(19)中华人民共和国国家知识产权局

(12)发明专利

(10)授权公告号 CN 105470809 B (45)授权公告日 2019.04.09

(21)申请号 201510941093.2

(22)申请日 2015.12.15

(65)同一申请的已公布的文献号 申请公布号 CN 105470809 A

(43)申请公布日 2016.04.06

(73)专利权人 西安炬光科技股份有限公司 地址 710077 陕西省西安市高新区丈八六 路56号陕西省高功率半导体激光器产 业园

(72)**发明人** 刘兴胜 蔡万绍 陶春华 邢卓 梁雪杰

(74)专利代理机构 西安智邦专利商标代理有限 公司 61211

代理人 胡乐

(51) Int.CI.

H01S 5/024(2006.01)

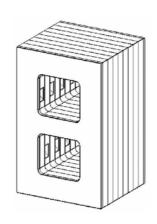
(56)对比文件

CN 205265035 U,2016.05.25,权利要求1-8.

US 2002/0110165 A1,2002.08.15,说明书第0010-0058段,附图1-6.

US 7660335 B2,2010.02.09,说明书第2栏 第11行至第3栏第47行,附图1-2.

审查员 蒋呈阅


权利要求书1页 说明书3页 附图4页

(54)发明名称

一种宏通道液体制冷器及其组合

(57)摘要

本发明提出一种宏通道液体制冷器及其组合。该宏通道液体制冷器,在液体制冷器的侧面 贯通开设有相互平行的入水口和出水口,液体制 冷器内部设置有宏通道的液冷回路,所述液体制 冷器内部具有多层分隔的循环水路;循环水路分 别自所述入水口起,绕经液体制冷器在制冷工作 面与入水口之间的区域再回流到出水口。本发明 的结构性好,刚性大,不易变形,适合后续组装; 独特的多层并联循环水路结构,显著提高了散热 效果。

- 1.一种宏通道液体制冷器,在液体制冷器的侧面贯通开设有相互平行的入水口和出水口,液体制冷器内部设置有宏通道的液冷回路,其特征在于:所述液体制冷器为一体件,在内部开设多层相互隔离的循环水路,循环水路所在平面与入水口、出水口贯通方向垂直,还与制冷工作面垂直;所述入水口和出水口的贯通方向与制冷工作面平行,且与安装在制冷工作面的堆叠式制冷对象的堆叠方向为同一方向;所述液体制冷器内部具有多层分隔的循环水路;循环水路分别自所述入水口起,绕经液体制冷器在制冷工作面与入水口之间的区域再回流到出水口。
- 2.根据权利要求1所述的宏通道液体制冷器,其特征在于:相邻两层循环水路在入水口、出水口处的通水接口对称设置,使相邻两层循环水路的流向相反。
- 3.根据权利要求1所述的宏通道液体制冷器,其特征在于:所述入水口位于制冷工作面的近端,出水口位于制冷工作面的远端。
- 4.一种宏通道液体制冷器组合装置,其特征在于:包括若干个权利要求1所述的宏通道液体制冷器,若干个宏通道液体制冷器的组合形式是:沿入水口、出水口贯通方向依次对准,使得所有宏通道液体制冷器形成统一的入水口、出水口;相邻宏通道液体制冷器的入水口、出水口位置安装有密封圈。

一种宏通道液体制冷器及其组合

技术领域

[0001] 本发明涉及一种宏通道液体制冷器。

背景技术

[0002] 高功率半导体激光器的散热设计是封装的核心内容之一。目前的高功率半导体激光器通常由以下几种方式封装:

[0003] a) 如图1、图2所示,激光器巴条直接键合到液体制冷器上,液体制冷器采用一种基于微通道的结构热沉。这种封装结构通过热沉的叠加可以实现较大功率的输出,但该方式封装的有如下缺点:首先,微通道容易因为水通道狭窄,容易造成堵塞;第二,热沉本身带电,所以必须采用去离子水进行冷却,且对于离子浓度有很高的要求;第三,微通道内的高速水流,会造成通道的侵蚀,导致产品失效;第四,微通道热沉的整体强度与刚度缺乏,容易在组装和制造过程中发生折弯、变形,从而影响封装的质量。

[0004] 这种封装因为巴条与热沉材料的CTE不匹配,通常只能选择软焊料封装以降低因为热应力造成的巴条内部微损伤甚至撕裂,制约了激光器可靠性的提升。这种封装形式的激光器巴条也可以先键合在CTE匹配的导电衬底(通常是铜钨)上,再封装到热沉上。这样的优点是可以使用硬焊料进行封装,但是却增加了散热路径,降低了散热能力。

[0005] 另外,还存在一种宏通道的热沉用于巴条的封装,类似图1所示结构,通过贯通的入水口、出水口起到散热的作用。其优点是通道较大,不易产生通道堵塞,液体的流速也会相对较低,可以减少通道的侵蚀。但是,这也造成了宏通道封装器件的散热能力较差、且存在通道内温度不均匀的问题,热沉也是带电的。所以这种封装只适用于在功率较低的应用场合。

[0006] b) 相关专利文献例如:US5105429、US5311530、US6480514、US6865200、US7016383,US7944955B2、US7660335B2等。常见的一种封装形式是:激光器巴条键合到CTE匹配的衬底形成一个发光单元,多个发光单元并列组合,封装到绝缘块上,再封装到通常为宏通道的热沉上。这样的封装形式,因为热沉与激光器发光组件整体绝缘,为后续的应用提供了方便,同时可以使用硬焊料封装,实现非去离子水(DIW)制冷。因为衬底与绝缘块的存在,该封装的主要缺点是巴条的散热路径比较长,难以适应高功率高占空比的场合。配合使用的宏通道液体制冷器可以通过水制冷或者其他方式制冷。基于这种热沉结构的每个产品,很难进行组装拼接以实现巴条数目的扩展。当需要更多bar条时,只能做不同尺寸的底部热沉进行匹配适应。

发明内容

[0007] 本发明提出一种宏通道液体制冷器的结构设计,散热效率高,结构性好。

[0008] 本发明的技术方案如下:

[0009] 一种宏通道液体制冷器,在液体制冷器的侧面贯通开设有相互平行的入水口和出水口,液体制冷器内部设置有宏通道的液冷回路,所述液体制冷器内部具有多层分隔的循

环水路;循环水路分别自所述入水口起,绕经液体制冷器在制冷工作面与入水口之间的区域再回流到出水口(即各层循环水路之间相互并联)。

[0010] 实现上述多层分隔的循环水路,优选以下两种具体结构:

[0011] 1、液体制冷器由多个独立的通水板沿入水口、出水口贯通方向层叠组成,在每个通水板的内部均设置有与所述入水口、出水口连通的循环水路;

[0012] 2、液体制冷器为一体件,在内部开设多层相互隔离的循环水路,循环水路所在平面与入水口、出水口贯通方向垂直。

[0013] 为进一步提高芯片组安装面的散热均匀性,相邻两层循环水路在入水口、出水口处的通水接口对称设置,使相邻两层循环水路的流向相反。

[0014] 入水口和出水口的贯通方向与制冷工作面平行。尤其对于堆叠式的制冷对象,所述入水口和出水口的贯通方向与安装在制冷工作面的制冷对象的堆叠方向为同一方向或者相互垂直。这样可以使得液体制冷器具有扩展性。最好使入水口位于制冷工作面的近端,出水口位于制冷工作面的远端。

[0015] 本发明还由此提出一种宏通道液体制冷器组合,采用若干个上述宏通道液体制冷器沿入水口、出水口贯通方向依次对准组装,使得所有宏通道液体制冷器形成统一的入水口、出水口;相邻宏通道液体制冷器的入水口、出水口位置安装有密封圈。例如,对于以堆叠方式形成的半导体激光器芯片组,在每个液体制冷器上安装芯片组构成一个激光器模块,能够实现多个激光器模块之间的电和水路的串联联接。

[0016] 本发明具有以下优点:

[0017] 液体制冷器的结构性好,刚性大,不易变形,适合后续组装;独特的多层并联循环水路结构,显著提高了散热效果。

[0018] 对循环水路的具体结构优化,使得散热均衡性更好,一定程度上也加强了安装芯片组的应力平衡。

[0019] 多个液体制冷器能够很方便地机械组装、维护,从而支持半导体激光器芯片组的扩展。

附图说明

[0020] 图1、图2为传统的芯片组-液体制冷器的安装结构示意图;其中,图1(a)为主视图,图1(b)为侧视图;图中标号:1-散热器(金属片);2-激光器芯片;3-负极连接片;4-绝缘层;5-入水口;6-出水口。

[0021] 图3、图4为应用本发明的芯片组-液体制冷器的安装结构示意图,其中图3为主视图;图4为侧视图。

[0022] 图5为本发明多个模块组装扩展的示意图。

[0023] 图6为本发明液体制冷器的一种层叠结构(多层通水板)示意图。

[0024] 图7为本发明液体制冷器的另一种层叠结构(一体件)示意图。

[0025] 图8为相邻两层通水板的循环水路示意图。

[0026] 图9为贯通的入水口和出水口的安装位置示意图。

具体实施方式

[0027] 以下结合具体的芯片组-液体制冷器的安装结构,对本发明的液体制冷器结构作详细介绍。

[0028] 如图3、4所示,激光器芯片12组装在高热导率、CTE匹配的导电材料的衬底11上。安装有激光器芯片的衬底通过高热导率的绝缘块13,组装到液体制冷器14上,组成一个激光器模块。液体制冷器侧面贯通开设有相互平行的入水口和出水口,液体制冷器内部设置有宏通道的液冷回路。使得多个激光器模块可以通过密封圈"无缝"联接,共享入水口15和出水口16,实现扩展,如图5所示。

[0029] 液体制冷器具体由多层通水板层叠组成,相邻两层之间流向相反,以实现激光器 安装面的散热均匀性。液体制冷器的液体制冷器对冷却水的冷却路径进行了规划,保证了散热的有效性、均匀性。液体制冷器从侧边进水,入口交叉,相互均衡。需要说明的是,除了图8所示的循环水路结构,还可以调整通道的进出水口位置,水流的方向也可以是其他的组合。

[0030] 与传统的基于微通道液体制冷器冷却的产品所区别的是:如图9,传统的微通道封装是将激光器芯片安装到31面上,而本方案是将激光器芯片安装到30面上。这是区别于传统微通道封装产品的主要标志之一。

[0031] 每个激光器模块的巴条个数可以是1、2、3个等。建议的最大个数不大于10个,以提高产品的可配置性、可靠性。

[0032] 本发明组装宏通道液冷高功率半导体激光器装置的步骤如下:

[0033] 1)将一个或者多个激光器芯片与衬底以及绝缘块依次组装到一起组成芯片组,各个芯片与衬底之间形成电联结。巴条使用硬焊料与金刚石铜衬底、金刚石绝缘块进行键合,形成多巴条组。

[0034] 2) 多巴条组与液体制冷器进行组装,组成一个独立的激光器模块。

[0035] 3) 重复以上两个步骤,制成多个激光器模块。

[0036] 4) 对每个激光器模块的性能参数:波长、功率等,进行单独进行测试、老化、筛选。

[0037] 5)满足要求的一个或多个模块可以按照一定的性能顺序或要求,通过密封圈和机械夹具组装成所需的产品应用。

[0038] 需要说明的是,以上实施例仅作为本发明在半导体激光器叠阵制冷技术方面的一个较佳实施例。本发明当然可以适用于其他制冷对象。

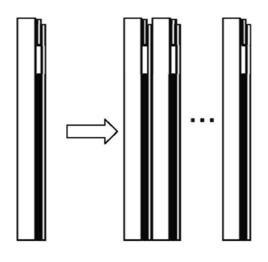


图2

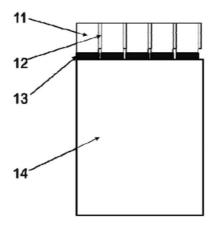


图3

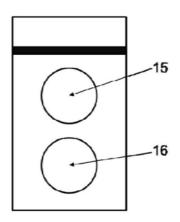


图4

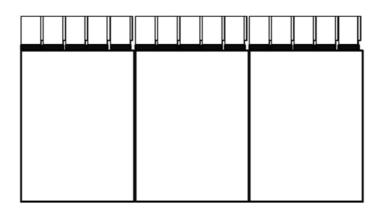


图5

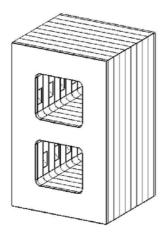


图6

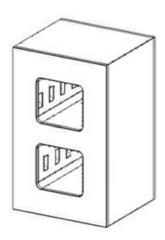


图7

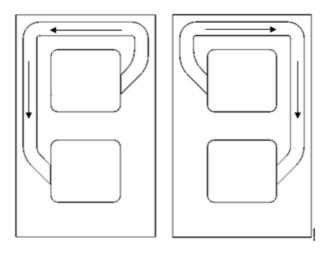
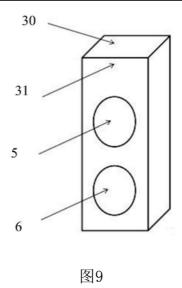



图8

