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REAL-TIME SPATIO-TEMPORAL COHERENCE ESTIMATION FOR
AUTONOMOUS MODE IDENTIFICATION AND INVARIANCE TRACKING

CROSS REFERENCE TO RELATED APPLICATIONS
[01] The present application claims priority from the following U.S. Provisional
application: U.S. Application No. 60/274,536, filed Mar. 8, 2001 and titled "Exception
Analysis for Multimissions” which is incorporated herein by reference for all purposes. The
present invention is related to concurrently filed and commonly owned U.S. Non-provisional
application Ser. No. 10/092,491 entitled "Exception Analysis for Multimissions” and is herein

incorporated by reference for all purposes.

BACKGROUND OF THE INVENTION
[02]  The invention relates generally to system health assessment, and more specifically to
diagnosis and prognosis of system performance, errant system conditions, and abnormal
system behavior in an instrumented system.
[03] Complex systems typically cannot tolerate a long down time and so need to be
constantly monitored: For example, a semiconductor fabrication facility cannot afford to be
offline for an extended period of time. In addition to the loss of wafer production, it takes
considerable time to restart the line. A patient monitoring station must have high reliability in
order to be useful. Spacecraft must be constantly monitored in order to detect faults and to
detect trends in system operation which may lead to faults, so that proactive corrective action
can be taken.
[04] It is also important to avoid false positive indications of a system error, [t is both
costly and time consuming to bring a system down, replace or repair the supposed error, and
bring the system back up only to discover that the incorrect remedy was taken.
[05] As advances in technology permit higher degrees of integration both at the
component level and at the system level, systems become increasingly more complex.
Consequently, improvements for determining system performance and assessing system
health are needed, to adequately detect system faults and operational trends that mi ght lead to
system failure.

BRIEF SUMMARY OF THE INVENTION
[06] A method and apparatus for diagnosis and prognosis of faults in accordance with

embodiments of the invention is based on sensor data and discrete data. In an embodiment of
1
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the invention, anomaly detection is performed based on a statistical analysis of time-
correlated sensor data and on mode of operation of the system as determined by the discrete
data. In another embodiment of the invention, anomaly detection is further based on a

statistical analysis of individual sensor data.

BRIEF DESCRIPTION OF THE DRAWINGS
‘The teachings of the present invention can be readily understood by considering the
following detailed description in conjunction with the accompanying drawings:
FIG. 1A illustrates the present invention in the context of its general operating
cnvironment;
FIG. 1B shows a typical application of the invention;
FIG. 2 shows a high level block diagram of an illustrative example of the present
invention;
FIG. 3 is a high level block diagram of the coherence-based fault detector illustrated
in FIG. 2;
FIG. 4 shows a typical distribution of the auto regressive parameters a.sub.i of Eq.
Eq. (4.2.3);
FIG. 5 is a high level block diagram illustrating an example of the dynamical
anomaly detector illustrated in FIG. 2;
FIG. 6 shows a schematic of simple gas turbine as an example illustrating the present
invention;
FIGS. 7A and 7B are high level block diagrams illustrating an example of the model
filter component shown in FIG. 2;
FIG. 8 illustrates an example of ensemble of possible time series;
FIG. 9 iltustrates an example of a time series forecast in the form of a predicted mean
and probability distribution produced by averaging the time series ensemble of FIG. 8;
FIG. 10 is a high level block diagram illustrating an example of an embodiment of
the prognostic assessment module shown in FIG. 2;
FIG. 11 highlights the symbolic components of FIG. 2;
FIG. 12 is a high level block diagram illustrating an example of an embodiment of
the symbolic data model module of FIG. 2;

FIG. 13 is a high level block diagram illustrating an example of an embodiment of
the predictive comparison module of FIG. 2 ;
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Fig. 14 is 2 high level block diagram illustrating an example of an embodiment
of the causal system model module of Fig. 2; and
Fig. 15 is a high level block diagram illustrating an example of an embodiment

of the interpretation module of Fig. 2.
DESCRIPTION OF THE SPECIFIC EMBODIMENTS

1.0 INTRODUCTION

[07] BEAM stands for Beacon-based Exception Analysis for Multimissions, an end-to-
end method of data analysis intended for real-time fault detection and characterization. Its
intent was to provide a generic system analysis capability for potential application to deep
space probes and other highly automated systems. Such systems are typified by complex and
often unique architectures, high volumes of data collection, limited bandwidth, and a critical
need for flexible and timely decision abilities.

[08] Two important features make BEAM standout among the various fault-protection
technologies that have been advanced. The first is its broad range of applicability. This
approach has been used with sensor and computed data of radically different types, on
numerous systems, without detailed system knowledge or & priori training. Separate
components are included to treat time-varying signals and discrete data, and to interpret the
combination of results.

[09] The second is its ability to detect, and with few exceptions correctly resolve, faults
for which the detector has not been trained. This flexibility is of prime impbrtance in systems
with low temporal margins and those with complex environmental interaction, This ability
also comes with few requirements in terms of detector training.

[10] We will begin with the motivation and general problem statement. Following this,
we will examine the overall architecture at a block level. We will then examine the
individual component technologies in depth, including the governing equations and such

issues as training, interface, and range of applicability.

2.0 HISTORY

{11] BEAM was initially proposed to investigate a new system health analysis method,
The purpose of BEAM was to fill a critical role in supporting the new Beacon method of v




10

15

20

25

30

WO 02/073473 PCT/US02/06828

operations. Beacon operation can be described as a condition-specific mode of
communication between a remote system and ground personnel, where lengthy transmissions
are sent to the operators only where unexpected spacecraft behavior warrants the expense.
Instead of the current method, where large amounts of data are downlinked on a regular basis,
the Beacon paradigm uses two transmitters -- one high-gain transmitter as before and a new
very low-gain transmitter, the “beacon.” The beacon transmits one of four tones at all tiﬁles,
indicating whether or not the spacecraft needs to dump engineering data.. A first “tone”
would be sent during normal operation to signify that all is well. If there are significant faults
detected, then other tones are transmitted to indicate that data explaining the problem needs
to be retrieved.

[12] Such a paradigm is highly desirable if downlink capacity is limited. Although the
number of NASA missions is increasing dramatically, along with their complexity, the
amount of available communications antcnna resources remains fairly constant, The Beacon
paradigm more efficiently shares such limited resources.

[13] Beacon operation requires several ingredients, and is therefore only practicable if
a number of hurdles can be overcome. Central to the method is the ability of a spacecraft to
perform an accurate, timely, and verifiable self-diagnosis. Such a self-diagnosis must not
D;lly provide a safe operating envelope, but must perform comparably at worst to the system
experts in the control room. A system that is insensitive, generates false alarms, or requires
oversight will not be effective, because such inefficiencies will be amplified in a
“streamlined” process.

[14] The basic premise of BEAM was the following: Construct a generic strategy to
characterize a system from all available observations, and then train this characterization with
respect to normal phases of operation. In this regard the BEAM engine functions much as a
human operator does — through experience and other availablc resources (known architecture,
models, etc.) an allowed set of behavior is “learned” and deviations from this are noted and
examined. Such an approach should be applied as a complement to simplistic but reliable
monitors and alarms found in nearly all instrumented systems. The approach should also be
constructed such that information products can be used to drive autonomic decisions, or to
support the decisions of human opefa‘rors. In other words, the syster must allow for
intervention and aid it wherever possible. If this is not done, it is difficult for spacecraft
experts to gain trust in the system and the benefits of beacon operation or any similar cost-

saving approach will be doomed from the outset.
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[15] Philosophically, the BEAM approach is similar to that of two familiar advanced
techniques, namely Neural Networks and Expert Systems. Each of these has its particular

strengths and weaknesses:

1. Neural networks are effective means of sensor fusion and separation between classes
of data. However, they are difficult to adapt to cases where unknown classcs exist.
-Furthermore, identifying the source of fault indicated by a neural network is mot
usually possible (low traceability).

2. Bxpert Systems are effective and adaptable means of applying logical rules and
decisions, but are only as good as the rules that are available to them. Such systems
also perform badly in the face of unknown fault classes and are expensive to train.

[16] On the other hand, cach of these approaches does have powerful benefits as well,
and we will see how they have been blended with our novel techniques to take full advantage
of available technology.

[17] Aspects of the invention as described by the illustrated example of the disclosed
architectural description include:

direct insertion of physical models (gray box);

integration of symbolic reasoning components;

statistical and stochastic modeling of individual signals;

trending to failure for individual signals and cross-signal features; and
expert system as enumerator of results.

Pt b

[18] BEAM is a specific system embodying all the aspects of the invention as
discloscd herein. It represents the inventors’ best mode for practicing the invention at the
time of the invention. The “beacon” aspect of the BEAM system is simply the
communication front-end which relies on a paradigm suitable for systems where
communication bandwidth is limited. It will be aﬁpreciated that the various embodiments of
the present invention constitute the core components of the BEAM architecture, which do not
rely on beacon-based communications. However, reference to BEAM will be made
throughout the discussion which follows, for the simple reason that the BEAM architecture
contains the various embodiments of the present invention.

[19] One of ordinary skill in the art will readily appreciate that any system can be
adapted with aspects of the present invention to realize the benefits and advantages of fault
detection and assessment in accordance with embodiments of the invention. Systems where

teams of experts who review the engineering data on a regular basis and who typically '

. oversee the analysis process are well suited for a fault detection and characterization system
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- according to teachings of the invention. Complex machinery that rely upon internal sensing

and expert operators to provide operating margins for reasons of safety or efficiency can
benefit from the invention. System maintenance can be greatly simplified by incorporating
various aspects of the invention into a maintenance system. The invention is particularly well
suited to systems that are fully automated and require advanced fault detection and isolation
techniques.

[20] The generalized block diagram shown in Fig. 1A illustrates the general
applicability of the present invention in a system. A monitored system 100 includes a target
system 102 for which its operational health is to be monitored. The target system 102 has
associated with it various sources 104 of operational data relating to its operation. This
includes information such as data from physical sensors (e.g., transducers), data produced by
software running on the target system, switch settings, and so on.

[21] The operational data is conveyed over a channel 112 to a data analysis cngine 106.
The data analysis engine comprises a computing system for processing the information in
accordance with various embodiments of the invention. The computi.ng system can be any
known computing environment, comprising any of a number of computer architectures and
configurations.

[22] Fig. 1B illustrates and eiample of a complex system which incorporates the
present invention. A satellite device 102’ includes data sources 104° which produce
operational data. Génerally, the data is communicated by a downlink signal 112’ to ground
stations 106°, where the iﬁformation is subjected to the analytical techniques of the present
invention. In practice, some aspects of the present invention can be embodied in the satellite
device itself in addition to the ground station computers. The downlink signal comprises a
beacon component and 2 data stream component. The beacon component is in effect during
most of the time, transmitting an appropriate beacon tone. However, when a problem arises,

the downlink signal begins transmitting appropriate data to the ground stations computers.

3.0 OVERALL ARCHITECTURE

[23] At the simplest level of abstraction, BEAM is software which takes sensor data
and other operational data as input and reporfs fault status as output. Implementation of this
software is dependent on the application, but a typical application would have a system with a
number of individual components, each of whiqh reports health or performance data to a lpgal

computer, whereupon 2 local BEAM manager draws a conclusion during runtime and
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 forwards the results to a decision maker. Wo must consider the physical makeup of the

device in question when deciding how to compartmentalize the diagnosis. Consideration

must be made for computing power, communication and data buses, and the natural divisions

present in the system. To accommodate such a wide range of possibilities, the computational

engine of BEAM itself is highly adaptable with respect to subsystem size and complexity.

[24]
data:

{25]

For each single compartment or subsystem, we can expect to receive four types of

Discretc status variables changing in time — mode settings, switch positions, health
bits, etc.

Real-valued sensor data varying at fixed rates — performance sensors or dedicated
diagnostic sensors. The sensor data, in the context of the present invention, includes
any data relating to the physical condition of the machine. For example, sensor data
may include data from force transducers, chemical sensors, thermal sensors,
accelerometers, rotational sensors, and so on.

Command information — typically discrete as in 1.

. Fixed parameters — varying only when commanded to change but containing

important state information.

These types of data are all of value but in different ways. Status variables and

commands are useful to a symbolic model. Commands and fixed parameters are useful to a

physical system model, Time-varying sensor data is useful for signal processing approaches.

In order to study each and combine results, the following architecture in accordance with the

invention is set forth as presented in Fig. 2.

[26]

A few notes about the architecture are in order before we consider the individual

descriptions of its components. Specifically, we should consider the data flow, which is

somewhat complicated:

1.

Fixed parameters and command information are input to the specific system models

(if any). These are the Symbolic Model and the Physical Model components. These
data will not be propagated further and influence other components only through the
model outputs.

Discrete variables will only be propagated through the symbolic components as
indicated in Fig. 2 by the heavy lines. The effect of the symbolic components on the
signal processing components is limited to mode determination as indicated.

. Time-varying quantities are separated into two groups as part of the training process.

Specifically, signals with high degrees of correlation to others, or those which are not

-10-
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expected to uniquely indicate a severe fault, are only passed to the Coherence
Analysis components. Signals that may uniquely indicate a fault, along with those
already flagged as faulty by the coherence analysis, are also passed through the
feature extraction components.

4. The split between time-varying signals described in note 3 above is a computational
efficiency consideration and reflects general philosophy of operation, but is not
essential. Given adequate resources, there is nothing preventing all time-varying
signals from being sent to both types of signal analysis at all times.

[27] Following is a summary of the duties of each component. Further clarifying

details can be found in Appendix A B C attached herewith.

i28] Medel Filter: The model filter 202 combines sensor data with physical model
predictions (run in real-time). The model filter, also referred to as the Gray Box, combines
sensor data with physical model predictions (run in real-time). We are interested in
augmenting sensor data with intuition about the operation of the system. The inclusion of
physical models where available is the most efficient means of incorporating domain
knowledge into a signal-based processing approach.

[29] The usual methods of signal processing represent “Black Box™ strategies; i.e.
nothing is known about the internal governing equations of a system. Incidentally, the
Dynamical Invariant Anomaly Detector component of an embodiment of the invention is
another a black box technique. However, it features analytical methods in accordance with
the teachings of the invention and so has mcrit beyond being a black box device. Such linear
approaches are effective in general, but there are profound benefits to simultaneous
consideration of sensor and physical information. The opposite perspective would be a
“White Box™ strategy, where a complete and accurate physical simulation was available for
comparison to captured data. This case is desirable but rarely practical.v In nearly all cases
we must make do with a degraded or simplified model, either because of system cormplexity
or computational limits. The “Gray Box” method serves to make use of whatever models are
available, as we vx;ill briefly explore in this section.

[30] Any theoretical dynamical model includes two types of components: those
directly describing the phenomena associated with the primary function of the system (such
as the effect of torque exerted on the turbine shaft on rotor speed), and those representing
secondary effects (such as frictional losses, heat losses, etc.). The first type is usually well
understood and possesses a deterministic analytical structure, and therefore its behavior is

fully predictable. On the other hand, the second type may be understood only at a much more

v

11-




10

15

20

25

30

WO 02/073473 PCT/US02/06828

complex level of description (i.e. at the molecular level) and cannot be simply incorporated
into a theoretical model. In fact, some components may be poorly understood and lack any
analytical description, such as viscosity of water in microgravity. The main idea of this
approach is to filter out contributions that are theoretically predictable from the sensor data
and focus on the components whose theoretical prediction is lacking. The filtering is
performed by the theoretical model itself.

[31] If we assume that the theoretical model is represented by a system of differential
equations, known physical processes will be described with state variables and theoretical
functions. But we will also have additional terms that describe phenomena for which a full
mathematical description s unavailable or too complex. Examples of this include friction in
bearings, material viscosity, and secondary effects such as oscillations or flutter in
mechanical systems. These leftover terms represent the unknown space of our partial model.
32] If we substitute sensor data into the theoretical model, so long as the actual system
performs as expected, there will be no departure from the model. Howcver, an abnormality
in pérformance will alter the behavior of the “leftover” terms.

33] In general, we can treat the abnormality as the result of a stochastic process. If the
abnormality is small compared to the modeled components of the system, it will suffice to
assign some confidence interval for fault detection. However, if the accuracy of the model is
poor, we must treat the leftover ferms using stochastic or parameter estimation models, as
described in following components. _

[34] Compared to a straightforward sigﬁal analysis method, where highly stable
dynamical models are available, the “black box™ approach is not only more laborious, but is
also less effective since the stochastic forces become deeply hidden in the sensor data. The
practical upshot of the gray box approach is to use the theoretical model as a filter, which
damps the deterministic components and amplifies the stochastic components, simplifying
the task of fault detection for the other components.

(35] Because this approach can operate upon high- and low-fidelity models, it is highly
effective as a means of preprocessing sensor data. Such models are available for the majority
of autonomous systems, leftover from the design and analysis efforts to build such systems.
[36] To effectively implement this module, one must have such a design model
available, or at the very least an approximate physical understanding of the system behavior.
Such models must providé “reasonable” agreement with sensor data, and must therefore-
output directly comparable quantities at similar data rates. This step requires some humarn

intervention, first to cast (or build) the model in a format to produce such results, and second

12-
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to verify the model’s fidelity against a known standard — be that a superior model, an
engineering model, or prototype or actual flight data. While the model need not be of precise
fidelity to be useful, it is important to confirm the stability of the model and its comparability
to sensor information. Use of a poor mode] will increase the reliance upon signal-based
methods downstream, or in exireme cases destabilize the method entirely, in which case only

signal-based methods may be applied to the sensor data.

371 Symbolic Data Model: The symbolic data model 204 interprets status variables
and commands to provide an accurate, evolving picture of system mode and requested
actions.

[38] In the overall BEAM strategy, real-time measurements are combined with
predicted and expected behavior along with predicted performance to quickly isolate
candidate fanlts. The Symbolic Data Model (SDM) is the first line of defense in determining
the overall health of the system and it is the primary component that determines its active and
predicted states. It operates by examining the values from the system status variables and
system commands to provide an accurate, evolving picture of system mode and requested
actions. The overall approach afforded by BEAM extends considerably beyond more
conventional symbolic reasoning. Since most rule-based diagnostic systems (expert systems)
provide only this module and nothing else, they are limited in that they can only identify and
diagnose anticipated problems.

[39] Knowledge in the SDM is represented as rules, which are themselves composed of
patterns. The rule is the first Aristotelian syllogism in the form: If ... Then... The variables
of the syllogism are joined by the And/Or logical. connections. The selector Else points to
other cases. This formula is a rule; the rules are sequenced in the succession of logical
thinking or pointed at a jump in the sequence (Else -> Go To).

[40] Patterns are relations that may or may not have temporal constraints, i.e., may
only hold true at certain times or persist for the entire duration of the analysis. Patterns
define the constraints that must hold true in order for the antecedent to succeed.

[41] Conceptual representation is the main way to formulate the patterns of the system
as part of a computer program. The essential tool the SDM uses is a rule; that is the reason
why expert systems can also be called rule-based systems.

[42] ° The SDM operates by using many small slivers of knowledge organized into.
conditional If-Then rules. These rules are then operated on in a variety of different waysto

perform different reasoning functions.
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[43] Unlike the numeric models, the SDM requires a knowledge base in order to
perform its analysis functions. From several poillté of view, representation of knowledge is
the key problem of expert systems and of artificial intelligence in general. It is not by chance
that the term “knowledge-based systems™ has been applied to these products.

[44] The generic features of knowledge are embodied in this representation. In an
embodiment of the invention, the domain expert stores the objects, actions, concepts,
situations and their relations using the SHINE (Spacecraft High-speed Inference Engine)
representation language and this is stored in the SDM knowledge basc. The collection of this
knowledge represents the sum total of what the SDM will be able to understand. The SDM
can only be as good as the domain expert that taught it.

[45] The SDM generates two primary kinds of results: derived states and discrepancies.
To provide a uniform representation, we use the identical approach in performing each of
these functions and they differ only in their knowledge bases that they use. Derived states arc
sent on to signal-processing components as well as other discrete components.

Discrepancies, as the name implies, are concrete indications of faults.

[46] Coherence-Based Fault Detector: The coherence-based fault detector 206
tracks co-behavior of time-varying quantities to expose changes in internal operating physics.
Anomalics are detected from the time-correlated multi-signal sensor data. The method is
applicable to a broad class of problems and is designed to respond to any departure from
normal operation, including faults or events that lie outside the training envelope.

[47] Also referred to as the SIE (System Invariance Estimator), it receives multiple
time-correlated signals as input, as well as a fixed invariant library constructed during the
training process (which is itself data-driven using the same time-correlated signals). It

returns the following quantities:

Mode-specific coherence matrix

Event detection

Comparative anomaly detection

Anomaly isolation to specific signals
Distance measure of off-nominal behavior

il

[48] As a first step of analysis, this computation makes 2 decision whether or not a
fault is present, and reduces the search space of data to one or a few signals. Time markers

are included to indicate the onset of faulted data. These conclusions, which can be drawn for
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nearly any system, are then passed to other analysis components for further feature
extraction, correlation to discrete data events, and interpretation.

[49] To motivate a cross-signal approach, consider that any continuously valued signal,
provided it is deterministic, can be expressed as a time-varying function of itself, other
signals, the environment, and noise. The process of identifying faults in a particular signal is
identical to that of analyzing this function. Where the relationship is constant, i.e. follows
previous assumptions, we can conclude that no physical change has taken place and the
signal is nominal. However, the function is likely to be cxtremely complex and nonlinear.
Environmental variables may be unmeasurable or unidentified. Lastly, the interaction
between signals may be largely unknown. For this reason it is more efficient to study
invariant features of the signals rather than the entire problem.

{50] Because we do have the different signal measurements available, we can consider
relationships between signals separately and effectively decouple the problem. A good
candidate feature is signal cross-correlation. By studying this or a similar feature rather than
the raw signals, we have reduced our dependence on external factors and have simplificd the
scope of the problem.

[51] In the case of the SIE we will use-a slightly different feature across pairs of
signals, which we refer to as the coherence coefficient. It is chosen instead of the ordinary
coefficient of linear correlation in order to take advantage of certain “nice” mathematical
properties. This coefficient, when calculated for all possible pairs of N signals, describes an
NxN matrix of values. The matrix is referred to as the Coherence Matrix of the system.

[52] The coherence matrix, when computed from live streaming data, is an evolving
object in time with repeatable convergence rates. Study of these rates allows us to segment
the incoming data according to mode switches, and to match the matrix against pre-computed
nominal data.

53] For the purpose of this discussion, a “Mode” refers to a specific use or operation
of the system in which the coherence coefficients are steady. In other words, the underlying
physical relationships between parameters may change, but should remain constant within a
single mode. These modes are determined from training data for the purpose of detector
optimization, Ordinarily they do correspond to the more familiar “modes,” which represent
specific commands to or configurations of the system, but they need not be identical.
Frequently such commands will not appreciably alter the physics of the system, and no -

special accounting is needed.
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[54] Comparison of the runtime coherence matrix to a pre-computed, static library of
coherence plots, taking into account the convergence behavior of the computation, is an
effective means of anomaly detection and isolation to one or more signals.

[55] Unfortunately, this comparison is only meaningful if we can guarantee our present
coherence values do not reflect mixed-mode data, and so some method of segmentation must
be found. For purposes of anomaly detection, mode boundaries can be detected by
monitoring the self-consistency of the colierence coefficients. As each new sample of data is
included into the computation, a matrix average for the resulting change is extracted and
compared against the expected convergence rate. A change in the convérgence rate implies a
new mode has been entered and the computation must be restarted.

[56] Between detected mode transitions, the difference between the computed and
expected coherence allows us to optimally distinguish between nominal and anomalous
conditions. Violation of this convergence relationship indicates a shift in the underlying
properties of the data, which signifies the prosence of an anomaly in the general sense. The
convergence rate of this relationship, used for fault detection, is considerably slower than that
for data segmentation, though still fast enough to be practical.

[57) Once a fault has been indicated, the next step is to isolate the signals contributing
to that fault. This is done using the difference matrix, which is formed from the residuals
following coherence comparison against the library.

[S8] Becauée nearly every autonomous system relies upon performance data for
operation as well as fault protection, this method is applicable to a wide variety of situations.
The detector increases in accuracy as the number of sensors increases; however,
computational cost and mode complexity eventually place a practical limit on the size of the
system to be treated. At the extremes, this method has been successfully applied to systems
as small as four sensors and as complex as 1,600 of radically varying type.

[59] The analysis involves computation of an NxN matrix, and therefore the
computation scales quadratically with the number of signals; fortunately, most designs are
implicitly hierarchical, allowing the probiem to be separated if computational costs are too
great. Furthermore, typical systems or subsystems exhibit a reasonable number of sensors for
this method given the state-of-the-art in flight processors. A real-world example of this
technique using a single embedded flight processor (PowerPC clocked at 200 MHz)
demonstrated real-time capability on a 240-sensor system sampled at 200 Hz.

[60] Another key virtue of this approach is its resilience in the face of novelty. The . |

coherence between signals is a very repeatable property in general, especially as compared to
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environmental variable or nonlinear terms in the signals themselves. This repeatability allows
us to quickly determine whether or not the coherence is consistent with any of the training
data, and therefore can be used as an efficient novelty detector, regardless of its cause.

[61] Training of this component is entirely data-driven. In order to be most effective,
the component should be trained with examples of nominal operating data covering every
major mode of aperation. These examples should be sufficiently detailed to capture the
expected system dynamics. While the actual training of the detector is completely
autonomous once the task of separating nominal and anomalous data has been performed, this
task — and the collection of the data — can be difficult.

[62] In cases where the training data is difficult to obtain or identify, the component
functions best in a “learning” mode, similar to its performance following anomaly detection.
If we expect to see novel data that does not indicate faults, we must provide for a feedback to
the detector, which is a human-intensive process. Novel data can be tagged by the detector
and archived for study. Following classification as niominal or anomalous, the detector can
“retrain” using this data and continue. This technique has been used effectively in the study
of untested systems.

[63] In cases where sensor data is relatively isolated, or when sample rates preclude the
resolution of system dynamics, this method is not likely to be effective. These cases placea

much greater reliance upon the symbolic method components of BEAM.

[64] Dynamical Invariant Anomaly Detector: The dynamical invariant anomaly
detector 208 tracks parameters of individual signals to sense deviations. The dynamical
invariant anomaly detector is designed to identify and isolate anomalies in the behavior of
individual serisor data.

[65] Traditional methods detect abnormal behavior by analyzing the difference
between the sensor data and the predicted value. If the values of the sensor data are deemed
either too high or low, the behavior is abnormal. In our proposed method, we introduce the
concept of dyramical invariants for detecting structural abnormalities.

[66] Dynamical invariants are governing parameters of the dynamics of the system,
such as the coefficients of the differential (or time-delay) equation in the case of time-series
data. Instead of delecting deviations in the sensor data values, which can change simply due
to different initial conditions or external forces (i.e. operational anomalies), we attempt to
identify structural changes or behavioral changes in the system dynamics. While an

operational abnormality will not lead to a change in the dynamical invariants, a true structural
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abnormality will lead to a change in the dynamical invariants. In other words, the detector
will be sensitive to problems internal to the system, but not external disturbances.

[67] We start with a description of a traditional treatment of sensor data given in the
form of a time series describing the evolution of an underlying dynamical system. It will be
assumed that this time series cannot be approximated by a simple analytical expression and
does not possess any periodicity. In simple words, for an observer, the future values of the
time series are not fully correlated with the past ones, and therefore, they are apprehended as
random. Such time serics can be considered as a realization of an underlying stochastic
process, which can be described only in terms of probability distributions. However, any
information about this distribution cannot be obtained from a simple realization of a
stochastic process unless this process is stationary -- in this case, the ensemble average can be
replaced by the time average. An assumption about the stationarity of the underlying
stochastic process would exclude from consideration such important components of the
dynamical process as linear and polynomial trends, or harmonic oscillations. Thus we
develop methods to deal with non-stationary processes.

[68] Our approach to building a dynamical model is based upon progress in three
independent fields: nonlinear dynamies, theory of stochastic processes, and artificial neural
networks.

[69] After the sensor data are stationarized, they are fed into a memory buffer, which
keeps a time history of the sensor data for analysis. We will study critical signals, as
determined by the symbolic components of BEAM, the operating mode, and the cross-signal
methods outlined above. The relevant sensor data is passed to a Yule-Walker parameter
estimator. There, the dynamical invariants and the coefficients of the time-delay cquation are
computed using the Yule-Walker method.

[70] Once the coefficients are computed, they will be compared to the ones stored in a
model parameter database. This contains a set of nominal time-dclay equation cocfficients
appropriate for particular operating mode. A statistical comparison will be made between the
stored and just-computed coefficients using a bootstrapping method, and if a discrepancy is
detected, the identity of the offending sensor will be sent on.

[71] Further analysis is carried out on the residual or the difference between the sensor
data values and the model predicted values, i.e. the uncorrelated noise, using a nonlinear
neural classifier and noise analysis techniques. The nonlinear neural classifier is designed to.
extract the nonlinear components, which may be missed by the linear Yule-Walker parameter

estimator. The weights of the artificial neural network, another set of dynamical invariants,
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will be computed and compared with nominal weights stored in the model parameter
database. Similarly, the noise characteristics, such as the moments of probability distribution,
are dynamic invariants for stationarized sensor data, and will be compared with those stored
in the Model Parameter Database, If any anomalies are detected in either the nonlinear
components or the noise, the identity of the sensor will be sent to the channel anomaly
detector.

[721 Finally, the channel anomaly detector aggregates information from the Yule-
Walker parameter estimator, nonlinear neural classifier, and noise analysis modules, and
classifies the anomaly before sending the fault information to the Predictive Comparison
module, which is discussed below.

[73] Like the SIE described above, training of this detector is data-driven. It has
similar requirements in terms of data set and human involvement. Also like the STE,
insufficient data training will result.in false alarms, indicating novelty, until data collection
and review during flight operations produce a sufficiently large data set to cover all nominal
operating modes.

[74] Also like the SIE, this method is only likely to be effective if system dynamics are
captured in the sensor data. However, this method is effective on isolated sensors, though it

is often not sensitive to interference or feedback faults that manifest on no particular sensor.

[75] Informed Maintenance Grid (IMG): (Optional) The informed maintenance grid
210 studies evolution of cross-channe! behavior over the medium- and long-term operation of
the system. Tracking of consistent deviations exposes degradations and lack of performance.
This component is optional and is not a necessary component to the operation of the
invention.

[76] The IMG itself is a three-dimensional object in information space, intended to
represent the evolution of the system through repeated use. The IMG is constructed from
results from the SIE described above, specifically the deviations in cross-signal moments
from expected values, weighted according to use and averaged over long periods of
operation. The cross-signal moments are a persistent quantity, which amplifies their value in
long-term degradation estimation. ‘

[77] There are two convincing reasons to consider cross-signal residuals in this
fashion. First is the specific question of degradation and fault detection. Degradation
typically manifests as a subtle change in operating behavior, in itself not dramatic enough to

be ruled as a fault. This cmergent behavior frequertly appears as subthreshold residuals in’
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extracted signal features. As described above, statistical detection methods are limited in.
sensitivity by the amount of data (both incident and training data) that can be continuously
processed. However, tracking of consistent residuals over several such experiments can lead
to a strong implication of degraded performance.

[78] The second reason addresses functional health of the system. In addition to
tracking the magnitude and consistency of residuals arising from degradation, we can also
observe their spread to other signals within the system and track their behavior relative to
different modes of usage.

[79] The IMG produces a long-term warning regarding system-wide degradations.
This differs slightly from the companion Prognostic Assessment module, which concerns
itself with individual signals and preestablished operating limits. However, the IMG is also
useful with regard to novel degradations. Such are the narm with new advanced systems, as
predicting degradation behavior is very difficult and much prognostic training must be donc
“on the job.”

[80] Visually, the three-dimensional object produced by the IMG is an easily
accessible means of summarizing total system behavior over long periods of use. This visual
means of verifying IMG predictions makes BEAM easily adapted for applications with

human operators present.

[81] Prognostic Assessment: The prognostic assessment component 212 makes a
forward-projection of individual signals based on their model parameters. Based upon this, it
establishes a useful short-term assessment of impending faults.

[82] The channel level prognostics algorithm is intended to identify trends in sensor
data which may exceed limit values, such as redlines. This by itself is 2 common approach.
However, given the richness of feature classification available from other BEAM
kcomponcnts, it is highly effective to update this procedure. A stochastic model similar in
principle to the auto-regressive model is used to predict values based upon previous values,
viz. forecasting. The aim is to predict, with some nominal confidence, if and when the sensor
values will exceed its critical limit value. This permits warning of an impending problem
prior to failure.

[83] In general, time-series forecasting is not a deterministic procedure. It would be
deterministic only if a given time series is described by an analytical function, in which case
the infinite lead time prediction is deterministic and unique based upon values of the function

and all its time derivatives at £ = 0. In most sensor data, this situation is unrealistic due to ’
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incomplete model description, sensor noise, etc. In fact, present values of a time series may
be uncorrelated with previous values, and an element of randommness is introduced into the
forecast.

[84] Such randommness is incorporated into the underlying dynamical model by
considering the time series for # <0 as a realization of some (unknown) stochastic process.
The future values for ¢ > 0 can then be presented as an ensemble of possible time series, each
with a certain probability. After averaging the time series over the ensemble, one can
represent the forecast as the mean value of the predicted data and the probability density
distributions. _

{85] The methodology of time series forecasting is closely related to model fitting and
identification. In general, the non-stationary nature of many sensor data may lead to
misleading results for future daté prediction if a simple least-square approach to polynomial
trend and dominating harmonics is adopted. The correct approach is to apply inverse
operators (specifically difference and seasonal difference operators) to the stationary
component of the time series and forecast using past values of the time series.

[86] To implement this module, we begin by feeding a Predictor stationary data, the
auto regressive model coefficients, past raw data values, and limit values; i.e., everything
required to evaluate the prediction plus a redline value at which to stop the computation. The
predictor will generate many predictions of time to redline and pass them on to the Redline
Confidence Estimator. The Redline Confidence Estimator will then construct a probability
distribution of the time when the channel value will exceed the redline limit. Finally, the
Failure Likelihood Estimator takes the probability distribution and computes the likelihood
(probability) that the channel value may exceed the redline value within some critical time. If
the probability exceeds a certain preset threshold as determined by the application, e.g. 99%

confidence, then the critical time and its probability will be sent to-the symbolic components.

871 Predictive Comparator: The predictive comparator component 214 compares
the requested and commanded operation of the system versus the sensed operation as
interpreted from the time-varying quantities. Its goal is to detect misalignment between
system softwarc execution and system hardware operation. This is a principal concern, as we
are dealing with systems that rely on a large degree of software control, if not complete

autonony.
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[88] Causal System Model: The causal system model 216 is a rule-based connectivity
matrix designed to improve source fault isolation and actor signal identification. In the SDM,
the entire domain knowledge is represented as If-Then rules only. When the domain is very
largevand complex, an entirely rule-based representation and associated inference leads to a
large and inefficient knowledge base, causing a very poor focus of attention. To éliminate
such unwieldy knowledge bases in the SDM engine, we provide a causal system model. This
component simplifies the problem by looking for relationships between observations in the

data to fill in blanks or gaps in the information from the SDM.

[89] Interpretation Layer: The interpretaﬁon layer 218 collates observations from
scparatc components and submits a single fault report in a format usable to recovery and
planning components or to system opérators. [t submits a single fault report in a format
usable to recovery and planning components (in the case of a fully autonomous system) or to
system operators. This is a knowledge-based component that is totally dependent upon the
domain and the desired format of the output. ‘

[90] In the following sections, we will examine the individual components in
additional detail.

4.0 COMPONENT DESCRIPTIONS

4.1 COHERENCE-BASED FAULT DETECTION (SIE)

[91] A coherence-based fault detector 206 according to the invention is a method of
anomaly detection from time-correlated sensor data. In and of itself, the coherence-based
fault detector is capable of fault detection and partial classification. The method is applicable
to a broad class of probléms and is designed to respond to any departure from normal
operation of a system, including faults or events that lie outside the training envelope.
Further examples and clarifying details of this aspect of the invention can be found in
Appendix C attached herewith.

[92] In an embodiment of the invention, the coherence-based fault detector 206 is
based on a System Invariance Estimator (SIE) which is a statistical process for examining
multi-signal data that lies at the heart of this aspect of the invention. As input, the coherence-
based fault detector receives multiple time-correlated signals. The detector compares their

cross-signal behavior against a fixed invariant library constructed during a training process
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(which is itsclf data-driven using the same time-corrzlated signals). It returns the following
quantities:

¢ Mode-specific coherence matrix

Event detection

Comparative anomaly detection

Anomaly isolation to specific signals
Distance measure of off-nominal behavior

® e o o

[93] As a first step of analysis, this computation makes a decision whether or not a

. fault is present, and reduces the search space of data to one or a few signals. Time markers

are included to indicate the onset of faulted data. These conclusions, which can be drawn for
nearly any system, are then passed to other analysis components for further feature

extraction, correlation to discrete data events, and interpretation.
4.1.1 CROSS-SIGNAL MOTIVATION

[94] In this section we will motivate the cross-signal approach to fault detection.
Because quantitative information is so readily available, approaches grounded in signal

processing are likely to be effective. The method described here has two distinct advantages.

“The first is its broad range of applicability -- the module described here has been used to

successfully fuse sensor and computed data of radically different types, on numerous
systems, without detailed system knowlcdge and with minimal training. The second is its
ability to detect, and with few exceptions correctly resolve, faults for which the detector has
not been trained. This flexibility is of prime importance in systems with low temporal
margins and those with complex environmental interaction.

{95] Consider a continuously valued signal obtained for example by a sensor
measuring some aspect of a system, sampled uniformly. Provided this signal is deterministic,

it can be expressed as a time-varying function:

(4.1.1) S, = £ (48, (¢ - de) {E O}, &)

[96] In the above expression, we have identified the signal as a function of itself and
other signals, as expressed by {Si(t)}, and of the environment, which may contain any number
of relevant parameters {E(t)}. There is also a noise term &(t) included to reflect uncertainties,
in particular actual sensor noise that accompanies most signals in practice,

[97] The process of identifying faults in a particular signal is identical to that of

analyzing the function f{z). Where this relation remains the same, i.e. follows the original
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assumptions, we can conclude that no physical change has occurred for that signal, and
therefore the signal is nominal. Such is the approach taken by model-based reasoning
schem-es.

[98] However, the function f for each signal is likely to be extremely complex and
nonlinear. The environmental variables may be unknown and unmeasurable. Lastly, the
specific interaction between signals may'also be unknown, for instance in the case of thermal
connectivity within a system. For this reason, it is more efficient and more generally
applicable to study invariant features of the signals rather than the full-blown problem.

[99] One excellent candidate feature for study is cross-correlation between signals. By
studying this computed measurement rather than signals individually, we are reducing the
dependence on external factors (i.¢. environmental variables) and thus simplifying the scope
of the problem.

[100] Cross-correlative relationships between signals, where they exist, remain constant
in many cases for 2 given mode of system operation. The impact of the operating
environment, since we are dealing with time-correlated signals, applies to all signals and thus
can be minimized. This approach is essentially the same as decoupling the expression above,

and choosing to study only the simpler signal-to-signal relationships, as follows:
4.12) S, =1 ({8, (t-ar)}) e g ({E()}) o (1)

[101] For a realistic system, this hypothesis is easy to support. In most cases,
relationships between signals that represent measured quantities arc rcadily apparent. The
environmental contribution can be considered an external input to the system as a whole
rather than being particular to each signal. The sensor itself is the source of most of the
noise, and it too can be separated. Even where such separability is not explicitly valid, it is
likely to be a good approximation.

[102] We must refain a consideration to operating mode hinted at above. For the
purpose of this discussion, a mode implies a particular set of relational equations that govern
each signal. In other words, the operating physics of the system can differ between modes
bﬁt is assumed to be constant within a mode. These modes are ordinarily a direct match to
the observable state of the system,; i.e., inactive, startup, steady-state, etc. Mode differs from
the external environment in that it is a measure of state rather than an input to the system’s
behavior,

[103] Provided we can correctly account for operating mode, we then have a much

simplified set of relations to study, namely those between pairs of signals, or in the more
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general sense each sigual versus the larger system. Faults in the system can be expected to
manifest themselves as departures from the expected relationships. For this reason, the study

of correlations between the signals is singularly useful as a generic strategy.
© 4.1.2 COHERENCE ESTIMATION

[104] Two common measures of second-order cross-signal statistics are the Covariance
and the Coefficient of Linear Correlation. Covariance is a good measure of similar behavior
between arbitrary signals, but it suffers from a number of difficulties. One such problem is
that a covariance matrix will be dominated by the most active signals, viz. those with the
greatest variance. In order to avoid this, covariance is typically normalized by the relative
variances of the signals, as in the Correlation Coefficient. However, such a normalization is
often overly simplisiic and leads (o the inverse problem. A correlation matrix tends to
become ill-conditioned in the presence of sign‘;ﬁls with relatively low variances.

[105] Returning to the original goal, we are interested in comparing signals. This
should take into account both the covariance and the relative variances of the signals. In
accordance with the invention, we deline a coherence coefficient expressed below as:

,COV(S. 5,)

I~

4.1.3 ;= .
@19 s Max(Var(S,.),Var(Sj))

‘We have used the standard definitions:

1 _ _

.14 Cov(S,,5,) =~ [(s = 5)(s, -5, )de

(4.1.5) Var(S,)= % [(5,-5.)a

[106] The choice of the maximum variance in the denominator guarantees a coherence

coefficient value normalized to [-1, 1]. Furthermore, the absolute value is taken because the
sign of the relation is of no importance for arbitrary signals, only the existence or
nonexistence of a causal connection. A coherence value close to 0 implies no relationship
between signals, whereas a value approaching 1 indicates a very strong relationship.
Consequently, the coherence coefficient is normalized to [0,1].

[107] Given N data streams, this calculation defines an N x N coherence coefficient
matrix where each entry represents a degree of causal connectivity. Where relationships

between signals are fixed, 1.¢. during a single mode of system operation, the coherence
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coefficient between those two signals will remain constant within the bounds of statistical
uncertainty. Provided the coherence coefficient converges, this relationship is repeatable, and
so it cab be used as a basis for comparison between training and run-time data.

[108] Admittedly the above assertions are too strict for a real-world example. Systems
may indeed contain signals with fluctuating or drifting relationships during nominal
operation. Additionally, the réquirement to maintain a countable number of modes may force
us to simplify the system state model, to the detriment of repeatability. We will examine

modifications to the above to mitigate these concerns.
4.1.3 EVENT DETECTION

[109] Having understood that cross-channel measurements are an effective method of
signal analysis, we next explore how to best apply the calculation above. A first question to
ask is how the data should be gathered. From the discussion above, it is noted that we should
avoid applying this operator to mixed-mode data. Such data represents a combination of two
separate sets of underlying equations for the signals, thus mixed-mode correlations are not
necessarily repeatable.

(110 A mode (“mode of operétion”, “system mode”, etc.) signifies a different type of
system operation. Let’s say we were going to build a numerical simulation of the system.
For each mode, we need a separate madel, or at least model components special to that mode.
Different system operation can be caused by a configurational change or significant
environmental change. A system may enter a new mode of operation by command or as &
consequence of a faults.

[111] Consider an automobile engine, for example. While “Off” it would be in one
(very boring) mode. “Start” would be another, which is different from “Run” because during
“Start” the eleciric starter is active. Once in “Run,” changing fuel rates to accelerate would
not be considered a new mode -- basic operation is not changed, a model of operation for the
engine would not require different equations. The transition from “Off” to “Start” to “Run”
is commanded by the driver. Using this same example, fault modes might also be
configurational or environmental. A fuel pump degradation might put the enginc into the

“[ ean” faulty mode. Poor quality gasoline (using octane rating as an environmental variable)
might result in “pinging.” Faults can also be commanded, for instance turning on the starter
while the engine is already running, resulting in a superposition of *Run” and “Start” modes

that is different from both and outside the design specifications of the engine.

-26-




10

15

20

25

30

35

40

WO 02/073473 PCT/US02/06828

[112] Typical applications avoid the issue of mode switching through one of the

following methods:

a) Compute only correlations having a fixed, mode-independent relationship.

This method is effective in reliable fault detectors, however the system coverage is
typically very limited. The method is restricted to well-understood signal interactions
and is not generalizable. (However, see Section 4.1.5, where we attempt to redress
this philosophy.) '

b) Window the data such that near-steady-state operation can be assumed.

This procedure also carries significant inherent limitations. Because the computation,
whichever is used, is statistical in nature, selection of a fixed window size places a
hard limit on latency as well as confidence of detection. This also does not directly
address the core problem.

¢) Window the computation according to exiernal state information, such as commands.

This is the best approach, and it is used in the full formulation of BEAM. However, it
too has limits, External state information may not be available. Additionally, there
may not be a perfect alignment between discrete “operating modes” and observable
shifis in the system — it may not be one-to-one.

[113] Our solution to the mixed-mode problem in accordance with the invention is
based upon the following observations. Consider a pair of signals with a fixed underlying
linear relationship, subject to Gaussian (or any other zero-mean) random noise. The
coherence calculation outlined in Section 4.1.2 above will converge to a fixed value,

according to the foIlowing relationship;
1
(4.1.6) _ {i.(t)—(,-,-(t—l)~-t7

The exact rate of convergence depends on the relative contribution from signal linear and
noise components as well as the specific character of signal noise. However, in practice, it is
much easier to determine the relationship empirically from sampled data.

[114] Given the convergence relationship above, we can define a data test in order to
assure single-mode computation. By adopting this approach, we can successfully separate

steady-state operation from transitions. This means:

a) Transition detection is available for comparison to expected system behavior.
A “transition” in this case is a switch from one mode to another. Most of these are - -

predictable and nominal. On the other hand, a broad class of system faults can be
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considered {ransitions, particularly those involving sudden electrical failure or
miscommand scenarios. Unexpected events in the system immediately merit further
analysis.

b) Calculated cohercnce uses the maximum amount of data available to make its
decisions, which optimizes sensitivity and confidence.

Use of the convergence rate establishes a time-varying estimate of confidence in the
calculation, which is transparent to the final output of the detector. The time-variance
also applies to the values of the computed coherence, which we will study in further
detail in the following section.
[115] The quantity p(t) = (i(t) - Lyt — 1) is computed and referred to as the coherence
stability. This single parameter is a good indicator of steady-state behavior.
[116] One observation regarding stability is that the convergence rate is quitc fast. This
character allows us to make confident decisions regarding mede transitions with relatively
little data to study. This also lends credibility to more complex and subtle fault detection

using a coherence-based strategy.
4.1.4 COMPARATIVE FAULT DETECTION

[117] In the previous section, we identified a method to qualify data entering the
detcctor in terms of mode consistency based upon convergence properties of the calculation.
Next we will use a similar strategy to differentiate between nominal and faulty data, where
the fault manifests itself as a drift rather than a transition. Such a fault case is more
physically interesting than a sudden transition, since we are concerned about  lasting effect
upon the system rather than an instantaneous data error. Suppose we have a current Cii()
estimate that we are comparing to a different estimate, call it £o. As we accumulate more

data, the estimate is expected to converge at the following rate:

(4.1.7) I, (-]~ %

[118] This relationship determines the accuracy of the calculation’s raw value, which is
representative of the equation between the two signals. It is conceptually similar to the error
in estimated mean for a statistical sampling process. We can use this relationship to detect a
shift in the equations, much in the manner that events are detected above.

[119] The computed quantity |£;(€) - &o| is calculated and referred to as the coherence
deviation. When compared with the base convergence rate, it is a measurement of confidence

that the coherence relationship is repeating its previous (nominal) profile. Between detected
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mode transitions, as discussed in thc previous sections, use of this relationship allows us to
optimally distinguish between nominal and anomalous conditions. Violation of this
convergence relationship indicates a shift in the underlying properties of the data, which
signifies the presence of an anomaly in the general sense.

[120] Note that the convergence rate of this relationship is considerably slower, though
still fast enough to be practical. Because of this, it is particularly valuable to adapt a variable-

windowing scheme where data is automaticaily segmented at mode boundaries.
4.1.5 OPTIMIZATION

[121) The sections above define a method of generic cross-signal computation and
identify properties that facilitate decisions about the data. In this section we will examine
how to best apply these properties.

[122] The convergence propertics above are written for each individual signal pair. In
order to apply this approach in general to a system with N signals, we have O(N?) signal pairs
to process. At first glance, the approach docs not appear to lend itself to scaling. For this
reason, most cross-signal approaches focus on preselected elements of the matrix, which
cannot be done without considerable system knowledge or examples of anomalous data from
which to train.

[123] However, there are some advantages to studying the full matrix. For the general
case, we may not know a priori which signal pairs are significant. Additionally, there are
likely to be numerous interactions for each signal, which may vary depending on.the mode of
operation. Only in rare cases are the individual elements of the matrix of particular interest.
In the general case, we are concerned with signal behavior versus the entire system, which
corresponds to an entire row on the coherence matrix.

[124] Because we are more concetned with the overall system performance, we should
instead consider a single global measure based on the entirc matrix. This requircs some sort
of matrix norm. ,

[125] Many matrix norms exist. In this particular embodiment of the invention, we shall

use the following, where M is an arbitrary N-by-N matrix:

J

@18 Ry
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[126] The norm chosen here differs from the simple matrix average in one detail,
namely the absolute value and its placement. An absolute value is used because we are
principally concerned with the magnitude of differences between one matrix and another,
rather than their sign. (An exception to this: Following the detection of an anomaly, for
purposes of identification the sign can be important, as faults that cause an increase in
coherence are typically more physically complex and more interesting.) The choice to
average row totals rather than each individual clement is motivated by the inherent structure
of the coherence matrix, specifically the fact that cach row represents a single signal’s total
contribution. By averaging the rows prior to their summation we hope to counteract noise
present in the calculation, whereas differences due to a significant shift are likely to be of the
same sign.

[127] We can substitute the norm into the convergence relationships Eq. (4.1.6) and Eq.

(4.1.7) above without changing their character:
' 1
(4.1.9) (AGEAGaY [ > and

(4.1.10) {|;,,(z)—;nﬂ~\g,

where M in Eq. (4.1.8) is replaced with ({J ()-¢ (- 1)) and (;7 (t)- &, ) respectively,
and N =ixJ.

[128] The stability and deviation on the left are now indicative of the entire matrix, This
produces a tradeoff between individual pair sensitivity and false-alarm reduction, while at the
same time greatly reducing computational cost.

[129] Another adaptation to this approach is to consider separate weighting of different
pairs. Itis clear that some signal pair relationships will be well defined while others will be
pseudorandom, Additionally, we have adopted the concept of multiple modes to handle
different relationships at different phases of system operation. This can become an

unbounded problem, and a mechanism is needed to guarantee a small number of modes.

[130] Let us introduce a weighting matrix Wj; into the convergence relationships above:
1
(4.1.11) LAAGELAACESY T
1
@112) s ) sl
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[131] The matiix Wj; is a companion to the training matrix {o and is computed as part of
the training cycle. For a general application, i.e. an application for which no signal
relationships are known or suspected, it is computed by normalizing each signal pair
coherence by the observed variance in that coherence. This normalization matrix, along with
the model coherence g, can be later combined with other coherence/normalization pairs in

order to combine modes or enhance training data results with new data.
4.1.6 POST-PROCESSING

[132] If an unknown fault has been detected, the next step is to isolate the responsible
signals. This is done by studying the difference matrix:

(4.1.13) Dy =W,(¢, (1))

[133] Giveﬁ an anomaly on one signal, we expect to see the correlation between this
signal and all others diminish compared to the expected values. There may be stranger shifts
between some signals and others, but in general the coberence values will decrease. Visually
this leads to a characteristic “cross-hair” appearance on the rendered difference matrix.

[134] The total deviation for each signal is computed by summing the coherence
difference (absolute values) over each row of the matrix. The ranking module 306 provides a
ranking of these deviations to determine the most likely contributors to the faults. This
channel implication is passed to interpretive elements of the invention and to single-signal
analysis modules.

[135] In general an anomaly will manifest as a decrease in coherence between signals.
However, there are rare cases where coherency will increase. Typically this is not system-
wide but is isolated to a few specific pairs. Such an increase in coherency is indicative of a
new feedback relationship occurring in the system, and it must be given special attention.
[136] Such cases, physically, define previously unknown modes of the system. This
mode may be nominal or faulty. In the former case, such detection implies that the training
data used to tune the detector does not adequately cover the operations space, and must be
expanded. In the latter case, knowledge of what specific signals or pairs are anomalous can
directly lead to better understanding of the problem, particularly in cases where causal or
physical models are available to the diagnostic engine.

[137] The underlying principle is that large deviances (taking weighting into account) '

are probably key contributors. However, in addition to this is the question of phase, Signal -
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pairs that show a positive phase, i.e., increased coherence, are more intercs.timg than signal
pairs that show a decreased coherence. Furthermore, a signal that shows an increase in
coherence with a particular signal, but with a decrease with respect to all other signals is
remarkable and thus of great interest. Such signals are identified by the key signals module
310.

4.1.7 ARCHITECTURE

[138] We have discussed an underlying theory for cross-signal event and fault detection.
An operating architecture to implement this approach is given in Fig, 3.

[X39] Each sample of time-correlated, stationarized data is passed to the Incremental
Coherence Estimator 302, where Eq. (4.1.3) is updated for each signal pair. The coherence
stability is computed over the marix, and is checked against relationship Eq. (4.1.11) in the
Convergence Rate Test 306, Ifthis test fails, this indicates the presence of mixed mode data
and so the coherence estimate is reset for another pass. This is repeated until the relationship
Eq. (4.1.11) is satisfied.

[140] After the test above, we are guaranteed a coherence estimate free of mixed-mode
data. The estimate is compared against the expected coherence supplied by the Coherence
Library 312, as selected by the symbolic model 204 and command data. The match is
checked against relation Eq. (4.1.12) by the Coherence comparator 304.

[141] Ifwe havé a mismatch that compares favorably to an abnormal Library coherence,
we have a known fault, which will be flagged according to the fault number and passed to the
interpreter. This is the “known bad coherence” path shown in Fig. 3.

{142} If we cannot find a suitable match, as is more frequently the case, the differenced
coherence Eq. (4.1.13) is examined to extract the key actor signals and pairs. This processing
is discussed above in Section 4.1.6.

{143] At the end of this operation, we will have successfully identified normal versus
anomalous operation of the system as a whole. For those cases where anomalous conditions
are detected, we have isolated the effect to a known case or to the key measurements that led
us to fhét conclusion. This has, in essence, digitized the problem into terms that the

interpreter can understand, as will be discussed in section 4.5 below.
4.2 SINGLE CHANNEL FEATURE EXTRACTION

[144] The Dynamical Invariant Anomaly Detector 208 is designed to identify and

isolatc anomalies in the behavior of individual sensor data. Traditional methods detect
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abnormal bebavior by analyzing the difference between the sensor data and the predicted

.value. If the values of the sensor dala are deemed either too high or low, the behavior is

abnormal. In accordance with the present invention, we introduce the concept of dynamical
invariants for detecting structural abnormalities. Dynamical invariants are governing
parameters of the dynamics of the system, such as the coefficients of the differential (or time-
delay) equation in the case of time-series data. Instead of detecting deviations in the sensor
data values, which can change simply due to different initial conditions or external forces (i.e.
operational anomalies), we attempt to identify structural changes or behavioral changes in the
system dynamics. While an operational abnormality will not lead to a change in the
dynamical invariants, a true siructural abnormality will lead to a change in the dynamical
invariants. In other words, the detector will be sensitive to problems internal to the system,

but not external disturbances.
4.2.1 DYNAMICAL MODEL

[145] We start with a description of a traditional treatment of sensor data given in the
form of a time series describing the evolution of an underlying dynamical system. It will be
assumed that this time serics cannot be approximated by a simple analytical expression and
does not possess any periodicity. In simple words, for an observer, the future values of the
time series are not fully correlated with the past ones, and therefore, they are apprehended as
random. Such time serics can be considered as a realization of an underlying stochastic
process, which can be described only in terms of probability distributions. However, any
information about this distribution cannot be obtained from a simple realization of a
stochastic process unless this process is stationary. (In this case, the ensemble average can be
replaced by the time average.) An assumption about the stationarity of the underlying
stochastic process would exclude from consideration such important components of the
dynamical process as linear and polynomial trends, or harmonic oscillations. In accordance
with the invention, we provide methods to deal with non-stationary processes.

[146] Our approach to building a dynamical model is based upon progress in three
independent ficlds: nonlincar dynamics, theory of stochastic processes, and artificial neural
networks. From the field of nonlinear dynamics, based upon the Takens theorem, any
dynamical system which converges to an attractor of lower (than original) dimensionality can

be simulated (with a prescribed accuracy) by a time-delay equation:
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(4.2.1) x(8) = Fx(t —2),%(t - 22),0, %(t —M7)],

where x(1) is a given time series, and T = constant is the time delay. The function F
represents some deterministic function representative of the system.
[147] Tt was proven that the solution to Eq. (4.2.1) subject to appropriate initial

conditions converges to the original time series:

4.2.2) x(1) = x(2)), %(1,),.. ete.,

if m in Bq. (4.2.1) is sufficiently large.

[148] However, the function F, as well as the constants t and m, are not specified by
this theorem, and the most damaging limitation of the model of Eq. (4.2.1) is that the original
time series must be stationary, since it represents an attractor. This means that for non-
stationary tin';e series the solution to Eq. (4.2.1) may not converge to Eq. (4.2.2) af all.
Actually this limitation has deeper roots and is linked to the problem of stability of the model.
[149] Prior to the development of Takens theorem, statisticians have developed a
different approach to the problem ih which they approximated a stochastic process by a linear

autoregressive model:

(4.2.3) (@) =ax(t-1)+ax@¢-2)+..+a,(-n)+Nn—>w,

where a; are constants, and N represents the contribution from noise.
[150] A zero-mean purely non-deterministic stationary process x(#) possesses a linear
representation as in Eq. (4.2.3) with Zaf < (the condition of the stationarity).

Jj=l
[151] On first sight, Eq. (4.2.3) is a particular case of Eq. (4.2.1) when F is replaced by a
linear function and © =1. However, it actually has an important advantage over Eq. (4.2.1):
It does not require stationarity of the time series Eq. (4.2.2). To be more precise, it requires

certain transformations of Eq. (4.2.2) before the model can be applied. These transformations

" are supposed to “stationarize” the original time series. These types of transformations follow

from the fact that the conditions of stationarity of the solution to Eq. (4.2.3) coincide with the

conditions of its stability. In other words, the process is non-stationary when

(4.2.4) 6 51,

where G] are the roots of the characteristic equation associated with Eq. (4.2.3).
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[152] The case !G[] >1 is usually excluded from considerations since it corresponds to
an exponential instability, which is unrealistic in physical systems under observation.
However, the case |G,| =1 is realistic. Real and complex conjugates of G incorporate trend
and seasonal (periodic) components, respectively, into the time series Eq. (4.2.2).

[153] By applying a difference operator:

(4.2.5) ) Vx, =x,-x,_, =(1-B)x,

where B is defined as the backward shift operator, as many times as required, one can

eliminate the trend from the time series:
(4.2.6) Xy s X3 Xy seens CLC

[154] Similarly, the seasonal components from time series Eq. (4.2.6) can be eliminated
by applying the seasonal difference operator:

4.2.7) Vo, =(1-B) =x,-x%_,.
[155] In most cases, the seasonal differencing Eq. (4.2.7) should be applied prior to
standard differencing Eq. (4.2.5).

[156] Unfortunately, it is not known in advance how many times the operators Eq.
(4.2.5) or Eq. (4.2.7) should be applied to the original time series Eq. (4.2.6) for their
stationarization. Moreover, in Eq. (4.2.7) the period S of the seasonal difference operator is
also not prescribed. In the next section we will discuss possible ways to deal with these
problems.

[157] Assuming that the time series Eq. (4.2.6) is stationarized, one can apply to them
the model of Eqv. (4.2.1)

(4.2.8) V) =Fy( -1,y = 2), y(t = m)],
where
(4.2.9) Vs Vigslls (¥, =%, —%,,)

are transformed series Eq. (4.2.6), and T =1. After fitting the model of Eq. (4.2.8) to the

time series Eq. (4.2.6), one can return to the old variable x(z) by exploiting the inverse

operators (J—B)“I and (1‘-BS)‘1 . For instance, if the stationarization procedure is performed
by the operator Eq. (4.2.5), then:
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4210)  x(O)=x(t-1)+ P{{s(t =D =2 - 2} [x(t - 2) - x(t = 3)],..ete} .

[158] Eq. (4.2.10) can be utilized for predictions of future values of Eq. (4.2.6), as well
as for detection of structural and operational abnormalities. However, despite the fact that
Eq. (4.2.8) and Eq. (4.2.10) may be significantly different, their structure is uniquely defined
by the same fimction F. Therefore, structural abnormalities that cause changes of the
function F can also be detected from Eq. (4.2.8) and consequently for that particular purpose
the transition to Eq. (4.2.10) is not necessary. ‘

[159] Tt should be noted that application of the stationarization procedure Eq. (4.2.5) and
Eq. (4.2.7) to the time series Eq. (4.2.6) is only justified if the underlying model is linear,
since the stationarity criteria for nonlinear equations are more complex than for linear
equations, in similar fashion to the stability criteria. Nevertheless, there are numerical
evidences that even in nonlinear cases, the procedures Eq. (4.2.5) and Eq. (4.2.7) are useful in
that they significantly reduce the error, i.¢., the difference between the simulated and the

recorded data, if the latter are non-stationary.
4.2.2 MODEL FITTING

[160] The models Eq. (4.2.8) and Eq. (4.2.10) which have been selected in the previous
section for detection of structural of abnormalities in the time series Eq. (4.2.6) have the

following parameters to be found from Eq. (4.2.6): the function F, the time delay 7, the order
oftime delays m, the powers m and m7 of the difference (1-B)"! and the seasonal difference

(1-BS)™2, and the period s of the seasonal operator.
[161} If the function F is linear, the simplest approach to model fitting is the Yule-
Walker equations, which define the auto regressive parameters a; in Eq. (4.2.3) via the

autocorrelations in Eq. (4.2.6). The auto regressive (AR) model has the form: -

@2.11) H0y=3a,y(t - kr) +w(0)

k=1

where wy?) is uncorrelated white noise, and the AR coefficients, a;, can be determined by the

Yule-Walker equations:
(4.2.12) P =P TGPt GO,

where py is the autocorrelation function:
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> () - B0k~ 7)

Pe =" —
\[ >0 -a) Y (e +ke) -7

o =0

(4.2.13)

and Z is the time average of y(t).

[162] In many cases the assumption about linearity of the underlying dynamical system
leads to poor model fitting. It is sometimes more practical to assume from the beginning that
F is a nonlinear (and still unknown) function. In this case, the best tool for model fitting may
be a feed-forward neural network that approximates the true extrapolation mapping by a
function parameterized by the synaptic weights and thresholds of the network. It is known
that any continuous function can be approximated by a feed-forward neural net with only one
hidden layer. For this reason, in this work a feed-forward neural net with one hidden layer is
selected for the model of Eq. (4.2.8) fitting. The model of Eq. (4.2.8) is sought in the

following form:
4.2.14) »@®= U{ZWI ,a{z Wy, (t —kr)]}
J=l k=1

where W ]; and wjf are constant synaptic weights, o(x) = tank(x) is the sigmoid function,
and y,(%) is a function which is supposed to approximate the stationarized time series Eq.
(4.2.9) transformed from the original time series.

[163] The model fitting procedure is based upon minimization of the error measure:

@2.15) E(Wl,-,w,-k)%Z[y:(z)—G{Zm,-v[iw,-ky,-cz—kr)m
k=1

Jj=l

where ¥ (¢) are the values of the time series Eq. (4.2.9). The error measure Eq. (4.2.15)

consists of two parts:

(4.2.16) . E=E; +E2

where E7 represents the contribution of a physical noise, while E2 results from non-optimal
choice of the parameters of the mode} of Eq. (4.2.14).

[164] There are two basic sources of random components £7 in time series. The ﬁyst

source is chaotic instability of the underlying dynamical system. In principle, this component

of EJ is associated with instability of the underlying model, and it can be represented based
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upon the stabilization principle introduced by Zak, M, in a paper entitled “Postinstability
Model in Dynamics,” Int. J. of Theoretical Physics 1994, Vol. 33, No. 11. The second source
is physical noise, imprecision of the measurements, human factors such as multi-choice
decisions in economical or social systems or driving habits in case of the catalytic converter
of a car, efc.

[165) This second component of £7 cannot be represented by any model based upon
classical dynamics, including Eq. (4.2.8). However, there are models based upon a special
type of dynamics (called terminal, or nion-Lipschitz-dynamics) that can simulate this
component. In the simplest case one can assume that £ represents a variance of a mean zero
Gaussian noise.

[166] The component 2, in principle, can be eliminated by formal minimization of the
error measure Eq. (4.2.15) with respect to the parameters Wy, Wi, % m, mj, mz, and s.

[167] Since there is an explicit analytical dependence between E and Wyj, wjk, the first
part of minimization can be performed by applying back-propagation. However, further
minimization should include more sophisticated versions of gradient descent since the

dependence E(z, m, mJ, m2, s) is too complex to be treated analytically.

4.2.3 STRUCTURAL ABNORMALITY CRITERION

As noted in the introduction, there are two causes of abnormal behavior in the
solution to Eq. (4.2.14):

1. Changes in external forces or initial conditions (these changes can be measured by
Lyapunov stability and associated with operational abnormalities).

2. Changes in the parameters a;, Wj; and wjf, ie., changes in the structure of the
function F in Eq. (4.2.8). These changes are measured by structural stability and
associated with structural abnormalities. They can be linked to the theory of
catastrophe.

[168]} In this section we introduce the following measure for structural abnormalities:

(4.2.17) ;:i[aj —Zj)z

=

o
where a; are the nominal, or “healthy” values of the parameters, and g; are their current

values. Thus, if
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(4.2.18) ¢=0,0r {=|g

where ¢ is sufficiently small, then there are no structural abnormalitics. The advantage of
this criterion is in its simplicity. It can be periodically updated, and therefore, the structural
“health” of the process can be easily monitored.

[169] The only limitation of this criterion s that it does not specify a particular cause of
an abnormal behavior. Obviously, this limitation can be removed by monitoring each

parameter a; separately.
4.2.4 NOMINAL CONFIDENCE INTERVALS

[170] In the pirevious section, the state of the underlying dynamical system generating
sensor data was defined by the dynamical invariants, a;, 7] 1, Wiks i.e., auto-regressive
coefficients and neural network weights. These invariants were calculated during a selected
training period over N values of the original time series. We will associate this period with a
short-term training. Obviously, during the period all the invariants a; are constants.

[171] In order to introduce a long-term training period, we return to the original data:
(4.2.19) x=x(t), i=0,1,...efc
and consider them within the interval shifted forward by ¥ points:

x=x{t), i=q,q+],...efc,
(4.2.20) X =x2(zi), i=2g,2q+1,...etc,

.
x, =%, (), i=pg,pg+l...et,

where p is the number of g-shifts.

[172] For each series of data Eq. (4.2.20) one can compute the same invariants a; by
applying the same sequence of algorithms as those applied to the original data Eq. (4.2.19).
In general, even in case of absence of any abnormalities, the values for a; for different p are

different because of measurement and computational errors, so that a; will occur as series of

P
4.2.21) g =a(p), p=12..p.

[173] Since p is proportional to time:
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(4.2.22) p~ahe,

where At is the sampling time interval, Eq. (4.2.21) actually represents another time series as
shown in Fig. 4, and therefore, it can be treated in the same way as the original time series
Eq. (4.2.19). However, such a treatment applied to each invariant a; is very costly, and for
most practical cases unnecessary. Indeed, since all gross nonstationarities (in the forum of
the least-square polynomial trend and dominating harmonies) were already identified, it is
very unlikely that the time series Eq. (4.2.21) contajns any additional non-stationaries.
Besides, since these invariants are associated with certain physical properties of the
underlying dynamical system, their deviations from the original constant valucs can be
interpreted as a result of errors in measurements and computations. Thus a simple statistical
analysis of the time series Eq. (4.2.21) will be sufficient for defining the nominal confidence
intervals.

[174] In order to perform the statistical analysis for the time series Eq. (4.2.21),‘one
could generate 4 histogram. However, in many practical cases, such a histogram may exhibit
a non-Gaussian distribution, which makes it harder to define the confidence intervals. Hence
it is more convenient to apply a “bootstrapping” approach as a preprocessing procedure in the

following way:

1. Choose randomly P samples of data from Eq. (4.2.21) with the same sample size n ~ p/2:

= o) ,...dl,
(4.2.23) ey

a(p” ) = a,(” )',...ctﬁ,ﬁ) .
2. Find the sample means:

-0 15 o
“ T = i »

(4.2.24)
&f,") =—I~Za£‘,.’) .

K=

[175] The bootstrapping procedure guarantees that the distribution of the means 52’7 will

be Gaussian even if the original distribution was non-Gaussian, and simple Gaussian nominal
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confidence intervals can be constructed. As an example, nominal confidence intervals which

include ~68%, ~95% and ~99.73% of all the sample means, &, are:

sy Hp oy

[e2 i (e}
4225 S g0y 4 S
( ) W, v/;l a," < K, -v/;z

(3 A (e}

4226 =< < p + 2%, and
220 b2 B <2,

o3 j (e}
4227 -3 < G 3
( ) M, In <a; < U, + wp

respectively, where p, and o, are the mean and standard deviation of the sample's mean

distribution.
4.2.5 IMPLEMENTATION ARCHITECTURE

[176] The implementation architecture of the Dynamical Invariant Anomaly Detector is
shown in Fig. 5.

[177] After the sensor data are stationarized, they are fed into the Memory Buffer 502,
which keops a time history of the sensor data for analysis as requested by the Critical Signal
Selcetor 504, The Critical Signal Selector will then pass the relevant sensor data to the Yule-
Walker Parafneter FEstimator 506. There, the dynamical invariants a; and the AR coefficients
of the time-delay equation are computed using Yule-Walker method as shown in Eq. (4.2.12).
The Critical Signal Selector module is used where the system is processing resources are
Jinited so that processing of all available signals is untenable. For such applications, the
critical signals are a combination of: (1) key signals identified during the design phase,
especially those that have low redundancy; and (2) signals implicated by the other
components, namely bad signals from the Coherence-based detector 206 and signals key to
the present operating mode as sensed by the Symbolic Data Model 204.

[178] Once the coefficients are computed within the Yule-Walker Parameter Estimator,
they will be compared to the ones stored in the Model Parameter Database 510. This
contains a set of nominal time-delay equation coefficients appropriate for particular operating
mode. A statistical comparison 508 will be made between the stored and just-computed AR
coefficients using the bootstrapping method as outlined in section 4.2.4, and if a discrepancy
is detected, the identity of the offending sensor will be sent to the Channel Anomaly De;ector
516.
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[179] - Further analysis is carried out on the residual or the difference between the sensor
data values and the model predicted values, i.e. the uncorrelated noise, by the Nonlinear
Component Neural Classifier 512 and Noise Analysis 514 modules. The Nonlincar
Component Neural Classifier is designed to extract the nonlinear components, which may be
missed by the linear Yule-Walker Parameter Estimator. The weights of the artificial neural
network (Eq. 4.2.14), another set of dynamical invariants, will be computed and compared
with nominal weights stored in the Model Parameter Database. Similarly, the noise
characteristics, such as the moments of probability distribution, are dynamic invariants for
stationarized sensor data, and will be compared with these stored in the Model Parameter
Database 510. If any anomalies are detected in either the nonlinear conponents or the noise,
the identity of the sensor will be sent to the Channel Anomaty Detector.

[180] Finally, the Channel Anomaly Detector 516 will aggregate information from the
Yule-Walker Parameter Estimator, Nonlinear Cbmponcnt Neural Classifier, and Noise
Analysis modules, and classify the anomaly before sending the fault information to the
Predictive Comparison module, which is discussed in section 4.4 below. The classiﬁcatioﬁ is
kind of a checklist. In other words, the Dynamical Invariant Anomaly Detector 208 effective
asks a series of questions -- Do we see a glitch in the linear component (yes/no)? Do we see
a glitch in the nonlinear component? Do we see a glitch in the noise? If the answer to all of
these is no, there is no fault or the fault is a feedback effect caused by a different signal. If
the answer to the noise question is yes but others are no, the fault is caused by a degradation

in the sensor, and so on.

4.3 MODEL FILTER -- GRAY BOX METHOD OF SENSOR DATA ANALYSIS

[181] While the model filter component 202 occurs first in the data flow shown in Fig.
2, it was more uséful to consider it after having first discussed the Dynamical Invariant
Detector 208 described above in section 4.2, The Dynamical Invariant Anomaly Detector
represents a “Black Box” strategy, where nothing is known about the internal governing
equations of a system. On the other hand, as will be explained below, the model filter
represents a “Gray Box” because there is only a partial understanding of the process(es) being
modeled; i.e., we only have a partial physical model of the process in question.

[182] Such a linear approach is effective and general, but there are profound benefits to
simultaneous consideration of sensor and physical information, as we will cxplore in this

section. We will make frequent reference to section 4.2.
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[183] Sensor data is one of the most reliable sources of information concerning the state
and operational performance of the underlying system. When this data is presented in the
form of a time series, two important results can be obteined: prediction of future time series
values from current and past values, and detection of abnormal behavior of the underlying
system. In most existing methodologies, a solution to the sccond problem is based upon the
solution to the first one:. abnormal behavior is detected by analysis of the difference between
the recorded and the predicted values of the time series. Such analysis is usually based upon
comparison of certain patterns, such as the average value, the average slope, the average
noise level, the period and phase of oscillations, and the frequency spectrum. Although all of
these characteristics may have physical meaning and carry information, they can change
sharply in time when a time series describes the evolution of a dynamical system, such as the
power system .of a spacecraft or the solar pressure. Indeed, in the last case, a time series does
not transmit any “man-made” message, and so it may have different dynamical invariants. In
other words, it is reasonable to assume that when a time series is describing the evolution of a
dynamical system, its invariants can be represented by the coefficients of the differential (or
the time-delay) equation which simulates the dynamical process. Based upon this idea, we
have developed the following strategy for detection of abnormalities: a) build a dynamical
model that simulates a given time seties, and then b) develop dynamical invatiants whose
change manifests structural abnormalities.

[184] It should be noted that there are two types of abnormal behavior of dynamical
systems, namely operational and structural. Operational abnormalities can be caused by
unexpected changes in initial conditions or in external forces, but the dynamical model itself,
in this case, remains the same. In mathematical tcrms, operational abnormalities are
described by changes in non-stationary components of the time series.

[185] It is important to emphasize that operational and structural abnormalities can
occur independently, i.e. operational abnormalities may not change the parameters of the

structure invariants, and vice-versa.
43.1 GRAY BOX APPROACH

(186] Further examples and clarifying details of this aspect of the invention can be
found in Appendix B attached herewith.
[187] As discussed, the methodology described in section 4.2 can be termed a black-box

approach since it does not require any preliminary knowledge about the source of the sensor
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data. Such an approach can be justified for developing dynamical models of systems whose
behavior can be identified only from their output signals. However, to fully assess system
health, the diagnostic system must have comprehensive ability to sense not failures, but
impending failures, and operationa] difficulties. While fixed thresholds, i.e., traditional
redlines, may be sufficient for simple steady-state systems, more sophisticated diagnosis
techniques are needed for unsteady operations and detection of incipient faults.

[188] The natural starting point for a more sophisticated diagnosis is the model of the
system. Forfunately, many systems; such as aircraft, spacecrall, gas turbine engines,
hydraulic systems, etc., usually have well-developed dynamic models. The most
straightforward application of the model for diagnosis is to compare the observed sensor
readings to those predicted by a model. Ifthe difference between the observed and the
predicted values, i.c., residual, is greater than some set threshold value, an anomaly has
occurred. In practice, however, it is not straightforward to compare the observed and
predicted values because the quality of the model may vary and noise may be present. If the
model is inaccurate or has iﬁsufﬁcient detail, the predicted values may differ greatly from
those of the actual system. Some deviations are unavoidable since there is no theoretical
description for the phenomenon. For example, secondary effects such as friction, thermal
effects, sensor noise, etc., may not have simple model descriptions. In other cases, the model
can be purposely coarse, i.¢., has insufficient detail, to facilitate real-time computations.
[189] In an effort to mitigate the problem of comparing observed and predicted values,
many different appfoaches have been developed to generate robust residuals and/or
thresl?olds for an;)malies. These methods include adaptive threshold methods, observer-based
approaches, parity relation methods, parameter estimation methods, and statistical testing
methods.

[190] In adaptive threshold methods, the threshold on the difference between the
observed and predicted value is varied continuously as function of time. The method is
passive in the sense that no effort is made to design a robust residual. The UIO (unknown
input observer) and parity relation methods are active since the residual is made to be robust
to known disturbances and modeling errors. The residual is sensitive to only unknown
disturbances that are likely to be anomalies or faulis in the system. T he drawback of these -
methods is that the structure of the input disturbances and modeling error must bé known. In
addition, the methods are applicable to mostly linear systems. The parameter estimation
methods use system identification technique to identify changes in the model parameters of

the dynamical system. The advantage of this method is that the implementation is
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straightforward, and it can deal with non-linear systems. The disadvantage is that a large
amount of computational power may be required to estimate all of the parameters in the
model. Finally, statistical testing methods use statistical techniques such as weighted sum-
squared residual (WSSR), x> testing, sequential probability ratio testing (SPRT), generalized
likelihood ratio (GLR), ctc., to differentiate between normal noise and anomalous sensor
values. The disadvantage of this method is that the residual is assumed to be a zero-mean
white noise process with known covariance matrix. The residual in many cases may not be
describable in this manner.

[191] In effort to improve model-based fault diagnosis, we propose a neWw approach
called the gray-box method. Tt is called a “gray-box™ because it incorporates both a “black-
box,” i.e., stochastic model and a “white-box,” i.e., deterministic model. It is a hybrid model
incorporating elements from residual based methods and parametric estimation methods. 1t is
similar to an adaptive threshold methods in that a residual is generated without any regard for
robust residual generation. However, instead examining the amplitude of the residual as in
the case of the adaptive threshold methods, the structure, i.e. model parameters, of the
residual is examined. The residual generation is our “white-box.” The residual is modcled
using techniques similar to the parametric estimation methods, The method is distinct from
standard parametric estimation method in that the system identification is carried out on the
residual, not the system variables directly. The residual is parameterized, not the full system.
In our terminology, the parameter estimation method is a “black-box.”

[192] A high-level generalized block diagram of the gray-box method for the model
filter 202 (Fig. 2) is shown in Fig. 7A. The physical system is represented by box 702. After
filtering the deterministic components using the model of the system, the residual is separated
into its linear, non-linear, and noise components and is fitted to stochastic models. The
parameters to the linear, non-linear, and noise models 716 completely describe the residual.
The gray-box has several advantages. First, the full model is employed rather than only the
model structure as in the case of standard parametric estimation methods. Thus the gray-box
takes full advantage of the information about the system. Second, the gray-box method can
be made robust to modeling errors which can be taken care of during residual modeling. The
model of the residual can also describe many unmodeled phenomena in the original model.

Finally, the method is applicable to both linear and non-linear systems.
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4,3.1.1 RESIDUAL GENERATION

193] Any theoretical dynamical model includes two types of components: those
directly describing the phenomena associated with the primary function of the system (such
as the effect of torque exerted on a turbine shaft on rotor speed), and those represeniing
secondary effects (such as frictional losses, heat losses, etc.). The first type of components is
usually well understood and possesses a deterministic analytical structure, and therefore its
behavior is fully predictable. On the other hand, the second type may be understood only at a
much more complex level of description (including molecular level) and cannot be simply
incorporated into a theoretical model. In fact, some components may be poorly understood
and lack any analytical description, e.g. viscosity of water in microgravity. Thus, in
accordance with the present invention, we filter out contributions that are theoretically
predictable from the sensor data (i.e., the components of the first type), and focus on the
components of the second type whose theoretical prediction is lacking. As will be seen, the
filtering will be performed by the theoretical model itself.

[194] The residual generation is as follows. Let us assume that the theoretical model is

represented by a system of differential equations:

@3.0) (@) =1(x@),u@)+y@,

where x(t) is the state variable vector, u(t) is the known input, and f is the known theoretical
relationship following from conservation laws of mechanics, thermodynamics, etc. The last
term, y(t), represent components which lack theoretical descriptions, are too complex, or are
the result of modeling errors. These can include sensor noise, unknown input to the system,
friction in bearings, material viscosity, and other secondary effects such as torsional
oscillations of the shaft, fluiter in the turbine and compressor blades, incomplete fuel
combustion, etc.

[195] The estimate of the system is accomplished by substituting the observed sensor
data for the evolution of the state variables, X (1), and input, u(f). Hence:

4.3.2) Y@ =1(x (),u()-
[196] The residual,

(433) v =x -0,
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is generated by subtracting the solution of Eq. (4.3.2), £ (t),, which is generated by using

the observed state variables, x'(f), from the solution of Eq. (4.3.1). Hence the original
theoretical model is the filter.

[197] In general, the residual can be treated as another realization of some stochastic
process. If the theoretical model of Eq. (4.3.1) is accurate, accounts for most physical effects,

and the observed state variables are accurate, then the residual, |r(t)], will be very small, i.e.,

(43.4) ()| << ]x‘ G}

and either a fixed or an adaptive threshold can be assigned as criteria for anomalous behavior.
If the system is linear, and the structure of y(t) is known, a more sophisticated UIO (unknown
input observer) filter can be constructed to make the residual more robust modeling errors
and disturbances. However, in our gray-box approach, the simple form of Eq. (4.3.3) is
preferred over the more robust residuals since the residual is to be modeled. if the residual is
100 robust, the characteristic structure of y(t) will become hidden.
[198] Merely as an example to illustrate the foregoing, consider the simplest gas turbine
plant consisting of a turbine 1, a compressor 2, and a combustion chamber 3, as shown in Fig.
6. Ignoring the thermal inertia of the combustion camber, one can write the following
dynamic equation for the angular velocity, @, of the shaft.
(4.3.5) Jiif = M, (@, 1) ~ M, (@) - M, (t)
where J is the moment of inertia of the turbo-compressor (1 —2) in the axis of rotation, M; is
the turning moment generated by the turbine, M is the resistive moment applicd by the
compressor, bearings, etc., on the shaft, xis the rate of fuel burned inside the combustion
camber, and M(t) is the random moment applied by effects such as torsional vibration of the
shaft, blade flutter in the compressor and turbine, propagation of pressure pulses along the
pipelines, heat loss, seal leaks, etc.
[199] The conditions for stability of the solutions of Eq. (4.3.5) are:

oM, oM,

4.3.6 —1<0,
( ) aw dw

>0;ie., ~6*(M, -M,)<0.
ow

[200] Consequently, if one linearizes Eq. (4.3.5) with respect to a stationary regime

where the rate of fuel burn is constant, i.e.,
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43.7) U= p, =const.

[201] Eq. (4.3.5) can be reduced to the form:

(4.3.8) @=-yw+I(t),
where
(43.9) 7=_1.[M_MJ >0, and
I ow @ U,

4.3.10) () = _@
I'(¢) represents a stochastic force, and Eq. (4.3.8) is a Langevin equation whose formal
solution is:

t
(43.11) o(t)=o,e7" + [T )’

0

subject to the initial condition:

(4.3.12) o= @att=0.

[202] This solution is the only information that can be obtained from the sensor data.
The first term in Eq. (4.3.11) is fully deterministic and represents all of the theoretical
knowledge about the plant. The second term includes the stochastic force (Eq. 4.3.10) and is
stochastic. Hence, the stochastic process described by Eq. (4.3.11) represents only a part of
the sensor data.

[203] Using a black box approach, a complex preprocessing procedure is required to
extract the stochastic force I‘ (?) from the sensor data which is the solution of Eq. (4.3.112).
However, the proposed gray box approach eliminates this preprocessing. Substituting the
sensor data Eq. (4.3.11) into the theoretical model of Eq. (4.3.8), the original stochastic force

is immediately exposed as the inverse solution:

(43.13) Tt)=o +10,
where @* is the sensor data.
[204] Eq. (4.3.11) shows that the more stable the model, i.e., the larger the value of z4

the less the stochastic force [’} contributes 1o the sensor data, since:

(43.14) 0<e™™ <late>r
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[205] In other words, for highly stable dynamical models, the black box approach xs not
only more laborious, but is also less effective since the stochastic forces become deeply
hidden in the sensor data. For the gray box approach, on the other hand, the theoretical
model acts as a filter, which damps the deterministic components and amplifies the stochastic
components. It is noted that Eq. (4.3.13) represents only one sample of the sought stochastic
force, T«(#). A black box approach still needs to be applied to I'«(?) in order to reconstruct all

of its stochastic properties.
4.3.1.2 RESIDUAL MODELING

[206] For the model of the residual, we start with a traditional description of sensor data
given in the form of a time series which describes the evolution of an underlying dynamical
system. It will be assumed that this time series can not be approximated by a simple
analytical expression and is not periodic. In another words, for an observer, the future values
of the time series are not fully correlated with the past ones, and therefore, they are
apprehended as random. Such time series can be considered as a realization of an underlying
stochastic process which can be described only in terms of probability distributions.
However, any information about this distribution can not be obtained from a simple
realization of a stochastic process unless this process is stationary. Then the ensemble
average can be replaced by the time average. An assumption about the stationarity of the
underlying stochastic process would exclude from consideration such important components
of the dynamical process as linear and polynomial trends, or harmonic oscillations. Thus a
method is needed to deal with non-stationary processcs.

207] Our approach to building a dynamical model of the residual is based upon
progress in three independent fields: nonlinear dynamics, theory of stochastic processes, and
artificial nevral networks. From the field of nonlinear dynamics, based upon the Takens
theorem, any dynamical system which converges to an attractor of a lower (than original)

dimensionality can be simulated with a prescribed accuracy by the time-delay cquation:
(4.3.15) 2(t) = FOx(t — 2), (= 20),y x(t = 17)),

where x(2) is a given time series, such as a variable in the residual vector, r(f), and 7 is the

constant is the time delay.
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[208] It has been shown that the solution to Eq. (4.3.15), subject to.appropriate initial

conditions, converges to the original time series:
4.3.16) x(0) = x(t,), x(t,)yeee

if m in Eq. (4.3.15) is sufficiently large.

{2091 However, the function £, as well as the constant © and m, are not specified by this
theorem, and the most “damaging” limitation of the model of Eq. (4.3.15) is that the original
time series must be stationary since it represents an attractor. This means that for non-
stationary time series the solution to Eq. (4.3.15) may not converge to Eq. (4.3.16) at all.
Actually.this limitation has deeper roots and is linked to the problem of stability of the model
of Eq. (4.3.15).

[210] A discrete-time stochastic process can be approximated by a linear autoregressive
model:
4.3.17) x(t) = ax(t -D+a,x(t -2) +..a,(t —n)+2(H)asn - o,

where a; are constants, and z(z) represents the contribution from white noise.

[211] It can be shown that any zero-mean purely non-deterministic stationary process

x(t) possesses a linear representation as in Eq. (4.3.17) with Zaf. <0} i.e., the-condition of
J=l .

the stationarity.

[212] In order to apply Eqg. (4.3.17), the time series Eq. (4.3.16) must be decomposed
into its stationary and non-stationary components. To “stationarize” the original time series,
certain transformations of Eq. (4.3.16) are required. These types of transformations follow
from the fact that the conditions of stationarity of the solution to Eq. (4.3.17) coincide with

the conditions of its stability, i.e., the process is non-stationary when

(4.3.18) G|>1,
where G1 are the roots of the characteristic equation associated with Bq. (4.3.17).
[213] The case ‘G1| > 1 is usually excluded from considerations since it corresponds to

an exponential instability which is unrealistic in physical systems under observation.
However, the case [G_,| =1 isrealistic. Real and complex conjugates of G incorporate irend

and seasonal (periodic) components, respectively, into the time series Eq. (4.3.16).
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214} By applying a difference operator: \

(4.3.19) V) = x(t) — x{t 1) = (1- B)x(¢),
where B is defined as the backward shift operator, as many times as required, one can

eliminate the trend from the time series:

(4.3.20) x(8), x(t =1),x(¢ = 2),...,
[215) Similarly, the seasonal components from the time series Eq. (4.3.20) can be

eliminated by applying the seasonal difference operator:
(4.3.21) Vx(t)=(1-B")x(t) = x@) - x(t—s).

[216] In most cases, the seasonal differencing Eq. (4.3.21) should be applied prior to-the
standard differencing Eq. (4.3.19).

[217] Unfortunately, it is not known in advance how many times the opcrators Eq.
(4.3.19) or Eq. (4.3.21) should be applied to the original time serics Eq. (4.3.20) for their
stationarization. Moreover, in Eq. (4.3.21) the period s of the seasonal difference operator is
also not prescribed. However, several methods are known to estimate the order of
differentiation. One simple estimate of the number of operations for Eq. (4.3.20) is
minimizing the area under the autocorrelation curve.

[218] Once the time series Eq. (4.3.20) is stationarized, one can apply to them the model
of Bq. (43.15):

(43.22) &) = Fpt =1, 3t ~ D)o Yt = 1)),
where
(43.23) PO Y& =D); () = 20~ 2(E = 1)

are transformed series Eq. (4.3.20), and © =1. After fitting the model of Eq. (4.3.22) to the

time series Eq. (4.3.20), one can retun to the old variable x(z) by exploiting the inverse

operators (1-B)-1 and (1-B%)1. For instance, if the stationarization procedure is performed
by the operator Bq. (4.3.19), then:

(4.3.24) x(E) = x(t =1 + F([x(t - 1) - x(¢ = 2)],[x( ~ 2) — x(¢ - 3)),...).
[219] Eq. (4.3.24) can be utilized for modeling the residual, predictions of future values

of Eq. (4.3.20), as well as for detection's of structural abnormalities. However, despite the”
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fact that Eqs. Eq. (4.3.22) and Eq. (4.3.24) may be significantly different, their structure is
uniquely defined by the same function F. Therefore, structural abnormalities which cause
changes of the function F, can also be detected from Eq. (4.3.22) and consequently for that
particular purpose the transition to Eq. (4.3.24) is not necessary.

[220] It should be noted that strictly speaking, the application of the stationarization
procedure Eq. (4.3.19) and Eq. (4.3.21) to the time series Eq. (4.3.20) are justified only if the

underlying model is linear since the criteria of stationarity for nonlinear equations are more

‘complex than for lingar ones in the same way as the criteria of stability are. Nevertheless,

there are numerical evidences that even in nonlinear cases, the procedures Eq. (4.3.19) and
Eq. (4.3.21) are useful in a sense that they significantly reduce the error, i.e., the difference

between the simulated and the recorded data if the latter are non-stationary.
43.1.3 MODEL FITTING

[221] The models Eq. (4.3.22) and Eq. (4.3.24) which have been selected in the previous
section for detection of structural of abnormalities in the time series Eq. (4.3.20), have the

following parameters to be found from Eq. (4.3.20): the function, F, the time delay, 7, the
order of time delays, 7z, the powers, m |, and mQ, of the difference (1-B)™1 and the seasonal

difference (1-BS)M2, and the period s of the seasonal operator.

[222] The form of the function F we’ve selected for the residual is shown in Fig. 7B.
After stationarization, the linear component is fit using the Yule-W alker Equations which
define the auto regressive parameters ¢; in Eq. (4.3.17) via the autocorrelations in Eq.
(4.3.20). If sufficient, the residual left afier removal of the linear component, w(z), can be
directly analyzed and modeled as noise.

[223] If the linear model of the residual leads to poor model fitting, the best tool for
fitting the non-linear component of the residual may be a feed-forward neural network which
approximates the true extrapolation mapping by a function parameterized by the synaptic
weights and thresholds of the network. It is known that any continuous finction can be
approximated by a feed-forward neural net with only one hidden layer, and thus is selected
for fitting the non-linear component after the linear component is removed using equation Eq.
(4.3.17). Hence w(t) is sought in the following standard form of time-delay feed-forward
network:

49

-52-




10

15

20

25

30

WO 02/073475 PCT/US02/06828

(43.25) ‘ z(t)zcr{Zlea{iwjkz(t—kT)]},
J=!

k=1
where 7; and wjk are constant synaptic weights, o(x) = tanh(x) is the sigmoid function.
[224] The model fitting procedure is based upon minimization of the mean standard

€rror:

(4.3.26) E(W,j,wjk)=2[z(t—i)—0'{ZWU iwjkz(t-—kr—i):”],

J=l
[225] The error measure Eq. (4.3.26) consists of two parts:

(4.3.27) E=E] +E2,

where E1 represents the contribution of a physical noise, while E2 results from non-optimal
choice of the parameters of the model of Eq. (4.3.25).

[226] There are two basic sources of tandom components E{ in time series. The first
source is chaotic instability of the underlying dynamical system; in principle, this component
of E] is associated with instability of the underlying model, and it can be represented based
upon known and understood stabilization principles. The second source is physical noise,
imprecision of the measurements, or human factor such as multi-choice decisions in
economical or social systems, or the driving habits in case of the catalytic converter of a car,
ete.

[227] The last component of E1 cannot be presented by any model based upon classical
dynamics, including Eq. (4.3.22). However, there are models based upon a speoial type of
dynamics called terminal, or non-Lipschitz-dynamics, which can simulate this component. In
the simplest case one can assume that E1 represents a variance of a mean zero Gaussian
noise.

[228] The component E2, in principle, can be eliminated by formal minimization of the
error measure Eq. (4.3.26) with respect to the parameters Wy, wi, 7, m, my, myz, and s.

[229] Since there is an explicit analytical dependence between E and W7j, wjk, the first
part of minimization can be performed by applying back-propagation. However, further
minimization should include more sophisticated versions of gradient descent since the

dependence E(z m, m], m3, s) is too complex to be treated analytically.
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4.3.1.4 ANOMALY DETECTION

[230] As discussed in the previous section, there are two causes for abnormal behavior
in the solution to Eq. (4.3.25): 1) Changes in external forces or initial conditions (these
changes can be measured by Lyapunov stability and associated with operational
abnormalities). 2) Changes in the parameters W, wjk, i.e., changes in the structure of the
function F in Eq. (4.3.22). (These changes are measured by structural stability and associated
with structural abnormalities. They can be linked to the theory of catastrophe).

1231} The measurc we use for anomaly detection in the non-linear component is:

(43.28) {:Z[(Wu ~W, j)z +(w,.j —VC,.jﬂ.

where #j and wij, are the nominal, or “healthy” values of the parameters, and Wj, wj, are

their current values. If

(4.3.29) ¢=id,

where & is sufficiently small, then there is no structural abnormalities. The advantage of this
criterion is in its simplicity. It can be periodically updated, and therefore, the structural
“health” of the process can be easily monitored.

[232] Similar criteria can be generated for the parameters of the linear component, &,
and the noise component which is modeled by the variance or higher moments.
Unfortunately, there is no general method for setting the threshold, €, other than experience

and heuristic methods., This is a problem faced by all fault diagnosis.
4.4 PREDICTIVE THRESHOLDS (PROGNOSTIC ASSESSMENT)

[233] Referring now to Fig. 10, the prognostic assessment component 212 shown in Fig.
2 comprises a channel level prognostics algorithm. Tt is intended to identify trends which
may lead sensor data values to exceed limit values, such as redlines. A stochastic model such
as the auto-regressive model is used to predict values based upon previous values, i.e.,
forecasting, The aim is to predict, with some nominal confidence, if and when the sensor
values will exceed its critical limit value, This permits warning of an impending problem

prior to failure.
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4.4.1 FORECASTING TIME SERIES

[234] In general, time-series forecasting is not a deterministic procedure. It would be
deterministic only if a given time series is described by an analytical function, in which case
the infinite lead time prediction is deterministic and unique based upon values of the function
and all its time derivatives at # = 0. In most sensor data, this situation is unrealistic due to
incomplete description by the analytic model, sensor noise, etc. In fact, the values of a time
series may be uncorrelated with the previous ones, and an element of randomness is
introduced into the forecast. Such randomness is incorporated into the underlying dynamical
model by considering the time scries for £ <0 as a realization of some (unknown) stochastic
process. Then the future values for ¢ > 0 can be presented in the form of an ensemble of
possible time series, each with a certain probability (Fig. 8). After averaging the time series
over the ensemble, one can represent the forecast in the form shown in Fig. 9, i.e., as the
mean value of the predicted data and the probability density distributions.

[235] The methodology of time serics forccast is closely related to those of model fitting
and identification, as discussed in the Dynamical Invariant Anomaly Detector section above.
In general, the non-stationary nature of many sensor data may lead to misleading results for
future data prediction if a simple least-square approach to polynomial trend and dominating
harmonics is adopted. The correct approach is to apply inverse operators (specifically
difference and seasonal difference operators) to the stationary component of the time series
and forecast using past values of the time series.

[236] To illustrate this methodology, start with a time series:

(4.4.1) x=x()i=0L..,N
and assume, for demonstration purposes, that its stationarization requires one seasonal
differencing:
C(442) =V =X %
(4.4.3) y=y(t),i=0L.,N-s
and one simple differencing:
4.4.4) 2, =VY, =Y =Y
(4.4.5) Z=Z{),i=01.,N~5-1.
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[237] Bascd upon the methodology discussed in section 4.2, oné can build a model for
Eq. (4.4.5) as:

4.4.6) Z,=F(Z,_,Z yZ _,)+R .

[238] Here F may include a linear component in the form of én auto-~regressive process,
as well as a nonlinear component, represented by a neural network formalism. Ry isa
sequence of independent random variables characterized by a certain variance,o?, which
does not depend upon time; i.e., R¢-1 is an error of representation of the time series Eq.

(4.4.5) by the analytical expression:

@47 Z, = F(ZosZygwrZo) -

A model for the original time series can be easily derived from Eq. (4.4.6) based upon Eqgs.
Eq. (4.4.4) and Eq. (4.4.2). Eq. (4.4.3) becomes:

(448 Vi=yatF ([yt—l - yl—ZlJ[yl—Z ~Via ]"“’[yr—-m = Vi ]) R,

and Eq. (4.4.1) becomes

(@49) % =50 =%y +F (50 =5y =% ] Ks = =t T ]+ R
[239] Thus, it follows from Eq. (4.4.9) that each new value of the time series can be
predicted if the past (m-+s+1) values are known. Hence, if

(4.4.10) Nzm+s+1

all the necessary values of the variable x are available.
[240} However, in order to predict all the firture values by means of successive iterations
of Bq. (4.4.9), one has to find the next values of the last term, R, Rys1, etc. Formally this is

not possible since, as follows from Eq. (4.4.7),

(44.11) R =Z —F(Z,Z,sZ, 1)
and these values depend on the values, x;, x;:/, etc., which have not yet been measured. This
is why the deterministic forecast of future data cannot be achieved in general. Turning to the

probabilistic approach, recall that the lime series R are represented by a sequence of an
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independent random variable, whose probability density does not depend upon time, since the

time dependence of the statistical properties of Ry was eliminated in the course of
stationarization (Eqs. Eq. (4.4.2) and Eq. (4.4.4)) while all the correlated components were
captured by the mathematical model in Eq. (4.4.9). Hence, the only statistical invariants of Ry
are the invariants of its probability density, i.e., the mean, the variance, and the higher
moments, This means that all the values, R, R+, etc., can be drawn randomly from the time

series,

(4.4.12) Ro, Ry, Rape s Rug
Obviously, each sample

(4.4.13) RO R® . ete,i=12,.,P
will lead to different predicted values for

(4.4.19) ‘ xP,x8,. . etc,i=12,.,P

1241] However, since all of the samples in Eq. (4.4.13) are statistically identical, all the
predicted values will represent different realizations of the same stochastic process forming
an ensemble.

[242] For each x; one can find the probability distribution function;

(4.4.15) FEPY=PX =x)
by plotting a histogram for the function:

(4.4.16) W x@ L0
[243] Since the original time series Eq. (4.4.1) is non-stationary, the probability
functions Eq. (4.4.15) will depend upon time (illustrated in Fig. 7B). Therefore, for each x¢

one can compute the statistical invariants such as the mean,

(4.4.17) = ix,mf,- =)

i=l

the standard deviation ¢,
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(44.18) o :[i(x,"" —;x)’.ﬁ(xf"’)}m
i=l
as well as higher moments:
(44.19) M= i & =@ [G)
i=l
[244] Similarly, if one wants to forecast the time, #, when the values of the time series

will reach a particular value x, Eq. (4.4.9) can be evalvated many times for which i, =¢,_,

is realized to generate a list of #;,:

I (@ )
(4.4.20) D2,

from which a probability distribution function,
(4.4.21) FEY=PX =£)

can be created to determine the confidence interval or the likelihood of reaching #r at certain
time, t.
4.4,2 TMPLEMENTATION ARCHITECTURE

[245] The implementation architecture for the Channel Prognosis module is shown in
Fig. 10 below. The Predictor 1002 is fed stationary data, the auto regressive model
coefficients, past raw data values, and limit values, i.e., ever)'{hing required to evaluate Eq.
(4.4.9) plus a redline value at which to stop the computation. The predictor will generate
many predictions of when the channel value will reach the redline limit value and pass them
on to the Redline Confidence Estimator 1004, The Redline Confidence Estimator will then
construct a probability distribution of the time when the channel value will exceed the redline
limit. Finally, the Failure Likelihood Estimator 1006 takes the probability distribution for ¢
and computes the likelihood (probability) that the channel value may exceed the redline value
within some critical time ;. If the probability exceeds a certain threshold, e.g., 99%
confidence, then the critical time and its probability will be sent to the Causal System Model
216, which is discussed in section 4.5.

[246] Implementation of the prognostic assessment component 214 is relatively easy
provided guidelines exist about the allowed performance of each parameter. The model
coefficients are aixtomatically sensed from data, leaving only the selection of a threshold —

usually determined by control functions — to be determined.
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4.5 SYMBOLIC COMPONENTS

[247] The present invention is a system comprising a collection interrelated components
configured to operate in accordance with numeric and symbolic algorithms with their
combined result being a deep understanding of the current and predicted health of a system.
The invention uses a collection of novel numeric and symbolic approaches to synergistically
perform real-time diagnosis and prognosis. These components in combination have the
capability to fuse and simultaneously analyze all system observables and automatically
abstract system physics and information invariants.

{248] One of the biggest weaknesses of a purely symbolic approach is that they only
detect and diagnose predicted problems while missing all unmodeled events or incorrectly
identifying an unmodeled event as a modeled one. The numeric algorithms of the present
invention are used primarily to detect unmodeled events whereas the symbolic algorithms are
used to predict expected behavior, correlate it to the unmodeled events and interpret the
results. Combining these two methodologies makes it possible to correcily detect and
diagnose modeled and unmodeled events in real-time.

[249] The combination of the two approaches provides an ulira-sensitive capability to
find degradation and changes in a system and isolate those changes in both space and time
and relate the failure to the physical system being modeled with near zero false alarms.

{2501 This section focuses on the symbolic components of the system that model

expected behavior and diagnose predicted faults and fuse the numeric engine results to form

" an overall conclusion to the health or future health of the system. The symbolic components

consist of the following:

Symbelic Data Model
Predictive Comparison
Causal System Model
Interpretation Layer

Lol S

Each of these will be studied individually.

4.5.1 METHOD OF APPROACH

[251] Our approach uses multiple knowledge representations for providing an

automated capability to predict the current system state; detect failures; combine the former
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iteins with detected unmodeled events from the numeric engine; and interpret the final results .
and relate it back to the original models.

[252] The technical approach is to monitor all real-time data and actual operational
stresses imposed upon a system (real-time data), model expected behavior and performance
(engineering models), model causal interrelationships between predicted failures and
unmodeled events (causal system model), detect anomalies (real-time data and inference} and
translate a series of source hypotheses to one or more combined and focused hypotheses (see
Fig. 11).

[253] Real-time measurements are combined with predicted and expected behavior
along with predicted performance to quickly isolate candidate faults. The causal systom
model is then used to perform a deeper analysis to analyze the problem in detail and climinatc
incorrect hypotheses. Elimination of incorrect hypotheses helps to eliminate incorrect
conclusions caused by incomplete knowledge. This information is stored and automatically

reused to constantly refine the inference strategies to avoid dead-end paths.

4.5.2 PRESENT PRACTICE

[254] Traditional practice for automatic fault detection and recovery has been a
combination of detecting alarm conditions, derived from elaborate and cumbersome fault
trees, and a priori predictions of expected failures based upon enginedering models or fault
estimates. This is 2 systematic and definitive way of understanding health management,
which is inefficient.

[255] The problem with this methodology is that it is designed to always assume the

_worst case in system reliability because maintenance is based upon hours-in-use assumptions:

and unanticipated failures rather than operational stresses. This is like replacing the engine of
a car when it reaches 200,000 miles because that is its anticipated lifespan. In reality, the
lifespan of the engine depends upon the environment, how the car was driven, its service
record, etc.

[256] A more serious problem with this approach has to do with predicted diagnostic
space coverage. It has been shown that only twenty to thirty percent of faults can be
predicted in advance. This leaves the diagnostic system blind to at least seventy percent of
the problems that could actually occur in an operational system.

[257] The more accurate and cost éffective approach is to predict failures based upona
combination of physics models, numeric analysis, and symbolic analysis techniques,

including a symbolic data model of the predicted behavior of the system. This would include
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all explicit failures and predicted states. This information is combined with unmodeled
events through relationships between what is known or could be related to explicit failures
with respect to the current state. This provides an efficient transition in the diagnostic
paradigm from assumed failures versus which parts must be replaced. The net effect of this
approach is to provide all traditional automatic health monitoring capabilities, as well as the
ability to track minute system changes over time, and to detect and predict unmodeled system
failures.

[258] The present practice to diagnose and prognose systems is to anticipate all one-
point and two-point failure modes. Elaborate checklists are constructed which, it is hoped,
will serve to identify all of these failure models and recommend their corresponding
maintenance actions.

259] The inherent problem is that as the complexity of the system increases, the
resources required to anticipate failure modes and construct exhaustive checklists becomes
exponentially expensive. Furthermore, for diagnostic and prognostic analysis, checklist
actions seldom embody the rationale for the procedures that are being followed. This can
make it tedious and difficult for humans who are performing the maintenance to focus on the
immediate problem at hand.

[260] These techniques are often insufficient in many monitoring, diagnostic or
maintenance applications. Control and diagnostic mechanisms in these approaches cannot be
dynamically matched to the exigencies of the situation. They are typically inflexible and
cannot easily accommodate the reconfiguration or modification of the system under test.
Such systems are usually unresponsive to the varying degrees of skill of the different
technicians who use them. Poor real-time performance is also symptomatic of conventional
automation approaches to diagnosis and maintenance.

[261] Furthermore, as a maintenance prediction or diagnostic tool, checklists seldom
embody the rationale for the procedures that are being followed. This can make it tedious
and difficult for humans who are performing checklist actions to focus on the immediate
problem at hand.

[262] An important consideration in a real-time system is quick responses to system
failures and maintenance predictions may be critical. The ability of human operators and
maintenance personnel to compensate for a failure, determine a diagnosis with incomplete or
partial information and quickly institute a recovery or maintenance procedure diminishes as

system complexity increases. These considerations make the ability for long-term wear .
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detection combined with maintenance recommendations very desirable and an excellent

candidate for automation.

4.5.3 TECHNICAL OVERVIEW

[263] Traditional expert systems for diagnosis utilize only a single kind of knowledge
representation and one inference mechanism. Our approach uses real-time measurements
along with predicted and expected behavior, past performance, and unmodeled event
detection to quickly isolate candidate faults. Combining these methodologies makes it
possible to correctly detect and diagnose modeled and unmodeled events in real-time. The

technical approach is as follows:

1. Monitor all real-time data and actual operational stresses imposed upon a system
(real-time data).
2. Model expected behavior and performance (engineering models)
3. Causal interrclationships between from predicted failures and unmodeled events
(Causal system model)
4. Detect anomalies (real-time data and inference)
5. Translatc a scries of source hypotheses to one or more combined and focused
hypotheses.
[264] The causal system model 216 is used to perform a deeper analysis, using rules
supplied by engineers, to eliminate incorrect hypotheses. This information is stored and
automatically reused to constantly refine the inference strategies to avoid dead-end paths.
[265] Using the symbolic components for diagnosis and modeling and BEAM for
detection and prognostics, it provides a complete and unified diagnostic and prognostic
system to diagnose prognose and interpret modeled and unmodeled events. This makes
multiple tools unnecessary for the detection, diagnosis, prognosis and modeling functions. In
this manner interfacing and representation of information is much easier and provides a
single, clean and concise solution.

1266] Let us examine the particular components in detail individually.
SYMBOLIC DATA MODEL

[267] The Symbolic Data Model (SDM) 204, illustrated in Fig. 12 above, is the first line
of defense in determining the overall health of the system and it is the primary component
that determines the system’s active states and predicted statcs. It operates by examining the
values from status variables and commands to provide an accurate, evolving picturc of ..

system mode and requested actions. Since most rule-based diagnostic systems (expert
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systems) provide only this module and nothing else, they are limited in that they can only
identify and diagnose anticipated problems.

[268] Knowledge in the SDM is represented as rules, which are composed of patterns.
The rule is the first Aristotelian syllogism in the form: If ... Then... . The variables of the
syllogism are joined by the And/Or logical connections. The selector Else points to other
cases. This formula is a rule; the rules are sequenced in the succession of logical thinking or

pointed at a jump in the sequence (Else -> Go To).

If Pattern

Then Action

[269] Patterns are relations that may or may not have temporal constraints, 1.., may
only hold true at certain times or persist for the entire duration of the analysis. Patterns
define the constraints that must hold true in order for the antecedent to succeed. Some
examples of relations are:

® SNR <60 and SNT > .68

e SNR < 20 While State = “Idle”

» Remaining Distance * MPG <= Remaining_Fuel
[270] Conceptual representation is the main way for putting the patterns of the system
into a computer program. The task of concatenation of pattern situations, preparation of the
ways of reasoning, inference is the procedural reprcsentation of the meta patterns. The
essential tool the SDM uses is a rule; that is the rcason why another name for expert systems
is rule-based system.
[271] The SDM operates by using many small slivers of knowledge organized into
conditional If-Then rules. These rules are then operated on in a variety of different ways to
perform different reasoning functions.
272] Relational representation of traditional logic is occluded by the Closed World
Assumption, which includes only a limited number of concepts and relations, and supports
the hypothesis that the entire problem domain is explorable in a well-defined way.
Uncertainty methods open some windows to the real world of unexplored, unexpected
phenomena. This is especially true for the non-traditional uncertainty methods that ignore the
hypothesis of excluded middle and of independence of basic events. The price of 2 more

permissive method is the increased softness of their basic model and consequently the
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inefficiency of reasoning capability. From the point of view of logical and mathematical
rigor, they are less and less welcome.

[273] To avoid these obvious pitfalls the SDM uses modal operators. Modal operators
grew out of the modalities of classical logic, i.e. the limitations of the validity to certain
subjects and interpretation of fields. We accomplish this by providing a rich set of quantifiers

for the patterns. The following modal operators are provided:

1. Ttis necessarily true that x Alethic logic

2. Ttis possibly true that x ) Alethic logic

3. It will always be true that x Temporal logic

4, Tt will be sometimes that x Temporal logic

5. It ought to be that x Deontic logic

6. It can be that x Deontic logic

7. Itis known that x Logics of knowledge

8. The opposite of x is not known Logics of knowledge

9. Itis believe that that x Logics of belief

10. The opposite of x is not believed Logic of belief
[274] Because the numeric models take a certain amount of time to ascertain the current

health of the system, the SDM is the primary defense in diagnosing its instantaneous health.
Its primary input is the discrete data stream comprising the system status variables and
system command information. This stream contains all the data channels that are necessary
for the SDM to make an analysis.

[275] Unlike the numeric models, the SDM requires a knowledge base in order to
perform its analysis functions. From several points of view, representation of knowledge is
the key problem of expert systems and of artificial intelligence in general. It is not by chance
that one of the favorite namings of these products is knowledge-based systems.

[276] The generic features of knowledge are embodied in representation. The domain
expert stores the objects, actions, concepts, situations and their relations using the SHINE
representation language (see SHINE description) and this is stored in the SDM knowledge
base. The collection of this knowledge represents the sum total of what the SDM will be able
to understand. The SDM can only be as good as the domain expert that taught it.

[277] At the front end of the SDM is a Discrete Filter 1202, The purpose of the filter is
to act as a ratc governor to limit the amount of data being sent to the SDM at any given
moment. Unlike the numeric models which have to analyze a broad spectrum of data to look

for their correlations, the SDM, being a knowledge-based system knows at any given moment
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all the information that it will require to make its analysis. The SDM adjusts the discrete data
filter so that 'the. information content is maximized and superfluous data is eliminated.

1278] One of the common problems with monitoring real-time data streams is that the
data often does not arrive in a consistent order. We have often found thaf related data from
one source arrives long after its partnering data from another source. For example, you can
be monitoring data from two different instruments. Each of these instruments can be
producing their results at different data rates or, even worse, be delayed by some special
processing. In a traditional expert system this would wreak havoc because they operate on
data that is aligned on data frame boundaries. When data is skewed across multiple frames,
then the expert system loses the operational context and gets confused because of conflicting
contradictory data arriving.

[279] We eliminate this shortcoming by introducing a Discontinuous Temporal
Ordéring Event Detector (DTED) 1204. The DTED automatically derives temporal
relationships from the knowledge base to allow data to arrive across multiple frame
boundaries, i.e., their time tags do not exaétly match. This allows the SDM to delay its
conclusions until all the data arrives and if the arrival of the skewed data would cause a
change in its diagnosis, then those conclusions would be retracted before a false alarm or
incorrect derived state is asserted.

[280] The SDM generates two primary kinds of results: derived states and discrepancies.
To provide a uniform representation, we use the identical approach in performing each of
these functions and they differ only in their knowledge bases that they use.

[281] Since two knowledge bases are being used, it {s possible to generate erroneous
results when instantaneous state changes occur and generate spikes in the data streams. To
further eliminate false alarms we include an Event Correlator (EC) that matches the
anomalies with state changes to filter out transient events that are not sustained across
multiple frames. This provides for an even greater amount of insurance than when an

anomaly is genetated that it is in fact a real event and not transient phenomena.

PREDICTIVE COMPARISON

[282] The Predictive Comparison (PC) component 214 shown in Fig. 13 compares the
requested and commanded operation of the system versus the sensed operation as interpreted
from the time-varying quantities. Its goal is to detect misalignment between system software

execution and system hardware operation.
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- [283] The PC combines the results from the numeric and symbolic engines and looks for

confirmation and differences between them. It is the primary interface that merges the
symbolic results for the system predicted state and explicit failures with the suspected bad
channels from the dynamical invariant anomaly detector with the event signals from
coherence-based fault detection algorithms.

[284] Its result is a sequence of confirmed predicted failures and detected unmodeled
events. A failure is considered confirmed when both the numeric and symbolic engines each
predict the same failure or system state change. Unmodeled events are those cases where the
numeric and symbolic engines differ in their conclusions. The capability of having parallel
analysis engines running, each approaching the problem from an entirely different theoretical
foundation, makes our system different and more powerful than the others.

[285} This module uses generic symbolic processing algorithms and does not require a
knowledge base in order to perform its function. The following kinds of comparisons are

made:

1. Examines the system predicted state from the symbolic engine and correlates them to
detected events from the numeric engine. If the numcric engine generates an event
and it approximately correlates with a predicted state change, then the predicted state
is considered confirmed.

2. Examines the signals that are diagnosed as bad from the symbolic engine and
correlates them with the suspected bad signals from the numeric engine and when
there is agreement, then the channel is confirmed as bad. When there is a difference
between the two, the signal is marked as an umodeled event.

[286] The final component in the PC is to merge results from items 1 and 2 with the list
of explicit failures and events so multiple redundant conclusions of bad signals and

unmodeled events are not generated.

CAUSAL SYST DEL

Causal System Model
Inputs:

Predicted failures from predictive comparison
Unmodeled events from predictive comparison
Redline estimates from prognostic assessment
Discrete data

Outputs:
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Source hypothesis

[287] The Causal System Model (CSM) shown in Fig. 14 is a connectivity matrix
designed to improve source fault isolation and actor signal identification. Tn the SDM, the
entire domain knowledge is represented as If-Then rules only. When the domain is very large
and complex, an entirely rule-based representation and associated inference leads to a large
and inefficient knowledge base causing very poor focus of attention. To climinatc such
unwieldy knowledge bases in the SDM engine 204, we provide a causal system model. This
allows the same problem to be simplified in the SDM by providing a component that
automatically looks for relationships between observations in the data to fill in the blanks or
gaps that are not explicitly provided from the SDM.

[288] The purpose of the Causal System Model (CSM) is to relate anomalous sensor
readings to a functional unit of the system. If the anomaly corresponds to a known fault
mode and/or shows up only in discrete data, we are confident which part of the system is
functioning incorrectly. The more complex case is for novel, unmodeled events. Given the
“unmodeled event” data, the goal is to identify which signals contribute to the event. The
sensor signals are combined with faults that we know about, giving us a large collection of
signals all taking part in the anomaly. Each signal originates somewhere in the system, so we
have implicated a large number of components as potentially failed. But most of these are
secondary effects. We need to [ind the root cause.

[289] This is accomplished by decomposing the problem into smaller modules called
knowledge sources and by providing a dynamic and flexible knowledge application strategy.
The same concept can be extended to problems requiring involvement of multiple agents
representing different domains.

[290] The CSM reacts as and when conilicts arise during problem solving and uses
conflict-resolution knowledge sources in an opportunistic manner. Essentially, the CSM
provides a high-level abstraction of knowledge and solution and the derived relationships
between observation and implication. '

[291] The three basic components of the CSM are the knowledge sources, blackboard
data structure and control. In the CSM, knowledge required to solve the problem is
decomposed into smaller independent knowledge sources. The knowledge sources are
represented as SHINE If-Then rules. Bach rule set or knowledge source contains knowledge
for resolving one task in the diagnostic model. The blackboard holds the global data and ;hc

information on the problem-solving states. Activation of the knowledge sources modifies the
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states in the blackboard leading to an incremental causal relationship for actor signal
identification.

[292] Since the causal relatioqship is decomposed into a hierarchical organization, the
concept of an event becomes predominant in this blackboard-centered strategy. Any change
in the blackboard is considered an event. Any change in the solution state either due to
generation of additional information or modification of existing information is immediately
recorded. The execution controller notes this change and takes the necessary actions by
invoking an appropriate knowledge source. This process repeats until the final causal
relationship is obtained.

[293] Since the CSM is feed with a‘ real-time stream of events (anomalies, suspected bad
signals, events and unmodeled events), the arrival of a new event can make a previous
concluded causal relationship incorrect. In such cascs, corresponding stages have to be
undone by backtracking all the previously made assumptions leading to the reasoning to be
non-monotonic. This requires a dependency network to be incrementally maintained as the
causal assumptions are generated using the knowledge sources.

[294] Fig.14 shows a block diagram of an illustrative embodiment of this aspect of the
invention. The processing block 1402 bundles the conclusions from the symbolic and
numeric components to create the complete list of affected signals. The block comprises two
knowledge sources 1412 and 1414. This can be done for diagnosis (the Predicted Failures
path) or for prognosis (the Redline Estimate path). In the former, we are including signals
that demonstrate explicit failures. In the latter, we include signals that are expected to cross
redlines soon, as reported by the Prognostic Assessment module. The SHINE inference
engine 1404 relates the signals to functional blocks in the system. The cascading failures
block 1406 backsolves through the system block representation to contrive a minimum

hypothesis.

INTERPRETATION LAYER

[295] The Interpretation Layer (IL) 218 of Fig. 15 collates observations from separate
components and submits a single fault report in a format usable to recovery and planning
components or to system operators. This is a knowledge-based component that is totally

dependent upon the domain‘and the desired format of the output.
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[296} As itts inputs it accepts a list of events from the CSM and possible conclusions
from the SDM as described above. Any supported conclusion that the SDM generates is
considered a final output and is translated into the required output format.

[297] The CSM events can be decomposed into rule-based anomalies and detected
events from the numeric engine. The interpretation layer performs a many-to-many mapping
of faults (events) to interpretations. Each interpretation has a context associated with it.
Because of this context, when multiple interpretations are generated within the same context,
they can be grouped together as one interpretation containing several elements. This is
typical of events in complex systems in general.

[298] Contexts are assigned by a contexinal engine within the interpretation layer. Its
purpose is to look for commonalties among each unique interpretation. In this manner if
there is either a causal or interdependent relationship between interpretations, they are
considered as possibly related. For example, if we have an alarm condition occurring on
signals moniforing volts and/or amps, and the SDM concluded a fault based upon the number
of watts generated, the engine will combine the volts and amps alarms with the watts
conclusion. This provides for a very concise statement of the fauit at hand without the user
being deluged with disjointed information from many different sensors.

[299] The final reduced set of interpretations is processed by a component that reduces
interpretations to conclusions. A rule-based model is uspd to apply relationship definitions
between interpretations, their causal relationships and their supported conclusion. For
example, if the SDM did not generate a conclusion for watts being in alarm based upon the
signals of volts and amps being overranged, then such a conclusion can be made here and

gencrated as a final output.
4.54 IMPLEMENTATION

{300] Detecting modeled and unmodeled events and system prognostics using real-time
inputs makes use of multiple types of knowledge such as detection, diagnostic, simulation
and causal modeling. To combine these different approaches heuristic, experiential
knowledge is used to quickly isolate candidate faults and then use deeper eausal model-based
reasoning to analyze the problem in detail and eliminate incorrect hypotheses.

[301] The Symbolic Data Model is a knowledge-based system that provides a control
structure that can easily swilch between different Lypcs of knowledge and reasoning
strategies. In addition, it provides multiple knowledge representations suited to each type-of
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knowledge employed and provides mechanisms to move casily from onc representation to the
next during problem solving.

[302] Part of our system uses an approach based upon DRAPhys (Diagnostic Reasoning
About Physical Systems) developed at NASA Langley Research Center. One advancement
over the DRAPhys system is that we include knowledge-based modules for specific strategics
of diagnostic reasoning that do not need tight coupling. This makes construction of the
expert system much easier because software and domain knowledge can be reused for models
of different hardware. Like DRAPhys system, we include a knowledge—base(i model that
preprocesses the qualitative interpretation of sensor data prior to analysis.

[303] The input is quantitative sensor data from either a real-time data source or
archived data. This can take the form of a real-time data stream, or a “beacon” approach
using only significant events. ‘
[304] The fault monitor compares the sensor data with the output of the quantitative
model that simulates the normally functioning physical system. The monitor signals a fault
when the expected system state derived from the system model differs from the actual system
state. The expected behavior is a combination of engineering predictions from the Gray Box
physical model representation and real-time sensor values.

[305] When a fault is detected, the monitor provides the diagnostic process with a set of
the abnormal sensor values in qualitative form, e.g., the symbol signal to noise ratio is
exceeding predictions with respect to current ground system configuration, along with time
tags to show the temporal ordering of symptoms.

[306] The diagnostic process is divided into several discrete stages and each stage hasa
unique diagnosis sﬁ'ategy. Each of these stages and their relationships to one another are

described below.

Stage 1: Diagnosis by Fault-Symptom Association

[307] The first stage utilizes heuristic, experiential knowledge generated from the
expertise of enginecrs to compare fault symptoms with known fault types and failure modes.
The most commonly occurring faults are diagnosed in this stage. However, the first stage
will be unable to identify the cause of failures or predicted failures that are unusual or

difficult to determine from the qualitative sensor information provided.
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Stage 2: Model-based Diagnosis

[308] The scoond stage of the diagnostic process is a knowledge-based system that is
based on a functional model of the underlying system.

[309] The purpose of this stage is to localize a fault by devising hypotheses based on
how the effects of the fault would propagate through the subsystem. When this stage fails to
identify a unique failure or maintenance prediction, then the third stage of diagnosis is

entered.

Stage 3; Numeric Apalysis

[310] In this stage the system uses sensor data, results from software, and commands
which are simultaneously fused in real-time to automatically abstract system physics and
information invariants (constants). This makes the system ultra-sensitive to system
degradation and change so that shifts can be isolated in time and space to specific sensors.

The numeric analysis modules predict faults prior to loss of functionality.

Stage 4: Interpretation Layer

[311] The numeric components excel at flagging individual or combined sensors that
show abnormal values, but it does not relate the sensors to actual physical systems. The
interpretation layer combines the numeric resulis with the symbolic results to form an

integrated conclusion about the failure or set of failures in the system.

- [312] When a unique diagnosis cannot be identified, the system will provide information

about potentially failed functions in order to aid more efficient diagnosis or repair of the
problem.
4.5.5 TECHNICAL PERSPECTIVE

[313] Our system is specifically designed for real-time fault detection and prognostics of
modeled and unmodeled anomalies. It differs substentially from other systems that only
identify the fault. The objective is to not only identify the fault from multiple stages of
analysis, but to determine the effects that the failure will have on the functionality of the
subsyster as a whole, and what remedial actions are most appropriate to correct the

deficiency. Multiple levels of abstracted diagnostic capability applied to all affected
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subsystems provides the ability to determine the overall effect of faults on system
performance.

[314] Real-time performance affects the information available for diagnosis and the
particular reasoning strategies that may be employed. One consideration is that a physical
system’s behavior may change as time progresses while performing fault diagnosis. During
diagnosis, failure effects may propagate to other flinctionally or physically connected
subsystems. This dynamically changes the failure symptoms with which the diagnosis
system must reason. We intend to make use of this dynamically changing information about
the system to identify the specific physical cause(s) of a failure, the fault type, responsibility
and affected system components and the fault propagation history.

[315] Each stage of the diagnostic process utilizes the sequence of changing fault
symptoms to focus the reasoning process and eliminate fault hypothescs. The first stage
includes a rule-based system that includes temporal reasoning functions. This helps capture
knowledge about changing symptoms associated with specific failures. For examplc, when
we have excessive phase noise in a receiver, then the system will observe the symptoms as,
“The receiver goes in and out of lock ...”. Using dynamic information early in the diagnostic
process helps to distinguish among faults that may have the same initial symptoms but
diverge in subsequent behavior. For example, it could be an unexpected transient weather
condition or a slowly degrading receiver or a drifting antenna error.

[316] The functional and physical models used by the second stage can be thought of as
a constraint—based dependency network. A functional interaction or physical adjacency
between two subsystems is represented as a dependency association in the network.

[317] The diagnostic process in stage two attempts to map failure symptoms to specific
components in the models and then determine the additional affected components by tracing
through the network. The time-order of symptoms benefits this process by suggesting or
confirming a sequence of components affecied by the failure.

[318] The first component in a functionally connected sequence of components
exhibiting failure symptoms is deduced to be the component responsible for the failure. A
model of physical adjacency is used to resolve ambiguity, such as when a fault propagates
physically between subsystems that are not functionally connected.

[319] The interpretation layer combines the results from the numeric and symbolic
engines and maps them to the physical model for easy identification. It also takes collections
of interrelated failures, e.g., a cascading chain of failures originating from a single point, and

relates it to the single failing point rather than all the symptoms.
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2. The method of claim 1 wherein the correlated si gnals are based on a coherence coefficient
¢y, defined by:

WHAT IS CLAIMED 1S:

1. A method for diagnosis and prognosis of faults in a physical system comprising:

providing sensor data representative of measurements made on the physical
system, the measurements being representative of values of signals produced by

the physical system;

producing model enhanced sensor signals by fitting the sensor data to at least a
partial physical model of the physical system;

identifying correlated signals from among the sensor data;
comparing the correlated signals with expected correlated si gnals to detect one or
more oceurrences of events, the expected correlated signals representative of

known operating conditions of the physical system;

providing discrete data representative of system status variables and System
command information,;

detecting discrepancies among the discrete data;

identifying the one or more occurrences of events as unmodeled events based at

least on the model enhanced sensor signals; and

verifying faults based o the discrepancies among the discrete data,
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_ eev(sus))]
Max(Var(S,),Var(S/)

W ) , where

Si and §; are the signals produced by the physical system,

Cov(S,,S})=tlj'(S, -5)(8,~3;)dr, and

Var(S,):-:-'KS, -5 ).

3. 'The method of claim 1 further including performing a training sequence to produce

the expected correlated signals.

4. The method of claim 1 further including identifying suspect bad signals by detecting
discrepancies among the sensor data based on a statistical model of the sensor data,
wherein the step of identifying the unmodeled events is based on the suspect bad signals
in addition to the model enhanced sensor data.

5. The method of claim 4 further including identifying statistical components of the

sensor data, wherein the statistical model is based only on the statistical components of
the sensor data.

6. A system health moniter for diagnosis and prognosis of faults in a physical system
being ronitored comprising:

amodel filter having at least a partial model representation of the physical system,
the model filter operable to produce a plurality of model enhanced signals based
on sensor data, the sensor data representative of measurements made on the
physical system;

a symbolic data model operable to produce predicted system states bascd on
discrete data comprising system status variables and system command
information, the symbolic data model further operable to detect discrepancies
among the discrete data;

a first anomaly detector operable to identify unmodeled events by computing one
or more coherence statistics from the sensor data and comparing the coherence

statistics against expected coherence quantities indicative of known operating
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conditions of the physical system;

a predictive comparator module operable to confirm a failure based on detected
discrepancies among the discrete data, and to distinguish the unmodeled events

from modeled events based at least on the model enhanced sigmals;

a prognostic assessment module operable to produce predicted faults using a
stochastic model of the sensor data to produce future values of the sensor data

from the stochastic model; and

a presentation module for presenting information relating to the health of the
system comprising detected discrepancies, a categorization of modeled and
unmodeled events, and predicted faults, the information suitable for 2 human user

or a machine process.

7. The system of claim 6 further including a second anomaly detector operable to detect
discrepancies in the sensor data based on a statistical model of the sensor data, the
discrepancies in the sensor data being identified as suspect bad signals, the predictive
comparator further distinguishing the unmodeled event from the modeled events based
on the suspect bad signals.

8. The system of claim 6 further including a filter to identify deterministic components
contained in the sensor data and to produce residual data from the sensor data that is
absent the deterministic components; and a second anomaly detector operable to detect
discrepancies in the sensor data based on a statistical model of the residual data, the
discrepancies in the sensor data being identified as suspect bad signals, the predictive
comparator further distinguishing the unmodeled cvent from the modeled events based
on the suspect bad signals.

9. The system of claim 6 wherein the coherence statistics are based on a coherence cocfficient,
¢ij» defined by:
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__ oov(s,s)
v Max(Var(S,), Var(S, ))

, Where

S, and ) are the signals produced by the physical system,

Cov(s,,5,) =% [(8,~5)(s,-5,)dr, and

Var(S,):%'I(S, -5 ).

10. A computer program produet effective operating a computer system for diagnosis

and prognosis of faults in a physical system comprising;

computer-readable media; and

computer-executable instructions recorded on the computer-readable media
comprising;

first executable program code effective to operate the computer system to receive
sensor data representative of measurements made on the physical system and to
receive discrete data, the measurements representative of values of signals
produced by the physica system, the discrete data representative of system status
variables and system command information;

second executable program code effective to operate the computer system to

produce model enhanced sensor signals by fitting the sensor data to at least a
partial physical model of the physical system;

third executable program code effactive to operate the computer system to identify
comrelated signals from among the sensor data,

fourth executable program code effective to operate the computer system to
compare the correlated signals with expected correlated signals to detect one or
more occurrences of events, the expected correlated signals representative of
known operating conditions of the physical system; and

fifth executable program code effective to operate the computer system to identify

the one or more occurrences of events as unmodeled events based at least on the
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model enhanced sensor signals, to detect discrepancies among the discrete data,

and to verify faults based on the discrepancies among the discrete data.

11. The computer program produet of claim 10 further including sixth executable
program code effective to operate the computer system to identify suspect bad signals
by detecting discrepancies among the sensor data based on a statistical model of the

sensor data, wherein the unmodeled events are further based on the suspect bad signals.

12. The computer program product of claim 11 wherein the sixth program code further
includes program code for identitying statistical components of the sensor data, wherein

the statistical model is based only on the statistical components of the sensor data.

13. The computer program product of claim 10 wherein the correlated signals identified
are based on a coherence coefficient, ¢, defined by:

‘= lCov(S,,S_, )l
’ Max(Var(.S}},Var(Sj))

, where

Sy and §; are the signals produced by the physical system;

Cor(s,5,) =1 (5, -5)(s, ~5,)a, ana
Var(S,)=%'J(S, -5 Y.

14. A system health monitor for detecting anomalies in a physical system being
monitored comprising:

amodel filter having at least a partial model representation of the physical system,
the model filter operable to produce a plurality of model enhanced si gnals based
on sensor data, the sensor data representative of measurements made on the

physical system;

a symbolic data model operable to produce predicted system states based on
discrete data comprising system status variables and system command

information, the symbolic data model further operable to detect discrepancies
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among the discrete data;
means for identifying correlated signals from the sensor data;

data store comprising a plurality of expected coherence quantities representative

of known operating conditions of the physical system;

means for selecting one or more of the expected coherence quantities based on the

predicted system states; and

means for identifying an unmodeled event by comparing the correlated signals
against one or more selected expected coherence quantities, wherein the

unmodeled event constitutes a detected anomaly.

15. The system of claim 14 further including training means for producing the cxpected

coherence quantities.

16. The system of claim 14 wherein the correlated signals are identified based on a

coherence coefficient, 4 defined by:

[@v(S,,&I)L

) Max(Var(s,),Var(s,))’

where

-

Sy and S are the signals produced by the physical system,

Cov(s,5,)= [(5,~5)(5, 5, )at and

Far(s)=f(s, -5 Yar.
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