface

of each processing unit by switching circuitry controllable by each processing unit, and a

synchronisation module operable to generate a synchronisation signal, the method

comprising: generating a local program for each processing unit comprising a sequence of

executable instructions; determining for each processing unit a relative time of execution of

instructions of each local program whereby a local program allocated to one processing unit

is scheduled to execute with a predetermined delay relative to a synchronisation signal a send

instruction to transmit at least one data packet at a predetermined transmit time, relative to the

synchronisation signal, destined for a recipient processing unit but having no destination

identifier, and a local program allocated to the recipient processing unit is scheduled to

execute at a predetermined switch time a switch control instruction to control the switching

circuitry to connect its processing unit, wire to the switching fabric to receive the data packet

at a receive time; the compiler being connected to receive a fixed graph structure representing

the computerised function and a table holding delays enabling the predetermined send time

and predetermined switch time to be determined for each processing unit.

In some embodiments, the computerised function is a machine learning function.

10

In some embodiments, the fixed graph structure comprises a plurality of nodes, each node

being represented by a codelet in a local program.

In some embodiments, the fixed graph structure comprises a plurality of nodes, each node

being represented by a codelet in a local program.

According to another aspect, there is provided a computer program recorded on non

transmissible media and comprising computer readable instructions which when executed by

a processor of a compiler implement a method of generating multiple programs to deliver a

computerised function, each program to be executed in a processing unit of a computer

comprising a plurality of processing units each having instruction storage for bolding a local

program, an execution unit for executing the local program and data storage for holding data,

a switching fabric connected to an output interface of each processing unit and connectable to

an input interface of each processing unit by switching circuitry controllable by each

processing unit, and a synchronisation module operable to generate a synchronisation signal,

the method comprising: generating a local program for each processing unit comprising a

sequence of executable instructions; determining for each processing unit a relative time of

execution of instructions of each, local program whereby a local program allocated to one

processing unit is scheduled to execute with a predetermined delay relative to a

synchronisation signal a send instruction to transmit at least one data packet at a

predetermined transmit time, relative to the synchionisation signal, destined for a recipient

processing unit but having no destination identifier, and a local program allocated to the

recipient processing unit is scheduled to execute at a predetermined switch time a switch

control instruction to control the switching circuitry to connect its processing unit wire to the

switching fabric to receive the data packet at a receive time.

According ίο another aspect, there is provided a computer program comprising a sequence of

instructions for execution on a processing unit having instruction storage for holding the

computer program, an execution unit for executing the computer program and data storage

for holding data, the computer program comprising one or more computer executable

instruction which, when executed, implements: a send function which causes a data packet

destined for a recipient processing unit to be transmitted on a set of connection wires

connected to the processing unit, the data packet having no destination identifier but being

transmitted at a predetermined transmit time; and a switch control function which causes the

11

processing unit to control switching circuitry to connect a set of connection wires of the

processing unit to a switching fabric to receive a data packet at a predetermined receive, time.

In some embodiments, the one or more instruction comprises a switch control instruction and

a send instruction which defines a send address defining a location in the instruction storage

In some embodiments, the send instruction defines a number of data packets to be sent, each

packet being associated with a different predetermined transmit, time.

In some embodiments, the send instruction does not explicitly define a send address but

implicitly defines a register in which a send address is held.
'&■

In some embodiments, the computer program comprises a further instruction for updating the

send address in the implicitly defined register.

In some embodiments, the computer program comprises at least one further instruction

defines a memory pointer update function which updates a memory pointer identifying a

memory location in the data storage for storing the data packet which is received at the

recipient processing unit.

&In some embodiments, the one or more instruction is a merged instruction which merges the

send function and the switch control function in a single execution cycle, whereby the

processing unit is configured to operate to transmit a data packet and to control its switching

circuitry to receive a different data packet from another processing unit.

In some embodiments, the at least one further instruction is a merged instruction which

merges the send function and the memory pointer update function.

In some embodiments, the merged instruction, is configured in a common format with an

opcode portion which designates whether it merges the send function with the memory

pointer update function or the switch control function.

Λ **1Ζ

In some embodiments, the one or more instruction is a single instruction which merges the

send function, switch control function and memory pointer' update function in a single

execution cycle.

In some embodiments, eatch one or more instruction has a first bit width which matches a bit

•width, of a fetch stage of the execution unit.

In some embodiments, each one or more instruction has a first bit width which matches

width of a fetch stage of the execution unit, and wherein: the instruction which merges the &
send function, switch control function and memory pointer update function has a second bit

width which is twice the bit width of the fetch stage of the execution unit.

In some embodiments., each one or more instruction has a first bit width which matches a bit

width of a fetch stage of the execution unit, and wherein: the instruction of a first bit width

JVi iidentifies an operand of the first bit width, the operand implementing the switch control

function and memory write update function.

In some embodiments, the computer program comprises a synchronisation instruction which

generates an indication when a compute phase of the processing unit has been completed.

In some embodiments, the computer program is recorded on a non-transmissible computer

readable media.

In some embodiments, the computer program is in the form of a transmissible signal.

According to another aspect, there is provided a processing unit comprising instruction

storage, an execution unit configured to execute a computer program and data storage for

holding data, wherein the instruction storage holds a computer program comprising one or

more computer executable instruction which, when executed by the execution unit,

implements: a send function which causes a data packet, destined for a recipient processing

unit to be transmitted on a set of connection wires connected to the processing unit, the data

packet having no destination identifier but being transmitted at a predetermined transmi

time; and a switch control function which causes the processing unit to control switching

Q

circuitry to connect a set of connection wires of the processing unit, to a switching fabric to

receive a data packet at a predetermined receive time.

According to another aspect, there is provided a computer comprising one or more die in an

integrated package, the computer comprising a plurality of processing units, each processing

unit, having instruction storage· for holding a computer program, an execution unit, configured

to execute the computer program and data storage for holding data, wherein the instruction

storage for each processing unit holds a computer program comprising one or more compute

executable instruction which, when executed, implements: a send function which causes a

data packet destined for a recipient processing unit to be transmitted on a set of connectionillC!

wires connected to the processing unit, the data packet having no destination identifier but

being transmitted at a predetermined transmit time; and a switch control function -which

causes the processing unit to control switching circuitry to connect a set of connection wires

j-^4· tn« <.21 LI tv-ie processing unit to a switching fabric io receive a data packet at a predetermined receive

time.

Brief description of the drawings

For a better understanding of the present, invention and to show how the same may be carried

into effect reference will now be made by way of example to the following drawings.

Figure 1 illustrates schematically the architecture of a single chip processor;

Figure 2 IS a schematic diagram of a tile connected to the switching fabric;

Figure 3 iS a diagram illustrating a BSP protoco

Figure 4 a schematic diagram showing two tiles in a time deterministic exchange;

IS a schematic timing diagram illustrating a time deterministic exchange;

Figure 6 is one example of a machine intelligence graph;

is a schematic architecture illustrating operation of a compiler for generating time

Figures 8 to 11 illustrate instruction formats of different instructions usable in a time

de terministic architecture.

Figure 12 is a schematic diagram, of two tiles operating as a transmitting pair; and

Figure 13 is a schematic diagram of two tiles operating as a receiving pair.

Detailed description of the embodiments

14

1

έί·

Figure 1 illustrates schematically the architecture of a single chip processor 2. The processor

is referred to herein as an I.PU (Intelligence Processing Unit) to denote its adaptivity to

machine intelligence applications. Irt a computer, the single chip processors can be connected

together as discussed later, using links on the chip, to form a computer. The present

description focuses on the architecture of the single chip processor 2. The processor 2

comprises multiple processing units referred to as tiles. In one embodiment, there are 1216

tiles organised in arrays 6a, 6b which are referred to herein as “North” and “South”. In the

described example. each array has eieht columns of 76 tiles tin fact generally there will be 80

tiles, for redundancy purposes). It will be appreciated that the concepts described herein

extend to a number of different physical architectures - one example is given here to aid

understanding. The chip 2 has two chip to host, links 8a, 8b and 4 chip to chip links 30a, 30b

arranged on the “West” edge of the chip 2. The chip 2 receives work from a host (not shown)

which is connected to the chip via one of the card-to-host links in the form of input data to be

processed by the chip 2. The chips can be connected together into cards by a birther 6 chip-

to-chip links 30a, 30b arranged along the “East” side of the chip. .A host may access a

computer which is architected as a single chip processor 2 as described herein or a group of

multiple interconnected single chip processors 2 depending on the workload from the host

application.

The chip 2 has a clock 3 which controls the timing ofchip activity. The clock is connected to

all of the chip’s circuits and components. The chip 2 comprises a time deterministic

switching fabric 34 to which all tiles and links are connected by sets of connection wires, the

switching fabric being stateless, i.e. having no program visible state. Each set of connection

wires is fixed end to end. The wires are pipelined, in this embodiment, a set comprises 32

data wires plus control wires, e.g. a valid bit. Each set can carry a 32-bit data packet, but note

herein that the word “packet” denotes a set of bits representing a datum (sometimes referred

to herein as a data item), perhaps with one or more valid bit. The “packets” do not have

headers or any form of destination identifier which permits an intended recipient to be

uniquely identified, nor do they have end-of-packet information. Instead, they each represent

a numerical or logical value input to or output from, a tiie. Each tile has its own local memory

(described later). The tiles do not share memory. The switching fabric constitutes a cross set

of connection wires only connected to multiplexers and tiles as described later and does not

hold any program visible state. The switching fabric is considered to be stateless and does not

use any memory. Data exchange between tiles is conducted on a time deterministic basis as

le has

15

described herein. A pipelined connection 'wire comprises a series of temporary stores, e.g.

latches or flip flops which hold datum for a clock cycle before releasing it to the next store.

Time of travel along the wire is determined by these temporary stores, each one using up a

clock cycle of time in a path between any two points.

Figure 2 illustrates an example tile 4 in accordance with embodiments of the present

disclosure. In the tile, multiple threads are interleaved through a single execution pipeline.

The tile 4 comprises: a plurality of contexts 26 each arranged to represent the state of a

different respective one of a plurality of threads; a shared instruction memory 12 common to

the plurality of threads; a shared data memory 22 that is also common to the plurality of

threads; a shared execution pipeline 14, 16, 18 that is again common to the plurality of

threads; and a thread scheduler 24 for scheduling the plurality of threads for execution

through the shared pipeline in an interleaved manner. The thread scheduler 24 is

schematically represented in the diagram by sequence of time slots So ..Ss, but in practice is a

hardware mechanism managing program counters of the threads irt relation to their time slots.

The execution pipeline comprises a fetch stage 14, a decode stage 16, and an execution stage

18 comprising an execution unit (EXll) and a load/store unit (LSU). Each of the contexts 26

comprises a respective set of registers Ro, Ri... for representing the program state of the

respective thread.

Ti zv

The fetch stage 14 is connected to fetch instructions to be executed from the instruction

memory 12. under control of the thread scheduler 24. The thread scheduler 24 is configured

to control the fetch stage 14 to fetch instructions from the local program for execution in each

time slot as will be discussed in more detail below.

The fetch stage 14 has access to a program counter (PC) of each of the threads that is

currently allocated to a time slot. For a given thread, the fetch stage 14 fetches the next

instruction of that thread from the next address in the instruction memory 12 as indicated by

the thread’s program counter. Note that an instruction as referred to herein, means a machine

code instruction, i.e. an instance of one of the fundamental instructions of the computer’s

instruction set, made up of an opcode and zero or more operands. Note too that the program

loaded into each tile is determined by a processor or compiler to allocate work based on the

graph of the machine intelligence model being supported.

16

The fetch stage 14 then passes the fetched instruction to the decode stage 16 to be decoder

and the decode stage 16 then passes an indication of the decoded instruction to the execution.

stage 18 along with lite decoded addresses of any operand registers of the current context

specified in the instruction, in order for the instruction to be executed.

In the present example, the thread scheduler 24 interleaves threads according to a round-robin

scheme whereby, within each round of the scheme, the round is divided into a sequence of

time slots So, Si, S2, S3, each for executing a respective thread. Typically each slot is one

processor cycle Jong and the different slots are evenly sized (though not necessarily so in all

possible embodiments). This pattern then repeats, each round comprising a respective

instance of each of the time slots (in embodiments in the same order each time, though again

not necessarily so in all possible embodiments). Note therefore that a time slot as referred to

herein means the repeating allocated place in the sequence, not a particular instance of the

resource, e.g. register, for managing the context of an executing thread.

One of the contexts 26, labelled SV, is reserved for a special function, to represent the state 0

a “supervisor” (SV) whose job it is to coordinate the execution of “worker” threads., The

supervisor can be implemented as a program organised as one or more supervisor threads

which may run concurrently, The supervisor thread, may also be responsible for performing

barrier synchronisations described later or may be responsible for exchanging data on and off

the tile, as well as in and out of local memorv so that is can be shared between the worker

threads between computations. The thread scheduler 2.4 is configured so as, when the

program as a whole starts, to begin by allocating the supervisor thread to all of the time slots.

i.e. so the supervisor SV starts out running in all time slots S0...S5. However, the supervisor

thread is provided with a mechanism for, at some subsequent point (either straight away or

after performing one or more supervisor tasks), temporarily relinquishing each of the slots in

which it is running to a respective one of the worker threads Co, Cj denote slots to which a

worker thread has been allocated. This is achieved by the supervisor thread executing a

relinuuish instruction, called “RUN” bv wav of example herein. In embodiments this

instruction takes two operands: an address of a ’worker thread in the instruction memory 12

and an. address of some data for that thread in the data memory 22:

RUN task_addr, data_addr

17

Each worker thread is a codelet intended to represent a vertex in the graph and to execute

atomically. That is all the data it consumers is available at launch and all the data it produces

is not visible to other threads until it exits. It runs to completion (excepting error

condidons).The data address may specify some data to be acted upon by the codelet.

Alternatively, the relinquish instruction may take only a single operand specifying the

address of the codelet, and the data address could be included in the code of the codelet; or

iethe single operand could point to a data structure specifying the addresses of the codelet and

data. Codelets may be run concurrently and independently of one another.

Either way, this relinquish instruction (“RUN”) acts on the thread scheduler 24 so as to

relinquish the current time slot, i.e. the time slot in which this instruction is executed, to the

worker thread specified by the operand. Note that it is implicit in the relinquish instruction

that it is the time slot in which this instruction is executed that is being relinquished (implicit

in the context of machine code instructions means it doesn’t need an operand to specify this -

it is understood implicitly from the opcode itself). Thus the slot which is given away is the

slot which the supervisor executes the relinquish instruction in. Or put. another way, the

supervisor is executing in the same space that it gives away. The supervisor says “run this

codelet at this time slot’and then from that point onwards the slot is owned (temporarily) by

the relevant worker thread. Note that when a supervisor uses a slot it does not use the context

associated with that slot but uses its own context SV.

The supervisor thread SV performs a similar operation in each of the time slots, to give away

all its slots Co, Ci to different, respective ones of the worker threads. Once it has done so for

the last slot, the supervisor pauses execution, because it has no slots in which to execute.

Note that the supervisor may not give away all its slots, it may retain some for running itself.

When the supervisor thread determines it is time to run a codelet, it uses the relinquish

instruction (“RUN”) to allocate this codelet to die slot in which it executes the ’RUN'

instruction.

Each of the worker threads in slots Co, Ci proceeds to perform its one or more compt

asks. At the end of its task(s), the worker thread then hands the time slot in which it i:

running back to the supervisor thread.

This is achieved by the worker thread executing an exit instruction (“EXIT”). In one

embodiment, the EXIT instruction takes at least one operand and preferably only a single

18

operand, exit state (e.g. a binary value), to be used for any purpose desired by the.

programmer to indicate a state of the respective codelet upon ending.

EXIT exit state

In one embodiment, the EXIT instruction acts on the scheduler 24 so that the time slot in

which it is executed is returned back to the supervisor thread. The supervisor thread can then

perform one or more subsequent supervisor tasks (e.g. barrier synchronization and/or
</

movement of data in memory to lacilitale the exchange of data between worker threads),

and/or continue to execute another relinquish instruction to allocate a new worker thread r .4/21(W4, etc.) to the slot in question. Note again therefore that the total number of threads in the

instruction memory 12 may be greater than the number that barrel-threaded processing unit

10 can interleave at any one time. It is the role of the supervisor thread SV to schedule which

of the worker threads WO... Wj from the instruction memory 12, at which stage in the overall

program, are to be executed.Λ W ’

In another embodiment, the EXIT instruction does not need to define an exit state.

This instruction acts on the thread scheduler 24 so that the time slot, in which it is executed is

returned back to the supervisor thread. The supervisor thread can then perform one or more

supervisor subsequent tasks (e.g. barrier synchronization and/or exchange of'data), and/or

continue to execute another relinquish instruction, and so forth.

As briefly mentioned above, data is exchanged between tiles in the chip. Each chip operates

a Bulk Synchronous Parallel protocol, comprising a compute phase and an exchange phase.

&The protocol is illustrated for example in Figure 3. The left-hand diagram in Figure 3

represents a compute phase in which each tile 4 is in a phase where the stateful codelets

execute on local memory (12, 22). Although in Figure 3 the tiles 4 are shown arranged in a

circle this is for explanatory purposes only and does not reflect, the actual architecture.

After the compute phase, there is a synchronisation denoted by arrow 30. To achieve this, a

SYNC (synchronization) instruction is provided in the processor’s instruction set. The SYNC

instruction has the effect of causing the supervisor thread SV to wait until all currently

19

executing workers W have exiled by means of an EXIT instruction. In embodiments the

SYNC instruction takes a mode as an operand (in embodiments its only operand), the mode

specifying whether the SYNC is to act only locally in relation to only those worker threads

running locally on the same processor module 4, e.g. same tile, or whether instead it. is to

apply across multiple tiles or even across multiple chips.

SYNC mode

BSP in itself is known in the art. According to BSP, each tile 4 performs a compute phase 52

and an exchange (sometimes called communication or message-passing) phase 50 in an

alternating cycle. The compute phase and exchange phase are performed by the tile executing

instructions. During the compute phase 52 each tile 4 performs one or more computation

tasks locally on-tile, but does not communicate any results of these computations with any

others of the tiles 4. In the exchange phase 50 each tile 4 is allowed to exchange

(communicate) one or more results of the computations from the preceding compute phase to

and/or from one or more others of the tiles in the group, but. does not yet perform any new

computations that have a potential dependency on a task performed on another tile 4 or upon

which a task on another tile 4 might potentially have a dependency (it is not excluded that

other operations such as internal control-related operations rnav be performed in the exchange

phase). Further, according to the BSP principle, a barrier synchronization is placed at the

juncture transitioning from the compute phases 52 into the exchange phase 50, or the juncture

transitioning from the exchange phases 50 into the compute phase 52, or both. That is it say,

either: (a) all tiles 4 are required to complete their respective compute phases 52 before any in

the group is allowed to proceed to the next exchange phase 50, or (b) all tiles 4 in the group

are required to complete their respective exchange phases 50 before any tile in. the group is

allowed to proceed to the next compute phase 52, or (c) both of these conditions is enforced.

This sequence of exchange and compute phases may then repeat over multiple repetitions. In

BSP terminology, each repetition of exchange phase and compute phase is referred to herein

as a “superstep”, consistent with usage in some prior descriptions of BSP. It is noted herein

that the term ‘‘superstep’’ is sometimes used in the art. to denote each of the exchange phase

and compute phase.

20

The execution, unit (EXU) of the execution stage 18 is configured so as, in response to the

opcode of the SYNC instruction, when qualified by the on-chip (inter-tile) operand, to cause

the supervisor thread in which the “SYNC chip’' was executed to be paused until all the tiles

4 in the array 6 have finished running workers. This can be used to implement a barrier to the can

next BSP superstep, i.e. after all tiles 4 on the chip 2 have passed the barrier, the cross-tile

program as a whole can progress to the next exchange phase 50.

that each tile is ready to send data, the synchronisation process 30 causes the system to enter

an exchange phase which is shown on the right-hand side of Figure 3. In this exchange phase,

data values move between tiles (in fact between the memories of tiles in a mcraory-to-

memory data movement). In the exchange phase, there are no computations which might

induce concurrency hazards between tile programs. In the exchange phase, each datum

moves along the connection wires on which it exits a tile from a transmitting tile to one or

multiple recipient tile(s). At each clock cycle, datum moves a certain distance along its path

(store to store), in a pipelined fashion. When a datum is issued from a tile, it is not issued

expecting a datum from a certain transmitting tile at a certain time. Thus, the computer

described herein is time deterministic. Each tile operates a program which has been allocated

to it by the programmer or by a compiler exercise, where the programmer or the compiler

function has knowledge of what will be transmitted by a particular tile at a certain time and

what needs to be received by a recipient tile at a certain time. In order to achieve this, SEND

instructions are included in the local programs executed by the processor on each tile, where

the time of execution of the SEND instruction is predetermined relative to the timing of other

instructions being executed on other tiles in the computer. This is described in more detail

later, but firstly the mechanism by which a recipient tile can receive a datum at a

predetermined time will be described. Each tile 4 is associated with its own multiplexer 210:

thus, the chip has 1216 multiplexer. Each multiplexer has 1216 inputs, each input being 32-

bits wide (plus optionally some control bits).Each input is connected to a respective set of

connecting wires 140x in the switching fabric 34. The connecting wires of the switching

fabric are also connected to a data out set of connection wires 218 from each tile (a broadcast

exchange bus, described later), thus there are 1216 sets of connecting wires which in this

embodiment extend in a direction across the chip. For ease of illustration, a single

emboldened set of wires 140sc is shown connected to the data out wires 218s, coming from a

21

tile not shown in Figure 2, in the south array 6b. This set of wires is labelled 140x to indicate

that it is one of a number of sets of crosswires 140ο-140i215. As can now be seen from Figure

2, it will be appreciated that when the multiplexer 210 is switched to the input labelled 220A

then that will connect, to the crosswires 140x and thus to the data out wires 218s of the tile

that input (220sc) at a certain time, then the datum received on the data out wires which is

connected to the set of connecting wire I40x will appear at the output 230 of the multiplexer

210 at a certain time. It will arrive at the tile 4 a certain delay after that, the delay depending

on the distance of the multiplexer from the tile. As the multiplexers form part of switching

fabric, the delay from the tile to the multiplexer can vary depending on the location of the

tile. To implement the switching, the local programs executed on the tiles include switch

control instructions (PUTi) which cause a multiplexer control signal 214 to be issued t· ο

control the multiplexer associated with that tile to switch its input at a certain time ahead of

the time at which a particular datum is expected to be received at the tile. In the exchange

phase, multiplexers are switched and packets (data) are exchanged between tiles using the

switching fabric. It is clear from this explanation that the switching fabric has no state - the

movement of each datum is predetermined by the particular set of wires to which the input of

each multiplexer is switched.

In the exchange phase, an all tiles to all tiles communication is enabled. The exchange phase

can have multiple cycles. Each tile 4 has control of its own unique input multiplexer 210.

Incoming traffic from any other tile in the chip, or from one of the connection links can be

selected. Note that it is possible for a multiplexer to be. set to receive a ‘null’ input --- that is,

larno input from any other tile in that particular exchange phase. Selection can change cycle-by-

cycle within an exchange phase; it does not have to be constant throughout. Data may be

exchanged on chip, or from chip to chip or from chip to host depending on the link which is

selected. The present application is concerned mainly with inter-tile communication on a

chip. To perform synchronisation on the chip, a small number of pipelined signals are are

provided from all of the tiles to a sync controller 36 on the chip and a pipelined sync-ack

signal is broadcast from the sync controller back to all tiles. In one embodiment the pipelined

signals are one-bit- wide daisy chained AND/OR signals. One mechanism by which

synchronisation between tiles is achieved is the SYNC instruction mentioned above, or

described in the following. Other mechanism may be utilised: what is important is that all

tiles can be synchronised between a compute phase of the chip and an exchange phase of the

no

chip (Figure 3). The SYNC instruction triggers the following functionality to be triggered in

dedicated synchronization logic on the tile 4, and in the synchronization controller 36. The

synch controller 36 may be implemented in the hardware interconnect 34 or, as shown, in a

separate on chip module. This functionality of both the. on-tile sync logic arid the

synchronization controller 36 is implemented in dedicated hardware circuitry such that, once

the SYNC chip is executed, the rest of the functionality proceeds without further instructions

being executed to do st0.

Firstly, the on-tile sync logic causes the instruction issue for the supervisor on the tile 4 in

question to automatically pause (causes the fetch stage 14 and scheduler 24 to suspend

issuing instructions of the supervisor). Once all the outstanding worker threads on the local

tile 4 have performed an EXIT, then the sync logic automatically sends a synchronization

request “sync_req” to the synchronization controller 36. The local tile 4 then continues to

wait with the supervisor instruction issue paused. A similar process is also implemented on

each of the other tiles 4 in the array 6 (each comprising its own instance of the sync logic).

Thus at some point, once all the final workers in the current compute phase 52 have EXITed

on all the tiles 4 in the array 6, the synchronization controller 36 will have received a

respective synchronization request (sync_req) from all the tiles 4 in the array 6. Only then, in

response to receiving the sync_.req from every tile 4 in the army 6 on the same chip 2, the

synchronization controller 36 sends a synchronization acknowledgement signal “sync

back to the sync logic on each of the tiles 4. Up until this point, each of the tiles 4 has had its

supervisor instruction issue paused waiting for the synchronization acknowledgment signal

(sync..ack). Upon receiving the sync...ack signal, the sync logic in the tile 4 automatically

unpauses the supervisor instruction issue for the respective supervisor thread on that tile 4.

The supervisor is then free to proceed with exchanging data with other tiles 4 in via the

interconnect 34 in a subsequent exchange phase 50.

ack”

O'

λ’

Preferably the sycn_req and sync_ack signals are transmitted and received to and from the

synchronization controller, respectively, via one or more dedicated sync wires connecting

each tile 4 to the synchronization controller 36 in the interconnect 34.

The connection structure· of the tile will now be described in more detail.

an exin interface 224 which passes data from the switching fabric 34 to the tile 4;

23

an exout interface 226 which passes data from the tile to the switching fabric over the

broadcast exchange bus 218; and

an exmux interface 228 which passes the control mux signal 214 (mux-select) from

the tile 4 to its multiplexer 210.A

In order to ensure each individual tile executes SEND instructions and switch control

instructions at appropriate times to transmit and receive the correct data, exchange scheduling

requirements need to be met by the programmer or compiler that allocates individual

programs to the individual tiles in the computer. This function is carried out by an exchange

scheduler which needs to be aware of the following exchange timing (BNET) parameters. In

order to understand the parameters, a simplified version of Figure 2 is shown in Figure 4.

Figure 4 also shows a recipient tile as well as a transmitting tile.

TID

1i

I. The relative SYNC acknowledgement delay of each tile, BNET_RSAK (TID),

Is the tile identifier held in a TILE.JD register described later. This is a number of cycles

always greater than or equal to 0 indicating when each tile receives the ack signal from the

sync controller 36 relative to the earliest receiving tile. This can be calculated from the tile

ID, noting that the tile ID indicates the particular location on die chip of that tile, and

therefore reflects the physical distances. Figure 4 shows one transmitting tile. 4% and one

recipient tile 4r. Although shown only schematically and not to scale, the tile 4τ is indicated

closer to the sync controller and the tile 4r is indicated being further away, with the

consequence that the svnc acknowledsement delav will be shorter to the tile 4t than for the

tile 4n. A particular value will be associated with each tile for the sync acknowledgement

delay. These values can be held for example in a delay table, or can be calculated on the fly

each time based on the tile ID,

II. The exchange mux control loop delay, BNET.MXP (TID of receiving tile).

This is the number of cycles between issuing an instruction (PUTi-MUXptr) that changes a

tile’s input mux selection and the earliest point at which the same tile could issue a

(hypothetical) load instruction for exchange data stored in memory as a result of the new mux

selection. Looking at Figure 4, this delay comprises the delay of the control signal getting

from the exmux interface 228r of recipients tile 4r to its multiplexer 210k. and the length of

the line from the output of the multiplexer to the data input exin interface 224.

Z'-l

III. The tile to tile exchange delay, BNETJTT (T1D of sending tile, TID of

receiving tile). This is the number of cycles between a SEND instruction being issued on one

tile and the earliest point at which the receiving tile could issue a (hypothetical) load

instruction pointing to the sent value in its own memory. This has been determined from the

tile IDs of the sending and receiving tiles, either by accessing a table such as has already been

discussed, or by calculation.. Looking again at Figure 4, this delay comprises the time taken

for data to travel from transmit tile 4y from its ex„out interface 226t to the switching fabric

14 along its exchange bus 21 8t and then via the input mux 210r at the receiving tile 4r to the

ex in interface 224r of the receiving tile.

IV. The exchange traffic memory pointer update delay, BNET_MMP(). This is

the number of cycles between issuing an instruction (PUTi-MEMptr) that changes a tile’s

exchange input traffic memory pointer and the earliest point at which that same tile could

issue a (hypothetical) load instruction for exchange data stored in memory as a result of the

new pointer. This is a small, fixed, number of cycles. The memory pointer has not yet been

discussed, but is shown in Figure 2 referenced 232. It. acts as a pointer into the data memory

202 and indicates where, incoming data from the ex__in interface 224 is io be stored. This is

described in more detail later.

Figure 5 shows the exchange limings in more depth. On the left -hand side of Figure 4 is the

IPU clock cycles running from 0-30. Action on the sending tile 4-r occurs between IPU clock

cycles 0 and 9, starting with issuance of a send instruction (SEND F3). In IPU clock cycles

10 through 24, the datum pipelines its way through the switching fabric 34.

Looking at the receiving tile 4r in IPU clock cycle 11 a PUTi instruction is executed that

changes the tile input mux selection: PUTi-MXptr (Fd). In Figure 5, this PUTi. instruction is

labelled as “PUTi INCOMING MUX (F3)”.

In cycle 18, the memory pointer insuructiou is executed, PUTi-MEMptr (F3), allowing for a

load instruction in ITU clock cycle '25. In Figure 5, this PUT! instruction is labelled as “PUTi

INCOMING ADR (F3)”.

J
On the sending tile 4t, IPU clock cycles 1,3 and .5 are marked “Transport ()”. This is an

infernal tile delay between the issuance of a SEND instruction and the manifestation of the

data of the SEND instruction on the exout interface F-4. EL E3 etc. denote datum from

earlier SEND instructions in transport to the exout interface. IPU clock cycle 2 is allocated to

forming an. address EO for a SEND instruction. Note this is where EO is to be fetched ffon'

not its destination address. In IPU clock cycle 4 a memory macro is executed to fetch E2

from memory. In IPU clock cycle 6 a parity check is performed on E4. In IPU clock cycle 7 a

MUX output instruction is executed to send E5. In IPU clock cycle 8 E6 is encoded and in

IPU clock cvcle E7 is output.-· Λ

In the exchange fabric 34, IPU clock cycles 10 through 24 are labelled "‘exchange pipe

stage”. In each cycle, a datum moves “one step” along the pipeline (between temporary

stores).

Cycles 25 - 28 denote the delay on the recipient tile 4r between receiving a datum at the exin

interface (see Mem Macro (E2) for Exc), while cycles 25 -- 29 denote the delay between

receiving a datum at the exin interface and loading it into memory (see Mem Macro (E2)) for

LD. Other functions can be carried out in that delay - see Earliest LD (F3). Reg file rd (F4),

In simple terms, if the processor of the receiving tile 4r wants to act on a datum (e

which was the output of a process on the transmitting tile 4t, then the transmitting tile 4=- has

to execute a SEND instruction [SEND (F3) at a certain time (e.g. IPU clock cycle 0 in Figure

5)., and the receiving tile has to execute a switch control instruction PUTi EXCH MXptr (as

in IPU clock, cycle 11) by a certain time relative to the execution of the SEND instruction

[SEND (F3)] on the transmitting tile. This will ensure, that the data arrives ai the recipient tile

n time to be loaded [earliest LD (F3)J in IPU cycle 25 for use in a codelet being executed at

the recipient tile.

Note that the receive process at a recipient tile does not need to involve setting the memory

pointer as with instruction PUTi MEMptr. Instead, the memory pointer 232 (Figure 2)

automatically increments after each datum is received at the exin interface 22-4. Received

■% rr
data is then just loaded into the next available memory location. However, the ability to

change the memory pointer enables the recipient tile to alter the memory location at which

the datum is written. All of this can be determined by the compiler or programmer who writes

the individual programs to the individual tiles such that they properly communicate. This

results in the timing of an internal exchange (the inter exchange on chip) to be completely

time deterministic. This time determinism can be used bv the exchange scheduler to highlv

optimise exchange sequences.

Figure 6 illustrates an example application of the processor architecture disclosed herein,

namely an application to machine intelligence.

raph. Further, one or

As mentioned previously and as will be familiar to a person skilled in the art of machine

intelligence, machine intelligence begins with a learning stage where the machine intelligence

algorithm learns a knowledge model. The model may be represented as a graph 60 of

interconnected nodes 102 and links 104. Nodes and links may be referred to as vertices and

edges. Each node 102 in the graph has one or more input edges and one or more output edges,

wherein some of the input edges of some of the nodes 102 are the output edges of some

others of the nodes, thereby connecting together the nodes to form the g

more of the input edges of one or more of the nodes 102 form the inputs

whole, and one or more of the output edges of one or more of the nodes

of the graph as a whole. Each edge 104 communicates a value commonly in the form of a

tensor (n-dirnensional matrix), these forming the inputs and outputs provided to and from, the

nodes 102 on their input and output edges respectively.

to the graph as a

102 form the outputs

Each node 102 represents a function of its one or more inputs as received on its inout edge or

edges, with die result of this function being the output(s) provided on the output edge or

edges. These results are sometimes referred to as activations. Each function is parameterized

by one or more respective parameters (sometimes referred to as weights, though they need

not necessarily be multiplicative weights). In general the functions represented by the

different nodes 102 may be different forms of function and/or may be parameterized by

di f f ere n t para meters.

Further, each of the one or more parameters of each node’s function is characterized by a

respective error value. Moreover, a respective error condition may be associated with the

error; s) in the parameters) of each node 102, For a node 102 representing a function

27

parameterized by a single error parameter, the error condition may be a simple threshold, i.e,

the· error condition is satisfied if the error is within the specified threshold but not satisfied if

the error is beyond the threshold. For a node 102 parameterized by more than one respective

parameter, the error condition for that node 102 may be more complex. For example, the

error condition may be satisfied only if each of the parameters of that node 102 tails within

respective threshold. As another example, a combined metric may be defined combining the

errors in the different parameters for the same node 102, and the error condition may be

satisfied on condition that the value of the combined metric falls within a specified threshold,

but otherwise the error condition is not satisfied if the value of the combined metric is beyond

the threshold (or vice versa depending on the definition of the metric). Whatever the error

condition, this gives a measure of whether the error in the parameters) of the node falls

below a certain level or degree of acceptability.

In the learning stage the algorithm receives experience data, i.e. multiple data points

representing different possible combinations of inputs to the graph. .As more and more

experience data is received, the algorithm gradually tunes the parameters of the various nodes

102 in the graph based on the experience data so as to try to minimize the errors in the

parameters. The goal is to find values of the parameters such that, the output of the graph is

as as close as possible to a desired result. As the graph as a whole tends toward such a state,

the calculation is said to converge.

For instance, in a supervised approach, the input experience data takes the form of training

data, i.e. inputs which correspond to known outputs. With each data point, the algorithm can

tune the parameters such that the output more closely matches the known output for the given

input. In the subsequent prediction stage, the graph can then be used to map an input query to

an approximate predicted output (or vice versa if making an inference). Other approaches are

also possible. For instance, in an unsupervised approach, there is no concept of a reference

result per input datum, and instead the machine intelligence algorithm is left to identify its

own structure in the output data. Or in a reinforcement approach, the algorithm tries out at

least one possible output for each data point in the input experience data, and is told whether

this output is positive or negative (and potentially a degree to which it is positive or

negative), e.g. win or lose, or reward or punishment, or such like. Over many trials the

algorithm can gradually tune the parameters of the graph to be able to predict inputs that will

result in. a positive outcome. The various approaches and algorithms for learning a graph will

be known to a person skilled in the art of machine learning.

28

According to an exemplary application of the techniques disclosed herein, each worker thread

is programmed to perform the computations associated with a respective individual one of the

nodes 102 in a machine intelligence graph. In this case the edges 104 between nodes 102

correspond to the exchanges of data between threads, at least some of which may involve

Figure 7 is a schematic diagram illustrating the function of a compiler 70. The compiler

receives such a graph 60 and compiles the functions in the graphs into a multiplicity of

codelets, which are contained into local programs labelled 72 in Figure 7. Each local program

is designed to be loaded into a particular tile of the computer. Each program comprises one or

70 o! Z>3-9 /more codelets /2a, 72b...plus a supervisor sub-program 73 each formed of a sequence of

instructions. The compiler generates the programs such that they are linked to each other in

time that is they are time deterministic. In order to do this the compiler accesses tile data 74

which includes tile identifiers which are indicative of the location of the tiles and therefore

the delays which the compiler needs to understand in order to generate the local programs.

The delays have already been mentioned above, and can be computed based on the tile data.

Alternatively, the tile data can incorporate a data structure in which these delays are available

through a lookup table.

There now follows a description of novel instructions which have been developed as part of

the instruction set for the computer architecture defined herein. Figure 8 shows a SEND

instruction of 32 bits. A SEND instruction indicates a data transmission from tile memory. It

causes one or more data stored at a particular address in the local memory 22 of a tile to be

transmitted at the exout interface of a tile. Each datum, (referred to as ‘'item’" m th«

instruction) can be one or more words long. A SEND instruction acts on one word or multiple

words to implement a send function. The SEND instruction has an opcode. 80, a field 82

denoting a message count, the number of items to be sent in the form of one or more packet

from the SEND address denoted in an address field 84. The field 84 defines the address in the

local memory from which the items are to be sent in the form of an immediate value which is

added to a base value stored in a base address register. The SEND instruction also has a send

control field 86 (SCTL) which denotes the word size, selected as one of 4 and 8 bytes. The

he items is not uniquely identified in the instruction. The send function causes the specified

number of data items from the send address to be accessed from the local memory and placed

29

at the ex_out interface of the die to be transmitted at the next clock cycle. In another variation

of the SEND instruction, the address from which items are to be sent could be implicit’, taken

from base value in the base address register and a delta value in an outgoing delta register.

The delta value may be set based on information in a previous SEND instruction. In place of x ■ r

a unique identifier of the intended recipient tile, the compiler has arranged that the correct.

recipient tile will switch its local multiplexer(s) at the correct time to receive the datum (data

items) as already described herein. Note that an intended recipient tile could be the

transmitting tile itself in some cases

To this end, a switch control function is provided, as described above. Figure 9 illustrates a

PUT-i-MUX instruction which performs this function. An opcode field 90 defines the

instruction as a PUT-i-MUX instruction. A delay period can be specified by a delay

immediate value 92. This delay value can be used to replace ‘no op’ instructions, and is a

way to optimise code compression. This instruction, when executed, defines in

incoming__mux field 98 which input of the multiplexer 210 is to be set to ‘listen’ for items

which have been sent from another tile. For the sake of compactness, this mux control

function could be combined in a single instruction with a send function defined above, as

shown in Figure 10. Note that there is no connection between the send function, which causes

the tile to act as a transmitting tile, and the switch control function, which is a function when

she tile is acting as recipient tile, other than that they can be performed in a single execution

cycle on the same tile.

Figure 10 is an example of a “merge” instruction. In this context, a “mi •ge instruction

(a <means an instruction that defines two or more functions which can be carried out at the same

time (in one execution cycle) on one tile

Figure 10 illustrates a form of ‘merge’ send instruction, wherein a send function is combined

•with a second function 'which can modify the state held in registers at the tile. One function is

io change the memory pointer for data received at that tile. Another function is to set Die

incoming MUX. The PUTiJVlEMptr function enables a memory location in the local

memory at which the next datum received by the tile is to be loaded to be identified. This

function could be carried out by a dedicated ‘receive’ instruction, although its function is not

to enable receipt, of a datum but to modify the memory pointer. In fact, no specific instruction

needs to be executed to receive data at a tile. Data arriving at the ex in interface will be loaded

30

into the next memory location identified by the memory pointer, under the control of the exin

interface. The instruction of Figure 10 has opcode field 100 and a number of items to be sent

field 102. The immediate value in incoming state modification field 106 is written to an

exchange configuration state register specified by field 104. In one form, the state

modification field 106 may write an incoming delta for calculating the receive address to

which the memory pointer is to be set. In another form the exchange configuration state is

written with the incoming MUX value which sets the multiplexer input.

For this form of “merge” instructions, the send function uses a send address determined from

values stored in one or more registers which is implicit, in the instruction. For example, the

send address can be determined from the base register and the delta register.

Figure 11 shows a “double width” instruction, referred to as an exchange instruction

(EXCH). This instruction initiates a data transmission from an indicated address in the tile

memory and sets the incoming exchange configuration state (the multiplexer and/ or the

memory pointer for receiving data). The EXCH instruction, is unique in that it is immediately

followed by an inline 32-bit payload, located at the memory location immediately after the

instructions. The EXCH instruction has an opcode field 110 which denotes an exchange

instruction EXCH. The payload has a ‘coissue’ flag 119.

The EXCH instruction includes format field 112 which has a single bit which specifies

incoming format datum width (32 bits or 64 bits). The datum width can have implications on

the setting of the multiplexer lines, as explained later. An item field 114 defines the number

of items which are caused to be sent by the. exchange instruction. These items are sent from a

sent address calculated using the immediate in field 116, as in the send instruction of Figure

9. The value in this field is added to the value in the base register.

Reference numeral 118 denotes a control field which defines word size for the send datum.

The payload includes a switch control field 120 which acts a switch control for the incoming

multiplexer, as described above in connection with Figure 9. Numeral 122 denotes a field of

the payload defining an incoming delta for calculating the address at which incoming data is

to be stored, as described above in connection with the instruction of Figure 10. The 64 bit

wide exchange instruction EXCH of Figure 11 can be executed every clock cycle and thus

allows simultaneously:

31

» sending from a particular address

* updating of incoming mux

• updating of incoming address

Thus, any exchange schedule can be encoded in a single instruction. The instructions of

Figures 8, 9 and 10 perform similar functions but as they are only 32 bits long can be used to
a"

minimize the size of the exchange code in the local memory of each tile. The decision about

which instruction to use in any particular context is made at the compiler 70 when

constructing die codelets for the local program 72.

There follows a list of key registers and their semantics to support the above instructions.

These registers from part o the register file on each tile.

TILE, ID Holds a unique identifier for that, tile

INCOMING-MUX Holds the Tile ID of the source tile for incoming messages.

[INCOMING_MUX.PAIR]
which acts to select the ''listening’ input for the multiplexer

associated with the receiving Tile.

INCOMING-DELTA This holds an auto incrementing value for calculating on

address at which incoming data are to be stored: it can be

overwritten by an explicit field [e.g. see Figure 101. Il is

added to INCOMING-BASE.

INCOM ING ..BASE This holds a common base address for updating memory

pointer (added to INCOMING-DELTA).

OUTGOING...BASE This holds a common base address for send instructions

OUTGOING-DELTA This bolds delta for calculating send addresses instructions

‘send’ address is outgoing base + outgoing delta.

32

INCOMING FORMAT Identifies 32b or 64b incoming datum.

■£>-
Note that the INCOMING.DELTA and IN COMING...MUX register form part, of the

exchange state of tile.

Reference will now be made to Figures 12 and 13 to explain tile pairing which is a feature by i a CP .·'

which a physical pair of tiles may collaborate in order to make a more effective use of their

combined exchange resources. Tile pairing may be used to double a single tile's transmission

bandwidth by borrowing a neighbour’s transmission bus, or double the received bandwidth for

both tiles in a tile pair by sharing a neighbour's received bus and associated incoming

multiplexer.

Figure 12 illustrates the logic associated with tiles in a tile pair for performing double width

transmission. Double width transmission is achieved by borrowing a neighbour's outgoing

exchange resources for the duration of a SEND. The neighbour tile is unable to perform its

own data transmission during this time. A SEND instruction is able to perform single or double

width data transfer, with the width of the transfer being specified by a value held in a register.4Λ 1~

or an immediate field. The width can be indicated as 32 bits (one word) in which case the field

of 1. Other logical

definitions are possible. The specified width is passed from a register on the chip 4 to a control

store 1200 in the Ex Out interface 226 of the tile. Figure 12 shows two such paired tiles, TID00

and TID01. The Ex Out interface 226 has buffers for accommodating the least significant word

(LSW) and the most significant word (MSW). In this context, each word is 32 bits. The least

significant word is connected directly to an input of a width control multiplexer 1202. The

output of the multiplexer is connected to the corresponding cross wires of the exchange bus

34, the cross- wires corresponding to the output wire tor that particular tile. If the transmit width

LSW’s of the paired tiles, to thereby allow the tiles of the pair to transmit a respective 32 bit

word simultaneously.

If one member of the pair wishes to send a 64 bit word, the width control multiplexer 1202 of

the neighbouring......................... tile is set to receive the most significant word output from the sending tile

33

and to pass that to the output of the multiplexer. This will cause the most significant word of

the 64 bit output from the sending tile to be placed on the cross wires of the exchange bus

associated with the neighbouring tiles (which at this point is inhibited from sending anything).

sending tile TID00 is shown connected to the control input of the multiplexer 1202 of the

neighbouring (non-sending) tile TID0I. Similarly, the neighbouring tile T1D01 also has a MUX

control line connected from its control store 12.00 to the input of the 'width control multiplexer

1202 of its paired tile, although this is not shown in Figure 12 for reasons of clarity.

Reference will now be made to Figure 13 to explain a double width receive using paired tiles.

The paired tiles in Figure 13 are labelled TID03 and TID04, although it will readily be

understood that this functionality can be used in combination with the double width transmi

functionality such that a tile like TID00 could also have the functionality shown on TID03 for

exampie. Double width receive is achieved by sharing a neighbour's incoming exchange

resources for the duration of a transfer. When configured for double width receive, each tile

within a tile pair can choose to sample or ignore the incoming data. If they both choose to

sample, they will see the same incoming data. Double width receive is enabled in collaboration

wwith the neighbour tile via the INCOMING_FORMAT value described earlier which identifies

whether ihe incoming data is 32 bits or 64 bits. The. value of the incoming multiplexer 210 of

the. primary tile of the tile pair must be set to the rile ID of the sending tile. The ’listening inpu

of the incoming multiplexer 210 of the secondary tile within the tile pair must be set to the tile

HD of the other tile within the sending pair. Note that in this case, strictly speaking, the

"sending" tile of the sending tile pair (for example TID0.1) is not actually sending, but has

supplied its most significant word to use the exchange resources of tile TID00. Thus, the

incoming multiplexers 210 of the tiles of the receiving tile pair must be respectively connected

to the cross wires on which the individual words of the double r.width transmission output of the

sending pair are placed.

Note that in some embodiments even if the incoming multiplexers 210 are switched to

simultaneously listen to their respective cross wires of the exchange, this does not necessarily

simultaneously, due to the differing latencies of travel between the exchange and individual

34

In a first possibility, the two incoming buses the Exin interface are to be treated independently

(neither tile in the tile pair is participating in a double width receive).

According to the second possibility, the local incoming exchange bus is being used to transfer

the early component of a double width item (and that component should now be delayed). This

implies that the neighbour's bus will be used to transfer the non-early component of the same

double width item.

According to the third possibility, the local incoming exchange bus is being used to transfer

the non-early component of a double width item. This implies that the neighbour's bus was

used to transfer the early component of the same double width item (and therefore the early

data component on the neighbour's bus should have been delayed).

Figure 13 shows circuitry 1300 which deals with these scenarios using multiplexers 1302 and

1304. Note that the circuitry 1300 is duplicated on the input of each tile of the receiving tile

pair, but is only shown on the input of TID03 for reasons of clarity.

U > 8'ZV
. Λ J ν'··

Control of the multiplexer is from the incoming format control which is supplied from a register

into an Exin interface 224. If the tile TID03 is to operate in a 32 bit mode, it controls the

multiplexer 1302 to pass through 32 bit word at the upper input of the multiplexer in Figure 13

via a pipeline stage 1306 and a control buffer 1308.

If the receiving tiles are operating as a pair, the multiplexer 1.302 is controlled to block its upper

input and allow the least significant word from the lower input to be passed through to the

pipeline stage 1306. On the next cycle, the most significant word is selected to be passed

through the multiplexer 1304 into the control buffer 1308, along with the least significant word

which has been clocked through the pipeline stage 1306. The control buffer 1308 can decide

whether or not to receive the 64 bit word. Note that according to the logic the 64 bit word, will

simultaneously be received at the neighbouring tile (TID04). In some circumstances both tiles

might want to read the same 64 bit value, but in other circumstances one of the tiles may wish

to ignore it.

Note that there may be embodiments where the LSW and MSW of a 64 bit transfer may be

simultaneously received at their paired receiving tiles, in which case the relative delay of

pipeline stage 1306 would not be required.

There has been described herein a new computer paradigm which is particularly effective in

the context of knowledge models for machine learning. An architecture is provided which

utilises time determinism as in. an exchange phase of a BSP paradigm to efficiently process

very large amounts of data. While particular embodiments have been described, other

applications and variance of the disclosed techniques may become apparent to a person

skilled in the. art once given the disclosure hearing. The scope of the present disclosure is not

limited by the described embodiments but only by the accompanying claims.

36

Claims

1. A computer comprising:

a plurality of processing units each having instruction storage holding a ioca

program, an execution unit executing the local program, data storage for holding data; an

input interface with a set of input wires, and an output interface with a set of output wires;

a switching fabric connected to each of the processing units by the respective set of

output wires and connectable to each of the processing units by the respective input wires via

switching circuitry controllable by each processing unit;

a synchronisation module operable to generate a synchronisation signal to control the

computer to switch between a compute phase and an exchange phase, wherein the processing

units are configured to execute their local programs according to a common clock, the local

programs being such that in the exchange phase at least one processing unit executes a send

instruction from its local program to transmit at a transmit time a data packet onio its output

set of connection 'wires, the data packet, being destined for at least one recipient processing

unit but having no destination identifier, and at a predetermined switch time the recipient

processing unit executes a switch control instruction from its local program to control its

switching circuitry to connec^,///^ -//^

packet at a receive time, the transmit time and, switch time and receive time being governed

by the common clock with respect to the synchronisation sign.

2. A computer according to claim 1, wherein the send instruction explicitly defines a

send address identifying a location in

sen

3. A computer according to claim I, wherein no send address is explicitly defined in the

send instruction, and the data packet is transmitted from a send address defined in a registe

4. A computer according to claim 3. wherein the local program comprises a send address

update instruction for updating the send address in the implicit register.

5. A computer according to any preceding claim, wherein the transmit time is a Known

number ofclock cycles after the send time at which the instruction is executed.

I

6. A computer according to any preceding claim, wherein the switching circuitry

comprises a multiplexor having an. exit sei of output wires connected to its processing uni

and multiple sets of input wires connected to the switching fabric, whereby one of the

multiple sets of input wires is selected as controlled by the processing unit.

7. A. computer according to any preceding claim, wherein the recipient processing unit it

configured to receive the data packet and load it into the data storage at a memory location

identified by a memory pointer.

8. A computer according to claim 7, wherein the memory pointer is automatically

incremented after each data packet has been loaded into the data storage.

■&
9. A computer according to claim 7, wherein the local program at the recipient

processing unit includes a memory pointer update instruction which updates the memory

pointer.

■&10. A computer according to any preceding claim, wherein the send instruction identifies

a number of data packets to be sent, wherein each data packet is associated with a different

transmit time.

11. A computer according to claim 6, wherein one of the sets of input 'wires is connected

to a null input.

12. A computer according to any preceding claim, wherein the recipient processing unit

is the same processing unit as the processing unit that executed a send instruction at an earlit

time, whereby the same processing unit is configured to send a data packet and receive that

data packet at a later time.

13. A computer according to any preceding claim, wherein multiple processing units are

configured to execute respective send instructions to transmit respective data packets, and

wherein at least some of the data packets are destined for no recipient processing units.

38

1 A14. .A computer according to any preceding claim, wherein ai least two of the processing

units co-operate in a transmitting pair wherein a first data packet is transmitted from a

first processing unit of the pair via its output sei of connection wires, and a second data

packet is transmitted from the first processing unit of the pair via the output set of

connection wires of the second processing unit of the pair to effect a double width

transmission.

15. A computer according to any preceding claim, wherein at least two of the processing

units operate as a receiving pair wherein each processing unit of the pair controls its

switching circuitry to connect its respective input set of wires to the switching fabric to

receive respective data packets from respective tiles of a sending pair.

16. A method of computing a function in a computer comprising: a plurality of

processing units each having instruction storage holding a local program, an execution

unit for executing the local program, data storage for holding data, an input interface

with a set of input wires and an output interface with a set of output wires; a switching

fabric connected to each of the processing units by the respective sets of output wires

and connectable to each of the processing units by their respective input wires via

switching circuitry controllable by each processing unit; and a synchronisation

module operable to generate a synchronisation signal to control the computer to

switch between a compute phase and an exchange phase, the method comprising;

the processing units executing their local programs in the compute phase

according to a common clock, wherein in the exchange phase at least one processing unit

a send instruction from its local program io transmit at a transmit time a data packet

onto its output set of connection wires., the data packet being destined for at least one

recipient processing unit but having no destination identifier, and

at a predetermined switch time the recipient processing unit executing a switch

control instruction from its local program to control the switching circuitry to connect its
Λ. I—7 CP V

input set of wires to the switching fabric to receive the data packet at a receive time, the

transmit time and switch time and being governed by the common clock with respect to the

executes

s yrs chron i sa t ion signal.

39

7. A method according to claim 16, wherein the function is provided in the form of the

static graph comprising a plurality of interconnected nodes, each node being implemented by

a codelet of the local programs.

18. A method according to claim 17, wherein in the compute phase each codelet

processes data to produce a result, wherein some of the results are not required for a

subsequent compute phase and are not. received by any recipient processing unit.

19. A method according to any of claims 16 to 18, wherein in the exchange phase the data

packets are transmitted between processing units via the switching fabric and switching

circuitry.

20. A method according to any of claims 16 to 19, wherein each processing unit indicates

to the synchronisation module that its own compute phase is complete, and wherein the

synchronisation signal is generated by the synchronisation module when all processing units

have indicated that their own compute phase is complete, to commence the exchange phase.

21. A method according to claim 17, wherein the graph represents a machine learning

unction.

22. A method according to any of claims 16 to 21, wherein in the exchange phase data

packets are transmitted through the switching fabric in a pipelined fashion through a

sequence of temporary stores, each store holding a data packet for one cycle of the common

clock.

40

Intellectual
Property
Office

Application No: GB1816892.2 Examiner: Mr Thomas Davies

Claims searched: 1-22 Date of search: 11 April 2019

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:
Category Relevant

to claims

Identity of document and passage or figure of particular relevance

A - US 2014/0006724 Al

(GRAY et al.) See especially paragraphs 42, 89-90.

A - US 5754789 A

(NOWATZYK et al.) See especially column 8 lines 39-46, column 11

line 29, column 13 lines 35-41.

A US 5434861 A

(PRITTY et al.) See especially column 2 lines 19-52.

Categories:

X Document indicating lack of novelty or inventive
step

A Document indicating technological background and/or state
of the art.

Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.

& Member of the same patent family E Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldw ide search of patent documents classified in the following areas of the IPC__________________
G06F; G06N___

The follow ing online and other databases have been used in the preparation of this search report_______
EPODOC, WPI, INSPEC, Patent Fulltext, XPESP, XPIEE, IP.COM, XPI3E, XPMISC,

XPENCS, XPRD, XPSPRNG, TDB

International Classification:
Subclass Subgroup Valid From
G06F 0009/52 01/01/2006

G06F 0009/30 01/01/2018

G06F 0015/173 01/01/2006

Intellectual Property Office is an operating name of the Patent Office www.gov.uk/ipo

IP.COM
http://www.gov.uk/ipo

