a9 United States

GRUBE et al.

US 20110184997A1

a2y Patent Application Publication o) Pub. No.: US 2011/0184997 A1

43) Pub. Date: Jul. 28, 2011

(54)

(735)

(73)

@

(22)

(60)

SELECTING STORAGE FACILITIES IN A
PLURALITY OF DISPERSED STORAGE

BARRINGTON HILLS, IL (US);

CLEVERSAFE, INC., CHICAGO,

NETWORKS

Inventors: GARY W. GRUBE,
TIMOTHY W. MARKISON,
MESA, AZ (US)

Assignee:
1L (US)

Appl. No.: 12/942,721

Filed: Nov. 9, 2010

Related U.S. Application Data

Provisional application No. 61/299,075, filed on Jan.

28, 2010.

Publication Classification

(51) Int.CL
GOGF 17/30 (2006.01)

(52) US.Cl coooooooooeeeeeeeeecceeeee 707/827; 707/E17.01
(57) ABSTRACT

A method begins by a processing module receiving a data
storage request and accessing a file directory to identify dis-
persed storage network (DSN) systems. The method contin-
ues with the processing module identifying dispersed storage
(DS) units to produce identified DS units for each of the DSN
systems and selecting one of the DSN systems to produce a
selected DSN system. The method continues with the pro-
cessing module selecting a set of DS units from the identified
DS units of the selected DSN system to produce selected DS
units, wherein the selected DS units store a set of encoded
data slices. The method continues with the processing module
updating the file directory to include an identity of the
selected DS units and an identity of the set of encoded data
slices.

user device 12

computing core 26

DS

processing 34

A

Y

| DSN interface 32 |

J— slices 11

slices 45 -

Y Y

| DSN interface 32 I

computing
core 26

storage integrity
processing unit 20

DS processing unit 16

data file 38&/or
data block 40

computing core 26

DS processing 34

computing
core 26

)

|DSN interfaceﬁl | interface 30 I()I interface 30

A A

user device 14

network 24

ECslice1 142

ECsliceY 146

y
—\—\()I interface 33

[ECslice1 142 |@@@[ECslice 1 x 44 |

[ECslicey 145 | @@ [ECslice v x48 |

computing
core 26
- DS managing
A | ECslice 1_X 44 unit 18

Y| ECsliceY X 48

computing system10

-
«
o~ F—_———— e — — — — — —
X Z¢ Aowsw 10M12U 28el0]s pastadsi 0z Mun 8uissasoud
” OTSTAS SUMTI o3 | <¢ (NsQ) 1 1Sp p | ocH !
S [[A1u8a1ul 28ea103s
o~ 1914 _
< | e o0 [9¢ 2400
- I
m e R gunndwos
2 —— —
» | 87 X A221s03 | | 371 A21503 | &
= — (YY) (Y X _mmumtwac_ NSa
8T Hun — —
3uiSeuew sq | 77 x 122503 | | 1100503 | A A
= — o0
= §¢ 2402
e sunndwos \,
o k
3 L &pseoys
-] —
-
= —
Q | 87 xA2s03 |@ee | 71 2201503 |
& ° ° TTsoos — - — |-
— [] []
2 . .
| #Px 1200503 |@@e| ZHT TS 03 | coe
5 — coe _
= ¥T o21a9p Jasn _ 7€ 20ep3IUl NSO _
s Y Y A
>
= 0F 20ep191U1 | V_ OF 22e21ul _ _ 7T 20BLI91UI NSQ _ 7
=
Dm — ‘A VQ ¥€ Buisssooud
5 g7 2400 —
= Suanduwo _ ¢ guissasoud sq _ sa
.M 9¢ 2400 unndwod 9¢ 2102 unndwod
& gvyoigeep |
M JO/9TE B3|y elep gT 1un 8uissanoud 5Q ZT 221A3p Jasn
=
=%
~N—
=
[~W

US 2011/0184997 A1l

Jul. 28,2011 Sheet 2 of 14

Patent Application Publication

97 s|npouw
asepaul NSd

¥Z a|npow
2oej49IUI OH

ZZ aInpouw 2okl
ysey

0Z 2|npow
97BJIDIUI JJOMIBU

89 s|npow
aoeja3ul ygH

99 a|npow
acepIajul gsn

1

A

A

¥

f

v

8S 2oelBIUI |Dd

v9
SOl WOY

{

29 s|npow
ERIIIENV]]
32IA3P Ol

95 09 22epa1Ul

19||0J3u0d Q| € Ol
¥S Alowaw 25 J43]|0Ju02 0S a|npow
ulew Aowsw e Suissaocoud

€T 11un guissanoud
solydesd oapia

————— e ———_———_——_——_—— — —_— —_— —_— —_——_— —_— —_— —_— —_—_ —_—_——_——_— —_— —_——_— —_—_————_— —_— —_— —_— —_—— —

US 2011/0184997 A1l

Jul. 28,2011 Sheet 3 of 14

Patent Application Publication

GT aWeu 224nog

87 XA 201[S 21Rp POPOI JOLID) E] 9f T~ A 92I|S B1EP POPOI JOLID
aweu 321§ dWeu IS
[] sc [
s _ 7€ 90BBIUI 12USQ _ e
® ®
77 X T 921IS e1Ep PIPO2 JOLID] 0o | 77 T T 921|s e1ep papod JoLD
dweu a2l1|§ [— dweu 32l
8% X A d21|5 coo 97 T A 2Is
E1EP Pop0d oMo ElEP PoPO03 JOdJD _ % 3npow QMMLOHM _
aweu 321|S L aweu 32I|S
®
— — . — —
vy X T 921s ese v T T3S
Bl1EP P3pPO2 JOMID B1EP POPO2 JOLID
aweu 321|S aweu 32I|S
Z8 o|npow pud
aweu eleq | asas | uagynea | qlinea | xspul adis
2ybads uonew.oU| Bulnay [eSIBAIU
unea L JU| sulNOY | un
ZE sweu 321|§ % 102[qo
— elep
76 A udwsos erep
eeoe 08 9|npow ssa22e gg suleu
— 13lqo
06 T udw3as eiep
GE SWEeU 324N0S I8
Jasn
p— Q
0% walqo elep — G| «———
— 87 9|npow Aemaied L [e———>
<

al sy _ ASB) _ usg 1nea

al ynea

€ aWeu 32Jnog

¥€ anpow 3uissaooud sg

US 2011/0184997 A1l

Jul. 28,2011 Sheet 4 of 14

Patent Application Publication

¥ 901|s e1EP)3 _ Hmn_ _ Rn _ MNQ _ mﬁn _ Sn_ _ :n_ _ Nn_ _ mn_ _

£ 201|S e1EP D3 _ Omn_ _ ﬁn _ NNn_ _ wﬁn _ Sn_ _ oﬁn _ mn_ _ Nn_ _

Z 991|5 e18p 73 _ mNn _ mNn_ _ HNn_ _ Dn_ _ ﬂn_ _ mn_ _ mn_ _ Hn_ _

g oM

6Z 1915 €<

1 9915 e3ep 53 _ wNn_ _ wNn_ _ ONQ _ mﬁo_ _ Sn_ _ mn_ _ qn_ _ on_ _

Eooo_mwn_mn_ooo_:n_ eee _No_ _ooo_ 'q _ £q _ooo_ % _

| 68 Jolendiuew

< [> -9p 1s-3s0d

$6 1usW33s e1ep papoous Jo SHq ZE

28 9|npow pud

78 J901|s-9p

<>

SB2PORP

€8 Jorendiuew
-3p 31|s-a.d

€7 1un |0J1u0d

T8 Joiendiuew

|
|
pingau |
|
|

° [921)s-1s0d
_

N

7 J1901|S

77 Japodus

G/ Joieindiuew
221)5-a4d

¥6 1uswgas eyep papodus _

_ 76-06 1uawgas eiep

US 2011/0184997 A1l

Jul. 28,2011 Sheet 5 of 14

Patent Application Publication

S1UN G JO 135 PUOI3S 01 PUBLLIWIOD
2J01S B 1M S301|S B1EP POPOIUD PUIS

<
]

| {

SII[S
B1EP PaPOoIUS 22npoud 0} elep apodus

™~
|

i f

sialawesed |euopesado Jo 135 puUOIIS
PUE S31UN S 4O 195 PUODSS JUILWIIIIP

(w0}
—

™ f

S1UN §Q 4O 195
1541 BY31 JO} B1EpRIaW [BILIOISIY BUIWIIL3P

<
i

- f

SHUN S JO 195 1SIY UIWISIDP

O
|

™ f

sJa1sweled
|euonesado Jo 195 1544 SUIWID1ap

¥0T %

o3essaw uum.—n_o Elep 9J0]S B 9Aladad

US 2011/0184997 A1l

Jul. 28,2011 Sheet 6 of 14

Patent Application Publication

ADIE]

S1UN 5@
[p2129]25 01 $32I|S BlEP PIPOIUI JO 185 PUIS

8cT %

S92||S B3EP PIPOIUS 4O 335 B onpoud

0

i f

suun
S 21epipued 3Y3 4O sHUN S Junda|as

<
i

= f

syun
S 21epipueday) Jo Alljige|leA. BUIWIIBP

T »

S1UN §Q 21epIpURDd 3UILLIRISP

O
|

i f

sJolaweled
|[euonesado Jo 19s 3ul-9se(B dUIWID13P

8TT %

a3essaw 1sanbali 58e10]s elep e A3

o]
~—
~

US 2011/0184997 A1l

Jul. 28,2011 Sheet 7 of 14

Patent Application Publication

A

s1un §Q 01 PUBWIWOD
9J01S B Y}IM SID||S BIEP POPODUS PUBS

9|qeJoney
N

<t

T 1

S321|S BIEP POPOIUD
sonpoud 01 123[qo elep syl apodus

SVEENGIEY
o8el01s paJsisyasd ayi o1 Ajqeioney
saledwod syun g Jo 195 154y 3y}
JOJ $21419W 28.J0]S JBYISYM SUIWIBISP

o r

T

o

A

28essowl
AIA 9|qeJoAe) V
JOJJD puss N

T

SHUN 5 Jo
19S 1sJU ay] 1oj solllaw mmeo“m 2ulllIB1ap

0 £

S1UN §Q JO 195 1S4 BuUlWIa1ap

o0
o)
|

A

SJUsaInbal
98eJ01s WNWIUIW 3Y3 03 A|geloaey
saJedWwod sUUN SQ JO 185 pUOISS 8y}
Joj sol13awW 98e103s 1aY1aym auUlLWI13p

sioloweled
|[euopelado Jo 189S 154y sulwialsp

Yo]
o
—

A

T r

mHCwEmL_JUWL 93eJ01s wnwiviw suiwialap

sHuUN §Q JO 195
pu03s 3y} 40} SOLIIBW 2FRI0IS BUIWIRIBP

<
|

3

A

i k

sjuswadinbaJ 38e103s paJiasaud auiwialap

sialawesed [euonesado Jo 31as puodas
pUE S3IUN S JO 185 PUDIAS BUIWISIBP

o
o)
|

A

T x

o3essaw HUGEO El1EpP 2J0]1S B aAladal

O
o)
|

US 2011/0184997 A1l

Jul. 28,2011 Sheet 8 of 14

Patent Application Publication

Jaisanbau
03 199[qo e1ep pUds
08T A

109lqo eiep sonpoud
01 sjuswgas e1ep a1edau88e

8L1

sHun
aWaas > W
Sq jo 1esqns
elep AIA y3nous
91eaJ3-3l

N N JuIayIp
EINIEYETd)

1 0L1

o~

SIVENIFE

elep
1xau 0] 08

JUSW 35 elep 91e343-34 01 y3noud

Jaylaym suilialap PUB Sall|s elep)3J oAlsdal

o £

9

T

S1un S JO 18sgns juaJlind
01 28essow |eAalI1aJ 9215 elep D3 puas

Yol

a—

sHun §g }Jo 1asgns 1siy e saulwislasp

o £

sliun sg ay31 JoJ saLlaw 28el03s UIWIBlap

o

= f

S1Un §Q sulW.Id1ep

o

G f

slaloweled _mCOEmLmQO aulWlialep

e

G f

a8essaw 103[qO e1EP 9AS1413J B BAIDIS)

T

Yol

US 2011/0184997 A1l

Jul. 28,2011 Sheet 9 of 14

Patent Application Publication

S1un Qg 0} pUBWWOD
2J01S B YIIM S3DI|S B1EP P3POJUS pUSS

96T A
S30I[S BI1Ep PAPOOUS BUIWISISP
v6T A

uonezijun AJowaw Hun sq aziwpdo

76T »
uoneziwndo
uonezijpn AJowaw 1iun S aulw.alap
06T A

S1un §Q JO UoKEZI|N AJoWSW 3UIWI313p

Q|
-~

= 1

S ENGEITEIETe)

O
i

| 1

sJ9lowesed jeuoned ado sujwu o1ep

78T A

<
—

28essaw Huw.EO B1Ep =2101S B 9Ala0l

o
~—

US 2011/0184997 A1l

Jul. 28,2011 Sheet 10 of 14

Patent Application Publication

S}UN §g 0} PUBWILIOD
9J01S B UM S3DI[S BI1EP PBPODUS pPUBS

TC A

(o]

ERTHEES
papodua adnpoid pue suun §q auIWI3P

0T¢ %

S}uUN g 91EpIpUED
10 uospedwod pajydiam sulwislsp

00
o~

i f

sjuawadinbau jo siojoey Sunysism
pue siuswadinbaJ 1un sQ suIwWIalSp

D]
o

” f

Sliun SQ 91EPIPUED JO BlEPE]}SW auUlWID1ap

v0c »

S1UN @ 21LPIPUERD BUIWLIRISP

o~
o~

i f

sia1sweded _mCOEMLQQO Sulwia1ap

00t %

98essaw 103[qo elep 2403S B BAISISM

US 2011/0184997 A1l

Jul. 28,2011 Sheet 11 of 14

Patent Application Publication

[4D]E
S'vv 9t 0T vEC vIOL
4 ow/s1495/20°0 14 ow/31Aq9/1°0 0T0 3uroud
SL 0s € 0¢ STO A1undas
ot 81001 9 4190 0tT'0 doeds 93.4
S S¢0 ST ST000 ST0 Aduaie
ot £€9€4660 8T 1666660 0€0 swp dn
ZE¢ 24095 pajydiam | OEC anjeA elepelsw | 8Z¢ 2400s palydiom | 977 onjeA ejepelsw | §7¢ 4010e) Sunydiom | Zze¢ A1o3aled

0Z¢ zvunsg

8T¢ T uunsg

gT¢ sJ01dey

¥T¢ °2/9e1 8uloos paydiam

US 2011/0184997 A1l

Jul. 28,2011 Sheet 12 of 14

Patent Application Publication

SHUN S O} PUBWWOD
9J01S B Y1IM S90I|S BIEP PIPOIUD PUSS
09¢ %
S21|S BJEP P2POIUSD BUIWIBIDP
85¢C %
sJi9jswesed jeuonesado mau aAes
95¢ %
9215 JUsW3as elep aulWIIIBpP
T4 4,
Yipim Jefid suiwILlep
44 %
uosuiedwod
po1ydiom Jo a3ueds paJisap ul sHun
S 91EPIPUED WOJ4 SHUN SJ SUIWISISP
0S¢ %
sHun s 31eplpued Jo uosiedwod
pa1ydiam jo a8uel palisap saulwIldp

e A

S1UN §Q 31ePIPUED
40 uosiedwod paiysiam sulwia1ep

[4

O

1

sjuswaJinbay jo sio3oe) Bunydiom
pue sjuawalinbal punN §g auIwW.Id1ap

14z4

1

SHUN §Q aiepipued Jo elepelasl saulialsp

o~
o~

1

SHUN S 91BPIPUED SUILLIISP

O
o

{

sioloweled _mCOEmeQO 2UlWILalsp

o0
[32]
(o]

1

a3essow ”_.Uw.EO E1ep 2J01S B oAladal

Yo
o
o

US 2011/0184997 A1l

Jul. 28,2011 Sheet 13 of 14

Patent Application Publication

96¢ Wo1sAs NSQ@

¥6¢ waisAs NSQ@

76¢ wa1sAs NS@

06¢ Jop|o} Aordauip
9|y 91eIpawWwJaluI
[J
®
@
887 Jap|o} Alo1oaup Z387 Jap|o} Aio1oaup
9|y oleipawadlul |€» 9|y Slelpswsiul <
93¢ Jop|o} AJo1daup
9|y 91eIpawWwJaluI “
@
[
o
®
¥ Jop|o) Aio1dau1p 08T Jop|0) A1o1oau1p > 8L¢C
9|y SleIpaUWSIUl € S|y Sleipauldiul | g3p| 19P|0) AJo1oBUIp 1004

19A3] pa1y}

[9A3] PUODDS

US 2011/0184997 A1l

Jul. 28,2011 Sheet 14 of 14

Patent Application Publication

ST 'Old

s1UN S Pa123]as ay1 Jo saunuapl
2yl 2pnaul 01 9|y AJodadip e aiepdn

T £

98eJo03s Joj sHUN S Pa123|as
2Y3 01 S22I|S B1EP PIPOIUI JO 135 BY3 pUIS

s r

saolI|s elep
papodu? jo 135 e 2anpoud 03 elep SPOIUI

e k

s)uun s pairalas aonpoud o0}
swia1sAs NS Pa323|as 240W JO BUO 3Y] JO
SHUN §Q 24} WOoJJ SHUN §Q JO 13s B 123|95

e x

SWIa1sAS NSA 21 JO sJ0W JO 3UO0 139|9S

O
o)

50¢ A

wa3sAs NSO Yoea ulyim spun sg Ajuspl

o)

o £

SWIa1sAs NS Ajquapl

o
o

4y A

1s9nbaJ 98eJ401s B1EP B DAI9DD

o
=
o

US 2011/0184997 Al

SELECTING STORAGE FACILITIES IN A
PLURALITY OF DISPERSED STORAGE
NETWORKS

CROSS REFERENCE TO RELATED PATENTS

[0001] The present U.S. Utility patent application claims
priority pursuant to 35 U.S.C. §119(e) to U.S. Provisional
Application Ser. No. 61/299,075, entitled “DISTRIBUTED
STORAGE RESOURCE DETERMINATION METHOD,”
(Attorney Docket No. CS175), filed Jan. 28, 2010, pending,
which is hereby incorporated herein by reference in its
entirety and made part of the present U.S. Utility patent
application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not Applicable
INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

[0003] Not Applicable

BACKGROUND OF THE INVENTION

[0004] 1. Technical Field of the Invention

[0005] This invention relates generally to computing sys-
tems and more particularly to data storage solutions within
such computing systems.

[0006] 2. Description of Related Art

[0007] Computers are known to communicate, process, and
store data. Such computers range from wireless smart phones
to data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a comput-
ing system generates data and/or manipulates data from one
form into another. For instance, an image sensor of the com-
puting system generates raw picture data and, using an image
compression program (e.g., JPEG, MPEG, etc.), the comput-
ing system manipulates the raw picture data into a standard-
ized compressed image.

[0008] With continued advances in processing speed and
communication speed, computers are capable of processing
real time multimedia data for applications ranging from
simple voice communications to streaming high definition
video. As such, general-purpose information appliances are
replacing purpose-built communications devices (e.g., a tele-
phone). For example, smart phones can support telephony
communications but they are also capable of text messaging
and accessing the Internet to perform functions including
email, web browsing, remote applications access, and media
communications (e.g., telephony voice, image transtfer, music
files, video files, real time video streaming. etc.).

[0009] Each type of computer is constructed and operates
in accordance with one or more communication, processing,
and storage standards. As a result of standardization and with
advances in technology, more and more information content
is being converted into digital formats. For example, more
digital cameras are now being sold than film cameras, thus
producing more digital pictures. As another example, web-
based programming is becoming an alternative to over the air
television broadcasts and/or cable broadcasts. As further
examples, papers, books, video entertainment, home video,
etc. are now being stored digitally, which increases the
demand on the storage function of computers.

Jul. 28, 2011

[0010] A typical computer storage system includes one or
more memory devices aligned with the needs of the various
operational aspects of the computer’s processing and com-
munication functions. Generally, the immediacy of access
dictates what type of memory device is used. For example,
random access memory (RAM) memory can be accessed in
any random order with a constant response time, thus it is
typically used for cache memory and main memory. By con-
trast, memory device technologies that require physical
movement such as magnetic disks, tapes, and optical discs,
have a variable response time as the physical movement can
take longer than the data transfer, thus they are typically used
for secondary memory (e.g., hard drive, backup memory,
etc.).

[0011] A computer’s storage system will be compliant with
one or more computer storage standards that include, but are
not limited to, network file system (NFS), flash file system
(FFS), disk file system (DFS), small computer system inter-
face (SCSI), internet small computer system interface
(iSCS8I), file transfer protocol (FTP), and web-based distrib-
uted authoring and versioning (WebDAV). These standards
specify the data storage format (e.g., files, data objects, data
blocks, directories, etc.) and interfacing between the comput-
er’s processing function and its storage system, which is a
primary function of the computer’s memory controller.
[0012] Despite the standardization of the computer and its
storage system, memory devices fail; especially commercial
grade memory devices that utilize technologies incorporating
physical movement (e.g., a disc drive). For example, it is
fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of use.
One solution is to a higher-grade disc drive, which adds
significant cost to a computer.

[0013] Another solution is to utilize multiple levels of
redundant disc drives to replicate the data into two or more
copies. One such redundant drive approach is called redun-
dant array of independent discs (RAID). In a RAID device, a
RAID controller adds parity data to the original data before
storing it across the array. The parity data is calculated from
the original data such that the failure of a disc will not result
in the loss of the original data. For example, RAID 5 uses
three discs to protect data from the failure of a single disc. The
parity data, and associated redundancy overhead data,
reduces the storage capacity of three independent discs by
one third (e.g., n—1=capacity). RAID 6 can recover from a
loss of two discs and requires a minimum of four discs with a
storage capacity of n-2.

[0014] While RAID addresses the memory device failure
issue, it is not without its own failures issues that affect its
effectiveness, efficiency and security. For instance, as more
discs are added to the array, the probability of a disc failure
increases, which increases the demand for maintenance. For
example, when a disc fails, it needs to be manually replaced
before another disc fails and the data stored in the RAID
device is lost. To reduce the risk of data loss, data on a RAID
device is typically copied on to one or more other RAID
devices. While this addresses the loss of data issue, it raises a
security issue since multiple copies of data are available,
which increases the chances of unauthorized access. Further,
as the amount of data being stored grows, the overhead of
RAID devices becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

[0015] FIG. 1 is a schematic block diagram of an embodi-
ment of a computing system in accordance with the invention;

US 2011/0184997 Al

[0016] FIG. 2 is a schematic block diagram of an embodi-
ment of a computing core in accordance with the invention;
[0017] FIG. 3 is a schematic block diagram of an embodi-
ment of a distributed storage processing unit in accordance
with the invention;

[0018] FIG. 4 is a schematic block diagram of an embodi-
ment of a grid module in accordance with the invention;
[0019] FIG. 5 is a diagram of an example embodiment of
error coded data slice creation in accordance with the inven-
tion;

[0020] FIG. 6 is a flowchart illustrating an example of stor-
ing data in accordance with the invention;

[0021] FIG.7 is a flowchart illustrating another example of
storing data in accordance with the invention;

[0022] FIG. 8 is a flowchart illustrating another example of
storing data in accordance with the invention;

[0023] FIG. 9 is a flowchart illustrating an example of
retrieving data in accordance with the invention;

[0024] FIG. 10 is a flowchart illustrating another example
of storing data in accordance with the invention;

[0025] FIG. 11 is a flowchart illustrating another example
of storing data in accordance with the invention;

[0026] FIG. 12 is a table illustrating an example of a
weighted scoring table in accordance with the invention;
[0027] FIG. 13 is a flowchart illustrating another example
of storing data in accordance with the invention;

[0028] FIG. 14 is a structure diagram illustrating an
example of a dispersed storage network (DSN) directory
structure in accordance with the invention; and

[0029] FIG. 15 is a flowchart illustrating another example
of storing data in accordance with the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0030] FIG.1 is a schematic block diagram of'a computing
system 10 that includes one or more of a first type of user
devices 12, one or more of a second type of user devices 14,
at least one distributed storage (DS) processing unit 16, at
least one DS managing unit 18, at least one storage integrity
processing unit 20, and a distributed storage network (DSN)
memory 22 coupled via a network 24. The network 24 may
include one or more wireless and/or wire lined communica-
tion systems; one or more private intranet systems and/or
public internet systems; and/or one or more local area net-
works (LAN) and/or wide area networks (WAN).

[0031] The DSN memory 22 includes a plurality of distrib-
uted storage (DS) units 36 for storing data of the system. Each
of'the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee, etc.).
The processing module may be a single processing device or
a plurality of processing devices. Such a processing device
may be a microprocessor, micro-controller, digital signal pro-
cessor, microcomputer, central processing unit, field pro-
grammable gate array, programmable logic device, state
machine, logic circuitry, analog circuitry, digital circuitry,
and/or any device that manipulates signals (analog and/or
digital) based on hard coding of the circuitry and/or opera-
tional instructions. The processing module may have an asso-
ciated memory and/or memory element, which may be a
single memory device, a plurality of memory devices, and/or
embedded circuitry of the processing module. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,

Jul. 28, 2011

and/or any device that stores digital information. Note that if
the processing module includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com-
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module implements one or more of its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry, the memory and/or memory element storing the cor-
responding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element stores, and
the processing module executes, hard coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-15.

[0032] Each of the user devices 12-14, the DS processing
unit 16, the DS managing unit 18, and the storage integrity
processing unit 20 may be a portable computing device (e.g.,
a social networking device, a gaming device, a cell phone, a
smart phone, a personal digital assistant, a digital music
player, a digital video player, a laptop computer, a handheld
computer, a video game controller, and/or any other portable
device that includes a computing core) and/or a fixed com-
puting device (e.g., a personal computer, a computer server, a
cable set-top box, a satellite receiver, a television set, a
printer, a fax machine, home entertainment equipment, a
video game console, and/or any type of home or office com-
puting equipment). Such a portable or fixed computing device
includes a computing core 26 and one or more interfaces 30,
32, and/or 33. An embodiment of the computing core 26 will
be described with reference to FIG. 2.

[0033] Withrespect to the interfaces, each of the interfaces
30, 32, and 33 includes software and/or hardware to support
one or more communication links via the network 24 and/or
directly. For example, interfaces 30 support a communication
link (wired, wireless, direct, via a LAN, via the network 24,
etc.) between the first type of user device 14 and the DS
processing unit 16. As another example, DSN interface 32
supports a plurality of communication links via the network
24 between the DSN memory 22 and the DS processing unit
16, the first type of user device 12, and/or the storage integrity
processing unit 20. As yet another example, interface 33
supports a communication link between the DS managing
unit 18 and any one of the other devices and/or units 12, 14,
16, 20, and/or 22 via the network 24.

[0034] In general and with respect to data storage, the sys-
tem 10 supports three primary functions: distributed network
data storage management, distributed data storage and
retrieval, and data storage integrity verification. In accor-
dance with these three primary functions, data can be distrib-
utedly stored in a plurality of physically different locations
and subsequently retrieved in a reliable and secure manner
regardless of failures of individual storage devices, failures of
network equipment, the duration of storage, the amount of
data being stored, attempts at hacking the data, etc.

[0035] The DS managing unit 18 performs distributed net-
work data storage management functions, which include
establishing distributed data storage parameters, performing
network operations, performing network administration, and/
or performing network maintenance. The DS managing unit
18 establishes the distributed data storage parameters (e.g.,
allocation of virtual DSN memory space, distributed storage

US 2011/0184997 Al

parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established for
a user group of devices, established for public access by the
user devices, etc.). For example, the DS managing unit 18
coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing unit
18 also determines the distributed data storage parameters for
the vault. In particular, the DS managing unit 18 determines a
number of slices (e.g., the number that a data segment of a
data file and/or data block is partitioned into for distributed
storage) and a read threshold value (e.g., the minimum num-
ber of slices required to reconstruct the data segment).
[0036] As another example, the DS managing module 18
creates and stores, locally or within the DSN memory 22, user
profile information. The user profile information includes one
or more of authentication information, permissions, and/or
the security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

[0037] As yet another example, the DS managing unit 18
creates billing information for a particular user, user group,
vault access, public vault access, etc. For instance, the DS
managing unit 18 tracks the number of times user accesses a
private vault and/or public vaults, which can be used to gen-
erate a per-access bill. In another instance, the DS managing
unit 18 tracks the amount of data stored and/or retrieved by a
user device and/or a user group, which can be used to generate
a per-data-amount bill.

[0038] The DS managing unit 18 also performs network
operations, network administration, and/or network mainte-
nance. As at least part of performing the network operations
and/or administration, the DS managing unit 18 monitors
performance of the devices and/or units of the system 10 for
potential failures, determines the devices and/or unit’s acti-
vation status, determines the devices’ and/or units’ loading,
and any other system level operation that affects the perfor-
mance level of the system 10. For example, the DS managing
unit 18 receives and aggregates network management alarms,
alerts, errors, status information, performance information,
and messages from the devices 12-14 and/or the units 16, 20,
22. For example, the DS managing unit 18 receives a simple
network management protocol (SNMP) message regarding
the status of the DS processing unit 16.

[0039] The DS managing unit 18 performs the network
maintenance by identifying equipment within the system 10
that needs replacing, upgrading, repairing, and/or expanding.
For example, the DS managing unit 18 determines that the
DSN memory 22 needs more DS units 36 or that one or more
of the DS units 36 needs updating.

[0040] The second primary function (i.e., distributed data
storage and retrieval) begins and ends with a user device
12-14. For instance, if a second type of user device 14 has a
data file 38 and/or data block 40 to store in the DSN memory
22, it send the data file 38 and/or data block 40 to the DS
processing unit 16 via its interface 30. As will be described in
greater detail with reference to FIG. 2, the interface 30 func-
tions to mimic a conventional operating system (OS) file
system interface (e.g., network file system (NFS), flash file
system (FFS), disk file system (DFS), file transfer protocol
(FTP), web-based distributed authoring and versioning
(WebDAV), etc.) and/or a block memory interface (e.g., small

Jul. 28, 2011

computer system interface (SCSI), internet small computer
system interface (iISCSI), etc.). In addition, the interface 30
may attach a user identification code (ID) to the data file 38
and/or data block 40.

[0041] The DS processing unit 16 receives the data file 38
and/or data block 40 via its interface 30 and performs a
distributed storage (DS) process 34 thercon (e.g., an error
coding dispersal storage function). The DS processing 34
begins by partitioning the data file 38 and/or data block 40
into one or more data segments, which is represented as Y
data segments. For example, the DS processing 34 may par-
tition the data file 38 and/or data block 40 into a fixed byte size
segment (e.g., 2' to 2 bytes, where n=>2) or a variable byte
size (e.g., change byte size from segment to segment, or from
groups of segments to groups of segments, etc.).

[0042] For each of theY data segments, the DS processing
34 error encodes (e.g., forward error correction (FEC), infor-
mation dispersal algorithm, or error correction coding) and
slices (or slices then error encodes) the data segment into a
plurality of error coded (EC) data slices 42-48, which is
represented as X slices per data segment. The number of
slices (X) per segment, which corresponds to a number of
pillars n, is set in accordance with the distributed data storage
parameters and the error coding scheme. For example, if a
Reed-Solomon (or other FEC scheme) is used in an n/k sys-
tem, then a data segment is divided into n slices, where k
number of slices is needed to reconstruct the original data
(i.e., k is the threshold). As a few specific examples, the n/k
factor may be 5/3; 6/4; 8/6; 8/5; 16/10.

[0043] For each slice 42-48, the DS processing unit 16
creates a unique slice name and appends it to the correspond-
ing slice 42-48. The slice name includes universal DSN
memory addressing routing information (e.g., virtual
memory addresses in the DSN memory 22) and user-specific
information (e.g., user ID, file name, data block identifier,
etc.).

[0044] The DS processing unit 16 transmits the plurality of
EC slices 42-48 to a plurality of DS units 36 of the DSN
memory 22 via the DSN interface 32 and the network 24. The
DSN interface 32 formats each of the slices for transmission
via the network 24. For example, the DSN interface 32 may
utilize an internet protocol (e.g., TCP/IP, etc.) to packetize the
slices 42-48 for transmission via the network 24.

[0045] The number of DS units 36 receiving the slices
42-48 is dependent on the distributed data storage parameters
established by the DS managing unit 18. For example, the DS
managing unit 18 may indicate that each slice is to be stored
in a different DS unit 36. As another example, the DS man-
aging unit 18 may indicate that like slice numbers of different
data segments are to be stored in the same DS unit 36. For
example, the first slice of each of the data segments is to be
stored in a first DS unit 36, the second slice of each of the data
segments is to be stored in a second DS unit 36, etc. In this
manner, the data is encoded and distributedly stored at physi-
cally diverse locations to improved data storage integrity and
security. Further examples of encoding the data segments will
be provided with reference to one or more of FIGS. 2-15.
[0046] Each DS unit 36 that receives a slice 42-48 for
storage translates the virtual DSN memory address of the
slice into a local physical address for storage. Accordingly,
each DS unit 36 maintains a virtual to physical memory
mapping to assist in the storage and retrieval of data.

[0047] The first type of user device 12 performs a similar
function to store data in the DSN memory 22 with the excep-

US 2011/0184997 Al

tion that it includes the DS processing. As such, the device 12
encodes and slices the data file and/or data block it has to
store. The device then transmits the slices 11 to the DSN
memory via its DSN interface 32 and the network 24.
[0048] For asecond type of user device 14 to retrieve a data
file or data block from memory, it issues a read command via
its interface 30 to the DS processing unit 16. The DS process-
ing unit 16 performs the DS processing 34 to identify the DS
units 36 storing the slices of the data file and/or data block
based on the read command. The DS processing unit 16 may
also communicate with the DS managing unit 18 to verify that
the user device 14 is authorized to access the requested data.
[0049] Assuming that the user device is authorized to
access the requested data, the DS processing unit 16 issues
slice read commands to at least a threshold number of the DS
units 36 storing the requested data (e.g., to at least 10 DS units
for a 16/10 error coding scheme). Each of the DS units 36
receiving the slice read command, verifies the command,
accesses its virtual to physical memory mapping, retrieves the
requested slice, or slices, and transmits it to the DS processing
unit 16.

[0050] Once the DS processing unit 16 has received a read
threshold number of slices for a data segment, it performs an
error decoding function and de-slicing to reconstruct the data
segment. When Y number of data segments has been recon-
structed, the DS processing unit 16 provides the data file 38
and/or data block 40 to the user device 14. Note that the first
type of user device 12 performs a similar process to retrieve a
data file and/or data block.

[0051] The storage integrity processing unit 20 performs
the third primary function of data storage integrity verifica-
tion. In general, the storage integrity processing unit 20 peri-
odically retrieves slices 45, and/or slice names, of a data file
or data block of a user device to verify that one or more slices
have not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.

[0052] If the storage integrity processing unit 20 deter-
mines that one or more slices is corrupted or lost, it rebuilds
the corrupted or lost slice(s) in accordance with the error
coding scheme. The storage integrity processing unit 20
stores the rebuild slice, or slices, in the appropriate DS unit(s)
36 in a manner that mimics the write process previously
described.

[0053] FIG. 2 is a schematic block diagram of an embodi-
ment of a computing core 26 that includes a processing mod-
ule 50, a memory controller 52, main memory 54, a video
graphics processing unit 55, an input/output (IO) controller
56, a peripheral component interconnect (PCI) interface 58,
at least one IO device interface module 62, a read only
memory (ROM) basic input output system (BIOS) 64, and
one or more memory interface modules. The memory inter-
face module(s) includes one or more of a universal serial bus
(USB) interface module 66, a host bus adapter (HBA) inter-
face module 68, a network interface module 70, a flash inter-
face module 72, a hard drive interface module 74, and a DSN
interface module 76. Note the DSN interface module 76 and/
or the network interface module 70 may function as the inter-
face 30 of the user device 14 of FIG. 1. Further note that the
10 device interface module 62 and/or the memory interface
modules may be collectively or individually referred to as 1O
ports.

[0054] The processing module 50 may be a single process-
ing device or a plurality of processing devices. Such a pro-

Jul. 28, 2011

cessing device may be a microprocessor, micro-controller,
digital signal processor, microcomputer, central processing
unit, field programmable gate array, programmable logic
device, state machine, logic circuitry, analog circuitry, digital
circuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may have
anassociated memory and/or memory element, which may be
a single memory device, a plurality of memory devices, and/
or embedded circuitry of the processing module 50. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module 50 includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com-
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module 50 implements one or more of'its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry, the memory and/or memory element storing the cor-
responding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element stores, and
the processing module 50 executes, hard coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-15.

[0055] FIG. 3 is a schematic block diagram of an embodi-
ment of a dispersed storage (DS) processing module 34 of
user device 12 and/or of the DS processing unit 16. The DS
processing module 34 includes a gateway module 78, an
access module 80, a grid module 82, and a storage module 84.
The DS processing module 34 may also include an interface
30 and the DSnet interface 32 or the interfaces 68 and/or 70
may be part of user 12 or of the DS processing unit 14. The DS
processing module 34 may further include a bypass/feedback
path between the storage module 84 to the gateway module
78. Note that the modules 78-84 of the DS processing module
34 may be in a single unit or distributed across multiple units.

[0056] In an example of storing data, the gateway module
78 receives an incoming data object that includes a user ID
field 86, an object name field 88, and the data field 40 and may
also receive corresponding information that includes a pro-
cess identifier (e.g., aninternal process/application ID), meta-
data, a file system directory, a block number, a transaction
message, a user device identity (ID), a data object identifier, a
source name, and/or user information. The gateway module
78 authenticates the user associated with the data object by
verifying the user ID 86 with the managing unit 18 and/or
another authenticating unit.

[0057] When theuseris authenticated, the gateway module
78 obtains user information from the management unit 18, the
user device, and/or the other authenticating unit. The user
information includes a vault identifier, operational param-
eters, and user attributes (e.g., user data, billing information,
etc.). A vault identifier identifies a vault, which is a virtual
memory space that maps to a set of DS storage units 36. For
example, vault 1 (i.e., user 1’s DSN memory space) includes
eight DS storage units (X=8 wide) and vault 2 (i.e., user 2’s
DSN memory space) includes sixteen DS storage units (X=16
wide). The operational parameters may include an error cod-

US 2011/0184997 Al

ing algorithm, the width n (number of pillars X or slices per
segment for this vault), a read threshold T, a write threshold,
an encryption algorithm, a slicing parameter, a compression
algorithm, an integrity check method, caching settings, par-
allelism settings, and/or other parameters that may be used to
access the DSN memory layer.

[0058] The gateway module 78 uses the user information to
assign a source name 35 to the data. For instance, the gateway
module 60 determines the source name 35 of the data object
40 based on the vault identifier and the data object. For
example, the source name may contain a file identifier (ID), a
vault generation number, a reserved field, and a vault identi-
fier (ID). As another example, the gateway module 78 may
generate the file ID based on a hash function of the data object
40. Note that the gateway module 78 may also perform mes-
sage conversion, protocol conversion, electrical conversion,
optical conversion, access control, user identification, user
information retrieval, traffic monitoring, statistics generation,
configuration, management, and/or source name determina-
tion.

[0059] The access module 80 receives the data object 40
and creates a series of data segments 1 through Y 90-92 in
accordance with a data storage protocol (e.g., file storage
system, a block storage system, and/or an aggregated block
storage system). The number of segments Y may be chosen or
randomly assigned based on a selected segment size and the
size of the data object. For example, if the number of seg-
ments is chosen to be a fixed number, then the size of the
segments varies as a function of the size of the data object. For
instance, if the data object is an image file of 4,194,304 eight
bit bytes (e.g., 33,554,432 bits) and the number of segments
Y=131,072, then each segment is 256 bits or 32 bytes. As
another example, if segment sized is fixed, then the number of
segments Y varies based on the size of data object. For
instance, if the data object is an image file 0t 4,194,304 bytes
and the fixed size of each segment is 4,096 bytes, the then
number of segments Y=1,024. Note that each segment is
associated with the same source name.

[0060] The grid module 82 receives the data segments and
may manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding dis-
persal storage function to produce a pre-manipulated data
segment. After manipulating a data segment, if applicable, the
grid module 82 error encodes (e.g., Reed-Solomon, Convo-
Iution encoding, Trellis encoding, etc.) the data segment or
manipulated data segment into X error coded data slices
42-44.

[0061] Thevalue X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal func-
tion include a read threshold T, a write threshold W, etc. The
read threshold (e.g., T=10, when X=16) corresponds to the
minimum number of error-free error coded data slices
required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10=6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module indi-
cates proper storage of the encoded data segment. Note that
the write threshold is greater than or equal to the read thresh-
old for a given number of pillars (X).

Jul. 28, 2011

[0062] For each data slice of a data segment, the grid mod-
ule 82 generates a unique slice name 37 and attaches it
thereto. The slice name 37 includes a universal routing infor-
mation field and a vault specific field and may be 48 bytes
(e.g., 24 bytes for each of the universal routing information
field and the vault specific field). As illustrated, the universal
routing information field includes a slice index, a vault ID, a
vault generation, and a reserved field. The slice index is based
on the pillar number and the vault ID and, as such, is unique
for each pillar (e.g., slices of the same pillar for the same vault
for any segment will share the same slice index). The vault
specific field includes a data name, which includes a file ID
and a segment number (e.g., a sequential numbering of data
segments 1-Y of a simple data object or a data block number).

[0063] Prior to outputting the error coded data slices of a
data segment, the grid module may perform post-slice
manipulation on the slices. If enabled, the manipulation
includes slice level compression, encryption, CRC, address-
ing, tagging, and/or other manipulation to improve the effec-
tiveness of the computing system.

[0064] When the error coded data slices of a data segment
are ready to be outputted, the grid module 82 determines
which of the DS storage units 36 will store the EC data slices
based on a dispersed storage memory mapping associated
with the user’s vault and/or DS storage unit attributes. The DS
storage unit attributes may include availability, self-selection,
performance history, link speed, link latency, ownership,
available DSN memory, domain, cost, a prioritization
scheme, a centralized selection message from another source,
a lookup table, data ownership, and/or any other factor to
optimize the operation of the computing system. Note that the
number of DS storage units 36 is equal to or greater than the
number of pillars (e.g., X) so that no more than one error
coded data slice of the same data segment is stored on the
same DS storage unit 36. Further note that EC data slices of
the same pillar number but of different segments (e.g., EC
data slice 1 of data segment 1 and EC data slice 1 of data
segment 2) may be stored on the same or different DS storage
units 36.

[0065] The storage module 84 performs an integrity check
on the outbound encoded data slices and, when successful,
identifies a plurality of DS storage units based on information
provided by the grid module 82. The storage module 84 then
outputs the encoded data slices 1 through X of each segment
1 through to the DS storage units 36. Each of the DS storage
units 36 stores its EC data slice(s) and maintains a local
virtual DSN address to physical location table to convert the
virtual DSN address of the EC data slice(s) into physical
storage addresses.

[0066] Inanexample ofaread operation, the user device 12
and/or 14 sends a read request to the DS processing unit 14,
which authenticates the request. When the request is authen-
tic, the DS processing unit 14 sends a read message to each of
the DS storage units 36 storing slices of the data object being
read. The slices are received via the DSnet interface 32 and
processed by the storage module 84, which performs a parity
check and provides the slices to the grid module 82 when the
parity check was successtul. The grid module 82 decodes the
slices in accordance with the error coding dispersal storage
function to reconstruct the data segment. The access module
80 reconstructs the data object from the data segments and the
gateway module 78 formats the data object for transmission
to the user device.

US 2011/0184997 Al

[0067] FIG. 4 is a schematic block diagram of an embodi-
ment of a grid module 82 that includes a control unit 73, a
pre-slice manipulator 75, an encoder 77, a slicer 79, a post-
slice manipulator 81, a pre-slice de-manipulator 83, a decoder
85, ade-slicer 87, and/or apost-slice de-manipulator 89. Note
that the control unit 73 may be partially or completely exter-
nal to the grid module 82. For example, the control unit 73
may be part of the computing core at a remote location, part of
a user device, part of the DS managing unit 18, or distributed
amongst one or more DS storage units.

[0068] In an example of write operation, the pre-slice
manipulator 75 receives a data segment 90-92 and a write
instruction from an authorized user device. The pre-slice
manipulator 75 determines if pre-manipulation of the data
segment 90-92 is required and, if so, what type. The pre-slice
manipulator 75 may make the determination independently
or based on instructions from the control unit 73, where the
determination is based on a computing system-wide prede-
termination, a table lookup, vault parameters associated with
the user identification, the type of data, security requirements,
available DSN memory, performance requirements, and/or
other metadata.

[0069] Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 90-92 in accor-
dance with the type of manipulation. For example, the type of
manipulation may be compression (e.g., Lempel-Ziv-Welch,
Huffman, Golomb, fractal, wavelet, etc.), signatures (e.g.,
Digital Signature Algorithm (DSA), Elliptic Curve DSA,
Secure Hash Algorithm, etc.), watermarking, tagging,
encryption (e.g., Data Encryption Standard, Advanced
Encryption Standard, etc.), adding metadata (e.g., time/date
stamping, user information, file type, etc.), cyclic redundancy
check (e.g., CRC32), and/or other data manipulations to pro-
duce the pre-manipulated data segment.

[0070] The encoder 77 encodes the pre-manipulated data
segment 92 using a forward error correction (FEC) encoder
(and/or other type of erasure coding and/or error coding) to
produce an encoded data segment 94. The encoder 77 deter-
mines which forward error correction algorithm to use based
on a predetermination associated with the user’s vault, a time
based algorithm, user direction, DS managing unit direction,
control unit direction, as a function of the data type, as a
function of the data segment 92 metadata, and/or any other
factor to determine algorithm type. The forward error correc-
tion algorithm may be Golay, Multidimensional parity, Reed-
Solomon, Hamming, Bose Ray Chauduri Hocquenghem
(BCH), Cauchy-Reed-Solomon, or any other FEC encoder.
Note that the encoder 77 may use a different encoding algo-
rithm for each data segment 92, the same encoding algorithm
for the data segments 92 of a data object, or a combination
thereof.

[0071] The encoded data segment 94 is of greater size than
the data segment 92 by the overhead rate of the encoding
algorithm by a factor of X/T, where X is the width or number
of slices, and T is the read threshold. In this regard, the
corresponding decoding process can accommodate at most
X-T missing EC data slices and still recreate the data segment
92. For example, if X=16 and T=10, then the data segment 92
will be recoverable as long as 10 or more EC data slices per
segment are not corrupted.

[0072] The slicer 79 transforms the encoded data segment
94 into EC data slices in accordance with the slicing param-
eter from the vault for this user and/or data segment 92. For

Jul. 28, 2011

example, if the slicing parameter is X=16, then the slicer 79
slices each encoded data segment 94 into 16 encoded slices.
[0073] The post-slice manipulator 81 performs, if enabled,
post-manipulation on the encoded slices to produce the EC
data slices. If enabled, the post-slice manipulator 81 deter-
mines the type of post-manipulation, which may be based on
a computing system-wide predetermination, parameters in
the vault for this user, a table lookup, the user identification,
the type of data, security requirements, available DSN
memory, performance requirements, control unit directed,
and/or other metadata. Note that the type of post-slice
manipulation may include slice level compression, signa-
tures, encryption, CRC, addressing, watermarking, tagging,
adding metadata, and/or other manipulation to improve the
effectiveness of the computing system.

[0074] In an example of a read operation, the post-slice
de-manipulator 89 receives at least a read threshold number
of EC data slices and performs the inverse function of the
post-slice manipulator 81 to produce a plurality of encoded
slices. The de-slicer 87 de-slices the encoded slices to pro-
duce an encoded data segment 94. The decoder 85 performs
the inverse function of the encoder 77 to recapture the data
segment 90-92. The pre-slice de-manipulator 83 performs the
inverse function of the pre-slice manipulator 75 to recapture
the data segment 90-92.

[0075] FIG. 5 is a diagram of an example of slicing an
encoded data segment 94 by the slicer 79. In this example, the
encoded data segment 94 includes thirty-two bits, but may
include more or less bits. The slicer 79 disperses the bits of the
encoded data segment 94 across the EC data slices in a pattern
as shown. As such, each EC data slice does not include con-
secutive bits of the data segment 94 reducing the impact of
consecutive bit failures on data recovery. For example, if EC
data slice 2 (which includes bits 1, 5, 9, 13, 17, 25, and 29) is
unavailable (e.g., lost, inaccessible, or corrupted), the data
segment can be reconstructed from the other EC data slices
(e.g., 1, 3 and 4 for a read threshold of 3 and a width of 4).
[0076] FIG. 6 is a flowchart illustrating an example of stor-
ing data. The method begins with step 102 where a processing
module receives a store data object message from one of a
user device, a dispersed storage (DS) processing unit, a DS
managing unit, a storage integrity processing unit, and a DS
unit. The store data object message may include one or more
of a user device identifier (ID), a store request command, a
data object name, a data object, a data type, a data size, a
performance indicator, a security indicator, a priority indica-
tor, and metadata input.

[0077] The method continues at step 104 where the pro-
cessing module determines a first set of operational param-
eters which may include one or more of a pillar width, a read
threshold, a write threshold, and encoding method, a slicing
method, an encryption method, and encryption keys. Such a
determination may be based on one or more of the user device
1D, a user vault lookup, the store request command, the data
object name, the data object, the data type, the data size, the
performance indicator, a security indicator, the priority indi-
cator, and the metadata input. For example, the processing
module determines the first set of operational parameters to
include a pillar width of 16, and a read threshold of 10 based
on the user vault lookup.

[0078] The method continues at step 106 where the pro-
cessing module determines a first set of DS units where the
first set of DS units includes candidate DS units without
consideration of historic metadata (e.g., operational and per-

US 2011/0184997 Al

formance history). Such a determination may be based on one
or more of the first set of operational parameters, the user
device ID, a user vault lookup, the store request command, the
data object name, the data object, the data type, the data size,
the performance indicator, a security indicator, the priority
indicator, and the metadata input. For example, the process-
ing module may determine the first set of DS units to include
DS units 1-50 when the processing module determines that
DS units 1-50 are substantially available. Note that the num-
ber of DS units that comprise the first set of DS units may be
greater than the pillar width.

[0079] The method continues at step 108 where the pro-
cessing module determines historical metadata for the first set
of DS units where the historical metadata may include one or
more of history of uptime, storage bandwidth, retrieval band-
width, storage latency, retrieval latency, memory capacity,
available memory, storage costs, rebuild time, location, and
security factors (e.g., a security rating, security breach his-
tory). Such a determination may be based on one or more of
the first set of DS units, a list, a query of a metadata agent, and
a query of the first set of DS units. Note that a metadata agent
may be implemented in any one of the system units or mod-
ules and may aggregate historical metadata information
based on polling and/or receive historical metadata informa-
tion from DS units from time to time.

[0080] The method continues at step 110 where the pro-
cessing module determines a second set of DS units which
may comprise a subset of the first set of DS units such that the
second set of DS units further optimizes the choice of DS
units for storage of the data object. At step 110, the processing
module determines a second set of operational parameters
where the second set of operational parameters coincide with
the second set of DS units. Such a determination of the second
set of DS units and the second set of operational parameters
may be based on one or more of the first set of DS units, the
first set of operational parameters, the historical metadata, a
comparison of historical metadata to information received in
the store data object message, and information from the user
vault. For example, the processing module determines the
second set of DS units to include DS units 1-5, 10-15, and
21-26. Note that the number of DS units that comprise the
second set of DS units is 16, which was the original pillar
width chosen in the first set of operational parameters. In such
an instance, the processing module determines that the 16 DS
units met the requirements. In another example, the process-
ing module determines the second set of DS units to include
DS units 1-32 and a second set of operational parameters to
include a pillar width of 32 and a read threshold of 24 when
the processing module determines that no combination of DS
units of the first set of DS units may achieve the pillar width
16 of the first set of operational parameters will meet the
requirements. In such an instance, the pillar width in a second
set of operational parameters is different than the pillar width
of the first set of operational parameters.

[0081] The method continues at step 112 where the pro-
cessing module dispersed storage error encodes the data
object to produce encoded data slices in accordance with the
second set of operational parameters for the data object. At
step 114, the processing module sends the encoded data slices
with a store command to the second set of DS units for storage
therein. In addition, the processing module may save the DS
unit IDs in a list and/or in a vault to facilitate subsequent
retrieval.

Jul. 28, 2011

[0082] FIG. 7 is another flowchart illustrating another
example of storing data. The method begins with step 116
where the processing module receives a data storage request
that includes metadata and data. Note that the metadata
includes at least one of a requester identifier (ID) of a request-
ing device, a data ID, a data type, a data size, a storage
requirement, identity of the base-line set of error coding
dispersal storage function parameters, a performance indica-
tor, a security indicator, and a priority indicator.

[0083] The method continues at step 118 where the pro-
cessing module determines a base-line set of error coding
dispersal storage function parameters based on the metadata.
Such a determination may include at least one of selecting a
slicing pillar width and read threshold pair from a plurality of
slicing pillar width and read threshold pairings based on a
performance indicator (e.g., similar for high efficiency, far-
ther apart for higher reliability), an encryption method from a
plurality of encryption methods based on a security indicator,
selecting an encryption key based on a requester identifier
(ID) of a requesting device, and selecting an error coding
method from a plurality of error coding methods based on a
data type. For example, the processing module may select an
error coding method that is more compatible with video when
the data type indicates video. In another example, the pro-
cessing model selects the slicing pillar width to be 16 and the
read threshold to be 10 for higher reliability.

[0084] The method continues at step 120 where the pro-
cessing module identifies candidate dispersed storage (DS)
units based on the base-line set of error coding dispersal
storage function parameters. Such a determination may be
based on one or more of the base-line set of error coding
dispersal storage function parameters, a user device ID, auser
vault lookup, a data storage request message, a data object
name, a data object, a data type, a data size, a performance
indicator, a security indicator, the priority indicator, and the
metadata. For example, the processing module identifies DS
units 1-50 that are known to be substantially available based
on a performance indicator. Note that the number of DS units
that comprise the candidate DS units may be greater than the
slicing pillar width.

[0085] The method continues at step 122 where the pro-
cessing module determines availability of the candidate DS
units where the availability may include one or more of avail-
ability status (e.g., available now or not), an availability fore-
cast (e.g., when it will be available in the future), and avail-
ability constraints (e.g., not available for files asked bytes in
size, or only available for text data type files, or not available
for files with the security indicator over a threshold). Such a
determination may be based on one or more of the candidate
DS units, a list, a query of an availability agent, and a query of
the candidate DS units. Note that an availability agent may be
implemented in any one of the system units or modules and
may aggregate availability information based on polling and/
orreceive availability information from DS units from time to
time.

[0086] The method continues at step 124 where the pro-
cessing module selects DS units of the candidate DS units
based on the metadata to produce selected DS units. Such a
determination may be based on one or more of the candidate
DS units, the base-line set of error coding dispersal storage
function parameters, historical metadata, a comparison of
availability information to information received in the data
storage request message, and information from a user vault.
For example, the processing module determines the selected

US 2011/0184997 Al

DS units to include DS units 1-5, 10-15, and 21-26. Note that
the number of DS units that comprise the selected DS units is
16, which was the original pillar width chosen in the base-line
set of error coding dispersal storage function parameters. In
such an instance, the processing module determined that the
16 DS units are available and meet the requirements.

[0087] In another example, the processing module selects
DS units 1-32, a pillar width of 32 and a read threshold of 24
as the representation of the base-line set of error coding
dispersal storage option parameters when there is not a com-
bination of candidate DS units that can meet the base-line
slicing pillar width of 16 requirement. Note that in this
example the pillar width in the representation of the base-line
set of error coding dispersal storage function parameters is
different than the pillar width of the base-line set of error
coding dispersal storage function parameters.

[0088] The method continues at step 126 where the pro-
cessing module dispersed storage error encodes the data in
accordance with at least a representation of the base-line set
of error coding dispersal storage function parameters to pro-
duce a set of encoded data slices. The method continues at
step 128 where the processing module sends the set of
encoded data slices to the selected DS units for storage
therein.

[0089] Alternatively, or in addition to, the processing mod-
ule obtains error coding storage capabilities of the selected
DS units and determines a set of error coding dispersal stor-
age function parameters based on the error coding storage
capabilities of the selected DS units and the metadata to
provide the representation of the base-line set of error coding
dispersal storage function parameters. Alternatively, or in
addition to, the processing module identifies the candidate DS
units based on dispersed error coding storage capabilities
compatible with the base-line set of error coding dispersal
storage function parameters. Alternatively, or in addition to,
the processing module selects a DS unit of the DS units based
ondispersed error coding storage performance characteristics
being comparable to a desired dispersed error coding storage
performance level. Alternatively, or in addition to, the pro-
cessing module saves a record including the at least the rep-
resentation of the base-line set of error coding dispersal stor-
age function parameters and identifiers of the selected DS
units.

[0090] In another example of a method of operation, the
processing module receives a data storage request that
includes metadata and data. Note that the metadata includes at
least one of a requester identifier (ID) of a requesting device,
a data ID, a data type, a data size, a storage requirement,
identity of the base-line set of error coding dispersal storage
function parameters, a performance indicator, a security indi-
cator, and a priority indicator. The method enters a loop,
beginning with the step where the processing module deter-
mines a current set of error coding dispersal storage function
parameters based on the metadata. Such determining of the
current set of error coding dispersal storage function param-
eters includes at least one of selecting a slicing pillar width
and read threshold pair from a plurality of slicing pillar width
and read threshold pairings based on a performance indicator,
selecting an encryption method from a plurality of encryption
methods based on a security indicator, selecting an encryp-
tion key based on a requester identifier (ID) of a requesting
device, and selecting an error coding method from a plurality
of error coding methods based on a data type.

Jul. 28, 2011

[0091] The method continues with the step where the pro-
cessing module selects dispersed storage (DS) units based on
the current set of error coding dispersal storage function
parameters to produce a current set of DS units. Such select-
ing of the DS units includes at least one of selecting the DS
units based on dispersed error coding storage capabilities
compatible with the current set of error coding dispersal
storage function parameters and selecting a DS unit of the DS
units based on dispersed error coding storage performance
characteristics being comparable to a desired dispersed error
coding storage performance level.

[0092] The method continues with the step where the pro-
cessing module determines whether the current set of DS
units and the current set of error coding dispersal storage
function parameters provides a desired dispersed error coding
storage performance level. The method repeats the loop for at
least one of a new current set of error coding dispersal storage
function parameters and a new current set of DS units when
the processing module determines that the current set of DS
units and the current set of error coding dispersal storage
function parameters do not provide the desired dispersed
error coding storage performance level. The method exits the
loop when the current set of DS units and the current set of
error coding dispersal storage function parameters does pro-
vides the desired dispersed error coding storage performance
level. Next, the processing module dispersed storage error
encodes the data in accordance with the current set of error
coding dispersal storage function parameters to produce a set
of encoded data slices. The method continues with the step
where the processing module sends the set of encoded data
slices to the current set of DS units for storage therein. The
method continues with the step where the processing module
saves a record including the current set of error coding dis-
persal storage function parameters and identifiers of the cur-
rent set of DS units.

[0093] FIG. 8 is another flowchart illustrating another
example of storing data. The method begins with step 130
where a processing module receives a store data object mes-
sage from one of a user device, a dispersed storage (DS)
processing unit, a DS managing unit, a storage integrity pro-
cessing unit, and the DS unit. The store data object message
may include one or more of a user device identifier (ID), a
store request command, a data object name, a data object, a
data type, a data size, a performance indicator, a security
indicator, a priority indicator, and metadata input.

[0094] The method continues at step 132 where the pro-
cessing module determines preferred storage requirements,
which may include requirements that are desired to optimize
treatment of a goal (e.g., a performance level goal, a security
goal, a cost goal, etc.). Such a determination may be based on
one or more of information received in the store data object
message (e.g., the user device ID, the store request command,
the data object name, the data object, the data type, the data
size, the performance indicator, the security indicator, the
priority indicator), a vault lookup, a command, a message,
and a predetermination. For example, the processing module
determines that the preferred storage requirements include a
performance requirement of a 10 ms retrieval latency time.
[0095] The method continues at step 134 where the pro-
cessing module determines minimum storage requirements,
which may include the minimum level of requirements that
are necessary to achieve a minimal goal (e.g., a minimal
performance level goal, a minimal security goal, a cost goal,
etc.). Such a determination may be based on one or more of

US 2011/0184997 Al

information received in the store data object message (e.g.,
the user device ID, the store request command, the data object
name, the data object, the data type, the data size, the perfor-
mance indicator, the security indicator, the priority indicator),
a vault lookup, a command, a message, and a predetermina-
tion. For example, the processing module determines that the
minimum storage requirements include a performance
requirement of a 100 ms retrieval latency time. In such an
example, the preferred storage requirement includes a 10 ms
retrieval latency time. In another example, the processing
module determines a minimum storage requirement to
include a cost goal where the cost is a maximum price allow-
able.

[0096] The method continues at step 136 where the pro-
cessing module determines a first set of operational param-
eters, which may include one or more of a pillar width, a read
threshold, a write threshold, and encoding method, a slicing
method, an encryption method, and encryption keys. Such a
determination may be based on one or more of the preferred
storage requirements, the user device 1D, a user vault lookup,
the store request command, the data object name, the data
object, the data type, the data size, the performance indicator,
a security indicator, the priority indicator, and the metadata
input. For example, the processing module determines that
the first set of operational parameters includes a pillar width
of'16, and a read threshold of 10 based on a user vault lookup.

[0097] The method continues at step 138 where the pro-
cessing module determines a first set of DS units where the
first set of DS units includes candidate DS units without
consideration of storage metrics. Storage metrics may
include one or more of history of uptime, storage bandwidth,
retrieval bandwidth, storage latency, retrieval latency,
memory capacity, available memory, storage costs, rebuild
time, location, and security factors (e.g., a security rating,
security breach history). Such a determination may be based
on one or more of the first set of operational parameters, the
user device ID, a user vault lookup, the store request com-
mand, the data object name, the data object, the data type, the
data size, the performance indicator, a security indicator, the
priority indicator, and the metadata input. For example, the
processing module may determine the first set of DS units to
include DS units 1-50 based on a performance indicator. Note
that the number of DS units that comprise the first set of DS
units may be greater than the pillar width.

[0098] The method continues at step 140 where the pro-
cessing module determines the storage metrics for the first set
of DS units. Such a determination may be based on one or
more of the first set of DS units, a list, a query of a storage
metrics agent, and a query of the first set of DS units. Note that
the storage metrics agent may be implemented in any one of
the system units or modules and may aggregate storage met-
rics information based on polling and/or receive storage met-
rics information from DS units from time to time.

[0099] The method continues at step 142 where the pro-
cessing module determines whether the storage metrics for
the first set of DS units compares favorably to the preferred
storage requirements. Note that a favorable comparison may
indicate that the storage metrics meets or exceeds the require-
ments. The method branches to step 152 when the processing
module determines that the storage metrics for the first set of
DS units does compare favorably to the preferred storage
requirements. The method continues to step 144 when the

Jul. 28, 2011

processing module determines that the storage metrics for the
first set of DS units does not compare favorably to the pre-
ferred storage requirements.

[0100] The method continues at step 144 where the pro-
cessing module determines a second set of DS units, which
may comprise a subset of the first set of DS units such that the
second set of DS units may fit the minimum storage require-
ments. At step 144, the processing module determines a sec-
ond set of operational parameters where the second set of
operational parameters coincide with the second set of DS
units. Such a determination of the second set of DS units and
the second set of operational parameters may be based on one
or more of the first set of DS units, the first set of operational
parameters, the storage metrics, a comparison of storage met-
rics information to information received in the store data
object message, a list, a query of the storage metrics agent, a
query of potential second set DS units, and information from
the user vault.

[0101] For example, the processing module determines the
second set of DS units to include DS units 1-5, 10-15, and
21-26. Note that the number of DS units that comprise the
second set of DS units is 16, which was the original pillar
width chosen in the first set of operational parameters. In such
an instance, the processing module determines that the 16 DS
units may meet the minimum requirements. In another
example, the processing module determines the second set of
DS units to include DS units 1-32 and a second set of opera-
tional parameters to include a pillar width of 32 and a read
threshold of 24 when the processing module determines that
no combination of DS units of the first set of DS units are
available and that achieve the pillar width 16 of the first set of
operational parameters and will meet the first set of require-
ments. Note that in this example the pillar width in a second
set of operational parameters is different than the pillar width
of the first set of operational parameters.

[0102] The method continues at step 146 where the pro-
cessing module determines the storage metrics for the second
set of DS units. Such a determination may be based on one or
more of the second set of DS units, a list, a query of the storage
metrics agent, and a query of the second set of DS units. The
method continues at step 148 where the processing module
determines whether the storage metrics for the second set of
DS units compares favorably to the minimum storage require-
ments. Note that a favorable comparison may indicate that the
storage metrics meets or exceeds the minimum requirements.
The method branches to step 152 when the processing mod-
ule determines that the storage metrics for the second set of
DS units does compare favorably to the preferred storage
requirements. The method continues to step 150 when the
processing module determines that the storage metrics for the
second set of DS units does not compare favorably to the
minimum storage requirements. At step 150, the processing
module sends an error message (e.g., to a requester and/or a
DS managing unit)

[0103] The method continues at step 152 where the pro-
cessing module dispersed storage error and codes the data
object to produce encoded data slices in accordance with the
first or second set of operational parameters for the data
object. At step 154, the processing module sends the encoded
data slices with a store command to the chosen set of DS units
(e.g., first or second set of DS units) for storage therein. In
addition, the processing module may save the DS unit IDs in
a list and/or in a vault to facilitate subsequent retrieval.

US 2011/0184997 Al

[0104] In an alternative example of operation, preferred
requirements may be chained. For instance, if a lower read
latency is offered, a new higher price may be paid. In another
example, requirements may vary by DS unit location. For
instance, the security requirements of a DS unit in a first
location may be different than the security requirements for a
DS unit in a second location. In yet another example, the
Processing module may negotiate with one or more of the DS
units directly or through an agent to achieve more preferable
storage metrics (e.g., a better price, a better grade of service).
[0105] FIG. 9 is a flowchart illustrating an example of
retrieving data. The method begins with step 156 where a
processing module receives a retrieve data object message
(e.g., from a user device, a dispersed storage (DS) processing
unit, a DS managing unit, a storage integrity processing unit,
and a DS unit). Such a retrieve data object message may
include one or more of a user device identifier (ID), a retrieve
request command, a data object name, a data type, a data size,
a performance indicator, a security indicator, a priority indi-
cator, and metadata input.

[0106] The method continues at step 158 where the pro-
cessing module determines operational parameters which
may include one or more of a pillar width, a read threshold, a
write threshold, and encoding method, a slicing method, an
encryption method, slice names, and encryption keys. Such a
determination may be based on one or more of the user device
1D, a user vault lookup, the store request command, the data
object name, the data type, the data size, the performance
indicator, a security indicator, the priority indicator, and the
metadata input. For example, the processing module deter-
mines that the operational parameters include a pillar width of
16, and a read threshold of 10 based on a received data type.
[0107] The method continues at step 160 where the pro-
cessing module determines DS units where the DS units
includes candidate DS units to retrieve slices (e.g., the pillars
where the slices were stored) without consideration of storage
metrics (e.g., operational and performance history). Such a
determination may be based on one or more of the operational
parameters, the user device 1D, a user vault lookup, a virtual
DSN address to physical location table lookup, the retrieve
request command, the data object name, the data type, the
data size, the performance indicator, a security indicator, the
priority indicator, and the metadata input. For example, the
processing module may determine the DS units to include DS
units 1-16 where pillar slices were originally stored based on
alookup of the virtual DSN address to physical location table.
[0108] The method continues at step 162 where the pro-
cessing module determines the storage metrics for the DS
units where the storage metrics may include one or more of
history of uptime, storage bandwidth, retrieval bandwidth,
storage latency, retrieval latency, memory capacity, available
memory, storage costs, rebuild time, location, and security
factors (e.g., a security rating, security breach history). Such
a determination may be based on one or more of the DS units,
alist, a query of a storage metrics agent, and a query ofthe DS
units. Note that a storage metrics agent may be implemented
in any one of the system units or modules and may aggregate
storage metrics information based on polling and/or receive
storage metrics information from DS units from time to time.
[0109] The method continues at step 164 where the pro-
cessing module determines a first subset of DS units, which
may comprise a subset of the DS units such that the first
subset of DS units further optimizes the choice of DS units for
retrieval of the data object. Such a determination of the first

Jul. 28, 2011

subset of DS units may be based on one or more of the DS
units, the operational parameters, the storage metrics, a com-
parison of the storage metrics to information received in the
retrieve data object message, and information from the user
vault. For example, the processing module determines the
first subset of DS units to include DS units 1-5 and 11-15
when the first subset of DS units have storage metrics that
indicate they have the fastest retrieval times. Note that the
number of DS units that comprise the first subset of DS units
is 10, which is the read threshold from the operational param-
eters. In such an instance, the processing module determines
that the DS units meet the requirements for the fastest
retrieval possible.

[0110] The method continues at step 166 where the pro-
cessing module sends an encoded data slice retrieval message
to the current subset of DS units (e.g., the first subset of DS
units on the first pass) where the encoded data slice retrieval
message may include one or more of a retrieval command, a
DS unit ID, the data object name, and slice names. The
method continues at step 168 where the processing module
receives encoded data slices from the DS units and deter-
mines whether enough pillars (e.g., a read threshold number)
have been received to re-create the data segment. The method
branches to step 172 when the processing module determines
that encoded data slices from enough pillars have been
received. The method continues to step 170 when the pro-
cessing module determines that encoded data slices from
enough pillars have not been received. At step 170, the pro-
cessing module determines a different subset of DS units.
Such a determination of the different subset of DS units may
be based on one or more of which pillars have been success-
fully received so far, which pillars were not successfully
received (e.g., where requested), which pillars have not been
tried yet, the DS units, the operational parameters, the storage
metrics, a comparison of the storage metrics to information
received in the retrieve data object message, and information
from the user vault. For example, the processing module
determines the different subset of DS units to include the DS
units 6 and 7 when slices from DS units 4 and 5 were not
successfully received and where the processing module deter-
mines that DS units 6 and 7 have the next best retrieval latency
storage metrics. The method repeats back to step 166 where
the processing module sends the encoded data slice retrieval
message to the current subset of DS units (e.g., the different
subset of DS units).

[0111] The method continues at step 172 where the pro-
cessing module re-creates the data segment in accordance
with the operational parameters. The processing module
holds each data segment until all of the data segments have
been successfully re-created. At step 174, the processing
module determines if all the segments have been re-created.
The method branches to step 178 when the processing mod-
ule determines that all of the segments have been re-created.
The method continues to step 176 when the processing mod-
ule determines that all of the segments have not been re-
created. At step 176, the processing module goes to the next
data segment by selecting the slice names for the next data
segment based on which data segments have beenretrieved so
far. The method repeats back to step 166.

[0112] The method continues at step 178 where the pro-
cessing module aggregates the data segments in accordance
with the operational parameters to produce the data object
when the processing module determines that all of the seg-
ments have been re-created. The method continues at step 180

US 2011/0184997 Al

where the processing module sends the data object to the
requester. In an alternative example of operation, the process-
ing module determines the DS unit subset to retrieve encoded
data slices based on storage metrics of the DS units when the
data object was originally stored in the DS units.

[0113] FIG. 10 is another flowchart illustrating another
example of storing data. The method begins with step 182
where a processing module receives a store data object mes-
sage (e.g., from a user device, a dispersed storage (DS) pro-
cessing unit, a DS managing unit, a storage integrity process-
ing unit, and/or a DS unit). Such a store data object message
may include one or more of a user device identifier (ID), a
store request command, a data object name, a data object, a
data type, a data size, a performance indicator, a security
indicator, a priority indicator, and metadata input.

[0114] The method continues at step 184 where the pro-
cessing module determines operational parameters, which
may include one or more of a pillar width, a read threshold, a
write threshold, and encoding method, a slicing method, an
encryption method, and encryption keys. Such a determina-
tion may be based on one or more of the user device ID, auser
vault lookup, the store request command, the data object
name, the data object, the data type, the data size, the perfor-
mance indicator, a security indicator, the priority indicator,
and the metadata input. For example, the processing module
determines that the operational parameters include a pillar
width of 16, and a read threshold of 10 based on the data size.
[0115] The method continues at step 186 where the pro-
cessing module determines DS units to optimize and send
encoded data slices to for storage. Such a determination may
be based on one or more of the operational parameters, the
user device ID, a user vault lookup, the store request com-
mand, the data object name, the data object, the data type, the
data size, the performance indicator, a security indicator, the
priority indicator, and the metadata input. For example, the
processing module may determine the DS units to include DS
units 1-16 to accommodate the pillar width of 16 based on the
performance indicator.

[0116] The method continues at step 188 where the pro-
cessing module determines memory utilization for the DS
units where the memory utilization may include one or more
of memory capacity, available memory, utilized memory,
storage costs, rebuild time, location, and security factors (e.g.,
a security rating, security breach history). Such a determina-
tion may be based on one or more of the DS units, a list, a
query of a memory utilization agent, and a query of the DS
units. Note that a memory utilization agent may be imple-
mented in any one of the system units or modules and may
aggregate memory utilization information based on polling
and/or receive memory utilization information from DS units
from time to time.

[0117] The method continues at step 190 where the pro-
cessing module determines DS unit memory utilization opti-
mization where a goal of such optimization may include
increasing the amount of available memory by moving
encoded data slices from the memory of at least one DS unit
to the memory of at least one other DS unit. Such a determi-
nation may be based on one or more of the memory utilization
of DS units, available memory of DS units, memory capacity
of DS units, a priority indicator of data stored in DS units, a
security indicator of data stored in DS units, a performance
indicator of data stored in DS units, a memory threshold, and
the operational parameters. In an example, the processing
module determines to free up utilized memory by moving

Jul. 28, 2011

encoded data slices from a first memory of a DS unit to a
second memory of the same DS unit. In another example, the
processing module determines to free up utilized memory by
moving encoded data slices from a memory of a first DS unit
to a memory of at least a second DS unit. For instance, the
processing module moves encoded data slices from a memory
of a first DS unit to a memory of a at least a second DS unit
when the processing module determines that the memory
utilization of the first DS Unit is greater than the memory
threshold.

[0118] The method continues at step 192 where the pro-
cessing module optimizes DS unit memory utilization. In an
example, the processing module retrieves encoded data slices
from a memory of a first DS unit and sends the slices to a
second DS unit for storage. The processing module sends a
delete slice command to the first DS unit to delete the previ-
ously moved encoded data slices from the memory of'the first
DS unit. The processing module may update a virtual dis-
persed storage network (DSN) address to physical location
table to indicate that the encoded data slices are now stored in
the memory of the second DS unit. Note that the processing
module may optimize the DS unit memory utilization as a
background task from time to time.

[0119] The method continues at step 194 where the pro-
cessing module determines the encoded data slices in accor-
dance with the second set of operational parameters for the
data object. The method continues at step 196 where the
processing module sends the encoded data slices with a store
command to the DS units for storage. The processing module
may save the DS unit IDs in a list and/or in a vault to facilitate
subsequent retrieval.

[0120] FIG. 11 is another flowchart illustrating another
example of storing data. The method begins with step 198
where processing module receives a store data object mes-
sage (e.g., from a user device, a dispersed storage (DS) pro-
cessing unit, a DS managing unit, a storage integrity process-
ing unit, and/or a DS unit). Such a store data object message
may include one or more of a user device identifier (ID), a
store request command, a data object name, a data object, a
data type, a data size, a performance indicator, a security
indicator, a priority indicator, and metadata input.

[0121] The method continues at step 200 where the pro-
cessing module determines operational parameters, which
may include one or more of a pillar width, a read threshold, a
write threshold, and encoding method, a slicing method, an
encryption method, and encryption keys. Such a determina-
tion may be based on one or more of the user device ID, auser
vault lookup, the store request command, the data object
name, the data object, the data type, the data size, the perfor-
mance indicator, a security indicator, the priority indicator,
and the metadata input. For example, the processing module
determines that the operational parameters include a pillar
width of 16, and a read threshold of 10 based on the perfor-
mance indicator.

[0122] The method continues at step 202 where the pro-
cessing module determines candidate DS units where the
candidate DS units are determined at this step without con-
sideration of metadata (e.g., operational and performance
history). Such a determination may be based on one or more
of'the operational parameters, the user device 1D, a user vault
lookup, the store request command, the data object name, the
data object, the data type, the data size, the performance
indicator, a security indicator, the priority indicator, and the
metadata input. For example, the processing module deter-

US 2011/0184997 Al

mines the first set of DS units to include DS units 1-50 based
on the data type. Note that the number of DS units that
comprise the candidate DS units may be greater than the pillar
width.

[0123] The method continues at step 204 where the pro-
cessing module determines metadata for the candidate DS
units where the metadata may include one or more of history
of uptime, storage bandwidth, retrieval bandwidth, storage
latency, retrieval latency, memory capacity, available
memory, storage costs, rebuild time, location, and security
factors (e.g., a security rating, security breach history). Such
a determination may be based on one or more of the candidate
DS units, a list, a query of a metadata agent, and a query ofthe
candidate DS units. Note that a metadata agent may be imple-
mented in any one of the system units or modules and may
aggregate metadata information based on polling and/or
receive metadata information from DS units from time to
time. Note that the processing module may determine the
metadata of candidate DS units as a background task from
time to time.

[0124] The method continues at step 206 where the pro-
cessing module determines DS unit requirements and weight-
ing factors of the requirements where the weighting factors
may indicate the relative importance of each requirement.
Such DS unit requirements may include one or more of
latency, security, priority, and location requirements. Such a
determination may be based on one or more of the operational
parameters, a vault lookup, information received in the store
data object message, a predetermination, and a command. For
example, the processing module determines the DS unit
requirements to include the categories of uptime, agency, free
space, security, and/or pricing based on indicators received in
the store data object message and/or a user vault lookup. The
processing module may determine the uptime weighting fac-
tor to be 0.30, the latency weighting factor to be 0.25, the free
space weighting factor to be 0.10, the security weighting
factor to be 0.15, and/or the pricing weighting factor to be
0.20 based on indicators received in the store data object
message and/or a user vault lookup.

[0125] The method continues at step 208 where the pro-
cessing module determines a weighted comparison of the
candidate DS units where the comparison compares the sum
of'each of the products of the metadata requirement value and
the weighting factor. An example of a weighted scoring table
where the weighted scoring table lists the weighted scores for
each of the DS units is discussed in greater detail with refer-
ence to FI1G. 12.

[0126] The method continues at step 210 where the pro-
cessing module determines DS units to utilize for storage
from the candidate DS units such that the DS units further
optimize the choice of DS units for storage of the data object.
Such a determination of the DS units may be based on one or
more of the DS units, the operational parameters, the DS unit
metadata, DS unit requirements, weighting factors other
requirements, results of the weighted comparison of the can-
didate DS units, a weighted scoring table lookup, the number
of required DS units (e.g., the pillar width), and information
from the user vault. For example, the processing module
determines the DS units to include DS units 1-5, 10-15, and
21-26 where those DS units have the best weighted compari-
son scores amongst the candidate DS units. Note that the
number of DS units that comprise the DS units is 16, which is
the original pillar width chosen in the operational parameters.
In such an instance, the processing module determines that

Jul. 28, 2011

the 16 DS units met the requirements in the best possible way
based on the weighted scoring.

[0127] At step 210, the processing module dispersed stor-
age error encodes the data object to produce encoded data
slices in accordance with the operational parameters. The
method continues at step 212 for the processing module sends
the encoded data slices with a store command to the DS units
for storage therein. The processing module may save the DS
unit IDs in a list and/or in a vault to facilitate subsequent
retrieval.

[0128] FIG. 12 is a table illustrating an example of a
weighted scoring table 214. Such a table may be utilized by a
processing model to compare metadata values on a weighted
basis between DS units by metadata categories to facilitate a
selection of an optimized set of DS units. As illustrated, the
weighted scoring table 214 includes a factors section 216 and
a plurality of DS unit sections 218-220 for a plurality of DS
units. The factors section 216 includes a category field 222
and a weighting factor field 224 for each of the categories 222.
Such categories 222 may include requirements important to a
requester requesting data storage. Weighting factors stored in
the weighting factor field 224 may be determined to prioritize
requirements against each other to facilitate an optimized
selection of DS units.

[0129] As illustrated, the DS unit sections 218-220
includes a metadata value field 226, 230 and a weighted score
field 228, 232. Such metadata values 226, 230 represents raw
metadata corresponding to the requirement category 222 of
the DS unit identity (e.g., DS unit 1 oh field 218, DS unit 2 of
field 220. Such a weighted score 228, 232 may represent the
metadata value 226, 230 adjusted by a scaling function (e.g.,
multiplied by the weighting factor 224). The weighted scor-
ing table to work for may also include one or more totals 234
where a total sums the weighting factors 224, and/or the
weighted scores 228, 232. In an example, the weighting fac-
tors 224 total to 1.0 and/or the weighted scores 228 will have
a maximum possible total of 100 points.

[0130] Note that each category 222 may have a different
weighting factor 224 to adjust for the range of the metadata
value 226, 230. For example, an uptime category may be
measured in a “nines of reliability” fashion. For instance, a
metadata value of nine nines produces a score 100 points,
eight nines scores 90 points, seven nines scores 80 points, six
nines scores 70 points, five nines scores 60 points, four nines
scores 50 points, three nines scores 40 points, two nines
scores 30 points, and one nine scores 20 points. In another
example of metadata value scaling, latency may score 100
points for times less than 0.1 ms, 85 points for a latency time
between 0.1 ms and 1.0 ms, 60 points for 1 ms to 10 ms, 40
points for 10 ms to 0.1 seconds, 20 points for 0.1 seconds to
1.0 seconds, and zero points for greater than 1 second. In
another example of metadata scaling, free space greater than
10 terabytes (TB) may score 100 points, 80 points for 5 to 10
TB, 60 points for 0.5 to 5 TB, 40 points for 0.05 to 0.5 TB, 20
points for 0.005 to 0.05 TB, and zero points for less than 0.005
TB. In another example of metadata scaling, pricing may
score 100 points for a price less than $0.001/gigabyte/month,
80 points for $0.001 to $0.01, 60 points for $0.01 to $0.04, 20
points for $0.04 to $0.1, and zero points for greater than $0.1.
[0131] Asillustrated, DS unit 1 scores 18 points for uptime
and DS unit 2 scores 10 points for uptime. This may indicate
that DS unit 1 is a superior choice as compared to DS unit 2 for
the category of uptime. As illustrated, DS unit 2 scores 10
points for free space and DS unit 1 scores 6 points for free

US 2011/0184997 Al

space. This may indicate that DS unit 2 is a superior choice as
compared to DS unit 1 for the category of free space.

[0132] As illustrated, DS unit 1 has a total weighted score
of 46 points in DS unit 2 has a total weighted score of 44.5
points. In an example, this may indicate that on an overall
basis and considering the weighting factors for each of the
categories DS unit 1 may be a superior choice as compared to
DS unit 2. In another example, the requester may have an
absolute minimum score requirement for one or more catego-
ries and/or for the total score. For instance, a processing
module may choose to utilize DS unit 1 and not DS unit 2 if
the requester has a minimum overall weighted score require-
ment of 45 points.

[0133] In another example, the processing module may
choose to utilize the required pillar width of DS units where
the chosen DS units have the highest overall total weighted
scores. In such an instance, the processing module may
choose the DS units based on ranking the total weighted
scores. In another example, the processing module may
choose DS units by chaining the weighted scores of two or
more categories. For instance, the processing module may
choose a DS unit that has a pricing weighted score above 10
points only if the uptime weighted score is above 20 points.

[0134] FIG. 13 is a flowchart illustrating another example
of storing data. The method begins with step 236 were a
processing module receives a store data object message (e.g.,
from a user device, a dispersed storage (DS) processing unit,
a DS managing unit, a storage integrity processing unit, and/
or a DS unit). Such a store data object message may include
one or more of a user device identifier (ID), a store request
command, a data object name, a data object, adatatype, adata
size, a performance indicator, a security indicator, a priority
indicator, and metadata input.

[0135] The method continues at step 238 where the pro-
cessing module determines operational parameters, which
may include one or more of a pillar width, a read threshold, a
write threshold, and encoding method, a slicing method, an
encryption method, and encryption keys. Such a determina-
tion may be based on one or more of the user device ID, auser
vault lookup, the store request command, the data object
name, the data object, the data type, the data size, the perfor-
mance indicator, a security indicator, the priority indicator,
and the metadata input. For example, the processing module
determines that the operational parameters include a pillar
width of 16, and a read threshold of 10 based on the user vault
lookup.

[0136] The method continues at step 240 where the pro-
cessing module determines candidate DS units where the
candidate DS units are determined at this step without con-
sideration of metadata (e.g., operational and performance
history). Such a determination may be based on one or more
of'the operational parameters, the user device 1D, a user vault
lookup, the store request command, the data object name, the
data object, the data type, the data size, the performance
indicator, a security indicator, the priority indicator, and the
metadata input. For example, the processing module deter-
mines the first set of DS units to include DS units 1-50 based
on the data type. Note that the number of DS units that
comprise the candidate DS units may be greater than the pillar
width.

[0137] The method continues at step 242 where the pro-
cessing module determines metadata for the candidate DS
units where the metadata may include one or more of history
of uptime, storage bandwidth, retrieval bandwidth, storage

Jul. 28, 2011

latency, retrieval latency, memory capacity, available
memory, storage costs, rebuild time, location, and security
factors (e.g., a security rating, security breach history). Such
a determination may be based on one or more of the candidate
DS units, a list, a query of a metadata agent, and/or a query of
the candidate DS units. Note that a metadata agent may be
implemented in any one of the system units or modules and
may aggregate metadata information based on polling and/or
receive metadata information from DS units from time to
time. Note that the processing module may determine the
metadata of candidate DS units as a background task from
time to time.

[0138] The method continues at step 244 or the processing
module determines DS unit requirements and weighting fac-
tors of the requirements where the weighting factors may
indicate the relative importance of each requirement. Such
DS unit requirements may include the latency, security, pri-
ority, and/or location requirements. Such a determination
may be based on one or more of the operational parameters, a
vault lookup, information received in the store data object
message, a predetermination, and a command. For example,
the processing module determines the DS unit requirements
to include the categories of uptime, agency, free space, secu-
rity, and/or pricing based on indicators received in the store
data object message and/or a user vault lookup. For instance,
the processing module determines the uptime weighting fac-
tor to be 0.30, the latency weighting factor to be 0.25, the free
space weighting factor to be 0.10, the security weighting
factor to be 0.15, and/or the pricing weighting factor to be
0.20 based on indicators received in the store data object
message and/or a user vault lookup.

[0139] The method continues at step 246 were the process-
ing module determines a weighted comparison of the candi-
date DS units where the comparison compares the sum of
each of the products of a metadata requirement value and a
weighting factor. An example of a weighted scoring table
where the weighted scoring table lists the weighted scores for
each of the DS units is discussed in greater detail with refer-
ence to FI1G. 12.

[0140] The method continues at step 248 where the pro-
cessing module determines a desired range of weighted com-
parison scores of the candidate DS units. In such an instance,
the processing module determines a minimum and/or a maxi-
mum value of a weighted score for each category. Such a
determination may be based on one or more of the operational
parameters, the candidate DS units, the metadata of the can-
didate DS units, the DS unit requirements, the weighting
factors of the requirements, the weighted comparison scores,
avault lookup, information contained in the store data object
message, a predetermination, and command. For instance, the
processing module determines that the desired range for the
uptime category is a score between 15 points and 25 points
and the desired range for the pricing category is a score
greater than 10 points.

[0141] The method continues at step 250 where the pro-
cessing module determines DS units from the candidate DS
units that have weighted scores within the desired ranges.
Such a determination may be based on one or more of the
comparison of the desired ranges of weighted scores to the
weighted scores of the DS units, a predetermination, a com-
mand, and a lookup. In an example, the processing module
determines more DS units than is required by the pillar width
of the operational parameters. In another example, the pro-
cessing module determines fewer DS units as required by the

US 2011/0184997 Al

pillar width of the operational parameters. In such an
instance, there are not a sufficient number of DS units that
have weighted scores within the desired ranges. In such a
scenario, the processing module may determine to change the
pillar width in an iterative fashion.

[0142] The method continues at step 252 where the pro-
cessing module determines the pillar width based on one or
more of the number of DS units, a vault lookup, a predeter-
mination, a command, and a message. In an example, the
processing module may not change the pillar width when the
number of DS units is greater than or equal to the pillar width.
In another example, the processing module may lower the
pillar width when the number of DS units is less than the pillar
width. Note that the processing module may also change
other elements of the operational parameters when the pillar
width is changed. For example, the processing module may
determine to change the read threshold to 5 from 10 when the
processing model determines to change the pillar width to 8
from 16.

[0143] The method continues at step 254 where the pro-
cessing module determines a data segment size based on one
or more of the pillar width, the size of the data object, a
command, a message, a lookup, and data segment size guid-
ance from a vault lookup. At step 256, the processing module
may save the modified operational parameters, which may
include a new pillar width, a new data segment size, a new
read threshold, new write threshold, and/or other new param-
eters. The processing module may save the modified opera-
tional parameters in a list and/or a vault.

[0144] The method continues at step 258 where the pro-
cessing module dispersed storage error encodes the data
object to produce encoded data slices in accordance with the
operational parameters. The method continues at step 260
where the processing module sends the encoded data slices
with a store command to the DS units for storage. The pro-
cessing module may save the DS unit IDs in a list and/or in a
vault to facilitate subsequent retrieval.

[0145] FIG. 14 is a structure diagram illustrating an
example of a dispersed storage network (DSN) directory
structure that includes a root directory folder 278, a plurality
of second level intermediate file directory folders 280-282, a
plurality of third level intermediate file directory folders 284-
290, and a plurality of DSN systems 292-296. Note that any
number of intermediate file directory folders may exist in a
given level of the structure. Note that any number of levels
may exist within the structure.

[0146] The plurality of third level intermediate file direc-
tory folders 284-290 may be utilized to associate a computer
file structure (e.g., depicted as a plurality of levels) to the
plurality of DSN systems 292-296. In an example, interme-
diate file directory folder 284 includes the root directory
folder 278 identifier, the intermediate file directory folder 280
identifier, a path, a file name, a DSN system identifier of
where encoded data slices are stored, DS unit identifiers of
where the encoded data slices are stored within one or more of
the plurality of DSN systems 292-296, and a list of the plu-
rality of DSN systems 292-296.

[0147] Inan example of operation, a processing module of
a user device utilizes the computer file structure to represent
a file system structure and track where data files are stored as
encoded data slices within the plurality of DSN systems 292-
296. For instance, a processing module dispersed storage
encodes data with a filename of stuff txt to produce encoded
data slices with slice names 101-105 and stores the encoded

Jul. 28, 2011

data slices in DS units 1-5 of DSN system 296. The process-
ing module stores stuff txt, slice names 101-105, an identifier
of DSN system 296, identifiers of DS units 1-5, an identifier
of'the second level intermediate file directory folder 280, and
an identifier of the root directory folder 270 in the interme-
diate file directory folder 284. The method of operation of the
processing module to utilize the structure is discussed in
greater detail with reference to FIG. 15.

[0148] FIG. 15 is another flowchart illustrating another
example of storing data. The method begins at step 300 where
processing module receives a data storage request. At step
302, the processing module accesses a file directory to iden-
tify dispersed storage network (DSN) systems. Note that the
file directory may include one or more of a listing of DSN
systems, a root file directory identifier, one or more interme-
diate file directory identifiers, a file name or data block iden-
tifier, a DSN system identifier, DS unit identifiers, and slice
names. The method continues at step 304 where the process-
ing module identifies dispersed storage (DS) units based on a
desired dispersed error coding performance level to produce
identified DS units for each of'the DSN systems. Note that the
desired dispersed error coding performance level includes at
least one of an indication of dispersed error coding storage
requirements, an indication of historical dispersed error cod-
ing storage performance, an indication of available storage,
an indication of processing capabilities, an indication of
latency performance, and an indication of bandwidth perfor-
mance. For example, the processing module identifies DS
units 1-5 as identified DS units when the processing module
determines that the latency performance of DS units 1-5 best
match the desired dispersed error coding performance level.
[0149] The method continues at step 306 where the pro-
cessing module selects one of the DSN systems based on a
collective dispersed error coding performance level of the
identified DS units of the one of the DSN systems to produce
a selected DSN system. For example, the processing module
selects DSN system 3 when the collective dispersed error
coding performance level indicates a lowest latency perfor-
mance level amongst the DSN systems. The method contin-
ues at step 308 or the processing module selects a set of DS
units from the identified DS units of the selected DSN system
based on the desired dispersed error coding performance level
to produce selected DS units wherein the selected DS units
store a set of encoded data slices. At step 310, the processing
module encodes data to produce a set of encoded data slices.
[0150] At step 312, the processing module sends the set of
encoded data slices to the selected DS units for storage
therein. The method continues at step 314 where the process-
ing module updates the file directory to include an identity of
the selected DS units and an identity of the set of encoded data
slices. The processing module updates the file directory by
one or more of creating a file name associated with the set of
encoded data slices, linking the file name to one or more
intermediate file directory folders, linking the one or more
intermediate file directories folders to a root directory folder,
linking the file name to a DSN identifier of the selected DSN
system, linking the file name to slice names of the set of
encoded data slices, and linking the slice names to DS unit
identifiers of the selected DS units. In addition, the processing
module may create at least one of the one or more interme-
diate file directory folders.

[0151] In an alternate example of operation, the method
begins at step 300 where the processing module receives a
data storage request for a particular type of data storage. Note

US 2011/0184997 Al

that the particular type of data storage includes at least one of
a data type indication (e.g., video, audio, text files, etc.), a
weighted storage requirement (e.g., latency is more important
than availability), a data retrieval latency indication, a data
bandwidth indication, dispersed error coding storage func-
tion parameters, and a date usage indication (e.g., real-time,
nearline, archive).

[0152] The alternate example of operation method contin-
ues at step 302 where the processing module identifies a
dispersed storage network (DSN) system from a plurality of
DSN systems based on the particular type of data storage to
produce an identified DSN system. For example, the process-
ing module identifies DSN system 4 one the particular type of
data storage is video and DSN system 4 is optimized to store
video. The method continues at step 304 where the processing
module identifies dispersed storage (DS) units within the
identified DSN system based on the particular type of data
storage to produce identified DS units. For example, the pro-
cessing module identifies DS units 10-30 when the particular
type of data storage is video and DS units 10-30 are optimized
to store video. The method continues with step 306 where the
processing module selects the identified DSN system as a
selected DSN system.

[0153] The alternate example of operation method contin-
ues at step 308 where the processing module selects a set of
DS units from the identified DS units of the identified DSN
system based on the particular type of data storage to produce
selected DS units, wherein the selected DS units store a set of
encoded data slices. For example, the processing module
selects DS units 10-26 when the particular type of data stor-
ageis video and DS units 10-26 is highly optimized for video.
At step 310, the processing module encodes data to produce a
set of encoded data slices. At step 312, the processing module
sends the set of encoded data slices to the selected DS units
for storage therein.

[0154] The method continues at step 314 where the pro-
cessing module updates the file directory to include an iden-
tity of the selected DS units and an identity of the set of
encoded data slices. The processing module updates the file
directory by creating a file name associated with the set of
encoded data slices, linking the file name to one or more
intermediate file directory folders, linking the one or more
intermediate file directories folders to a root directory folder,
linking the file name to a DSN identifier of the identified DSN
system, linking the file name to slice names of the set of
encoded data slices, and linking the slice names to DS unit
identifiers of the selected DS units. In addition, the processing
module may create at least one of the one or more interme-
diate file directory folders.

[0155] As may be used herein, the terms “substantially”
and “approximately” provides an industry-accepted tolerance
for its corresponding term and/or relativity between items.
Such an industry-accepted tolerance ranges from less than
one percent to fifty percent and corresponds to, but is not
limited to, component values, integrated circuit process varia-
tions, temperature variations, rise and fall times, and/or ther-
mal noise. Such relativity between items ranges from a dif-
ference of a few percent to magnitude differences. As may
also be used herein, the term(s) “operably coupled to”,
“coupled to”, and/or “coupling” includes direct coupling
between items and/or indirect coupling between items via an
intervening item (e.g., an item includes, but is not limited to,
a component, an element, a circuit, and/or a module) where,
for indirect coupling, the intervening item does not modify

Jul. 28, 2011

the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (i.e., where one element is coupled
to another element by inference) includes direct and indirect
coupling between two items in the same manner as “coupled
t0”. As may even further be used herein, the term “operable
t0” or “operably coupled to” indicates that an item includes
one or more of power connections, input(s), output(s), etc., to
perform, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

[0156] Thepresent invention has also been described above
with the aid of method steps illustrating the performance of
specified functions and relationships thereof. The boundaries
and sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention.

[0157] Thepresent invention has been described, at least in
part, in terms of one or more embodiments. An embodiment
of'the present invention is used herein to illustrate the present
invention, an aspect thereof, a feature thereof, a concept
thereof, and/or an example thereof. A physical embodiment
of'an apparatus, an article of manufacture, a machine, and/or
of'a process that embodies the present invention may include
one or more of the aspects, features, concepts, examples, etc.
described with reference to one or more of the embodiments
discussed herein.

[0158] The present invention has been described above
with the aid of functional building blocks illustrating the
performance of certain significant functions. The boundaries
of these functional building blocks have been arbitrarily
defined for convenience of description. Alternate boundaries
could be defined as long as the certain significant functions
are appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality. To the extent used, the flow
diagram block boundaries and sequence could have been
defined otherwise and still perform the certain significant
functionality. Such alternate definitions of both functional
building blocks and flow diagram blocks and sequences are
thus within the scope and spirit of the claimed invention. One
of average skill in the art will also recognize that the func-
tional building blocks, and other illustrative blocks, modules
and components herein, can be implemented as illustrated or
by discrete components, application specific integrated cir-
cuits, processors executing appropriate software and the like
or any combination thereof.

US 2011/0184997 Al

What is claimed is:

1. A method comprises:

receiving a data storage request;

accessing a file directory to identify dispersed storage net-
work (DSN) systems;

for each of the DSN systems, identifying dispersed storage
(DS) units based on a desired dispersed error coding
performance level to produce identified DS units;

selecting one of the DSN systems based on a collective
dispersed error coding performance level of the identi-
fied DS units of the one of the DSN systems to produce
a selected DSN system;

selecting a set of DS units from the identified DS units of
the selected DSN system based on the desired dispersed
error coding performance level to produce selected DS
units, wherein the selected DS units store a set of
encoded data slices; and

updating the file directory to include an identity of the
selected DS units and an identity of the set of encoded
data slices.

2. The method of claim 1, wherein the file directory com-

prises:

a listing of DSN systems;

a root file directory identifier;

one or more intermediate file directory identifiers;

a file name or data block identifier;

a DSN system identifier;

DS unit identifiers; and

slice names.

3. The method of claim 1, wherein the updating the file

directory comprises:

creating a file name associated with the set of encoded data
slices;

linking the file name to one or more intermediate file direc-
tory folders;

linking the one or more intermediate file directories folders
to a root directory folder;

linking the file name to a DSN identifier of the selected
DSN system;

linking the file name to slice names of the set of encoded
data slices; and

linking the slice names to DS unit identifiers of the selected
DS units.

4. The method of claim 3 further comprises:

creating at least one of the one or more intermediate file
directory folders.

5. The method of claim 1, wherein the desired dispersed

error coding performance level comprises at least one of:

an indication of dispersed error coding storage require-
ments;

an indication of historical dispersed error coding storage
performance;

an indication of available storage;

an indication of processing capabilities;

an indication of latency performance; and

an indication of bandwidth performance.

6. A method comprises:

receiving a data storage request for a particular type of data
storage;

identifying a dispersed storage network (DSN) system
from a plurality of DSN systems based on the particular
type of data storage to produce an identified DSN sys-
tem;

16

Jul. 28, 2011

identifying dispersed storage (DS) units within the identi-
fied DSN system based on the particular type of data
storage to produce identified DS units;

selecting a set of DS units from the identified DS units of
the identified DSN system based on the particular type
of data storage to produce selected DS units, wherein the
selected DS units store a set of encoded data slices; and

updating the file directory to include an identity of the
selected DS units and an identity of the set of encoded
data slices.

7. The method of claim 6, wherein the particular type of

data storage comprises at least one of:

a data type indication;

a weighted storage requirement;

a data retrieval latency indication;

a data bandwidth indication;

dispersed error coding storage function parameters; and
a date usage indication.

8. The method of claim 6, wherein the updating the file

directory comprises:

creating a file name associated with the set of encoded data
slices;
linking the file name to one or more intermediate file direc-
tory folders;
linking the one or more intermediate file directories folders
to a root directory folder;
linking the file name to a DSN identifier of the identified
DSN system;
linking the file name to slice names of the set of encoded
data slices; and
linking the slice names to DS unit identifiers of the selected
DS units.
9. The method of claim 8 further comprises:
creating at least one of the one or more intermediate file
directory folders.
10. A computer comprises:
an interface; and
a processing module operable to:
receive, via the interface, a data storage request;
access a file directory to identify dispersed storage net-
work (DSN) systems;
identify dispersed storage (DS) units based on a desired
dispersed error coding performance level to produce
identified DS units for each of the DSN systems;
select one of the DSN systems based on a collective
dispersed error coding performance level of the iden-
tified DS units of the one of the DSN systems to
produce a selected DSN system;
select aset of DS units from the identified DS units of the
selected DSN system based on the desired dispersed
error coding performance level to produce selected
DS units, wherein the selected DS units store a set of
encoded data slices; and
update the file directory to include an identity of the
selected DS units and an identity of the set of encoded
data slices.
11. The computer of claim 10, wherein the file directory

comprises:

a listing of DSN systems;

a root file directory identifier;

one or more intermediate file directory identifiers;
a file name or data block identifier;

a DSN system identifier;

DS unit identifiers; and

slice names.

US 2011/0184997 Al

12. The computer of claim 10, wherein the processing
module further functions to update the file directory by:

creating a file name associated with the set of encoded data

slices;

linking the file name to one or more intermediate file direc-

tory folders;

linking the one or more intermediate file directories folders

to a root directory folder;

linking the file name to a DSN identifier of the selected

DSN system;

linking the file name to slice names of the set of encoded

data slices; and

linking the slice names to DS unit identifiers of the selected

DS units.

13. The computer of claim 12, wherein the processing
module further functions to:

create at least one of the one or more intermediate file

directory folders.

14. The computer of claim 10, wherein the desired dis-
persed error coding performance level comprises at least one
of:

an indication of dispersed error coding storage require-

ments;

an indication of historical dispersed error coding storage

performance;

an indication of available storage;

an indication of processing capabilities;

an indication of latency performance; and

an indication of bandwidth performance.

15. A computer comprises:

an interface; and

a processing module operable to:

receive, via the interface, a data storage request for a
particular type of data storage;

identify a dispersed storage network (DSN) system from
a plurality of DSN systems based on the particular
type of data storage to produce an identified DSN
system,

Jul. 28, 2011

identify dispersed storage (DS) units within the identi-
fied DSN system based on the particular type of data
storage to produce identified DS units;
select aset of DS units from the identified DS units of the
identified DSN system based on the particular type of
data storage to produce selected DS units, wherein the
selected DS units store a set of encoded data slices;
and
update the file directory to include an identity of the
selected DS units and an identity of the set of encoded
data slices.
16. The computer of claim 15, wherein the particular type
of data storage comprises at least one of:
a data type indication;
a weighted storage requirement;
a data retrieval latency indication;
a data bandwidth indication;
dispersed error coding storage function parameters; and
a date usage indication.
17. The computer of claim 15, wherein the processing
module further functions to update the file directory by:
creating a file name associated with the set of encoded data
slices;
linking the file name to one or more intermediate file direc-
tory folders;
linking the one or more intermediate file directories folders
to a root directory folder;
linking the file name to a DSN identifier of the identified
DSN system;
linking the file name to slice names of the set of encoded
data slices; and
linking the slice names to DS unit identifiers of the selected
DS units.
18. The computer of claim 17, wherein the processing
module further functions to:
create at least one of the one or more intermediate file
directory folders.

