Office de la Propriete Canadian CA 2349662 C 2003/02/18

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 349 662
g'rngL%?rri]ciesgaenada ﬁ?:luagt?;%/aﬁ;da (12) BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 1999/11/30 (51) CL.Int.”/Int.CI." GOBF 9/46
(87) Date publication PCT/PCT Publication Date: 2000/06/22| (72) Inventeurs/Inventors:
£ 1; _ CARPENTER, GARY DALE, US;
(45) Date de deéelivrance/lssue Date: 2003/02/18 DEBACKER. PHILIPPE LOUIS US:
(85) Entree phase nationale/National Entry: 2001/05/07 DEAN, MARK EDWARD, US:
(86) N° demande PCT/PCT Application No.: GB 1999/003988 GLASCO, DAVID BRIAN, US;
o o ROCKHOLD, RONALD LYNN, US
(87) N publication PCT/PCT Publication No.: 2000/036505 o
o (73) Proprietaire/Owner:

CORPORATION, US
(74) Agent: ROSEN, ARNOLD

(54) Titre : ARCHITECTURE DINTERRUPTION POUR SYSTEME DE TRAITEMENT DE DONNEES A ACCES
MEMOIRE NON UNIFORME (NUMA)

(54) Title: INTERRUPT ARCHITECTURE FOR A NON-UNIFORM MEMORY ACCESS (NUMA) DATA PROCESSING
SYSTEM

AU 8a

|
|
1 e & #
|
22
|
| 36 36
. LOCAL
| 16 | INTERCONNECT
| NODE 20 24 28 L—
! CONTROLLER AT MEZZANNE —| {LPY_
o BUS BRIDGE %
. SYSTEM 18
8n MEMORY

28a
- 1SU _ISU_

28b
35 35 (30

|
PROCESSING !
NODE |
| MEZZ ANINE
| BUS
NODE 32 4
/0 STORAGE
INTERCONNECT ! DEVICES DEVICES
-

-_-ﬂ-—-“-—-“-“-_'-_-_-_-_-—-——_‘

(57) Abrége/Abstract:

A non-uniform memory access (NUMA) computer system includes at least two nodes coupled by a node interconnect, where at
least one of the nodes Includes a processor for servicing interrupts. The nodes are partitioned into external interrupt domains so
that an external interrupt is always presented to a processor within the external interrupt domain in which the interrupt occurs.
Although each external interrupt domain typically includes only a single node, interrupt channelling or interrupt funnelling may be

SoaoRRE f /[
TR - e St
R S N « w_® .-y
I ALY ""
[N

I*I) . Pen, B N o
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 48 & 7%% 110

- SRR RO S 2 A\-‘
OPIC - CIPO 191 s

CA 2349662 C 2003/02/18

anen 2 349 662
13) C

(57) Abréege(suite)/Abstract(continued):

Implemented to route external Interrupts across node boundaries for presentation to a processor. Once presented to a
processor, interrupt handling software may then execute on any processor to service the external interrupt. Servicing external
Interrupts Is expedited by reducing the size of the interrupt handler polling chain as compared to prior art methods. In addition to
external Interrupts, the interrupt architecture of the present invention supports inter-processor interrupts (IPIs) by which any
processor may Interrupt itself or one or more other processors in the NUMA computer system.

CA 02349662 2001-05-07

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification LE (11) International Publication Number: WO 00/36505
Al

GOGF 9/46 (43) International Publication Date: 22 June 2000 (22.06.00)

(21) International Application Number: PCT/GB99/03988 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,

(22) International Filing Date: 30 November 1999 (30.11.99) ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,

KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,

MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,

(30) Priority Data: SE, SG, SI, SK, SL, TJ, T™, TR, TT, UA, UG, UZ, VN,

09/213,998 17 December 1998 (17.12.98) US YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD,

SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG,

KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY,

(71) Applicant: INTERNATIONAL BUSINESS MACHINES DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

CORPORATION [US/US]; New Orchard Road, Armonk, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW,
Armonk, NY 10504 (US). ML, MR, NE, SN, TD, TG).

(71) Applicant (for MC only): IBM UNITED KINGDOM LIMITED
[GB/GB]; P.O. Box 41, North Harbour, Portsmouth, Hamp- | Published

shire PO6 3AU (GB). With international search report.
Before the expiration of the time limit for amending the
(72) Inventors: CARPENTER, Gary, Dale; 1241 Rochy Creek claims and to be republished in the event of the receipt of
Drive, Pflugerville, TX 78660 (US). DEBACKER, Philippe, amendments. ‘

Louis; 7705 Chimney Comners, Austin, TX 78731 (US).
DEAN, Mark, Edward; 3610 Ranch Creek Drive, Austin,
TX 78730 (US). GLASCO, David, Brian; 10337 Ember
Glen Drive, Austin, TX 78726 (US). ROCKHOLD, Ronald,

Lynn; 11104 Sheba Cove, Austin, TX 78759 (US). |

(74) Agent: LING, Christopher, John; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester,
Hampshire SO21 2JN (GB).

(54) Title: INTERRUPT ARCHITECTURE FOR A NON-UNIFORM MEMORY ACCESS (NUMA) DATA PROCESSING SYSTEM

~
L
L 2 B N N ¥ N N ¥ N & L N N N J

|
!
!
|
|
|
!
R |
|
|
;
|
|
!
|

NODE 20 ARBITER 24 28 U
. CONTROLLER ME2ZANINE m
L BUS BRIDGE "
.. q
. ’ BYSTEM 18
T | MEMORY
=~ ' 200\ T80 180
PROCESSING | 28D *
NODE . 35 35
! - e
INTERCOMNECT : " 3 8“‘35 .
| oewtes DEVICES |
e o e e e e e e e e e e e e e e -

(57) Abstract |

A non-uniform memory access (NUMA) computer system includes at least two nodes coupled by a node interconnect, where at
least one of the nodes includes a processor for servicing interrupts. The nodes are partitioned into external interrupt domains so that an |
external interrupt is always presented to a processor within the external interrupt domain in which the interrupt occurs. Although each
external interrupt domain typically includes only a single node, interrupt channelling or interrupt funnelling may be implemented to route
external interrupts across node boundaries for presentation to a processor. Once presented to a processor, interrupt handling software
may then execute on any processor to service the external interrupt. Servicing external interrupts is expedited by reducing the size of the
interrupt handler polling chain as compared to prior art methods. In addition to external interrupts, the interrupt architecture of the present

invention supports inter—processor interrupts (IPIs) by which any processor may interrupt itself or one or more other processors in the
NUMA computer system.

dmt, eatittes ARG s s AR 0L e s O R IY AT FIFTE W 21T 15 FTPOR VALY 7 7 PR P PR P P T PPN P - t 0 T Mg e ol S TR TN NI 1 AR ;1 S R R IR AR R NS R O PR B SN e - v

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

INTERRUPT ARCHITECTURE FOR A NON-UNIFORM MEMORY
ACCESS (NUMA) DATA PROCESSING SYSTEM

Field of the Invention

The present 1nvention relates in general to data processing and, in
particular, to data processing in a non-uniform memory access (NUMA) data
processing system. Still more particularly, the present invention relates

to an interrupt architecture for a NUMA data processing system.

Background of the Invention

In computer systems, 1interrupts are often utilized to alert a
processor to the occurrence of an event that requires special handling.
Interrupts may be utilized, for example, to request service from a
recipient processor, report an error condition, or simply communicate
information between devices. 1In uniprocessor computer systems, interrupt
support 1s relatively straightforward since all interrupts are handled by
the single processor. In multiprocessor computer systems, however, an
additional level of complexity is introduced because some mechanism must
be utilized to route interrupts to a particular processor or processors

for handling.

In conventional symmetric multiprocessor (SMP) computer
systems, 1nterrupts have been handled in a variety of ways, utilizing both
hardware and software mechanisms. An SMP computer system typically
employs a global interrupt controller to select a processor to service an
interrupt based upon the priority of the interrupt and the priority of the
process, 1f any, being executed by each processor. Thus, the interrupt
controller compares the priority of the interrupt to the priorities of the
processes being executed by the processors and selects as the servicing
processor a processor that 1s executing a process having a lower priority
than the interrupt. Because the processors in an SMP are relatively
tightly coupled, the determination of the process priorities and the
routing of the interrupt to the servicing processor can be accomplished
with a facility utilizing either the shared system interconnect or

dedicated interrupt lines.

Recently, a multiprocessor computer system topology known as
non-uniform memory access (NUMA) has emerged. A typical NUMA computer
system may 1include a high latency node interconnect to which are coupled
several multi-processor nodes that each contain a local system memory.
Because the multiple processors in a NUMA computer system are not tightly
coupled, conventional SMP interrupt servicing and communication mechanisms

cannot be directly applied in a NUMA computer system. As should thus be

ot R RN S R MU N i : T TR RN MR MR REL i i S 1S B e Ay A - ' CR e ndoan S T Sl AN A 1 ¢ S 7. 1 Ao L 1. i T IR 21 L A7 AT TR -

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

10

15

20

25

30

35

40

45

VY PR RSP TRENT PR SPEY N -.-lwnfmmmm‘gmwiunq-.,'«;uwh»..

apparent, there 1s a need for an interrupt handling mechanism in a NUMA
computer system that provides efficient mechanisms for interrupt routing

and communication.
Disclosure of the Invention

A non-uniform memory access (NUMA) computer system includes at
least two nodes coupled by a node interconnect, where at least one of the
nodes 1includes a processor for servicing interrupts. In accordance with
the present invention, the interrupt architecture of the NUMA computer
system, which includes both hardware and software components, partitions
the NUMA computer system into external interrupt domains so that an
external interrupt is always presented to a processor within the external
interrupt domain in which the interrupt occurs. Although each such
external interrupt domain typically includes only a single node, interrupt
channelling or interrupt funnelling may be implemented to route external

interrupts across node boundaries for presentation to a processor.

Once presented to a processor, interrupt handling software may
then execute on any processor within the system to service the external
interrupt. Advantageously, the interrupt architecture of the present
invention enables interrupt handling software to expeditiously service
external interrupts by reducing the size of the interrupt handler polling

chain (tree) as compared to prior art methods.

In addition to external interrupts, the interrupt architecture

of the present invention supports inter-processor interrupts (IPIs) by
which any processor may interrupt itself or one or more other processors

in the NUMA computer system. IPIs are triggered by writing to memory
mapped registers in global system memory, which facilitates the

transmission of IPIs across node boundaries and permits multicast IPIs to
be triggered simply by transmitting one write transaction to each node

contailning a processor to be interrupted.

The 1interrupt architecture of the present invention scales
well from small NUMA computer systems containing a few nodes to large
systems containing hundreds of nodes. The interrupt hardware within each
node 1s also distributed for scalability, with the hardware components

communicating via interrupt transactions conveyed across shared

communication paths (i.e., local buses and interconnects).

Brief Description of the Drawings

The invention will now be described, by way of example only, with

reference to the accompanying drawings, in which:

3.0 1R g -} uﬂmmi“l"l' ”lu“ﬁ!'“ﬂ W A EA VD e . A RLREE IRLLEPLE PR TS AR Y TRC I LT ARF- 7 20 TRNSTT PN A P IR TR 21 L PR L . o T Tve wneee D AT T R oA S M S Mt R e 1 "

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 ‘ PCT/GB99/03988

Figure 1 depicts an illustrative embodiment of a NUMA computer
system with which the present invention may advantageously be utilized;

Figure 2 illustrates an exemplary embodiment of a physical

memory map that may be utilized by the NUMA computer system depicted 1in
Figure 1:

Figures 3A and 3B respectively depict illustrative embodiments
of an 1interrupt source configuration register and a pending interrupt

register within an interrupt source unit (ISU) in accordance with the
present invention:

Filgure 4 illustrates a more detailed block diagram of an

interrupt destination unit (IDU) in accordance with the present invention;

Pigure 5 is a high level logical flowchart of the operation of
an ISU in accordance with the present invention:

Figure 6 is a high level logical flowchart of the operation of
an IDU 1n accordance with the present invention:

Figure 7 is a high level logical flowchart of an illustrative

embodiment of a configuration routine that configures interrupt resources
in accordance with the present invention; and

Figure 8 is a high level logical flowchart depicting the

operation of first level interrupt handler (FLIH) software in accordance
with the present invention.

Detalled Description of the Invention

1.0 NUMA Computer System Overview

With reference now to the figures and in particular with
reference to FPigure 1, there is depicted an illustrative embodiment of a
NUMA computer system in accordance with the present invention. The
depicted embodiment can be realized, for example, as a workstation,
server, or mainframe computer. As illustrated, NUMA computer system 6
includes a number (N22) of processing nodes 8a-8n, which are
interconnected by node interconnect 22. Processing nodes 8a-8n each
include M (M20) processors 10. Processors 10a-10m, if present within a

processing node, are preferably identical and may comprise a processor

within the PowerPC line of processors available from International

Business Machines (IBM) Corporation of Armonk, New York (PowerPC is a

trade mark of IBM Corporation). 1In addition to the registers, instruction

E R LR L NPT (377 P e I e TR CU Sy N LR PN S PP 0.

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

flow logic and execution units utilized to execute program instructions,
which are collectively designated as processor core 12, each of processors
10a-10m also includes an on-chip cache hierarchy 14 that is utilized to
stage data to the associated processor core 12 from system memories 18.
Each cache hierarchy 14 may include, for example, a level one (Ll) cache
and a level two (L2) cache having storage capacities of between 8-32
kilobytes (kB) and 1-16 megabytes (MB), respectively. Because data stored
within each system memory 18 can be requested, accessed, and modified by
any processor 10 within NUMA computer system 6, NUMA computer system 6
preferably implements a cache coherency protocol (e.g., Modified,
Exclusive, Shared, Invalid (MESI) or a variant thereof) to maintain
coherency both between caches in the same processing node and between

caches 1n different processing nodes.

As shown, processing nodes 8a-8n further include a respective
node controller 20 coupled between local interconnect 16 and node
interconnect 22. Each node controller 20 serves as a local agent for
remote processing nodes 8 by performing at least two functions. First,
each node controller 20 snoops the associated local interconnect 16 and
facilitates the transmission of local communication transactions to remote
processing nodes 8. Second, each node controller 20 snoops communication
transactions on node interconnect 22 and masters relevant communication
transactions on the associated local interconnect 16. Communication on
each local interconnect 16 is controlled by an arbiter 24. Arbiters 24
regulate access to local interconnects 16 based on bus request signals
generated by processors 10 and compile coherency responses for snooped

communication transactions on local interconnects 16.

Access to each system memory 18 of NUMA computer system 6 is
regulated by a respective memory controller (MC) 17. 1In addition to
clrcuitry that receives and services read and write regquests generated by
processors 10a-10m, node controller 20, and other devices in its
processing node 8, each memory controller 17 contains an interrupt
destination unit (IDU) 19, which, as described below, contains a number of

registers and associated logic that facilitate the routing and handling of
interrupts.

Local interconnect 16 is coupled, via mezzanine bus bridge 26,
to a mezzanine bus 30, which may be implemented as a Peripheral Component
Interconnect (PCI) local bus, for example. Mezzanine bus bridge 26
provides both a low latency path through which processors 10 may directly
access devices among I/0 devices 32 and storage devices 34 that are mapped
to bus memory and/or 1/0 address spaces and a high bandwidth path through
which I/0 devices 32 and storage devices 34 may access system memory 18.

I/0 devices 32 may include, for example, a display device, a Keyboard, a

Tl e e O R R B o A T e AN NS IRAAER W R A M e 1 ot et VIR TG AR PN IINIEIRC R A S NN AN AR b AL gt e e

10

15

20

25

30

35

40

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

graphical pointer, and serial and parallel ports for connection to
external networks or attached devices. Storage devices 34, on the other

hand, may include optical or magnetic disks that provide non-volatile

storage for operating system and application software.

Both I/0 devices 32 and storage devices 34 (as well as other
non-~-processor components of NUMA computer system 6) may generate
interrupts for any number of purposes, including signalling recelpt of an
input, reporting an error condition, etc., via interrupt request lines 35.
These 1nterrupts, which are referred to hereinafter as external interrupts

to indicate that the interrupts are generated by a component other than a
processor 10, are collected by one or more interrupt source units (ISUs)

48a, 28b. Although illustrated separately for clarity, ISUs 28a and 28b
may alternatively be integrated into the chipset forming mezzanine bus
bridge 26. As described in detail below, ISUs 28 route the external
interrupts to an IDU 19, which in turn presents external and other

interrupts to local processors 10 for servicing via an interrupt request
line 36,

Local interconnects 16 and node interconnect 22 can each be
ilmplemented with any bus-based broadcast fabric, switch-based broadcast
fabric, switch-based non-broadcast fabric, or hybrid interconnect
architecture including both bus and switched-based components. Regardless
of which interconnect architecture is employed, local interconnects 16 and
node interconnect 22 preferably support split transactions, meaning that
the timings of the address and data portions of communication transactions
are 1ndependent. In order to permit identification of which address and
data tenures belong to each communication transaction, the address and
data packets that together form a transaction are preferably both marked

with the same transaction tag.

Each processor 10 and each other device coupled to a local
interconnect 16 is preferably uniquely identified throughout NUMA computer
system 6 by a system-wide device ID formed by concatenating the node ID of
the processing node 8 within which the device resides with the device'’s
local ID. For example, in an embodiment in which there are a maximum of
four processing nodes 8 and at most 8 devices may be coupled to each local
interconnect 16, a five bit device ID can be utilized, two high order bits
for the node ID and the three low order bits for the device’s local ID.
BEach node ID is preferably maintained in a register within the associated
node controller 20, and the local IDs are preferably maintained in device.
identification registers within each device connected to a local
interconnect 16. Each such system-wide device ID may advantageously be
utilized as the high order bit portion of each transaction tag generated

T b i SRS A IS ORI AL Rt e s i S LA T S AN SRR A7 DA 1110 bt s

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

by the associated device so that the uniqueness of transaction tags
throughout NUMA computer system 6 is guaranteed.

1.1 Physical Memory Map

With reference now to Pigure 2, there is illustrated an
exemplary physical memory map that may be utilized by an embodiment of
NUMA computer system 6 having four processing nodes 8 that each contain a
system memory 18. 1In the embodiment illustrated in Figure 2, all devices
in NUMA computer system 6 share a single 16 gigabyte (GB) physical address
space 50 including both a general purpose memory area 52 and system
control and peripheral areas 54. Each physical address in general purpose
memory area 52 1s associated with only a single physical location in one
of system memories 18. Thus, the overall contents of the general purpose
memory area 52, which can generally be accessed by any processor 10 in
NUMA computer system 6, can be viewed as partitioned between all the
system memories 18. In the illustrative embodiment, general purpose
memory area 52 1s divided into 512 MB segments, with each of the four
processing nodes 8 being allocated every fourth segment. The processing
node 8 that stores a particular datum in its system memory 18 is said to
be the home node for that datum; conversely, others of processing nodes

8a-8n are said to be remote nodes with respect to the particular datum.

Still referring to Pigure 2, system control and peripheral
areas 54, which contain 2 GB of physical addresses in the illustrated
embodiment, include a 256 MB system control area 56, a 0.5 GB peripheral
I/0 space 58, a 1 GB peripheral memory space 60, and an initial program
load (IPL) area 62. 1IPL area 62 contains addresses reserved for
assignment to up to 256 MB of IPL (i.e., boot) code, which is typically
stored i1n a read-only memory (ROM). The IPL code will include a loader
for an operating system, such as Advanced Interactive Executive (AIX),
which 1s available from IBM Corporation. As illustrated, the 0.5 GB in
peripheral I/0 space 58 is divided into equally sized segments 62 that are
each allocated to a respective one of processing nodes 8. Peripheral
memory space 60 1s similarly partitioned into equally sized 256 MB

segments 66 that are each allocated to a particular processing node 8.

Like peripheral I/0 space 58 and peripheral memory space 60, the
physical memory space in system control area 56 includes a number of
segments 70 that are each associated with a respective processing node 8.
In the 1llustrated embodiment, each segment 70 contains 64 MB of address
space. In addition to addresses intended for storing other per-node
control information, each system control area segment 70 includes physical
addresses assigned to interrupt registers within the IDU 19 and ISU 28 at

the associated processing node 8. As discussed further below, 1t 1is these

'::'Mnmu‘dm“wm"m AN e S b) e R AR R A R a3 i e . : Sl are Mk VAL g M AN N b L . 1 Tt st D e) A O Sl | ORGSO P A R KA N W e ST Laie L

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36503 PCT/GB99/03988

memory-mapped registers that are employed by the present invention to
receive and route external interrupts, invoke interprocessor interrupts,

and route interrupts between processing nodes 8.

2.0 Interrupt Architecture Overview

The interrupt architecture of the present invention provides for at
least three distinct classes of interrupts. First, there are internal
interrupts that are triggered by the internal operation of a processor.
Internal interrupts may be triggered, for example, by an program exception
or overflow/underflow of an internal processor register. Second, as noted

above, external interrupts may be generated by devices, such as I/0
devices and system timers, that are external to the processors. Third,

the present invention also supports inter-processor interrupts (IPIs)
which are generated by a first processor in order to interrupt a second

processor.

In a preferred embodiment of the present invention, NUMA processing
system 6 provides interrupt support for external and IPIs through an
interrupt architecture that is compliant with and an extension of the

OpenPIC (Open Processor Interrupt Controller) standard. OpenPIC is

described, for example, in Open Programmable Interrupt Controller (PIC

Register Interface Specification Revision 1.2, October 1995, published

Jointly by Advanced Micro Devices, Inc. and Cyrix, Inc. and incorporated
herein by reference. Although OpenPIC compatibility is preferred, the
present invention can be applied to any system having memory mapped

interrupt control registers that are unique throughout the system.

The 1nterrupt architecture of the present invention includes both

hardware and software components, which are each described below.

2.1 Interrupt Architecture Hardware

In contrast to conventional OpenPIC and other SMP interrupt
implementations, which typically utilize a global interrupt controller
serving a single interrupt domain, each processing node 8 of NUMA computer
system 6 preferably forms its own external interrupt domain, where each
external interrupt domain has its own respective IDU 19 and one or more
ISUs 28, as shown in Pigure 1. 1ISUs 28 provide an interface to the
interrupt system for interrupt sources, and IDUs 19 provide an interface
between the interrupt system and processors 10. 1In order to promote
efficient handling of interrupts and minimize communication of interrupts
between interrupt domains, external interrupts received by an ISU 28 are
communicated utilizing interrupt packets transmitted across local

interconnect 16 (and depending upon implementation, mezzanine bus 30) to

ey WA | T I Mt i b 4 T ' BUIen P nds mgd 11 a2 VY M N AT Y el - e e

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

only the IDU 19 within the same interrupt domain (i.e., processing node 8)
1f the processing node 8 is equipped with a processor 10 configured to
service 1lnterrupts. Communication of configuration information,
interprocessor interrupts, interrupt acknowledgements, end of interrupt

5 commands, and other interrupt-related information between interrupt
domains is supported, however, via memory mapped registers in IDU 19,
thereby permitting the system-wide utilization of interrupt resources at
each processing node 8.

10 2.1.1 Interrupt Source Unit (ISU) components

With reference now to Pigures 3A and 3B, illustrative embodiments of
an interrupt source configuration register and an interrupt pending
register in each interrupt source unit (ISU) 28 are respectively depicted.

15 Each ISU 28 preferably includes at least one such interrupt source
configuration register 73 per interrupt source and one interrupt pending

register 82 for all interrupt sources supported by that ISU 28.

Referring first to Pigure 3A, each interrupt source

20 configuration register 72 includes a vector field 73 identifying an
interrupt vector for the associated interrupt source, an interrupt vector
reserved field 74 that may store additional bits for identifying the
interrupt vector, and a priority field 75 that indicates the priority of
the interrupt generated by the associated interrupt source. In the

25 1llustrated embodiment, interrupt priorities range from 0, which is the
lowest priority, to 15, which is the highest priority. Interrupt
resources are preferably unique within each interrupt domain. Thus, each
interrupt domain preferably has only one level 1 interrupt, but there may
be up to N level 1 interrupts in NUMA computer system 6. Of course, prior

30 art techniques may be employed to permit interrupt sharing such that
multiple interrupt sources within a single processing node 8 share the

same 1nterrupt level.

Interrupt source configuration register 72 further includes

35 two reserved fields 76 and 79, a sense bit 77 for indicating whether the
Interrupt signal is edge or level triggered, a polarity bit 78 for
indicating whether the interrupt is active low (or negative edge) or
active high (or positive edge), an activity (ACT) bit 80 indicating
whether vector field 73 and priority field 75 are in use and cannot be

40 modified, and a mask (MSK) field 73 that enables and disables the receipt
by ISU 28 of interrupts generated by the associated interrupt source.
Thus, in response to receipt of an interrupt from a particular interrupt
source via an interrupt request line, an ISU 28 can determine by reference

to the appropriate interrupt source configuration register 72 the

T N I Y I R (S AU (BN I A VT e e e S "*"‘w":m?w’-:“hwmmh:b N . . oo L e ' T et AL TN <WWN54W;@“¢-MW£“ L LR T .

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

enablement and priority of interrupts for the interrupt source, as well as

an identifier for the interrupt vector associated with the interrupt.

Once an external interrupt has been received and qualified by
ISU 28, ISU 28 sets a bit in pending register 82 of Figure 3B. The bit,
which 1is uniquely associated with the interrupt source, signifies that the
interrupt source has a pending interrupt. Thus, in the embodiment shown

in Figure 3B, each ISU 28 can support a maximum of 16 interrupt sources.

2.1.2 Interrupt Destination Unit (IDU) components

Referring now to Pigure 4, there is depicted a more detailed block
diagram representation of IDU 19 in the memory controller 17 of a
processing node 8. The depicted embodiment of IDU 19 is OpenPIC-compliant
and 1lncludes three distinct register spaces, global registers 90, per-
processor registers 92, and inter-processor interrupt (IPI) command
registers 133, which are each located within the processing nodes’s system
control area segment 70 at OpenPIC-defined offsets from base addresses
specified in global configuration register 102. 1In order to simplify
addressing, the offset between the base address and the beginning of the
processing node'’s system control area segment 70 is preferably the same
for all IDUs 19. For example, in an illustrative embodiment of NUMA
computer system 6 1ncluding four processing nodes 8 that each contain four
processors 10 that all share a 16 GB physical memory space, address bits
30-63 may be defined by the range 000000000h-3FFFFFFFFh, with system
control area 56 residing at A30..A63 OE0000000h-OEFFFFFFFh. If the node
number assigned to a processing node 8 is defined by A36..A37, with node
numbers ranging between b00-bll, system control area segment 70 of the
processing node 8 having node number b0l will be located at A30..A63
0E4000000h-0E4FFFFFFh. Within all system control area segments 70, the
base address of the registers in the IDU 19 will be located at a common
arbitrary offset, such as 000C0000h. Thus, the base address of the
registers of IDU 19 within node number b0l can be obtained by adding
0E4000000h to 000C00000h to yield OE4C00000h. The individual register
spaces and registers within the IDU 19 of node number b0l can then be
addressed utilizing OpenPIC-defined offsets as follows:

220000h OpenPIC architected offset from the base

address specified by global configuration
reglster 102 to per-processor registers 120
of processor bl0 at node b0l

base physical address of registers in IDU 19
of node number b0l

+ 0E4C00000h

0E4C220000h

physical address of per-processor registers
120 of processor bl0 at node number b0l

. R T M i IR SO e e e s e R I R TR PRI TR T R I T T 1 VO v L e T LGN« AN IR M N e o e e s

10

15

20

25

30

35

40

45

50

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

10

0040h OpenPlIlC architected offset from the per-

processor registers 120 to IPI command port
0

physical address of per-processor registers
120 of processor bl0 at node number b0l

+ 0E4C220000h

0E4C220040h

H

physical address of per-processor registers
120 of processor bl0 at node number b0l

As shown in Plgure 4, the global registers 90 in each IDU 19
include a read-and-write feature reporting register 100, a read-and-write
global configuration register 102, a read-only vendor identification
reglster 104, one read-and-write interprocessor interrupt (IPI) vector
register 106 for each IPI command port (described below), a read-and-write
spurious vector register 108, and a read-and-write processor
initialization register 110. Global registers 90 are OpenPIC-defined and

contain the following information:

Feature reporting register 100: total number of interrupt sources detected
by IPL code in the processing node and the total number of supported
processors for that processing node.

Global configuration register 102: base address of global register space
for the processing node.

Vendor 1identification register 104: identifies the vendor of the
integrated circuit chip containing IDU 19 and the revision level.

IPI vector registers 106: vector and priority information for each
respective IPI register in the processing node.

Spurious vector register 108: vector that is returned when an interrupt
acknowledge 1s received from a processor and there is no pending interrupt
for the processor.

Processor 1initialization register 110: software reset signals for each
processor supported in the processing node.

Because global registers 90 are shared by all processors 10 in NUMA
computer system 6, software interrupt setup and handling routines in the
PAL layer of the AIX operating system are utilized to maintain consistency
between the global registers 90 in all of processing nodes 8a-8n. Updates
to write-enabled registers other than processor initialization register
110 are performed by a processor 10 initiating N separate write
transactions on its local interconnect 16. The write transaction
targeting the local IDU 19 are received and serviced by the local memory
controller 17. The remainder of the write transactions are forwarded by
the local node controller 20 to the node controllers 20 of other
processing nodes 8, which in turn source the write transactions to their
associated IDU 19 via local interconnect 16. Access to global registers
90 is regulated by a global software lock to ensure that only one
processor 10 is updating global registers 90 at any one time. During
updates to global registers 90, all interrupts are masked until the

updates have been performed at each processing node 8 in order to avoid

mei L okt G S AN R 134100 1 B vt e e e RIS WD A ot e g e

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

11

interrupts being issued with stale settings. A load of a value from
global registers 90 entails simply performing a read to the local copy of

global registers 90 since all global registers 90 are synchronized.

Still referring to Pigure 4, per-processor registers 92 include M
register sets 120, one for each processor 10 that may be supported by a
processing node 8. Per-processor registers 92 are also OpenPIC-defined,
and each register set 120 includes a read-and-write current task priority
register 122, a read-only interrupt acknowledge register 124, and a read-
only end of interrupt (EOI) register 126. The register set 120 for a
particular processor can be located utilizing the base address contained
in global configuration register 102, the processor ID, and the OpenPIC
architected offset, as described above. Per-processor registers 120 serve

the following functions:

Current task priority register 122: indicates the relative task priority
of the current task when no interrupts are being serviced. For an
interrupt to issue to a processor, the interrupt priority must be higher
than the current task priority for that processor.

Interrupt acknowledge register 124: when read by software to acknowledge
an interrupt, the hardware supplies the interrupt vector of the pending
interrupt for the associated processor; if no interrupt is pending, the
spurious interrupt vector will be supplied.

End of interrupt (EOI) register 126: written by software to issue an EOI
to the highest in service interrupt for the processor that issued the EOI

command. Writing the EOI register for an external interrupt causes memory
controller 17 to issue an EOI interrupt transaction on local interconnect
16.

The third register space within each IDU 19 is a set of IPI command
registers 133 that includes one IPI command register for each level of IPI
interrupt, which in OpenPIC-compliant systems is 4. Each IPI command
register 133 contains at least M bits, where each bit position corresponds
Lo a processor ID of one of the M local processors 10. Thus, writing a
b’l’ to a particular bit position within an IPI command register 133
causes an IPI of the appropriate level to be issued to the specified
processor 10, as discussed further below. The status of the N sets of IPI
command registers 133 is collectively maintained in a master set of IPI
command registers in the general purpose memory space by interrupt
handling software. For example, if each of four processing nodes 8 in an
exemplary NUMA computer system supports a maximum of 8 processors, the
master set of 4 IPI command registers maintained can each have 32 bits,
where bits 0-7 correspond to processors 0-7 of processing node 0, bits 8-

15 correspond to processors 0-7 of processing node 1, etc.

In addition to the global registers 90, per-processor registers 92,
and IPI command registers 133 described above, each IDU 19 may also

. . I e BN W) AT e e s e 4 . oemy L L e dadatia ey ‘.q;m#::mmn ﬂ““'lqﬂw‘:‘”' Lompe - 1 . . LR .,‘.u.\cww“;,:;-”;mmm PP STTeT SRR YT PR R ot

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988
12

contain global timer interrupt sources and other OpenPIC-defined or other
registers.

2.1.3 Interrupt Source Unit (ISU) operation

With reference now to Pigure 5, there is depicted a high level
logical flowchart of the operation of an ISU 28 in accordance with the
present 1invention. As illustrated, the process begins at block 140 in
response to receipt of an input by ISU 28 and thereafter proceeds to block
142. If the input is an interrupt packet received from the bus (i.e.,
local interconnect 16 or mezzanine bus 30), the process passes to block
152, which 1s described below. 1If, however, the input is an external
interrupt (i.e., assertion of an interrupt request line by an interrupt
source), the process proceeds from block 142 to block 144, which
l1llustrates ISU 28 accessing the appropriate interrupt source

configuration register 72 to assign the interrupt a level. ISU 28 then

determines at block 146 whether or not interrupts at the level of the

received external interrupt are currently masked by reference to interrupt
source configuration registers 72. As noted above, in a preferred

embodiment of the present invention, at most one interrupt of any given
level is active within each processing node B8 at any given time. If
interrupts at the level of the received external interrupt are masked, ISU
248 takes no further action at the present time, and the interrupt source
must continue to assert the interrupt request line 35 or reassert it at a
later time. The process then returns to block 142. If, however, a
determination is made at block 146 that interrupts at the level of the
recelived 1interrupt are not masked, ISU 28 issues an interrupt packet to
the local IDU 19 via local interconnect 16 (and possibly mezzanine bus 80)
indicating the level of the interrupt and the interrupt vector, as shown
at block 150. 1In addition, ISU 28 masks interrupts at the level of the
received interrupt. The process then returns from block 150 to block 142,
which has been described. Thus, unless interrupt channelling is enabled
as described below, all external interrupts are presented to software by

hardware within the processing node 8 in which the external interrupts
occur.

Referring now to block 152, in response to receipt of an interrupt
packet on the bus, ISU 28 determines if it has an interrupt pending at the
level specified in the interrupt packet. 1If not, the interrupt packet,
which will be processed by a different ISU 28, is 1gnored, and the process
returns to block 142. If a determination is made at block 152 that the
ISU 28 has an interrupt pending at the interrupt level specified in the
lnterrupt packet, the process proceeds to block 160. Block 160 depicts a

determination of whether or not the bus interrupt transaction that was

received by ISU 28 is an EOI or cancel interrupt transaction. If so, the

""'"'“"W.‘"A"’mmmhm. ;"MN“"“‘W&‘M”“N, e TLI L o se @e

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988
13

process passes to block 162, which illustrates ISU 28 clearing the mask of
interrupts for the interrupt level specified in the bus interrupt

transaction. The process then returns to block 142, which was described
above.

If, on the other hand, ISU 28 determines at block 160 that the
received bus interrupt transaction is not an EOI or cancel interrupt
transaction, the process passes to block 170, which depicts a
determination of whether or not the bus interrupt transaction is a reissue
transaction that requests ISU 28 to reissue an interrupt at the specified
level at a later time. If the bus interrupt packet is not a reissue

transaction or other defined interrupt packet, the process passes to block

172, which 1llustrates ISU 28 performing an appropriate error handling
function. If, however, the bus interrupt transaction is a reissue
transaction, the process passes to block 174. Block 174 depicts ISU 28
waiting an implementation-dependent interval of time (e.g., a
predetermined number of clock cycles) before reissuing the interrupt
packet to IDU 19, as shown at block 150.

2.1.4 Interrupt Destination Unit (IDU) operation

With reference now to Pigure 6, there is depicted a high level
logical flowchart of operation of IDU 19 when processing its inputs. As
indicated, the process begins at block 180 in response to recelipt of an
input by an IDU 19 and thereafter proceeds to block 182. Block 182
illustrates IDU 19 determining whether the lnput 1s an interrupt request
packet 1ssued by an ISU 28. If not, the process passes to block 200,
which 1s described below. However, if the input received by IDU 19 1is an
Interrupt request packet issued by an ISU 28, the process proceeds to
block 184, which depicts a determination of whether or not the interrupt
level specified in the interrupt request packet is (1) greater than the
priority level specified in the current task priority register 122 of any
processor 10 in the local processing node 8 not currently servicing an
interrupt, or (2) high enough to obtain an entry 1n the pending gqueue 130
cf a processor 10. If not, the process passes to block 186. Block 186
depicts IDU 19 transmitting a reissue interrupt packet on local
interconnect 16, which is received and processed by an ISU 28 as described
above with respect to Pigure 5. A similar reissue interrupt packet may
also have to be sent, as depicted at block 188, if an interrupt in the
pending queue 130 has a lower level than the newly received interrupt and
the pending queue 130 is full, causing the pending interrupt to be evicted
from pending queue 130 in favour of the new lnterrupt.

Following blocks 184 and 188, the process proceeds to block 190,
which illustrates IDU 19 asserting the interrupt request line 36 of the

' 4 fod Serrird U O Mu”l"‘w“ e . e RN T ELERE LY SO o WP IT IR L R (LR B L 14 L ' B . R R TR T T e e i W“tn““u"lf‘“"ﬂ"“‘“ AR REVIADN Ay« e iAt ey
e tead WL it ent ol e . mm clemtee s e e M mm‘

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

14

processor 10 to which the interrupt was queued at block 184. In addition,
as 1illustrated at block 192, IDU 19 sets a pending flag for the level of
the interrupt and sets an active flag for the interrupted processor within
the associated current task priority register 122. The process then
returns to block 182, which has been described.

Returning to block 182, if an input received by IDU 19 is not an
interrupt request packet, IDU 19 determines at block 200 whether or not
the received 1nput transaction i1s an interrupt acknowledge (ACK)
transaction transmitted on local interconnect 16 by a local processor 10
to acknowledge receipt of an interrupt. If not, the process proceeds to
block 220, which 1s described below. However, if the input received by
IDU 19 1s an interrupt acknowledge transaction, the process passes to
block 202, which depicts IDU 19 deasserting the interrupt request line 36
and advancing the pending interrupt from pending queue 130 into the
processor’s service queue 132 by storing at least the interrupt level in a
service queue entry. As illustrated at block 204, IDU 19 then transmits
an interrupt transaction containing the interrupt level and the interrupt
vector to the servicing processor 10 via local interconnect 16. If for
some reason, an 1interrupt ACK transaction is received by IDU 19 when there
1s no pending interrupt for the transmitting processor 10, the spurious
interrupt vector contained in the spurious vector register 108 is supplied

to the processor 10. The process then returns to block 182.

Following servicing of an interrupt, the servicing processor 10 will
1ssue to IDU 19 an end of interrupt (EOI) write transaction, as depicted
in Filgure 6 by the process passing from block 182 to block 200 to block
220 and then to block 222. Block 222 illustrates IDU 19 clearing the
pending flag for the level of interrupt contained in the EOI write
transaction. As shown at block 228, IDU 19 also issues an EQI transaction
to local interconnect 16 to clear the bit set for the interrupt in pending
reglster 82 of the source ISU 28, as discussed above with respect to
blocks 160 and 162 of Figure 5. As depicted at block 224, if another
interrupt is present in the pending queue 130 of the interrupted processor
10, the processor 10 is notified of the queued interrupt, as indicated by
the process passing to block 190, which has been described.

Alternatively, if no further interrupts are pending for the interrupted
processor 10, IDU 19 clears the active flag for the interrupted processor

10 at IDU 19, as illustrated at block 226. The process thereafter returns
to block 18643.

Still referring to Pigure 6, if the input transaction received by
IDU 19 is not an interrupt request, an ACK transaction, or an EOI
transaction, IDU 19 determines at block 240 if the input transaction is a

write transaction targeting an IPI command register 133. If not, the

TR TR TV P AR R S MR L 1T e e et e " g=4 VAT TR IS SR i ek i (G] Ay r Y ' Tt e e sl by ae R« AT AL PR I G I AR R AT § e M T At e et

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB9%99/03988
15

process passes to blocks 260-264, which illustrate IDU 19 performing other
processing 1f the received input is valid and otherwise performing
appropriate error recovery activity. If, however, the received input is a
write transaction targeting an IPI command register 133, then ISU 19

recognizes the input as a trigger for an IPI.

Unlike the external interrupts discussed above, an IPI can be
generated by any processor 10 in NUMA computer system 6 and can target
1tself and/or one or more other processors 10 in NUMA computer system 6.
Such IPIs are typically employed in order to asynchronously pass messages
between the processes running on different processors 10. For IPIs to be

supported, setup software executed at system startup first initializes the
level of each of the four supported IPIs. Then, during operation of NUMA

computer system 6, a source processor 10 selects a target processor or
processors 10 as recipients of a message, where the threshold IPI level of
each target processor 10 is indicated in that processor’s current task
priority register 122. The source processor 10 determines by reference to
the configuration information and the threshold IPI levels of each target
processor 10 what IPI interrupt to utilize to interrupt the selected
target processor(s) 10. The source processor 10 then stores the message
in a shared memory location that can be accessed utilizing the IPI vector
register 106 associated with the chosen IPI. The source processor 10
finally issues a write transaction to each processing node 8 containing a
target processor 8, where each such write transaction targets the

appropriate IPI command register 133.

As discussed above, it is this write transaction that is decoded by
an IDU 19 at block 240 of Pigure 6. From block 240, the process passes to
block 242, which illustrates IDU 19 determining what priority (level) is
assoclated with the targeted IPI command register 133 and determining what
local processors 10 are accepting interrupts of that level, for example,
by reference to IPI vector registers 106. Once the local target
processor({s) 10 are determined, IDU 19 asserts the interrupt request
line(s) of the target processor(s) 10, sets the pending flag for the
interrupt level of the IPI, and sets the active flag for the target
processor(s) 10, as shown at blocks 244 and 246. Thereafter, the process
returns to block 182.

2.1.5 Interrupt Channelling

For some applications of NUMA computer system 6, it may be
advantageous to augment certain resources, such as system memory 18, I/0O
devices 32, or storage devices 34, without increasing the processing
resources of NUMA computer system 6. In such cases, it is desirable to

include one or more nodes 8 containing no processors 10. However, in view

R AR T s e : T T AT VAR M HRANE TR RO s T At RN KRN A I NI D N AN L ¢ RN T R

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

16

of the above-described partitioning of NUMA computer system 6 into per-
node interrupt domains, some mechanism is required to handle external
1nterrupts generated by interrupt sources in processorless nodes 8. 1In
accordance with a preferred embodiment of the present invention, the
handling of external interrupts generated by processorless nodes 8 is

accomplished by interrupt channelling.

To effect interrupt channelling, the local IDU 19 (if present) is
disabled, and the node controller 20 of each processorless node 8 is set
to a forwarding mode in which the node controller 20 of the processorless
node 8 accepts interrupt packets sourced by local ISUs 28 and forwards the
1interrupt packets to a designated "foster" node 8 that includes at least
one processor 10 and one IDU 19. This forwarding mode may be controlled,
for example, by a mode register in the processorless node’s system control
area segment 70 that 1s written by configuration software at system
startup, where the mode register includes a mode control bit and a foster

node identifier.

In response to receipt of the interrupt transactions forwarded
across node interconnect 22, the node controller 20 of the foster node 8

runs the interrupt transactions on its local interconnect 16. The IDU 19

at the foster node 8 then claims the interrupt packets and presents the
interrupts to the local processors 10 for servicing, as described above.

Any 1nterrupt packets generated by the IDU 19 at the foster node 8 are
also transmitted to the source 1ISUs 28 at the processorless node 8. Thus,
using 1nterrupt channelling, the interrupt sources and 1SUs of remote
processorless nodes 8 are included within the interrupt domain of a
designated foster node 8, and external interrupts are handled utilizing
the same types of interrupt transactions as are used to handle external
interrupts generated at the foster node 8. Advantageously, by utilizing
the point-to-point communication capabilities of node interconnect 22,
multiple "foster node“-"child node" relationships can concurrently exist

without violating domain independence.

A special case of interrupt channelling during system startup 18
called interrupt funnelling. In interrupt funnelling, all external
interrupts in a NUMA computer system are temporarily all directed to a
master processor that 1s the first to be configured. After the remainder

of the processors have been configured and are therefore able to service

interrupts, the partitioning of interrupt domains is enforced.

2.2 Interrupt Software

Referring now to Pigure 7, a high level logical flowchart is given

that 1llustrates a portion of a configuration routine for configuring

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

17

interrupt resources in accordance with the present invention. As
depicted, the portion of the configuration routine shown in Figure 7
begins at block 300, preferably after initial power on self test (POST)
and other low-level hardware initialization code has run, and then
proceeds to block 302. Block 302 illustrates the configuration routine
identifying which nodes 8 of NUMA computer system 6 contain devices that
are capable of generating external interrupts. Next, at block 304, the
configuration routine interrogates each device capable of generating
external interrupts to determine the level of interrupt that each such
device wishes to use. The configuration routine resolves conflicts, if
any, between the devices and assigns levels to each of the devices’
interrupts. The process proceeds from block 304 to block 310, which
depicts the configuration routine creating, for each respective interrupt
level, a data structure in general purpose memory that lists all the
devices that could generate an external interrupt of that interrupt level,
the node ID of each device, and the physical addresses of each device’s
reglsters. Depending upon implementation-specific details, other
information useful in handling interrupts may also be stored within each

data structure.

The configuration routine then configures the hardware within each
node B8, as depicted at blocks 312-334. After the configuration routine
selects a node B8 at block 312, the configuration routine determines if the
selected node 8 contains a processor 10. If not, the configuration
routine implements interrupt channelling by disabling IDU 19 within the
selected node 8, as depicted at block 330, and appropriately configuring
the ISU(s) 28 and node controller 20, for example, by writing values to
memory-mapped registers. As described above, the configuration of node
controller 20 includes setting a forwarding mode bit and specifying a
foster node 8 within a forwarding mode register. In addition, the
configuration register preferably writes the node ID of the selected node
8 1nto a node ID register within node controller 20. The process then
passes to block 334, which depicts the configuration routine determining
1f additional nodes 8 remain to be configured. If so, the process returns

to block 312, at which the configuration register selects a next node 8 to
be processed.

Referring again to block 320, if the configuration routine
determines that the node 8 selected at block 312 contains a processor 10,
the process passes to block 322. Block 322 depicts the configuration
routine configuring processor(s) 10, IDU 19, ISU(s) 28 and node controller
20 within the selected node 8. As indicated, the configuration preferably
includes writing the node ID into a node ID register within node
controller 20 and writing each processor’s own ID into an internal

processor ID register., The process then proceeds to block 334, and if

e '--':ﬂﬂilﬂq‘l‘ﬂ‘uZ:.W.Wlwgaw<,y.p.:.. e . e . st sess gy arFeees L o burdds vy ceeWEw . ' . Teo e USRS b o L RN S bt ke g 1 M et CEETE .

..........

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

18

further nodes 8 remain to be processed, continues with other setup and

configuration activities at block 336.

With reference now to Pigure 8, a high level logical flowchart
l1llustrates the manner in which first level interrupt handler (FLIH)
software facilitate the servicing of an interrupt presented to a processor
10 by IDU 19. As depicted, the process begins at block 400 in response to
assertion of an interrupt request line by IDU 19, as discussed above with
respect to Pigure 6. In response to assertion of the interrupt request
line, processor 10 takes an exception and jumps to the first level
interrupt handler, which begins at block 402. Block 402 illustrates the
processor 10, operating under control of the FLIH, transmitting an
interrupt acknowledge (ACK) transaction to IDU 19 in order to obtain the
interrupt level and interrupt vector of the interrupt to be serviced. The
FLIH also determines at block 403 whether the interrupt is an IPI or an
external interrupt. 1If the interrupt is an IPI, the process passes to
block 405, which 1i1llustrates the servicing processor 10 reading a message
from the interrupting processor 10 from the shared memory location for the

specified IPI level. The process then passes to block 410, which is

described below.

Returning to block 403, in response to a determination that the
interrupt presented to the processor 10 is an external interrupt, the
process passes to block 404. At block 404, the FLIH masks interrupts from
IDU 19, 1f required by the implementation, and obtains a software lock on
any exclusive interrupt resources required to service the interrupt. The
FLIH then passes the interrupt level and a pointer to that interrupt

level’s associated data structure to a second level interrupt handler

(SLLTH), as shown at block 406.

As will be appreciated by those skilled in the art, a SLIH is an
interrupt handling routine that performs the operations required to
service an interrupt generated by a particular device. Because multiple
interrupt sources may generate the same level of interrupt, such SLIHs are
typically chained together to form a polling chain so that when the
polling chain of SLIHs is processed, each SLIH in the chain polls its
assoclated device (or devices) to determine if the device is the interrupt
source, and 1if so, performs the operations required to service the
interrupt. The present invention recognizes that interrupt handling
latency is heavily dependent upon the length of the polling chain, which
1s 1n turn dependent upon the number of levels of external interrupts and
the number of potential interrupt sources in a NUMA computer system.

Thus, if NUMA computer system 6 has only 16 levels of external interrupts
and the number of potential interrupt sources within NUMA computer system

6 1s large, interrupt handling latency will be high. In order to provide

R S A MR AR R A . Rl T b e SN AN £ aa A M R 1B e e

10

15

20

25

30

35

40

45

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

19

improved interrupt handling latency, the present invention reduces the
number of SLIHs i1n the polling chain by eliminating devices in one or more

nodes as candidates for the interrupt source.

In a first embodiment, the number of SLIHs in the polling chain is
reduced by the FLIH mapping the interrupt level to a node-specific (or
superset) 1interrupt level formed by concatenating (or otherwise combining)
the node ID on which the interrupt occurred, which is known to the
processor 10 receiving the interrupt, with the conventional interrupt
level. Each such node-specific interrupt level would have an associated
interrupt data structure created in memory by the configuration routine,
where the data structure would list only the devices within the associated
node (i.e., interrupt domain) that could generate an external interrupt of
the given level. Thus, the interrupt level passed to the first SLIH in
the polling chain at block 406 would be the node-specific interrupt level,
the pointer provided to the SLIH at block 406 would point to the node-
specific interrupt data structure, and the polling chain would include
only the SLIHs associated with devices listed in the node-specific
interrupt data structure. This first embodiment is advantageous in that

multiple interrupt handlers at the same level could run concurrently on
processors 10 1n different nodes 8 without conflicting over (or having to

obtain locks for) interrupt servicing resources, but requires that the

FLIH and SLIHs recognize the node-specific interrupt levels.

The number of SLIHs in the polling chain may alternatively be
reduced according to a second embodiment in which the FLIH itself passes a
subset of the interrupt data structure to the SLIH, where the subset
interrupt data structure lists only devices having the same node ID as the
processor to which the external interrupt is presented. With devices at
other nodes being eliminated from consideration, the polling tree of SLIHs
ls likely to be shorter. Either of these embodiments may be employed
together with interrupt channelling as described above, in which case, the
data structure for constructed by the configuration routine for an
interrupt domain will contain the devices within both the foster node and
the child node.

In any event, once control has been passed to the first SLIH in the
polling chain, the FLIH waits for interrupt servicing to complete, as
shown at block 408. Importantly, once the interrupt has been passed to
the polling chain of SLIHs, the operating system can schedule these SLIHs
to execute on any processor 10 in NUMA computer system 6, and may select a
different processor 10 to execute the SLIHs in response to load balancing,
data affinity, or other criteria. Upon completion of the SLIH associated
with the interrupt source, control is returned to the FLIH at the

processor 10 that originally received the interrupt, which issues an EOI

T A AN A 4 M s et : Pt e ik G e U L RO SR A0 4 Y e e e ' DT e ra e Pt M AR S SR Tl AL EATEAE TN S GYTH ¢ AR TR AN A A B e gy

10

15

20

25

30

35

40

45

' LI e W o e A ol) e - 1y 124 R A 2

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

20

transaction to IDU 19 specifying the level of the serviced interrupt, as
shown at block 410 and as discussed above with respect to block 220 of
Figure 6. Thereafter, the FLIH terminates at block 412.

As has been described, the present invention provides an interrupt
architecture for a NUMA computer system. The interrupt architecture,
which includes both hardware and software components, can be generally
described as partitioning the NUMA computer system into external interrupt
domains so that an external interrupt is always presented to a processor
within the external interrupt domain in which the interrupt occurs.
Although each such external interrupt domain typically includes only a
single node, interrupt channelling or interrupt funnelling may be
implemented to route external interrupts across node boundaries for
presentation to a processor. Once presented to a processor, software may
then execute on any processor within the system to service the external
interrupt. Advantageously, the interrupt architecture of the present
invention enables interrupt handling software to expeditiously service
external interrupts by reducing the size of the interrupt handler polling
chain (tree) as compared to prior art methods. In addition to external
interrupts, the interrupt architecture of the present invention supports
inter-processor interrupts (IPIs) by which any processor may interrupt

ltself or one or more other processors in the system. The present
invention utilizes memory mapped registers to trigger IPIs, which

facilitates the transmission of IPIs across node boundaries and permits
multicast IPIs to be triggered simply by transmitting one write
transaction to each node containing a processor to be interrupted.
Importantly, the interrupt architecture of the present invention scales
well from small NUMA computer systems containing a few nodes to large
systems containing hundreds of nodes. The interrupt hardware within each
node 1s also distributed for scalability, with the hardware components
communicating via interrupt transactions conveyed across shared

communication paths (i.e., local buses and interconnects).

Although the present invention has been described with respect to an
OpenPIC-compliant embodiment, it should be understood that the present
invention is not limited to OpenPIC-compliant systems. Furthermore,
although aspects of the present invention have been described with respect
to a computer system executing software that directs the method of the
present 1invention, 1t should be understood that present invention may
alternatively be implemented as a computer program product for use with a
computer system. Programs defining the functions of the present invention
can be delivered to a computer system via a variety of signal-bearing
media, which include, without limitation, non-writable storage media
(e.g., CD-ROM), writable storage media (e.g., a floppy diskette, hard disk

drive, EEPROM), and communication media, such as computer and telephone

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988
21

networks. It should be understood, therefore, that such signal-bearing
media, when carrying or encoding computer readable instructions that
direct the functions of the present invention, represent alternative

embodiments of the present invention.

T HRA Tl DM L VA MO MR DIE B R I i i~ 81 1A 1070 SRR BTN AT G MR ISR A M 3t WA TRA MDA 12130 e yetemese o o : o TR e e e A AL Y e s e ' ! TNt 1 Aol N A TR S NI AR TR AL L B R A - 4 e s e e

e — ,
'{’” 55 r«i’"‘,{ m*'h“' ";?335;,-?‘”‘51% x ‘u{"a' M‘u X K S } &‘c !mu e R R *-;:'-"5 - ‘”

[EP99973434.6'and PCT/GB99/03988

TP R NE R R R B T (s B R Wsteead Qe : 30 Novembeufm:: s trms

22

CLAINMO

1. A data processing system, comprising:

a plurality of interrupt domains that each include at least
one of a plurality of interconnected processing nodes, wherein each
interrupt domain includes at least one processor capable of receiving an
external interrupt and at least one interrupt source capable of generating
an external interrupt, each of said plurality of interrupt domains having
respective interrupt hardware that receives external interrupts generated
by said at least one interrupt source and presents said external

interrupts to said at least one processor;

Wherein:

salid at least one processor executes interrupt handling software that can
service interrupts presented to both a processor in a same interrupt
domain as said at least one processor and a processor within a different
interrupt domain than said at least one processor;

sald interrupt hardware within each interrupt domain includes a
globally~accessible memory mapped register utilized to communicate

lnterrupts between interrupt domains; and

sald globally-accessible memory mapped register is utilized to communicate

lnter-processor interrupts.

2. The data processing system of Claim 1, said interrupt hardware
within each of said plurality of interrupt domains including an interrupt
destination unit that presents interrupts to processors only within its

interrupt domain and at least one interrupt source unit that receives

1nterrupts from interrupt sources.

3. The data processing system of Claim 2, wherein said interrupt

destination unit and said interrupt source unit communicate interrupt

1information via a shared interconnect.

4, The data processing system of Claim 2, wherein for at least one
lnterrupt domaln among said plurality of interrupt domains, at least one

interrupt source unit and said interrupt destination unit are located in

different ones of said plurality of interconnected processing nodes.

5. The data processing system of Claim 4, wherein said one of said
plurality of interconnected processing nodes containing said at least one

interrupt source unit contains no processors for recelving external

interrupts.

Prmted 11-12-2000 AMENDED SHEET

~CA 02349662 2001-05-07

Wl = I e M UGN R] e R A I Te B 00 Wl aray AT G331t el Lt p '

pRE ey X

IAPDIE Taeiics SR

05 12-2000°

. "BE **r~é~uwt W%W

v’ : ,

~.T938095 / 6899703982699 . 30 NovembeiZeMnRANMIDE
23
6. The data processing system of Claim 2, wherein at least one of said

plurality of interrupt domains includes a plurality of interrupt source

units.

7. The data processing system of clam 1, further comprising:

a plurality of local interconmects that are each located within a
respective one of said plurality of interconnected nodes:

a system interconnect; and

a plurality of node controllers that each couple one of said plurality of

local interconnects to said system interconnect for communication between

nodes.

8. The data processing system of claim 1, wherein:

sald data processing system further comprises memory within one or more of
sald processing nodes that stores an operating system and a first level
interrupt handler and a second level interrupt handler; and

sald first level interrupt handler is executed by said processor to which
sald external interrupt is first presented to invoke servicing of said
external interrupt and said second level interrupt handler can be

scheduled by said operating system to execute on any processor in said
data processing system.

9. The data processing system of Claim 7, wherein said
globally-accessible memory mapped register of each of said interrupt
demains is assigned a respective physical address, and wherein the
physical address of the globally-accessible memory mapped register of each
interrupt domain has a uniform offset from a memory area allocated to a

processing node containing said globally-accessible memory mapped

reglster.

10. A method for handling an external lnterrupt in a data processing

system, said method comprising:

establishing a plurality of interrupt domains that each include at

least one of a plurality of interconnected processing nodes, wherein each

an external interrupt, each of said plurality of interrupt domains having
respective interrupt hardware;

T
Printed:11-12-2000 AMENDED SHEE

CA 02349662 2001-05-07

X . . , " ' . cos MNedogyeemnn cemre. e oas .
. PR PR SRR S T P #.m%fm“‘wmmw-u_aa’;"d T ARSI L m.*:‘.“ﬁum.“q.] EENLAEERY T PERE PR |:-s'~|-.f.-x\-.-:.~.|-w..|iu.n-l e-‘m\i&::lﬂ{#ﬂitlﬂﬂim_wmhm_ M"Wﬂlmﬂll“ﬂ“Lﬁmﬁ‘J L. | Al 1491 7o AN i 1
. ' LI LA L Bl . . - H e . " . .

PR T & SRS

A gﬁ#ﬁi@gawsogs

o Lo "?k‘_‘?‘ nf-* \5% 5} Tihe ¢g tWM

i
e 4 e PN R TR NP OR .
.‘... - ¢ J: 0 ': > % \‘k:' .t < -'.t,.\“{ .. . s %
y o) v . - > ‘,\ \5‘\\ t . .. " .
L ’ - 0 em A .
' . AT N " ' e L
. 0 » A x; " ¥ £ .
f ' . . - S .
o - v N A \'-'. . e : ' .
. . : > - 0 -y o - y ..
A > ' - . . -~ - /‘\\ Y ROk LK. - ‘.
g : A fx AR y THR e
' .
iy 0 - g !
R

@R&Wmage' 30 Novembe

24

within a particular interrupt domain among said plurality of
interrupt domains, receiving an external interrupt generated by said at
least one interrupt source at said interrupt hardware and presenting said

external 1lnterrupt to said at least one processor by said interrupt
hardware;

executing, with said at least one processor of said particular
interrupt domain, interrupt handling software that can service said
external i1nterrupt presented to said at least one processor; |

communicating said external interrupt and inter-processor interrupts
petween interrupt domains utilizing a globally-accessible memory mapped
register within said interrupt hardware; and

servicing an external interrupt presented to a processor within a

different one of said plurality of interrupt domains than said particular

interrupt domain.

11. The method of Claim 10, said iatérrupt hardware within each of said
plurality of interrupt domains including an interrupt destination unit and
at least one interrupt source unit, wherein receiving an external
interrupt comprises receiving said external interrupt at said at least one
interrupt source unit, and wherein presenting said external interrupt

comprises presenting said external interrupt to said at least one

processor utilizing said interrupt destination unit.

12. The method of Claim 11, and further comprising communicating

interrupt information between said interrupt destination unit and said

interrupt source unit via a shared interconnect.

13. The method of Claim 12, wherein for at least one interrupt domain
among said plurality of interrupt domains, communicating interrupt
information via a shared interconnect comprises communicating interrupt

information via a shared interconnect interconnecting at least two of said

plurality of processing nodes.

14. The method of Claim 13, wherein establishing a plurality of
interrupt domains includes establishing at least one interrupt domain in
which one of said plurality of interconnected processing nodes contains at

least one interrupt source unit and no processors for recelving external

interrupts.

15. The method of Claim 11, establishing a plurality of interrupt
domains comprises establishing at least one of said plurality of interrupt

domains including a plurality of interrupt source units.

Prlnted 1(31; 3223429260202001 05-07 AMEN[}ED S’-EEI

——_— . ""l.l‘-“‘.’i{qi?‘bwmizll.‘lﬁi\vih B T Ry TP N TR T P T 17 LOURT T5 TRIRR TUR I S . 1 . L I R P or L BT S R N PO B o e 7 I L e L

S AR e Ty SRR S AR g NI SR e g M g

. i et s
06-12 20“ EP99973434 .6 JPETIR
[EP99973434.6 and PCT

IR b : :'_ . . e . = .".‘; y B ' o ' X .

vt ' .y T4 w cec.ow \." . 2 , v [HS ? ':‘“ ! Yoy g' o ' ‘0$ "{'.# e

oot s s T 998095 R ; ; ,

5y B o
et e R 2 ARt S ¥T. I NI e *? by v %0
- :[i "’d;\. ; oS \ g .
< - N\ [} 2 " h

P

25

16. The method of Claim 10, and further comprising:

assigning said globally-accessible memory mapped register of each of
sailid interrupt domains a respective physical address, wherein the physical
address of the globally-accessible memory mapped register of each
interrupt domain has a uniform offset from a memory area allocated to a

processing node containing said globally-accessible memory mapped

reglster.

17. A program product for use by a data processing system including a
plurality of interconnected nodes, wherein each of said plurality of
interconnected nodes includes a device that generates interrupts and
devices in multiple nodes may generate interrupts of the same level,
wherein at least one of said plurality of interconnected nodes includes a

processor, said program product implementing the method of any one of
claims 10 to 16.

Prmted 11 12 2000

‘CA 02349662 2001-05-07

SR} RECCRERE R o] (LA St BT LR L UL R B ' e = e R R R L R L L S s - B R Ly - e B N B LI LI

CA 02349662 2001-05-07

PCT/GB99/03988

WO 00/36505

1/9

S30IA30

b e JOVHOLS

SN
ININVZZIN

81l

390148 SNJ

ANINVZZ3N = HI1IGHV

1IJINNOJHILNI
WI01 g¢

AHOHVHIIH

3400
d0SS300Hd

300N
ONISS3004Hd

ug

— 83T1041NOD
0¢ 300N

AHOYVHIIH

3400
H0SS3004d

1J3NNOOJOHILNI
30ON

1O AT TR HIT L A sl el fee . .

PCT/GB99/03988

CA 02349662 2001-05-07

WO 00/36505

g9¢

777770 00N 777 890
AOUMNANANY £ 8PON INNNNN\ ;¢
2O T BPON XLXUXLXKK

8oedg AJOWS\
lesayduiad O apoN \
/) T HHHHHH
...........E... LD gnye

7

7

99

0OWQW >uOE®§ .uu..u.uwwwuuunuuuuuuuunnuunnnunuuunnumnmumnmnmn

/ [e1ayduag | apoN

N omﬁ-& V W3 3 0 X X . mmmmmmmmmmmmmmmmmmmmmmmmmmm.m..mwmw..mw“..n.mm

. ”9“0"0"0“ XX XXX XX 40“““0““““ 2 SSSISISSSSESSSSTESSSSESITISSIEEE mo‘v
KRLK. 0edg Alowapy KRR L /OBPON
XXXK [e1aydLay Z apOPN SKRXX NOININNNEITRNNNNNN
.’0”‘0" y .”’.”.. XK XOOOO K 300 L I X O KK
0.0.90.0.0.0.0.0.0.0.90.0.0.0.0.0.0.0. NQMOMOM VO)O.POP0)0#0’ODOEDODObODQbQ’OOOh
SN RN RN RN AR RN RN AR AR manAn CEAEEEEE € 9PON EEEHEREREN
1 i1 111 T rrtrrrer

S T R:DI

a0edg AJOWa
jeiayduad £ apoN

2/9

0.

g4O¢
Z 9 7 0N 2777 898
QG Mm“.m..wm mmm.mgoﬁa A
FEEEEEREE € OPON g90!
/'\/9S 0 9poN

4 w777 8

VIS | 8poN ANNNNNNN | 3PON \NNNNNNN

RRRRRRRRRR 2 R0 T BDON XK
S VIS T 3PON &« EEEERHHHH € OPON BEEEHHH) o0

S
05/

RN G bl L LR L e S L e L o Tl L TR LU S TR R R B LT P

MERRUR A Hrdss i 1 .

ARRTTMETIRS TR 1 2%t < PPt

CA 02349662 2001-05-07

PCT/GB99/03988

WO 00/36505

3/9

0

70t

L

dOL1O3A

L 8

9/ L1581 08418

NOISNVdX3 HOLIIA
HO4 GaAHSTY | |ALIOINd “n- ENVEREN -m

41 91 61021C¢CC €C V¢ 6¢ Ot |t

"“'"""W'M"mlmﬂﬁmwimm‘*"'" MY 1T - oo . e®gs @»

e YT L B TR AL DA T

EEEERILE, TRV TT TR T Ao 1Y WO

CA 02349662 2001-05-07

PCT/GB99/03988

WO 00/36505

4/9

p g

€ 43151934 ANVINWOO IdI{Z H31SI934 ANVINWOD Id|
1 43151934 ANVINWOD 1d1]0 H31SI93H ANVWINOD Idl
SH31S1934 ANVIAWOD Idl

SANIND w
H0SS3004d

1 %

2¢1 W 135 H31S1934 HO0SSII0Hd-Hd 071
ININD IJIAH3IS :

43151934 1dNHYILINI 40 N3

26
0e | H31SI93d 39GIIMONNDY LdNYYILNI M M "
T W3LSID3Y ALIHOMNd YSVL LNIGUND .
3N3N0 ONION3d 17| SY3LSID3Y HOSSIN0Yd-H3d
- ¥31SI193d NOILYZITVILINI H0SS3004d
o H3LSIO3H HOLD3A SNOENdS

€ 43151934 HO1J3A Idl | € H31SI934H HOLO3A Idl
L 43151934 HO1J3A Idl | 0 H31SI1934 HOLI3A Id
43151934 NOILVIIdILNIAI HOONIA

901

Mw ” H3LSID3Y NOILYHNOIINOD V801D
e H3ILSIOIY ONILHOJIH FHNLV3A
SH31SI934 VE0TD
o6 .\./\\

6} (NAI) LINN NOILVYNILS3A LdNYYILNI

DR M e G e R MR I I Y] et A]

CA 02349662 2001-05-07

PCT/GB99/03988

WO 00/36505

5/9

13A37 1dNYYILNI
JH1 403 NSV 13S
ONV 1dNYYH3INI 3HL 40
13A37 3HL S3LVOIIANI
1VH1 NQl 01 13NJvd
1dHY31NI 3NSSI

¢ ADISVYIN
13A3T .Fm_:mmw._.z.
|

v 1

13A31 V 1dNYYILNI
NOISSY Ol H31SID3Y

NOILVHNDIINOD
JoHNOS 1dNYYILNI
SSIJIV

A4

TVAH3LNI

U3NIWYH3130d34d V LIV

Vil

ON

¢ G3AI303H
NOILOVSNVHL

S3A INSSIIY

ON

¢ 3AIFO3H

NOILOVSNVHL SIn
13ONVI HO 104

ofmwh/

7 L TEATT N
(314103dS 3HL 1V
ONIAON3d 1dNYY3LNI
NV SVH NSi

SIH1

¢Sl

¢ G3AI3034
1dNYY3LINI

S3A TVNHILX3

cvli

oy N

S ¢ b

13A37
1dNYY3INI A314133dS

d0d XSVIA HVI10

¢l

L AR TN O3

PCT/GB99/03988

C6 |

v0¢

mOmwwmwoan_o

4 OV14 ALY
HOSS3ID0Hd OL

HOLI3IA LdNYY3ILINI NV ANV 13A317 LdNYYI LN

13A37 LANYYILNI AN3S 404 9V1d ONION3d 138

1dNHYILINI ONIGNId V
NVHL ALIHOIHd H3HOIH V

SVH 1dNYH31NI 3AI303Y
GNV T11n4 SI 3N3N0
31 "LdNYYILNI ONIGNId

d05S3008d Q3123713S
d04 INIT 1S3N03Y
1dNHYILNI 1H3SSY

6/9

CA 02349662 2001-05-07

WO 00/36505

HO4 NS OL 1INIVd
1dNYYILNI INSSIIH AN3IS

061}
88|

S3A

¢ JOIAH3S

N3N0 IDIAH3S NIV180 OL 1dNHY3ILNI Q3AI1303Y
Ol 1dNYY3ILIN| IONVAQY HONON3I HOIH 13AT1 404 NSI Ol 13MNIvd
ANV 3NIT 1S3N03Y LdNHYILNI 1dNYY3LINI INSSIIY AN3S

1dNYY3ILNI 1H3SSV3IY

b8l 98
2027 S3A SIA
¢ QINIFDI3Y ¢ NSl
WOY4 Q3AI3D3Y
ON NOLL Y SNVl ON~~NOILOVSNYH.L 15S3N03Y
LdNYYIINI
00¢ ¢81

¥9 ‘b
3 .m_u_ 081 E

o FARSe mi-nmwdwmwmgmmjmmw <!

CA 02349662 2001-05-07

PCT/GB99/03988

WO 00/36505

719

NAl LV HOSSIJ04d SIHL
d0d4 OV14 JALLOV HVITD

HOSS3O0Hd 9¢¢

HO4 OV14 3AILDV ON
ANV 13A31 LdNYYILNI
HO4 OV14 ONIAN3d 13S .

9y ¢ §0SS3J04Hd
SIHL 04 G3aN3ND _
LdNYYILNI SIA
(SIHOSSIDO0Yd |
3LVIHdOYddY b7 7 “
40 S3ANIT 1S3N03Y |
LdNYYILNI 1HISSY |
X NSI 304N0S OL _
NOILOVSNVHL |
- - 103 LINSNVYHL "
DNIAI3D3Y 40 318VdVY) |

JHV/S! (S)IHOSSIIOHd

DONISSID0Nd HOIHM GNV Idl 3HL 1dNYYILINI 314103dS .
¢92 HIHLO 40 73A31 3HL INIWYILIG HO4 OV14 ONIANId HVI1D |
A XA A .
SIA S3IA S3IA .
¢ ,_Em_w%w_ _
; NOLLOVSNWY L ANV ¢ Q3AI303Y |

IdI NV ONILIDHVYL NOILOVSNVYL

JLIHM
092”7 oN 092 022

DOMIT T B NN K W SR ERE N G T T e et e Sere T et TSN

e R e A) (A R] b T e 1

CA 02349662 2001-05-07

WO 00/36505

8/9

IDENTIFY WHICH NODES
INCLUDE DEVICES THAT

302

CAN GENERATE
EXTERNAL INTERRUPTS

304

INTERROGATE EACH
DEVICE TO DETERMINE
THE LEVEL OF INTERRUPT
TO BE ASSIGNED TO
EACH DEVICE

YES

322

CONFIGURE
PROCESSOR(S), IDU,
ISU(S) AND NODE

CONTROLLER, INCLUDING

PROCESSOR ID AND
NODE ID REGISTERS

NO

336 CONTINUE
- SETUP

PCT/GB99/03988

Fig. 7

310

FOR EACH INTERRUPT
LEVEL, CREATE A DATA
STRUCTURE INCLUDING
A LIST OF ALL DEVICES
THAT COULD GENERATE

AN EXTERNAL INTERRUPT

OF THAT LEVEL, THE
NODE [D OF EACH
DEVICE, THE REGISTER
ADDRESSES OF EACH
DEVICE, ETC.

SELECT A NEXT NODE

320

312

NODE
CONTAINS A
PROCESSOR ?

NO

DISABLE IDU

330

332

CONFIGURE ISU(S) AND
NODE CONTROLLER,
INCLUDING NODE
CONTROLLER'S
FORWARDING NODE
REGISTER

334

ADDITIONAL
NODES TO BE
PROCESSED ?

YES

. ':"':"““"“""‘."Mmmﬁ-mw-'W‘l‘:‘"‘""'-" e L .

CA 02349662 2001-05-07

WO 00/36505 PCT/GB99/03988

9/9

(_mean)00

ISSUE INTERRUPT
ACKNOWLEDGE
TRANSACTION TO IDU

402

TO OBTAIN INTERRUPT
LEVEL AND INTERRUPT
VECTOR

403

YES

READ MESSAGE FROM
Pt MEMORY LOCATION 404
MASK INTERRUPTS

FOR PROCESSOR
(IF REQUIRED)
AND OBTAIN LOCK ON
INTERRUPT RESOURCES

405

406

PASS INTERRUPT LEVEL
AND POINTER TO DATA
STRUCTURE ASSOCIATED
WITH INTERRUPT LEVEL
TO SLIH

408

INTERRUPT
SERVICE ROUTINES
COMPLETE ?

NO

YES

410

: ISSUE END OF
F: 1g. P INTERRUPT TO IDU

SPECIFYING LEVEL OF

SERVICED INTERRUPT

R T L T R TR e PR T Y PR L TR E TR, U TP R IT . S PR T P ¥, TV P E RS T X P T poawe TN AR AL it AP R T L BN TR . T e L3 i tv e he ve 10 4 ©oemtiad, mee

|
|
1 e & »
|
22
|
| 36 16
| LOCAL
I 16 ~] | INTERCONNECT
| NODE 20 24 26 L_
T | CONTROLLER ARBITER MEZZANINE Lo
o BUS BRIDGE o
. — SYSTEM 18
B0 285 MEMORY
E'E 18U |
PROCESSING 260
NODE 35 35 (30
MEZZANINE
BUS
NODE 32 34
o STORAGE
INTERCONNECT DEVICES DEVICES

-_-#-—-“-—-“-“-“-—-_-—-_-—-_-““

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - abstract drawing

