UK Patent Application .,GB ,2607111 A

(43)Date of A Publication 30.11.2022
(21) Application No: 2107733.4 (51) INT CL:
GO6N 3/04 (2006.01) GO6N 3/08 (2006.01)
(22) Date of Filing: 28.05.2021 HO4N 19/124 (2014.01)
(56) Documents Cited:
- . WO 2020/035684 A1 US 20200304802 A1

(71) Applicant(s): ) IEEE OPEN JOURNAL OF THE COMMUNICATIONS

Imperial College Innovations Ltd SOCIETY, vol 1, 2020, LEINONEN MARKUS ET AL,

Level 1 Faculty Building,

Imperial College Exhibition Road, London, Low-Complexity Vector Quantized Compressed

Sensing via Deep Neural Networks", pages

Greater London, SW7 2AZ, United Kingdom 1278-1294, DOI:10.1109/0JCOMS.2020.3020131
ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 2018,
(72) Inventor(s): JUN HAN ET AL, "Deep Probabilistic Video
Mikolaj Jankowski Compression”, available from https://arxiv.org/
Tze-Yan Tung pdf/1810.02845v1.pdf
David Burth Kurka
Deniz Gunduz (58) Field of Search:

INT CL GO6N, HO4N
(74) Agent and/or Address for Service:

HGF Limited

1 City Walk, LEEDS, LS11 9DX, United Kingdom

(54) Title of the Invention: Communication system for conveying data from an information source across a
communication channel
Abstract Title: Encoder and decoder neural networks for use in a communication system

(57) Communication system 100 conveys data from
transmitter 110 across communication channel 120 using
joint source and channel coding. Transmitter 110 has 100
encoder neural network 115 for encoding input data direct ~
to values in a signal space for modulating a carrier signal E———
for transmission of a transformed version of the input Pty -y N
|
|

| Information i

data across a communication channel. Communication e
system 100 also comprises receiver 130 having decoder !
neural network 135 for decoding a noise-affected version ;
of vector signal values transmitted over the noisy !
communication channel direct to a reconstructed i
i
H
1
i
i

! Carer |
» modulator
voo11e

i1 | Encoder neural Soft Hard
» network -+ Quantization |- Quantization
117

118 g

representation of the input data provided from the

information source. The transmitter further includes soft
quantization module 116 and hard quantization module b e
117 for assigning the output of the encoder fo signal e
values in a predetermined finite set S of symbols of a Roceerta? mj &

Processor(s) Memory
112 113

i
i
Communications Channel 120

predefined alphabet of carrier modulation signal values R T I T T 1,

I
information i Decoder I Carrier

transmittable by the transmitter over the communication j rformal | meursl atvor fo---t demodulater
131 136 [

has
channel. Training the encoder and decoder neural ! : i N !
i
i
i
i
i
L

networks uses an appropriate optimization algorithm, e.g.
gradient descent, operating on an objective function
characterising a reconstruction error between the input-
output pairs of training data, consisting of information
source samples, which are passed to the encoder neural
network, and the corresponding reconstructions at the ]
decoder output layer of the decoder. Figure 1

|

|
Processor(s) Memory I
132 3|
|

I

|

V L1L209¢ 99



100

\\‘

1/9

Transmitter 11

0

1 Information

H
H
' source
Y

H

120

Communications Channel

| S S b
: Encoder neural Soft Hard I | Carrier ;
, network —»  Quantization Quantization —‘—»} modulator
| 115 116 117 AR
{ l Lo
! r
' x
l Processor(s) Memory |
| 112 113 x
| |
‘L RTE 114 |
___________________________ 4
Receiver 130 139
________________ .
mTT T T T 1 : I !
\ Information | | Decoder I\ Carrier
' sink '«+——] neural network 4—:—: demodulator
b3t 135 -
1 | e e e e e e e e e = = 1
| |
| I
| I
I| Processor(s) Memory |
| 132 133 |
| |
] RTE 134 |

Figure 1



2/9

Hard-
Cizantization

117

Sl
3
2
!

35

1

Soft-
Quantization

116

Encader

115

Figure 2



3/9

Figure 3A

> 1 Figure 3B

> ! Figure 3C




4/9




Transmitter 11

Information source
111
(X1, X2, X3... Xn)

Encoder neural Soft
network Quantization

X 115 116

: X1 t r———: B

: X 1 l £ ——%-—

—— !

RN @)’
X \ 1
3 I |

=4 Y o i)

) X4 H {l 1 < !

f = Zk : :S

s (. -

! = { | ’ '\

K :\t--_* 1150

*---"115i 115h

Hard
Quantization
117
z
Pl R — .
E: | Carrier
—— [2] =5 ->::——>i mo?m;l:tor
{
(3! -
Al

Communications Channel 120

Receiver 130

Information sink
131
(321) ‘:{2; 231 554) ?(5; Xﬁ)

Decoder neural
network
135

| Carrier
<«—— demodulator
' 138




6/9

116

115

120
AWGN Channel

©
=
=

mesmmwney

-~-3 Backward pass
~—> Forward pass

g

H
3
i

Hard-
quantization

KL Divergence

Y| orrmeeaseesd

Soft-
quantization

L.

b=
3
5+l
o1
<
=
k3

<]

135

\4

MSE Loss

5

Figure

.

Decoder

Ntttﬁ\

.
2
>
4
2
’

z
2
1
I
i

Si3

.

il

A
B

0

e

spevesvivivisioiBRessvivirisvivired,

L0404 0 0000000004000 000010000

ITIIISIIII SIS IS I SIS
),

s

p3
P
7
P
’
b
‘
7
>
7

CINRERES

g
7

‘
-
7
»
‘
b
¥

.
>
>
“
P
>
<
3
7
“
)
>

3
7
7
»
<
2
7
7

AT A AT S S

“
.
»
»

y
P
»
<
b3
-
”

z

4
b
»
‘
b
b
¢

s
P
,
,
7
.
’
<
7
3
>
<
z
,
>

AN N I N NN N AT e N A s N

Y

23
Ry

3

S

AR

PR
RS

2 \\\\\\\\\\\\N\\\\\\\\\\\\\\\x,

[
H
B .

& .\\\\N\.\\\\\\\\\\\\\\\.

Figure 6



700

719

START
(Initialised weights
and
hyperparameters)

Receive next input-output pair(s) in
training data <
701

Determine objective function
characterising reconstruction error
703

Use optimisation algorithm
operating on objective function
705

Update weights of encoder and
decoder neural network to minimise
objective function
707

Optimisation over training
data complete?
709

END
(Trained encoder
and decoder

pair)

Figure 7



8/9

START

Receive input data from
information source at encoder input
layer

Map input data to a transformed
representation in signal space at
encoder output layer
803

Quantize transformed
representation to transmittable
signal value
805

Transmit quantized signal values
over communications channel
807

END
To Receiver
(Figure 9)

Figure 8



9/9

START
From Transmitter
(Figure 8)

900

Receive and demodulate carrier signal
i from communications channel to recover |
E noise-affected version of quantized i
signal values
901

Map noise-affected version of quantized
signal values to a reconstructed
representation of the input data at
decoder output layer
903

y

END

Figure 9



1

COMMUNICATION SYSTEM, TRANSMITTER, AND RECEIVER FOR CONVEYING DATA
FROM AN INFORMATION SOURCE ACROSS A COMMUNICATION CHANNEL USING
JOINT SOURCE AND CHANNEL CODING, AND METHOD OF TRAINING AN ENCODER
NEURAL NETWORK AND DECODER NEURAL NETWORK FOR USE IN A
COMMUNICATION SYSTEM

[0001] This present application relates to a communication system comprising a transmitter
and receiver for conveying data from an information source across a communication channel.
The transmitter and receiver include a pair of encoder and decoder neural networks for joint

source and channel coding which have been jointly trained to reduce reconstruction errors.
BACKGROUND

[0002] An aim of a data communication system is to efficiently and reliably send data from an
information source over a communication channel from a transmitter at as high a rate as
possible with as few errors as achievable in view of the channel noise, to enable a faithful

representation of the original information source to be recovered at a receiver.

[0003] Most digital communication systems today include a source encoder and separate
channel encoder at a transmitter and a source decoder and separate channel decoder at a

receiver.

[0004] In digital communication systems, to transmit data from the information source over a
communication channel, the symbols of source data are first digitally compressed into bits by
the source encoder. The goal in source coding is to encode the sequence of source symbols
into a coded representation of data elements to reduce the redundancy in the original sequence
of source symbols. In lossless compression one has to remove redundancy such that the
original information source can still be reconstructed as the original version from the coded
representation, while lossy compression allows a certain amount of degradation in the
reconstructed version under some specified distortion measure, for example squared error.
JPEG for images, or H264/MPEG for videos are examples of lossy source compression
standards widely used in practice. Compressing the information source using a source encoder

before transmission means that fewer resources are required for that transmission.

[0005] Once the data from the information source has been encoded to compress it down in
size, to transfer this representation over a communication channel, the output of the source
encoder is then provided to a channel encoder. The goal of the channel encoder is to encode
the compressed data representation in a structured way using a suitable Error Correction Code
(ECC) by adding redundancy such that even if some of these bits are distorted or lost due to
noise over the channel, the receiver can still recover the original sequence of bits reliably. The

amount of redundancy that is added depends on the statistical properties of the underlying
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communication channel and a target Bit Error Rate (BER). Generally, such channel coding
schemes using Forward Error Correction (FEC) provide for a faithful recovery of the transmitted
data elements (such as a compressed data source) where the noise on the channel leads to a
quality of signal reception below a maximum BER. However, due to the cliff effect, as channel
noise increases, BER will increase drastically and, when the channel noise is too high and a
maximum BER is breached, the signal transmission will drop out completely, meaning the
transmitted data cannot be recovered. There are many different channel coding techniques in
practice that provide various complexity and performance trade-offs. Turbo codes and Low-
density parity-check (LDPC) codes are examples of ECCs that are commonly used in modern
communication systems such as WIMAX and fourth generation Long-Term Evolution (LTE)

mobile communications.

[0006] The coded bits at the output of the channel encoder are transmitted over the channel
using a modulator. The modulator converts the bits into signals that can be transmitted over the
communication medium. For example, in wireless systems using Quadrature Modulation of two
out-of-phase amplitude modulated carrier signals, the transmitted waveform is specified by its
In-Phase (l) and Quadrature (Q) components, and a modulator typically has a discrete set of
pre-specified | and Q values, called a constellation, and each group of coded information bits
are mapped to a single point in this constellation. Example modulation schemes include phase

shift keying (PSK) and quadrature amplitude modulation (QAM).

[0007] The receiver receives and demodulates (for example, by coherent demodulation) a
sequence of noisy symbols, where the noise has been added by the communication channel.
These noisy demodulated symbols are then mapped to sequences of data elements by a
channel decoder. The decoded data elements are then passed to the source decoder, which
decodes these data elements to try to reconstruct a representation of the original input source

symbols to reconstruct the information source.

[0008] Naturally, the source encoder and decoder are designed jointly, as are the channel
encoder and decoder, but the source encoder/decoder and channel encoder/decoder are

designed and operate separately to perform very different functions.

[0009] The main advantage of separate source and channel coding is the modularity it
provides. This means that the same channel encoder and decoder can be used in conjunction
with any source encoder and decoder. That is, as long as the source encoder outputs data
elements that can be encoded by the channel encoder, it does not matter if these bits come
from an image compressor or a video encoder. Thus, a channel encoder can encode data
elements for transmission over a channel irrespective of the data elements or the information

source from which they have been derived.
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[0010] Similarly, the source encoder and decoder can be operated in conjunction with any
channel encoder and decoder to transmit the encoded source symbols over a communication
channel. Thus, a source encoder can encode data elements for subsequent coding by the

channel encoder independently of which channel encoder is used.

[0011] Thus, the current communication protocols have been developed over generations,
and their wide adoption has led to the standardization of some aspects of it. For instance, the
task of creating information symbols to be transmitted over a complex channel have typically
followed the steps of discretizing (or quantizing) data from an information source into a finite set
of symbols through source coding, which are then encoded against channel noise and mapped
to symbols from a fixed discrete set of complex representations, also called as a constellation
set of a constellation diagram, such as the quadrature amplitude modulation (QAM) or binary
phase-shift keying (BPSK), through channel coding.

[0012] These choices, based on results and assumptions that go back to the early times of
information theory and derived through expert knowledge and handcrafted optimization
techniques, have long been adopted by the communication standards. For example, the 5G
New Radio standard allows the devices to choose from 16-QAM, 64-QAM and 256-QAM,
whereas the most recent Wi-Fi 6 (332.11ax) standard employs 1024-QAM. The constellation
size directly impacts the transmission rate, and hence, the constellation sizes are much larger
in wired connections. For example, Ethernet devices may use 1024-QAM or 4096-QAM, while
in the ADSL technology the constellation size may go up to 32768-QAM. Given their
prevalence in standards, current communication hardware is typically hard-wired to work only
with these kind of symbols. Such hardware standardisation also makes circuits simpler,
allowing mass production and saving costs, leading to their widespread adoption to deliver

reliable, high-throughput data communications.

[0013] Itis in the above context that the present disclosure has been devised.

BRIEF SUMMARY OF THE DISCLOSURE

[0014] Recently, new alternatives for the design of wireless communication systems have
been proposed. For example, machine learning (ML) approaches to encoding an information
source to channel symbols for transmission across a communication channel have been
proposed. By using ML in this way, new encoding schemes can be discovered and freely
produced that optimise the efficient transmission of an information source across a noisy
communication channel, without being limited to existing source or channel coding paradigms,

often outperforming these legacy handcrafted approaches.
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[0015] As such new communication systems are being invented, they often lead to a change
in encoding paradigm and that can lose compatibility with existing hardware and standards.
This hinders the proliferation of such strategies where they find encoding schemes that are
incompatible with existing communication hardware and standards. The present disclosure
provides an approach to providing communication systems that can benefit from the discovery
of new, ML-optimised communication strategies, while maintaining a common interface with a

wide variety of existing devices, that can be deployed on existing communication hardware.

[0016] Thus, viewed from one aspect, the present disclosure provides a communication
system for conveying data from an information source across a communication channel using

joint source and channel coding, comprising a transmitter and a receiver.

[0017] In one aspect, the transmitter comprises an encoder neural network having: an
encoder input layer having input nodes for receiving input data from an information source to be
transmitted; an encoder output layer having output nodes for outputting a vector of values in a
signal space for modulating a carrier signal for transmission of the input data across a
communication channel; and one or more hidden layers having connecting nodes connecting
the encoder input layer to the encoder output layer, the connecting nodes having weights to
map the input data received at the encoder input layer to provide at the encoder output layer a
transformed representation of the input data. The transmitter further comprises a soft
guantization module configured to receive the unconstrained output signal space values from
the encoder output layer and to operate a differentiable function over the signal space that
transforms the unconstrained output signal space values to a smoothed approximation of a
signal value in a predetermined finite set S of symbols of a predefined alphabet of carrier
modulation signal values transmittable by the transmitter over the communication channel. The
transmitter also further comprises a hard quantization module configured to transform the
approximate signal values output from the soft quantization module exactly to a signal value
assigned to the symbol in the predetermined finite set S of the alphabet, the hard quantized
signal values representing a transformed version of the input data and being passed as a vector
from the hard quantization module to the transmitter to modulate a carrier signal for

transmission over the communication channel.

[0018] In one aspect, the receiver comprises a decoder neural network having: a decoder
input layer having nodes corresponding to a channel output vector received at the receiver
receiving the signal, the channel output vector corresponding to a noise-affected version of the
vector of hard quantized signal values transmitted over the noisy communication channel; a
decoder output layer having output nodes for outputting a reconstructed representation of the
input data provided from the information source to the encoder input layer of the encoder; and

one or more hidden layers having connecting nodes connecting the decoder input layer to the
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decoder output layer, the connecting nodes having weights to map the noise-affected version of
the vector of hard quantized signal values received at the decoder input layer to provide at the

decoder output layer a reconstructed representation of the input data.

[0019] Inthe communication system, the connecting node weights of the hidden layers of the
encoder neural network and decoder neural network have been trained together to seek to
minimise an objective function characterising a reconstruction error between the input-output
pairs of training data, consisting of information source samples, which are passed to the
encoder neural network, and the corresponding reconstructions at the decoder output layer of

the decoder, using an appropriate optimization algorithm operating on the objective function.

[0020] Viewed from another aspect, the present disclosure provides a method for conveying
data from an information source across a communication channel using joint source and
channel coding. The method comprises, at a transmitter, receiving input data from an
information source to be processed at nodes of an encoder input layer of an encoder neural
network, and mapping the input data received at the encoder input layer to provide at the
encoder output layer a transformed representation of the input data, the encoder output layer
having output nodes for outputting a vector of values in a signal space for modulating a carrier
signal for transmission of a transformed version of the input data across a communication
channel. The mapping is performed by one or more hidden layers of the encoder neural
network having connecting nodes connecting the encoder input layer to an encoder output
layer, the connecting nodes having weights to map the input data to a transformed
representation of the input data in a vector of values in the signal space. The method further
comprises operating, by a soft quantization module of the transmitter, receiving the
unconstrained output signal space values from the encoder output layer and operating a
differentiable function over the signal space that transforms the unconstrained output signal
space values to a smoothed approximation of a signal value in a predetermined finite set S of
symbols of a predefined alphabet of carrier modulation signal values transmittable by the
transmitter over the communication channel. The method further comprises, by a hard
quantization module of the transmitter, transforming the approximate signal values output from
the soft quantization module exactly to a signal value assigned to the symbol in the
predetermined finite set S of the alphabet. The hard quantized signal values represent the
transformed version of the input data and are passed as a vector from the hard quantization
module to the transmitter to modulate a carrier signal for transmission over the communication

channel.

[0021] Viewed from another aspect, the present disclosure provides a method for conveying
data from an information source across a communication channel using joint source and

channel coding. The method comprises, at a receiver, receiving the signal transmitted from the
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transmitter and passing the received and demodulated signal as a channel output vector to a
decoder input layer of a decoder neural network, the decoder input layer having nodes
corresponding to the channel output vector, the channel output vector corresponding to a noise-
affected version of the vector of hard quantized signal values transmitted over the noisy
communication channel by the transmitter. The method further comprises, at output nodes of a
decoder output layer of the decoder neural network, outputting a reconstructed representation
of the input data provided from the information source to the encoder input layer of the encoder.
The reconstruction of the input data is achieved by one or more hidden layers having
connecting nodes connecting the decoder input layer to the decoder output layer, the
connecting nodes having weights to map the noise-affected version of the vector of hard
quantized signal values received at the decoder input layer to provide at the decoder output

layer a reconstructed representation of the input data.

[0022] In the methods, the connecting node weights of the hidden layers of the encoder
neural network and decoder neural network have been trained together to seek to minimise an
objective function characterising a reconstruction error between the input-output pairs of
training data, consisting of information source samples, which are passed to the encoder neural
network, and the corresponding reconstructions at the decoder output layer of the decoder,

using an appropriate optimization algorithm operating on the objective function.

[0023] In this regard, viewed from another aspect, the present disclosure provides a method
of training an encoder neural network and decoder neural network for use in a communication
system as described above, for conveying data from an information source across a
communication channel using joint source channel coding, the method comprising: for input-
output pairs of a set of training data from the information source passed to the encoder neural
network, determining an objective function characterising a reconstruction error between the
input-output pairs of training data, consisting of information source samples, which are passed
to the encoder neural network, and the corresponding reconstructions at the decoder output
layer of the decoder, using an appropriate optimization algorithm operating on the objective
function, updating the connecting node weights of the hidden layers of the encoder neural

network and decoder neural network to seek to minimise the objective function.

[0024] In accordance with examples of the present disclosure, ML-based communication
systems for conveying data from an information source across a communication channel are
provided that can be incorporated directly into existing conventional and commercial
communication hardware. This is achieved by using a system that provides an ML-optimised
joint source and channel coding scheme that can transform data from an information source
(e.g., image or video) into a discrete set of signal values in a predetermined finite set S of

symbols of a predefined alphabet of carrier modulation signal values transmittable by the
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transmitter over the communication channel utilising existing transceiver hardware and
communication protocols. The ML-optimised decoder can then map the received noisy channel
output back to a reconstruction of the information source at the receiver side. As the ML-
designed encoding schemes of the present disclosure translates data from an information
source directly to channel symbols belonging to a set (or constellation) of standardized
communication symbols, this designed joint source and channel coding modules can be

incorporated into existing communication hardware that already operates with those symbols.

[0025] This is enabled by the incorporation in the transmission chain of the quantization
modules. In particular, the provision of the soft and then hard quantization modules allow in the
forward pass of data through the encoder at training time and at runtime the exact signal values
in a predetermined finite set S of symbols of a predefined alphabet of carrier modulation signal
values transmittable by the transmitter to be output. At the same time, although the encoded
output of the transmitter from the hard quantization module is exact, non-differentiable signal
values, the soft quantization module transforms the output of the encoder neural network to a
smoothed approximation of signal values in the predetermined finite set S of symbols for
transmission. This smoothed approximation allows, in a backward pass of the data through the
decoder and encoder neural networks, a differentiable objective function characterising the
reconstruction error to be obtained, which is then permits the optimisation of the connecting
node weights of the encoder and decoder neural networks to be performed in a training phase,

allowing the reconstruction error of the communication system to be minimised.

[0026] The separation of quantization into soft and hard steps enables the end-to-end
learning of the communication system’s processing blocks using, for example, a stochastic
gradient descent optimisation method over a training set, allowing an ML-optimised joint source
and channel coding scheme to be learned for existing communication hardware and protocols,

despite the output of the transmitter being quantized in a non-differentiable symbol assignment.

[0027] It should be noted that, in accordance with the present disclosure, the communication
channel should be understood as any transformation from the channel input space to the
channel output space that includes a random transformation due to the channel. This may
include additive noise, interference, or other stochastic properties of the channel that will
randomly transform the transmitted signal, e.g., fading and multi-path effects in wireless
channels. Thus, the reference to the noise-affected version of the of the vector of hard
quantized signal values received at the decoder should be understood to indicate that the input
to the decoder is a vector of values correlated with the transmitted vector of signal values
(which is itself correlated with the input data from the information source), transformed by the
communications channel, whether that transformation is ‘noise’ or another channel

transformation.
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[0028] In this respect, in accordance with the present disclosure, the communications channel
should be understood as encompassing any channel that has, in an input signal space, a
predetermined finite set S of symbols of a predefined alphabet of carrier modulation signal
values transmittable by the transmitter over the communication channel (which applies a
random transformation to the channel output space). Thus, the communication channel may be
one that also includes an existing channel encoder and decoder scheme, in which the signal
space of the channel input may be the predetermined finite set symbols of the channel code
(which could be bit values) for modulating a signal carrier for providing input signals in the
alphabet in the input signal space for the communication channel. Thus, besides random noise
applied by the communication channel, the transformation applied by the communication
channel may also include an existing channel code. Thus, in these embodiments, the
predefined alphabet of symbols for quantization may be a message alphabet for an existing
channel code by which the input signals to the given communications channel are modulated.
In this case, the hard quantized channel inputs will be mapped into the message alphabet of the
corresponding channel code. The noise-affected channel output may correspond to the hard-
decoded message of the channel decoder. In this respect, in these embodiments, the encoder
and decoder neural networks may learn an optimum mapping of the input information source to
inputs of an existing channel code of the communications channel that reduces reconstruction
errors at the decoder. Although acting as an outer code in these embodiments, this learned
coding is still optimised based on the characteristics of the channel to reduce reconstruction
errors, even though the communication channel includes an existing channel code. This is
unlike existing modular source codes which are defined independently of the random

transformation applied by any channel.

[0029] Further, in accordance with the present disclosure, it should be understood that the
dimension of the vector of hard-quantized signal values that are transmitted over the
communication channel need not be equal to the dimension of the channel output vector
corresponding to the noise-affected version of the vector of hard quantized signal values
transmitted over the noisy communication channel. That is, in embodiments the version of the
vector of hard quantized signal values transmitted over the noisy communication channel that is
input into the decoder input layer may have a dimensionality different to the transmitted vector
of hard quantized signal values. This may be due, for example, to characteristics of the
receiver, the detection and demodulation process revealing a different signal vector. For
example, this may be due to different number of receive elements at the receiver, e.g., multiple
antennas, or a different sampling rate of the received signal. The difference in dimensionality of
the version of the transmitted signal input to the decoder compared to the quantized signal
output at the transmitter may also be due to some processing carried out at the receiver. For

example, each detected signal may be provided to the decoder as a vector of likelihoods of
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assignment to the different symbol values for the communications channel output. That is, the
decoder may receive, for each detected signal value, a vector of soft decisions on assignment
to the different symbols, rather than a specific symbol value. In this respect, the noise-affected
version of the hard quantized signal values provided to the decoder may represent the received
signal information differently to the representation provided to the modulator at the transmitter.
Nevertheless, regardless of its dimensionality and representation of the detected signal values,
the noise-affected version of the vector of hard quantized signal values transmitted over the
noisy communication channel and provided to the decoder is simply one that is correlated with
the input data from the information source. The decoder then learns to reconstruct the
information source from this noise-affected version of the transmitted signals, regardless of its

dimensionality and representation.

[0030] It should also be noted that, in accordance with the present disclosure, the soft and
hard quantization steps can be carried out symbol-by-symbol or over blocks of symbols. That
is, the input to the soft quantization module may be plural latent vector elements in the signal
space, which may be quantized together to provide plural soft quantized outputs. Thus, it
should be understood that the quantization provided in accordance with the present disclosure

can be scalar quantization or vector quantization.

[0031] In examples of the present disclosure, the hard quantized signal values represent in-
phase and quadrature components for modulation of the carrier signal for transmission over the

communication channel.

[0032] In examples of the present disclosure, wherein the predefined alphabet is a fixed,
predefined constellation of symbols for digitally modulating the carrier signal to encode the input

data for transmission over the communication channel.

[0033] In examples of the present disclosure, the predefined alphabet is selected to be one
that compatible with the modulator of the transmitter and/or compatible with the demodulator of

the receiver.

[0034] In examples of the present disclosure, the alphabet of symbols is mapped onto a
constellation diagram for Phase Shift Keying or Quadrature Amplitude Modulation of the carrier

signal.

[0035] In examples of the present disclosure, the encoder neural network and decoder neural
network have been trained together using a gradient descent algorithm operating on the
objective function based on a differential of at least the decoder neural network, the soft

quantization function and the encoder neural network.

[0036] In examples of the present disclosure, the encoder neural network and decoder neural

network have been trained together using training data in which a model of the communication
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channel is used to model the effect of the random channel on the transmitted hard quantized
signal values to generate a noise-affected version of the vector of hard quantized signal values

in the input-output pairs of training data.

[0037] In examples of the present disclosure, during training the gradient descent algorithm
has further operated on the objective function based on a differential of the channel model. In
examples of the present disclosure, during training the gradient descent algorithm has operated
on the objective function further based on a differentiable representation of the channel model
generated using a generative adversarial network. In this way, the encoder and decoder neural
networks can be optimised to take into account the noise in the channel through training based

on a model of the communication channel not-necessarily explicit or differentiable.

[0038] In examples of the present disclosure, the encoder neural network and decoder neural
network have been trained together using training data in which input-output pairs of training
data are transmitted over the communication channel by the transmitter, in order to add noise to
the transmitted hard quantized signal values to generate the noise-affected version of the
vector of hard quantized signal values in the input-output pairs of training data. In this way, the
encoder and decoder neural networks can be optimised to take into account the noise in the
channel through training based on an empirical data capturing the effects of channel statistics

on the transmission.

[0039] In examples of the present disclosure, the symbol alphabet set size S is a parameter of
the soft and hard quantization modules, and wherein during training the gradient descent
algorithm has further operated over a range of symbol alphabet set sizes S of different
cardinality to learn the optimal modulation scheme for the information source. In this way, the
optimal transmittable constellation for transmitting the information source across the

communication channel can be learned.

[0040] In examples of the present disclosure, the objective function sought to be minimised by
the training together of the encoder neural network and decoder neural network additionally
characterises a relative entropy between the probability distribution of the symbols of the hard
quantized signal values output from the hard quantization module and a uniform distribution
across the symbols. In examples of the present disclosure, the Kullback-Liebler divergence
between the symbol distribution and the uniform distribution is used in the objective function to
characterise the relative entropy for minimisation during training. In this way, the encoder and
decoder can be trained to ensure that, in the transmission of the symbols representing data
from the information source across the communication channel, an average power constraint

on the communication channel is satisfied.

[0041] In examples of the present disclosure, the information source is uncompressed. In

examples of the present disclosure, the encoder neural network maps the input data to a



11

compressed representation of the input data from the information source to a vector of values in

the signal space.

[0042] In examples of the present disclosure, the latent variables are produced by the

encoder neural network are unconstrained in the signal space.

[0043] It will be appreciated from the foregoing disclosure and the following detailed
description of the examples that certain features and implementations described as being
optional in relation to any given aspect of the disclosure set out above should be understood by
the reader as being disclosed also in combination with the other aspects of the present
disclosure, where applicable. Similarly, it will be appreciated that any attendant advantages
described in relation to any given aspect of the disclosure set out above should be understood
by the reader as being disclosed as advantages of the other aspects of the present disclosure,
where applicable. That is, the description of optional features and advantages in relation to a
specific aspect of the disclosure above is not limiting, and it should be understood that the
disclosures of these optional features and advantages are intended to relate to all aspects of

the disclosure in combination, where such combination is applicable.
BRIEF DESCRIPTION OF THE DRAWINGS

[0044] Embodiments of the invention are further described hereinafter with reference to the

accompanying drawings, in which:

Figure 1 shows a communication system for conveying data from an information source across
a communication channel using joint source and channel coding in accordance with an example

of the present disclosure;

Figure 2 shows the encoding, transmission and reconstruction of an image from an information
source using a communication system in accordance with an example of the present

disclosure;

Figure 3A shows an example vector of three values, z;, z; zs each having in-phase and
quadrature components in an 1Q signal space for modulating a carrier signal for transmission
across a communication channel to which a vector of input data from an information source has
been mapped by an encoder neural network in accordance with an example of the present

disclosure;

Figure 3B shows an example vector of three values Z;, Z,, Z; in the signal space to which the
encoded signal values z,, z;, z; have been soft quantized by a soft quantization module in

accordance with an example of the present disclosure;

Figure 3C shows an example vector of three values 7, 75, Z; in the signal space to which the

soft quantized signal values Z;, Z,, Z; have been hard quantized by a hard quantization module
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that are transmittable by a transmitter over the communication channel in accordance with an

example of the present disclosure;

Figure 3D shows an example vector of three noise-affected values 2,, 2,, Z2; received at a
receiver corresponding to a noise-affected version of a vector of hard quantized signal values
transmitted over the noisy communication channel by a transmitter, the noise-affected values
21, 2,, 25 being provided as a channel output vector to a decoder input layer of a decoder neural
network for reconstructing a representation of the input data in accordance with an example of

the present disclosure;

Figure 4 shows a communication system for conveying data from an information source across
a communication channel using joint source and channel coding, illustrating the layers of the
encoder and decoder neural network, and the processing of the vector of signal values by the

soft and hard quantization modules, in accordance with an example of the present disclosure;

Figure 5 shows an illustration of the forward and backward passes of a training time process for
updating the connecting node weights of the encoder and decoder neural networks to minimise
an objective function characterising a reconstruction error between input-output pairs of training

data in accordance with an example of the present disclosure;

Figure 6 shows an example arrangement of neural network layers for the encoder and decoder

neural networks in accordance with an example of the present disclosure;

Figure 7 shows an example training time method for the encoder and decoder neural networks

in accordance with an example of the present disclosure;

Figure 8 shows an example run time method for the transmitter and the encoder neural network

in accordance with an example of the present disclosure; and

Figure 9 shows an example run time method for the receiver and the decoder neural network in

accordance with an example of the present disclosure.
DETAILED DESCRIPTION

[0045] Hereinafter, embodiments of the disclosure are described with reference to the
accompanying drawings. However, it should be appreciated that the disclosure is not limited to
the embodiments, and all changes and/or equivalents or replacements thereto also belong to
the scope of the disclosure. The same or similar reference denotations may be used to refer to

the same or similar elements throughout the specification and the drawings.

ETH

[0046] As used herein, the terms “have,” “may have,” “include,” or “may include” a feature
(e.g., a number, function, operation, or a component such as a part) indicate the existence of

the feature and do not exclude the existence of other features.
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[0047] As used herein, the terms “A or B,” “at least one of A and/or B,” or “one or more of A

» u

and/or B” may include all possible combinations of A and B. For example, “A or B,” “at least one
of A and B,” “at least one of A or B” may indicate all of (1) including at least one A, (2) including

at least one B, or (3) including at least one A and at least one B.

[0048] As used herein, the terms “first” and “second” may modify various components
regardless of importance and do not limit the components. These terms are only used to
distinguish one component from another. For example, a first user device and a second user
device may indicate different user devices from each other regardless of the order or
importance of the devices. For example, a first component may be denoted a second

component, and vice versa without departing from the scope of the disclosure.

[0049] It will be understood that when an element (e.g., a first element) is referred to as being
(operatively or communicatively) “coupled with/to,” or “connected with/to” ancther element (e.g.,
a second element), it can be coupled or connected with/to the other element directly or via a
third element. In contrast, it will be understood that when an element (e.g., a first element) is
referred to as being “directly coupled with/to” or “directly connected with/to” another element
(e.g., a second element), no other element (e.g., a third element) intervenes between the

element and the other element.

[0050] As used herein, the terms “configured (or set) to” may be interchangeably used with

» u ”ou

the terms “suitable for,” “having the capacity to,” “designed to,” “adapted to,” “made to,” or
“capable of’ depending on circumstances. The term “configured (or set) to” does not essentially
mean “specifically designed in hardware t0.” Rather, the term “configured to” may mean that a

device can perform an operation together with another device or parts.

[0051] For example, the term “processor configured (or set) to perform A, B, and C” may
mean a generic-purpose processor (e.g., a CPU or application processor) that may perform the
operations by executing one or more software programs stored in a memory device or a

dedicated processor (e.g., an embedded processor) for performing the operations.

[0052] The terms as used herein are provided merely to describe some embodiments thereof,
but not to limit the scope of other embodiments of the disclosure. It is to be understood that the
singular forms “a,” “'an,” and “the” include plural references unless the context clearly dictates
otherwise. All terms including technical and scientific terms used herein have the same
meaning as commonly understood by one of ordinary skill in the art to which the embodiments
of the disclosure belong. It will be further understood that terms, such as those defined in
commonly used dictionaries, should be interpreted as having a meaning that is consistent with
their meaning in the context of the relevant art and will not be interpreted in an idealized or
overly formal sense unless expressly so defined herein. In some cases, the terms defined

herein may be interpreted to exclude embodiments of the disclosure.
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[0053] Figure 1 shows a communication system 100 comprising a transmitter 110 for
conveying data across a communication channel 120 to a receiver 130 using joint source and

channel coding in accordance with an example of the present disclosure.

[0054] The transmitter 110 and receiver 130 may each be part of respective electronic
devices. For example, the electronic device coupled to the transmitter 110 or receiver 130 may
be a smartphone, a tablet, a personal computer such as a desktop computer, a laptop
computer, a netbook computer, a workstation, a server, a wearable device such as a smart
watch, smart glasses, a head-mounted device or smart clothes, an airborne or land drone, a
robot or other autonomous device such as industrial or home robots, a smart home appliance
such as a television, a smart home device, a media player, a refrigerator, an air conditioner, a
cleaner, an oven, a microwave oven, a washer, a drier, an air cleaner, a set-top box, a home
automation control panel, a security control panel, a gaming console, a security camera, a
microphone, or an Internet of Things device for sensing or monitoring, such as a smart meter,
various sensors, an electric or gas meter, a medical device such as a portable medical
measuring device, a blood sugar measuring device, a heartbeat measuring device, or a body
temperature measuring device, a navigation device, a global positioning system (GPS) receiver,

an event data recorder (EDR), a flight data recorder (FDR), avionics, point of sale devices.

[0055] The transmitter 110 includes an information source 111 which may be a source of data
originally generated locally to the transmitter (such as an image or video captured by a camera
coupled to the transmitter, such as in the electronic device of which the transmitter is a part) or
it may be a source of data stored locally to the transmitter that was generated elsewhere,
remotely from the transmitter 110. The information source 111 is to be transmitted over the
communication channel 120 by the transmitter 110. The information source 111 may store or
generate ‘raw’ or ‘uncompressed’ data directly or indirectly representative of characteristics of
the information source, to allow faithful reproduction of the information source 111 by a given
combination of data processing hardware appropriately configured, for example by software or
firmware. The information source 111 may be representative of images, documents, audio or
video recordings, sensor data, and so on. The information source 111 is any information source
suitable for arranging as a sequence of source symbols or fundamental data elements (for
example, bits), such as static files or databases or arranged as a sequence over time, as in a

stream of data from a sensor or a video camera.

[0056] The transmitter 110 includes at least one processor 112, memory 113 and a carrier
modulator 118 coupled to an antenna 119 for transmitting data over communication channel
120. A bus system (not shown) may be provided which supports communication between at

the least one processor 112, memory 113, carrier modulator 118 and antenna 119.
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[0057] The processor 112 executes instructions that can be loaded into memory 113. The
processor 112 can include any suitable number(s) and type(s) of processors or other devices in
any suitable arrangement. Example types of processor 112 include microprocessors,
microcontrollers, digital signal processors, field programmable gate arrays and application

specific integrated circuits.

[0058] The memory 113 may be provided by any structure(s) capable of storing and
facilitating retrieval of information (such as data, program code, and/or other suitable
information on a temporary or permanent basis). The memory 113 can represent a random
access memory or any other suitable volatile or non-volatile storage device(s). The memory 113
may also contain one or more components or devices supporting longer-term storage of data,
such as a ready only memory, hard drive, flash memory, or optical disc, which may store
software code for loading into the memory 113 at runtime. In use, the processor 112 and
memory 113 provide a Runtime Environment (RTE) 114 in which instructions or code loaded
into the memory 113 can be executed by the processor to generate instances of software

modules in the Runtime Environment 114.

[0059] The memory 113 comprises instructions which, when executed by the one or more
processors 112, cause the one or more processors 112 to instantiate an encoder neural
network 115, a soft quantization module 116 and a hard quantization module 117. Together,
the encoder neural network 115, soft quantization module 116 and hard quantization module
117 may carry out the runtime method described in Figure 8 for encoding input data from
information source 111 to hard quantized signal values in a predetermined finite set S of
symbols of a predefined alphabet of carrier modulation signal values transmittable by the
transmitter (using the carrier modulator 118 and antenna 119) over the communication channel
120, the signal values representing a transformed version of the input data (which may be a

compressed version).

[0060] The carrier modulator 118 operates to in use encode the in-phase and quadrature
components of one or more carriers or subcarriers with signal values provided to the carrier
modulator 118 by the hard quantization module 117 using an appropriate modulation technique.
Where multiple carriers or subcarriers are encoded simultaneously, a suitable multiplexing
technique such as orthogonal Frequency-Division Multiplexing (OFDM) may be used. The

encoded carriers are then transmitted by the antenna 119 onto the communication channel 120.

[0061] The carrier modulator 118 and antenna 119 may be of conventional construction and
may be configured to encode the carriers/subcarriers with signal values mapped only to one or
more finite, fixed sets or ‘constellations’ of symbols of complex IQ representations, such as by
quadrature amplitude modulation (QAM) or binary phase-shift keying (BPSK). For example, the

carrier modulator 118 and antenna 119 may be compatible with the 5G New Radio standard
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such that the transmittable symbols of IQ values are mapped to the 16-QAM, 64-QAM or 256-
QAM constellations. The carrier modulator 118 and antenna 119 may be hard-wired to work
only with these symbols, and they may not be able to transmit signal values or symbols that are

not within these standard constellation sets.

[0062] The communication channel 120 may be used to convey information from one or more
such transmitters 110 to one or more such receivers 130. The communication channel 120 may
be a physical connection, e.g., a wire, or a wireless connection such as a radio channel as in
the example shown in Figure 1. There is an upper limit to the performance of a communication
system 100 which depends on the system specified. In addition, there is also a specific upper
limit for all communication systems which no system can exceed. This fundamental upper limit
is an upper bound to the maximum achievable rate of reliable communication over a noisy

channel and is known as Shannon’s capacity.

[0063] The communication channel 120, including the noise associated with such a channel,
is modelled and defined by its characteristics and statistical properties. Channel characteristics
can be identified by comparing the input and output of the channel (as will be shown below in
relation to Figures 3C and 3D), the output of which is likely to be a randomly distorted version of
the input. The distortion indicates channel statistics such as additive noise, or other
imperfections in the communication medium such as fading or synchronization errors between
the transmitter 110 and the receiver 130. Channel characteristics include the distribution model
of the channel noise, slow fading and fast fading. Common channel models include binary

symmetric channel and additive white Gaussian noise (AWGN) channel.

[0064] The receiver 130 includes at least one processor 132, memory 133 and a carrier
demodulator 138 coupled to an antenna 139 for receiving data over communication channel
120. A bus system (not shown) may be provided which supports communication between at

the least one processor 132, memory 133, carrier demodulator 138 and antenna 139.

[0065] Similarly to the processor 112 and memory 113 of the transmitter 110, in the receiver
130, the processor 132 executes instructions that can be loaded into memory 133, and in use
provide a Runtime Environment (RTE) 134 in which instructions or code loaded into the
memory 133 can be executed by the processor to generate instances of software modules in
the Runtime Environment 134. The memory 133 comprises instructions which, when executed
by the one or more processors 132, cause the one or more processors 132 to instantiate a

decoder neural network 135.

[0066] The antenna 139 of the receiver 130 receives a noise-affected version of the source
symbols transmitted by the antenna 119 of the transmitter 110, the noise having been added by

the communication channel 120. The carrier demodulator 138 demodulates these noisy
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symbols, for example, by coherent demodulation, and passes them to the decoder neural
network 135.

[0067] These noisy demodulated symbols are then mapped by the decoder neural network
135 to a reconstructed representation of the originally input source data to reconstruct the

information source 111. The receiver 130 thus includes an information sink 131 to which the
reconstructed representation of the input data decoded by the decoder neural network 135 is

provided.

[0068] In accordance with the present disclosure, the encoder neural network 115 and the
decoder neural network 135 have been trained together to seek to minimise an objective
function characterising a reconstruction error between input-output pairs of training data from
the information source 111 passed to the encoder neural network 115 and the representation of
the input data reconstructed at the decoder neural network 135 using an appropriate

optimization algorithm operating on the objective function.

[0069] In this way, the input data from the information source 111 (such as the image or
video) encoded and transmitted by the transmitter 110 can be received and decoded at the
receiver 130 to allow a reconstructed representation of the original input image or video to be

generated at information sink 131.

[0070] Reference will now be made to Figures 2, 3, 4, 8 and 9 which set out in more detail
how the transmitter 110 and receiver 130, and the trained encoder neural network 115 and
decoder neural network 135, operate to transmit data from information source 111 across

communication channel 120 by joint source and channel coding.

[0071] Neural networks are machine learning models that employ multiple layers of nonlinear
units (known as artificial “neurons”) to generate an output from an input. Neural networks may
be composed of several layers, each layer formed from nodes. Neural networks can have one
or more hidden layers in addition to the input layer and the output layer. The output of each
layer is used as the input to the next layer (the next hidden layer or the output layer) in the
network. Each layer generates an output from its input using a set of parameters, which are
optimized during the training stage. For example, each layer comprises a set of nodes, the
nodes having learnable biases and their inputs having learnable weights. Learning algorithms
can automatically tune the weights and biases of nodes of a neural network to optimise the
output in order to minimise an objective function using an optimisation algorithm such as

gradient descent or stochastic gradient descent.

[0072] As shown in Figure 4, in the transmitter 110, the encoder neural network 115 has an
encoder input layer 115i having input nodes for receiving a vector x of input data from an

information source 111 to be compressed. The encoder neural network 115 also has an
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encoder output layer 1150 having output nodes for outputting a vector z of values in a signal
space for modulating a carrier signal for transmission of a compressed version of the input data
across a communication channel. The encoder neural network 115 also has one or more
hidden layers 115h having connecting nodes connecting the encoder input layer 115i to the
encoder output layer 1150, the connecting nodes having weights to map the input data received
at the encoder input layer 115i to provide at the encoder output layer 115h a compressed
representation of the input data. The vector z of signal values output by the encoder output
layer 1150 are quantized first by soft quantization module 116 to produce a soft quantized
signal vector Z and then hard quantization module 117 to produce a hard quantized signal
vector z of signal values assigned to symbols in a predetermined finite set S of the alphabet
symboils in a constellation set transmittable by the transmitter hardware of the transmitter 110
over the communication channel 120. The hard quantized signal vector 7 is passed to the
carrier modulator 118 to modulate a carrier signal for transmission by antenna 119 over the

communication channel 120.

[0073] In the receiver 130, antenna 139 receives a noise-affected version of the source
symbols transmitted by the antenna 119, and the carrier demodulator 138 demodulates these
noisy symbols and passes them to the decoder neural network 135 as a channel output vector
Z of noise-affected version of the vector z of hard quantized signal values transmitted over the
noisy communication channel 120. The decoder neural network 135 comprises a decoder input
layer 135i having nodes corresponding to channel output vector 2, and a decoder output layer
1350 having output nodes for outputting as a vector % a reconstructed representation of the
vector x of input data provided from the information source 111 to the encoder input layer 115i
of the encoder neural network 115. The decoder neural network 135 also has one or more
hidden layers 135h having connecting nodes connecting the decoder input layer 135i to the
decoder output layer 1350, the connecting nodes having weights to map the channel output
vector Z of noise-affected hard quantized signal values received at the decoder input layer 135i
to provide at the decoder output layer the reconstructed representation of the input data as

vector X.

[0074] The noisy demodulated symbols Z are thus mapped by the decoder neural network
135 to a reconstructed representation K of the originally input source data x to reconstruct the
information source 111. The receiver 130 thus includes an information sink 131 to which the
reconstructed representation of the input data X decoded by the decoder neural network 135 is

provided.

[0075] In the sense that the encoder neural network 115 and decoder neural network 135 are
configured to provide at the decoder output layer 1350 a reconstructed representation £ of the

originally input source data x provided to the encoder input layer 115i of the encoder neural
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network 115, they can be said to together provide an autoencoder, with the communication
channel in between considered as an untrainable layer. An autoencoder is a neural network
that is trained to copy its input (in this case the information source 111) to its output at the
information sink 131. Autoencoders can provide dimensionality reduction at an intermediate
layer (in this case the encoder output layer 1150/decoder input layer 135i) arranged to have
fewer nodes than the encoder input layer 115i. In this respect, the encoder output layer 1150 of
the encoder neural network 115 may have a lower dimension than the encoder input layer 115i,
so that a low-dimensional representation of the input data is learned, which may represent a
compression of the input data. Generally, however, the output dimension of the encoder neural
network is a parameter specified when the architecture of the encoder neural network is
specified by the system designed. The number of nodes of the encoder output layer 1150 is
generally chosen to correspond to the channel bandwidth available on the communication
channel 120 to transmit the encoded data from the information source 111. If a lot of bandwidth
is available for use in the communication channel 120, then the number of nodes of the
encoder output layer 1150 may actually be chosen to be a value larger than the number of
nodes in the encoder input layer 115i. This does not mean that the output of the encoder neural
network 115 will convey more information than the input. The encoder output is limited to a
specified constellation, whereas the input can take any value. In this way, the encoder learns an
optimum transformation to map the input information source to the channel, that allows a faithful

reconstruction of the information source at the decoder.

[0076] Where the output of the encoder output layer 1150 is configured to be a complex
representation of 1Q signal values for carrier modulation at carrier modulator 118 for
transmission over the communication channel 120, the encoder 115 is trained to perform joint
source and channel coding in a single shot from the input source data x to the transmittable
signal values z (later quantized to z). In this way, the encoder neural network of the
autoencoder can replace the traditional source encoder and channel encoder. Similarly, the
decoder neural network 135 performs joint source and channel decoding from the noisy
demodulated symbols Z to a reconstructed representation % of the input data x in a single shot.
In this way, the decoder neural network of the autoencoder can replace the traditional source
decoder and channel decoder. Thus, the encoder and decoder neural networks can be used as
a form of joint source channel coding. This provides simplicity over having two separate
systems for encoding and two separate systems for decoding. However, the limitations of the
ML-optimisation approaches being incompatible with existing hardware that can transmit only
fixed constellation sets are overcome as the encoder neural network 115 and decoder neural
network 135 used for joint source channel coding in accordance with examples of the present
disclosure can be trained for use with existing transmitter technology transmitting different fixed

constellations, as well as being trained for different channels and different input sources. Thus,
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using neural networks for conveying information across a channel enables a high degree of

freedom and a high degree of compatibility.

[0077] In an autoencoder, the goal of the training of the node weights is to make sure that the
input data x provided to the encoder input layer 115i can be reconstructed as X by the decoder
neural network 135 based on the encoder output z that is received and decoded by the decoder
neural network 135. In the present case, to ensure compatibility with common communication
hardware, the encoder output z of values that may in principle be unconstrained to take any
value in the signal space is hard quantized to a vector z of hard quantized signal values
corresponding to an alphabet S of values a constellation set transmittable by the transmitter
110. That s, the encoder output values of the vector z are not limited to taking values in a
particular constellation set. Thus, what is passed to the decoder neural network 135 is not a
noise-affected version of the unconstrained values z output by the encoder neural network 115,
but a noise-affected version of the vector z of hard quantized signal values produced by the soft
quantization module 116 and hard quantization module 117 and transmitted by carrier

modulator 118 and antenna 119 of transmitter 110.

[0078] Thus, in the training process (explained below in more detail with reference to Figures
5 and 7), the encoder neural network 115 and decoder neural network 135, update their
weights to learn to minimise an objective function characterising a reconstruction error between
input-output pairs of training data from the information source 111 passed to the encoder neural
network 115 and the representation of the input data reconstructed at the decoder output layer
1350 of the decoder neural network 135 using an appropriate optimization algorithm operating
on the objective function, wherein the unconstrained output of the encoder neural network 115
is subsequently quantized to a fixed constellation set and the decoder neural network receives
a noise-affected version of this quantized output. In this way, the encoder neural network 115
and decoder neural network 135 provide an autoencoder in which the compressed signal is
adapted to be assigned to a fixed signal alphabet or constellation set transmittable using

common transmission hardware of transmitter 110.

[0079] The use of the soft quantization module 116 to provide a differentiable representation
of the quantized signal for transmission is key to allowing the encoder neural network 115 and
decoder neural network 135 to learn to minimise reconstruction errors in the communication
system in which a fixed signal alphabet or constellation set of discrete signal values as encoded
symbols for transmission is used. The differentiable output of the soft quantization module 116
is usable to identify the error in the input-output pairs during training and to update the weights
using, for example, gradient descent wherein the gradient of the objective function
characterising the error may be calculated in a backward pass using the chain rule and by

automatic differentiation of the function stack used by the processor (which may or may not be
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the processors 112 or 132, as the training may occur using different computing hardware) to

calculate the decoder output £ from the encoder input x in the forward pass.

[0080] Thus, by including the channel in the training process, by the decoder neural network
135 receiving a noise-affected version Z of the quantized output z in the forward pass, the
encoder neural network 115 and decoder neural network 135 are trained to undo the effect of
the channel on the signal, such as the effect of the channel noise of the signal. The encoder
neural network 115 and decoder neural network 135 can also be trained to learn a
representation of the source data 111 and recover the input with the highest fidelity possible.
Further, as the neural networks are trained to optimise the mapping, the efficiency of the
transmission of the information source over the communication channel can be greater than in
separate source and channel coding, where the separate removal and subsequent addition of

redundancy may be inherently inefficient for transferring the data.

[0081] In a detailed example of a forward pass at runtime, as shown in Figure 2, the
information source 111 in the example is an image of a boat, which may be an uncompressed
or raw bit map. Referring to Figure 8, which shows an example run time method 800 for the
transmitter 110, although this is not a required step of the method of the present disclosure, in
step 801, a vector of input data from the information source 111 in the form of bit symbols x3, X2,
X3... Xn Where x € R is received at input nodes in an encoder input layer 115i for compression by

the encoder neural network 115.

[0082] In step 803, the vector of input data x1, X2, X3, ..., Xn received at the encoder input layer
115i is mapped to provide at the encoder output layer 1150 a compressed representation of the
input data. The mapping is performed by one or more hidden layers 115h of the encoder neural
network 115 having connecting nodes connecting the encoder input layer 115i to the encoder
output layer 1150. The connecting nodes have weights to map the input data x;, X2, x3,..., Xn t0 @
compressed representation of the input data in a latent vector z of values zy, 7, zs, ... , zx in the
signal space, where the signal space is a complex representation of the in phase and
quadrature components for modulating one or more carriers in the communication channel 120.
Thus, the connecting nodes of the hidden layers 115h map the input vector x3, x, x5, ..., X, where
X € Ro to an output vector z1, z, z3, ..., zx where z € Ck of k channel inputs using a nonlinear
encoder function fy(x), where k < n to provide the compressed representation. Figure 3A
shows an example vector of three values, z;, z; z; each having in-phase and quadrature
components in an |1Q signal space for modulating a carrier signal for transmission across a
communication channel to which a vector of input data from an information source has been
mapped by an encoder neural network in accordance with an example of the present
disclosure. As illustrated by the gradient map of potential values for z, z», 3, ..., zx in the 1Q

signal space in Figure 3A, the output z of the encoder neural network 115 is unconstrained and
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can take a range of values that are subsequently assigned through the soft quantization module
116 and hard quantization module 117 to specific IQ values in a constellation set. It should be
noted that the gradient map showing in Figure 3A an illustration of the distribution of likely
signal values for the outputs for z,, z2, 73 ..., zx in the 1Q signal space is exaggerated for ease of
understanding, and through training in conjunction with the quantization modules the encoder
neural network 115 will tend to learn to output values at or very close to the constellation set for
transmission. Nevertheless, as can be seen in Figure 3A, the values of the encoder output
layer 1150 vector elements z;, z,, z3 are near to but away from the exact signal values for
symbols in the constellation set .S of the 16QAM constellation transmittable by the transmitter

110, to which the signal values are to be quantized.

[0083] In step 805, the compressed representation of the input data z;, z,, zs, ..., zx taking
unconstrained output signal space values is quantized to the exact signal values for symbols in
the constellation set S of the constellation transmittable by the transmitter 110. This happens in

two stages.

[0084] Firstly, the soft quantization module 116 operates a differentiable function g(z;) over
the signal space that transforms the unconstrained output signal space values z; to a smoothed
approximation Z; of a signal value in a predetermined finite set S of symbols of a predefined
alphabet of carrier modulation signal values transmittable by the transmitter over the
communication channel. That is, given a finite set of constellation points S = {s;, s, 55 ... 5,,} for

each latent element z; we calculate its approximate quantized version as:

~ _ om e Y
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[0085] where ¢ is a parameter controlling the “hardness” of the assignment, and d;; =

2
||z: — s;]|"is the squared Euclidean distance between complex latent element z; and

constellation point s;. In general, soft quantization produces latent variables that take values

outside the constellation S.

[0086] As the vector Z; is generated by a smoothed function g(z;) to provide an
approximation of the signal values in a predetermined finite set S of symbols of a predefined
constellation, the function g (z;) is differentiable and usable to identify the error in the input-
output pairs during training and to update the weights using, for example, gradient descent
wherein the gradient of the objective function characterising the error may be calculated in a
backward pass using the chain rule and by automatic differentiation of the function stack used

by the processor.
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[0087] As can be seen from Figure 3B, the vector elements z3, z3, z3 input to the soft
quantization module 116 have been transformed by the smoothed function g(z;) to provide
vector elements Z;, Z,, Z;0f vector Z that are nearer to but still away from the exact signal values
for symbols in the constellation set $of the 16QAM constellation transmittable by the transmitter
110, to which the signal values are to be quantized. Even for large values of parameter g, there
is still a gap between the soft quantized values Z and the exact signal values of the constellation
for transmission. This is shown by the gradient map of the distribution of values taken by Z in
Figure 3B showing a spread of signal values around the 16QAM constellation points. In
general, the signal values Z, being away from the standard 16QAM values, would not be

compatible for transmission by standard communication hardware.

[0088] To force the transmitter to provide transmittable signal values, in a second stage of
quantization, the approximated signal values Z output by the soft quantization module 116 are
passed to a hard quantization module 117 that in use transforms them exactly to the nearest

signal value assigned to the symbol in the predetermined finite set S of the alphabet by:
zZ = [Zi] = §j
where j = argmind;, and k € {1, ...m}.

[0089] As can be seen in Figure 3C, the vector elements Z,, Z,, Z; of vector Z have been
assigned by the hard quantization module 117 exactly to the signal values 7;, Z,, Z; assigned to
the nearest symbols of the set S of symbols making up the alphabet of the standard 16QAM
constellation, as shown by the 16 points laid out in the 1Q signal plot. In the Figure 3C, it can be
seen that the elements of the vector Zz output by the hard quantization module 117 take no
values other than those of the standard 16QAM constellation. The hard quantized signal values

71,74, Z3 ... Z), represent the compressed version of the input data X1, X, X3... Xn.

[0090] In step 807, the hard quantized signal values 73, Z,, Z5 ... Z,, are passed as a vector
from the hard quantization module 117 to the carrier modulator 118 to modulate one or more
carrier signals, for example, by OFDM, for transmission by antenna 119 over the
communication channel 120. There the runtime process 800 at the transmitter 110 for
transmitting of the input data x1, X2, X3... Xn ends, and is repeated for all the data for the
information source 110 until the information source (in the example the image of the boat) has

been transmitted.

[0091] Referring now to Figure 9, which shows an example run time method 900 for the
receiver and the decoder neural network in accordance with an example of the present
disclosure, at the receiver 130, in step 901 the one or more carrier signals are received from

communication channel 120 by the antenna 139, and the one or more carrier signals are
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demodulated by the carrier demodulator 138, for example by coherent demodulation, to recover
a noise-affected version Z of the hard quantized signal values Z of the source symbols
transmitted by the antenna 119 of the transmitter 110. As can be seen in Figure 3D, which
shows a distribution of demodulated noise-affected signal values Z received at the receiver 130,
which shows that the noise in the channel leads to a distribution of different detected signal
values Z different to the hard quantized signal values Z. The spread of detected signal values 2
is a randomly distorted version of the input based on a noise distribution based on the channel
characteristics which may include additive noise, or other imperfections in the communication
medium such as fading, multipath propagation, interference or other attenuation. The noise in
the channel can be modelled as, for example, an additive white Gaussian noise (AWGN)
channel model, which, as will be explained below, may be useful in training the encoder and
decoder neural networks, rather than having to use empirical data for transmitted input-output

pairs.

[0092] Inthe example shown in Figure 3D, the vector Z of demodulated carrier signals
received at a receiver 130 takes noise-affected values Z,, Z,, Z; different to (i.e. away from) the
corresponding vector of hard quantized signal values Z;, Z,, Z; (shown in Figure 3C) transmitted

over the noisy communication channel by a transmitter 110, and also away from the set S of

symbol values making up the constellation shown in Figure 3C.

[0093] The noise-affected values 2, 2,, 2; are then provided as a channel output vector Z to a
decoder input layer 135i of a decoder neural network 135 for reconstructing a representation of

the vector of input data x in accordance with an example of the present disclosure.

[0094] In step 903, the hidden layers 135h of the decoder neural network 135 map the vector
Z of noise-affected values to a reconstructed representation X of the originally input source data
X to reconstruct the information source 111 in the information sink 131. In this respect, the

hidden layers 135h apply a non-linear decoder function gg,, (2) to produce a reconstruction & of

the input, where X € R".

[0095] Thus as can be seen in Figure 2, vectors of input data x from the image of the boat
from the image source 111 are mapped by the encoder neural network 115, soft quantization
module 116 and hard quantization module 117 of the transmitter 110 to a vector Z of hard
quantized signal values which is provided as an input 118i to the carrier modulator 118 and
transmitted over the communication channel 120 by antenna 119. At the receiver 130, this is
received and demodulated as an output 1380 of the carrier demodulator 138 as a vector Z of
noise-affected signal values which is then mapped by the decoder neural network 135 to a

reconstruction X of the input data allowing.
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[0096] The connecting node weights of the hidden layers 115h and 135h of the encoder
neural network 115 and decoder neural network 135 have been trained together to seek to
minimise an objective function characterising a reconstruction error between input-output pairs
of training data from the information source 111 passed to the encoder neural network 115 and
the representation of the input data reconstructed at the decoder output layer 1350 of the
decoder neural network 135 using an appropriate optimization algorithm operating on the

objective function.

[0097] In this way the, encoder neural network 115 and decoder neural network 135 learn to
optimise the compression of the data of the image of the boat and its transmission as carrier
symbols of a fixed constellation set over a noisy communication channel such that the image of

the boat is reconstructed at the information sink 131 of the receiver with few errors.

[0098] The training time process for optimising the weights of the encoder neural network 115
and decoder neural network 135 to minimise reconstruction errors will now be described with

further reference to Figures 5and 7.

[0099] Once all the transformations blocks of the communication system as shown in Figure 5
have been designed and initialised with suitable initial encoder and decoder weights and
parameters 6, @, the weights of the encoder neural network 115 and decoder neural network

135 are jointly optimized end-to-end in an unsupervised manner by passing training data
sample vectors x each having elements x,, x,, x3, ... X,, as inputs through the communication
system 100 (or a simulation thereof using a channel model to add noise) and receiving its
reconstruction vector X having elements £, %,, 23, ... £,, in a forward pass of training data
through the transformation blocks (as indicated by the solid line). That is, in step 701 the
vectors (x, X) are received and form input-output pairs of a set of training data from the

information source 111 passed to the encoder neural network 115

[00100] In examples, in the training phase, the input-output pairs of vectors (x, X) of training
data may be calculated empirically, by the transmitter 110, in the forward pass, encoding and
transmitting the encoded compressed version Z of the input vector x of training data across the
communication channel 120 where the signal values are subsequently received and decoded
by receiver 130. In this way, the encoder and decoder neural networks can be optimised to take
into account the noise in the channel through training based on a empirical data capturing the

effects of channel noise on the transmission.

[00101] In other examples, as shown in the Figure 5 example, in the training phase, the input-
output pairs of vectors (x, X) of training data may be generated using a model of the
communication channel 120 to estimate channel noise and add it to the transmitted hard

guantized signal values Z to generate a noise-affected version 2 of the vector of hard quantized
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signal values for subsequent decoding and reconstructing of the output training data vector £ by
the decoder neural network 135. In these examples, a channel model can be adopted that
simulates the practical channel experienced in the operational regime. For simplicity, a complex
additive white Gaussian noise (AWGN) channel model can be adopted, which produces the
channel output 2 = Z + 1, where n € C¥ is a vector containing elements drawn from zero-mean
Gaussian distribution of variance ¢2. However, in general, the channel model can be any model
that simulates an arbitrary transformation of the hard quantized channel input vector z

transmitted by the transmitter 110.

[00102] The training process may perform batchwise optimisation across groups of input-
output pairs, such as using gradient descent to find a gradient error in the forward pass and
determine an update to the weights. In other examples, stochastic gradient descent may be
used in which the error is determined and weights updated for each input-output pair of vectors
(%, X) of training data, before the next of pair of vectors (x, X) of the training data are determined

using the updated weights.

[00103] When a batch or a single input-output pair of vectors (x, X) of training data have been
received to optimise and update the weights in the training process, in step 703, an objective
function is determined characterising a reconstruction error between the input-output pairs of
vectors (x, X) of training data. In the example, as shown in Figure 5, the reconstruction error for
the objective function is characterised using the Mean Squared Error loss between x and 2,

calculated by:
n
MSEG,®) = =) (xi = %)
n
i=1
[00104] Other objective functions characterising the reconstruction error may be used.

[00105] Once the objective function has been calculated for the input-output pair of vectors
(%, X) of training data, the method further comprises, in steps 705 and 707 which may be
performed together, using an appropriate optimisation algorithm operating on the objective
function, updating the connecting node weights of the hidden layers of the encoder neural

network and decoder neural network to seek to minimise the objective function.

[00106] In step 705, the gradient descent optimisation algorithm is used to seek to minimize
the objective function by using a differential of the objective function to determine the gradient
and the direction towards a minimum value for the objective function. Even though the output Zz
of the hard quantization module 117 is non-differentiable, a differentiable path through the

transformation blocks to determine a gradient in the MSE objective function is provided by the
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soft quantization module 116 which provides a smoothed approximation Z of the signal values

in the constellation set.

[00107] Thus, as can be seen in Figure 5, in a backward pass through the communication
system (as indicated by the dotted line), the gradient descent algorithm operates on the
objective function based on a differential of at least the decoder neural network 135, the soft
guantization module 116 and the encoder neural network 115. For example, using
backpropagation, the gradient of the objective function can be efficiently calculated with respect
to the weights in the decoder neural network 135 and encoder neural network 115, for example
by unstacking the elementary functions used to compute the forward pass, and by repeatedly
applying the chain rule to autodifferentiate them and determine the gradient with respect to the
weights in the encoder neural network 115 and decoder neural network 135 by

backpropagation.

[00108] Once the gradient of the object function is determined with respect to the weights in
the encoder neural network 115 and decoder neural network 135, in step 707, the connecting
node weights of the hidden layers of the encoder neural network and decoder neural network
are updated to seek to minimise the objective function. In examples, this achieved in the
gradient descent optimisation method by the using the determined gradient to estimate an
update to the weights of the encoder neural network 115 and decoder neural network 135 that

is expected to step the objective function towards a minimum, where the local gradient is zero.

[00109] Once the estimate of the update to the weights is determined by optimisation method,
the weights of the encoder neural network 115 and decoder neural network 135 are updated
and in step 709, it is checked whether there are more samples of training data in the training
set, and, if there are, the process returns to step 701 and the next batch or training sample is
received and the optimisation method is carried out again to further optimise the weights of the
neural networks. If training over the training set is complete, the process ends and a trained
encoder neural network 115 and decoder neural network 135 are provided for use in an
operational communication system 100 for transmitting input data over a communication
channel 120.

[00110] The separation of quantization into soft and hard steps deals with the issue of non-
differentiability of the quantization operation, and enables the end-to-end learning of all the
transformation blocks of the communication system 100 through gradient descent. The soft

quantization is a differentiable approximation of the hard quantization function, where Z; is a

combination of symbols s;. As only one symbol in S should be chosen (instead of a

combination), the hard quantization selects the main component of Z;, so that z; belongs to S.

The hard quantization is not a differentiable operation; however, as it is applied after the soft
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quantization approximation, we have z; ~ Z;, enabling the system to be differentiable while

guaranteeing that the output vector z takes values from set S.

[00111] For the optimization process, as the encoder and decoder blocks are built as artificial
neural networks with learnable parameters so that the transformation from/to data to latent
representation (code) can be learned directly from data. If the constellation symbols S are
predefined, as it is the case when using standard communication hardware and protocols, the
soft and hard quantization blocks act as constraints for the optimization and the objective
function. In this way, the objective function, being differentiable despite the generation of
discrete symbol values in a constellation, allows the gradient in the objective function to be
evaluated, allowing the system to learn weights of the encoder neural network 115 and decoder

neural network 135 to minimise the reconstruction error.

[00112] If a channel model is used in the forward pass of the training process, rather than
empirically generating training data, the channel model can be included directly in the backward
pass in the optimisation algorithm. If the channel model used is differentiable, it can be used
directly in the backpropagation stage. If it is not differentiable, a generative adversarial network
(GAN) may be used to learn a differentiable representation of the channel model. In this way,
the encoder and decoder neural networks can be optimised to take into account the noise in the

channel through training based on a theoretical noise model of the communication channel.

[00113] It should be noted that, in other examples, the objective function may characterise and
optimise against further constraints and characteristics of the system, such as to obtain an
average power in the symbols transmitted across the communication system 100, so as to

ensure the learned coding system satisfies an average power constraint.

[00114] That is, another constraint of existing communication systems (aside from them
permitting only a fixed constellation of transmission symbols) is that the transmitted message
should satisfy an average power constraint P. To satisfy this constraint, the constellation S is
designed so that, assuming all symbols have the same probability of occurrence, the power is
equal or smaller than P. Then, to ensure the communication system 100 satisfies this power
constraint, the encoder neural network 115 and decoder neural network 135 are trained to learn
a joint source and channel coding scheme that results in the symbols being used with equal

probability.

[00115] In examples, this is achieved by adapting the objective function to add to the
component characterising the reconstruction error (in the examples, the Mean Square Error) an
additional component that characterises a relative entropy between the probability distribution
of the symbols z of the hard quantized signal values output from the encoder neural network

115 and the hard quantization module 117, and a uniform distribution across the symbols s; of
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the constellation set S. Thus, as a result of the optimization process for the objective function,
encoder neural network 115 and decoder neural network 135 of the communication system 100
learn a joint source and channel coding such that the probability distribution of the transmitted
hard quantized symbols Z (based on the calculation of the soft quantized symboils Z) is such
that an average power constraint P on the communication channel is satisfied. This also results

in the available fixed constellation points being used in the most optimal manner.

[00116] In examples of the present disclosure, the Kullback-Liebler (KL) divergence between
the symbol distribution and the uniform distribution is used in the objective function to
characterise the relative entropy for minimisation during training. That is, the uniform

distribution is one on which every symbol s; is transmitted with equal probability across the

communication channel 120. Specifically, the KL Divergence term in the objective function
assesses the difference between the distribution of the soft-quantized latent variables Z and

uniform distribution U over the constellation points s;. To model the distribution of the soft-

quantized latent variables Z, softmax probabilities are utilised, which are calculated by the soft
quantization module. Specifically, the average probabilities for all latent elements Z are

calculated, and their KL Divergence from discrete uniform distribution are then calculated.

[00117] In this example then, the objective function to be minimised in the training process is

expressed as:
L = MSE(x,%) + ADgy,(pz || U)

where A is a weight parameter.

[00118] In the examples above, the training optimises the transmission on a predefined
constellation (e.g., 16QAM). In other examples, the training process can be adapted to learn

which one of a set of available predefined constellations optimizes the performance.

[00119] In these examples, the symbol alphabet set size S is a parameter of the soft and hard
quantization modules. During training the gradient descent algorithm is further operated over a
range of symbol alphabet set sizes S of different cardinality (i.e., different constellations are
learned) to learn the optimal modulation scheme for the information source. In this way, the
optimal transmittable constellation can be learned for transmitting the information source across

the communication channel with minimum distortion.

[00120] Thus, after being defined through training, the encoder neural network 115 and
decoder neural network 135 of the communication system 100 can been optimized to: (a)
encode the input data through joint source and channel coding into a fixed constellation of

symbols, which may have been selected from different available constellation sets to be the
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most optimal; (b) create a coded and compressed representation of the input data as a channel
input signal in the constellation sets, the coding being resilient to channel noise; (c) satisfy an
average power constraint of transmitted signals; (d) decode noisy received symbols back into

an uncompressed reconstruction of the input data.

[00121] The overall communication system 100 in accordance with the examples is greatly
simplified compared to prior art separate source coding and channel coding in terms of the
number of steps taken. Moreover, the communication system 100 provides robust
communication that is resilient to the effect of noise on the transmitted signal, and can operate

reliably in scenarios with varying channel conditions.

[00122] An example suitable architecture of the layer structure for the encoder neural network
115 and decoder neural network 135 for use in wireless image transmission is shown in Figure
6. As can be seen, the architecture includes a convolutional encoder 115 and decoder 135,
made of sub-blocks. For the encoder 115, each sub-block contains a convolutional layer,
followed by a generalized divisive normalization (GDN) layer and parametric rectified linear unit
(PReLU) activation. For the decoder 135, each block is built of a single transposed convolution,
inverse GDN and PRelLU activation. In the encoder 115, 4 sub-blocks are used followed by a
convolutional layer and GDN. The decoder 135 mirrors the architecture of the encoder 115 and
4 sub-blocks are followed by transposed convolution and IGDN layer. To ensure the input x and
output X are within the same range, a sigmoid activation is applied after the last IGDN layer in

the decoder, which effectively maps unconstrained values of the output to [0, 1] range.

[00123] It should be noted that, in accordance with the present disclosure, the communication
channel 120 should be understood as any transformation from the channel input space to the
channel output space that includes a random transformation due to the channel. This may
include additive noise, interference, or other stochastic properties of the channel that will
randomly transform the transmitted signal, e.g., fading and multi-path effects in wireless
channels. Thus, the reference to the noise-affected version Z of the of the vector of hard
quantized signal values Z received at the decoder should be understood to indicate that the
input Z to the decoder is a vector of values correlated with the transmitted vector Z of signal
values (which is itself correlated with the input data x from the information source), transformed

by the communication channel 120, whether that transformation is ‘noise’ or another random

channel transformation.

[00124] In this respect, in accordance with the present disclosure, the communication channel
120 should be understood as encompassing any channel that has, in an input signal space, a

predetermined finite set S of symbols of a predefined alphabet of carrier modulation signal
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values transmittable by the transmitter over the communication channel (which applies a

random transformation to the channel output space).

[00125] Thus, although the examples described above disclose the transmitted vector z of
signal values being raw signal values in IQ space corresponding to the constellation
transmittable by the transmitter over the communication channel 120, in other embodiments the
communication channel 120 may be one that also includes an existing channel encoder and
decoder scheme, in which the signal space of the channel input may be the predetermined
finite set symbols of the channel code (which could be bit values) for modulating a signal carrier
for providing input signals in the alphabet in the input signal space for the communication
channel. Thus, besides random noise applied by the communication channel, the
transformation applied by the communication channel may, in embodiments, also include an
existing channel code. Thus, in these embodiments, the predefined alphabet of symbols for
quantization may be a message alphabet for an existing channel code by which the input
signals to the given communications channel are modulated. In this case, the hard quantized
channel inputs z will be mapped into the message alphabet of the corresponding channel code
(rather than, for example, the raw IQ values of a transmittable constellation, as in the
embodiments described above). The noise-affected channel output Z input to the decoder
neural network 135 may correspond to the hard-decoded message of the channel decoder. In
this respect, in these embodiments, the encoder neural network 115 and decoder neural
network 135 may learn an optimum mapping of the input information source 111 to inputs of an
existing channel code of the communications channel 120 that reduces reconstruction errors at
the output 131 of the decoder neural network135. Although acting as an outer code in these
embodiments, this learned coding of the encoder neural network 115 and decoder neural
network 135 is still optimised based on the characteristics of the communication channel 120 to
reduce reconstruction errors, even though in these alternative embodiments the communication
channel 120 includes an existing channel code. This is unlike existing modular source codes

which are defined independently of the random transformation applied by any channel.

[00126] Further, in accordance with the present disclosure, it should be understood that the
dimension of the vector Z of hard-quantized signal values that are transmitted over the
communication channel need not be equal to the dimension of the channel output vector

Z corresponding to the noise-affected version of the vector of hard quantized signal values
transmitted over the noisy communication channel. That is, in embodiments the version Z of the
vector of hard quantized signal values transmitted over the noisy communication channel that is
input into the decoder input layer may have a dimensionality different to the transmitted vector z
of hard quantized signal values. This may be due, for example, to characteristics of the

receiver, the detection and demodulation process revealing a different signal vector. For
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example, this may be due to different number of receive elements at the receiver 130, e.g.,
multiple antennas, or a different sampling rate of the received signal. The difference in
dimensionality of the version Z of the transmitted signal input to the decoder compared to the
quantized signal vector Z output at the transmitter may also be due to some processing carried
out at the receiver 130. For example, each detected signal may pre-processed and be provided
to the decoder as a vector of likelihoods of assignment to the different symbol values for the
communications channel output. That is, the decoder neural network 135 may receive, for each
detected signal value, a vector of soft decisions on assignment to the different symbols, rather
than a specific symbol value. In this respect, the noise-affected version Z of the hard quantized
signal values provided to the decoder may represent the received signal information differently
to the representation provided to the modulator at the transmitter in the quantized signal vector
Z. Nevertheless, regardless of its dimensionality and representation of the detected signal
values, the noise-affected version Z of the vector of hard quantized signal values transmitted
over the noisy communication channel and provided to the decoder neural network 135 is
simply one that is correlated with the input data from the information source 111. The decoder
neural network 135 then learns to reconstruct the information source 111 from this noise-

affected version Z of the transmitted signals, regardless of its dimensionality and representation.

[00127] It should also be noted that, in accordance with the present disclosure, the soft and
hard quantization steps can be carried out symbol-by-symbol or over blocks of symbols. That
is, the input z to the soft quantization module may be plural latent vector elements in the signal
space, which may be quantized together to provide plural soft quantized outputs. For example,
z, and z, may be guantized together by the soft guantization module to provide at the ouiput 2;
and Z,. Thus, it should be understood that the quantization provided in accordance with the

present disclosure can be scalar quantization or vector quantization.

[00128] Throughout the description and claims of this specification, the words “comprise” and
“contain” and variations of them mean “including but not limited to”, and they are not intended to
(and do not) exclude other components, integers or steps. Throughout the description and
claims of this specification, the singular encompasses the plural unless the context otherwise
requires. In particular, where the indefinite article is used, the specification is to be understood

as contemplating plurality as well as singularity, unless the context requires otherwise.

[00129] Features, integers, characteristics or groups described in conjunction with a particular
aspect, embodiment or example of the invention are to be understood to be applicable to any
other aspect, embodiment or example described herein unless incompatible therewith. All of
the features disclosed in this specification (including any accompanying claims, abstract and

drawings), and/or all of the steps of any method or process so disclosed, may be combined in
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any combination, except combinations where at least some of such features and/or steps are
mutually exclusive. The invention is not restricted to the details of any foregoing embodiments.
The invention extends to any novel one, or any novel combination, of the features disclosed in
this specification (including any accompanying claims, abstract and drawings), or to any novel
one, or any novel combination, of the steps of any method or process so disclosed. In
particular, any dependent claims may be combined with any of the independent claims and any

of the other dependent claims.
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CLAIMS

1. A communication system for conveying data from an information source across a
communication channel using joint source and channel coding, comprising:

a transmitter including:
an encoder neural network having:

an encoder input layer having input nodes for receiving input data from an information
source to be transmitted:;

an encoder output layer having output nodes for outputting a vector of values in a signal
space for modulating a carrier signal for transmission of a transformed version of the input data
across a communication channel; and

one or more hidden layers having connecting nodes connecting the encoder input layer
to the encoder output layer, the connecting nodes having weights to map the input data
received at the encoder input layer to provide at the encoder output layer a transformed
representation of the input data;

a soft quantization module configured to receive the unconstrained output signal space
values from the encoder output layer and to operate a differentiable function over the signal
space that transforms the unconstrained output signal space values to a smoothed
approximation of a signal value in a predetermined finite set S of symbols of a predefined
alphabet of carrier modulation signal values transmittable by the transmitter over the
communication channel; and

a hard quantization module configured to transform the approximate signal values
output from the soft quantization module exactly to a signal value assigned to the symbol in the
predetermined finite set S of the alphabet, the hard quantized signal values representing a
transformed version of the input data and being passed as a vector from the hard quantization
module to the transmitter to modulate a carrier signal for transmission over the communication
channel;

and

a receiver including:

a decoder neural network having:

a decoder input layer having nodes corresponding to a channel output vector received
at the receiver receiving the signal, the channel output vector corresponding to a noise-affected
version of the vector of hard quantized signal values transmitted over the noisy communication

channel;
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a decoder output layer having output nodes for outputting a reconstructed
representation of the input data provided from the information source to the encoder input layer
of the encoder; and

one or more hidden layers having connecting nodes connecting the decoder input layer
to the decoder output layer, the connecting nodes having weights to map the noise-affected
version of the vector of hard quantized signal values received at the decoder input layer to
provide at the decoder output layer a reconstructed representation of the input data;

the connecting node weights of the hidden layers of the encoder neural network and
decoder neural network having been trained together to seek to minimise an objective function
characterising a reconstruction error between the input-output pairs of training data, consisting
of information source samples, which are passed to the encoder neural network, and the
corresponding reconstructions at the decoder output layer of the decoder, using an appropriate

optimization algorithm operating on the objective function..

2. A transmitter for conveying data from an information source across a communication
channel using joint source and channel coding, the transmitter comprising:

an encoder neural network having:

an encoder input layer having input nodes for receiving input data from an information
source to be transmitted:;

an encoder output layer having output nodes for outputting a vector of unconstrained
values in a signal space for modulating a carrier signal for transmission of a transformed
version of the input data across a communication channel; and

one or more hidden layers having connecting nodes connecting the encoder input layer to
the encoder output layer, the connecting nodes having weights to map the input data received
at the encoder input layer to provide at the encoder output layer a transformed representation of
the input data;

a soft quantization module configured to receive the unconstrained output signal space
values from the encoder output layer and to operate a differentiable function over the signal
space that transforms the unconstrained output signal space values to a smoothed
approximation of a signal value in a predetermined finite set S of symbols of a predefined
alphabet of carrier modulation signal values transmittable by the transmitter over the
communication channel; and

a hard quantization module configured to transform the approximate signal values output
from the soft quantization module exactly to a signal value assigned to the symbol in the
predetermined finite set S of the alphabet, the hard quantized signal values representing a

transformed version of the input data and being passed as a vector from the hard quantization
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module to the transmitter to modulate a carrier signal for transmission over the communication
channel;

the connecting node weights of the hidden layers of the encoder neural network having
been trained together with the connecting node weights of the hidden layers of a decoder
neural network for mapping a noise-affected version of the vector of hard quantized signal
values received over the communication channel at the receiver to a reconstructed
representation of the input data provided from the information source, the training seeking to
minimise an objective function characterising a reconstruction error between the input-output
pairs of training data, consisting of information source samples, which are passed to the
encoder neural network, and the corresponding reconstructions at the decoder output layer of

the decoder, using an appropriate optimization algorithm operating on the objective function.

3. A receiver for reconstructing data from an information source sent across a
communication channel using joint source and channel coding comprising:

a decoder neural network having:

a decoder input layer having nodes corresponding to a channel output vector received at
the receiver receiving a signal, the channel output vector corresponding to a noise-affected
version of a vector of hard quantized signal values transmitted over the noisy communication
channel by a transmitter including a corresponding encoder neural network, soft quantization
module and hard quantization module, the transmitter being for mapping input data received
from an information source to be transmitted to the vector of hard quantized signal values
representing a transformed version of the input data;

a decoder output layer having output nodes for outputting a reconstructed representation
of the input data provided from the information source to the encoder input layer of the encoder
neural network; and

one or more hidden layers having connecting nodes connecting the decoder input layer to
the decoder output layer, the connecting nodes having weights to map the noise-affected
version of the vector of hard quantized signal values received at the decoder input layer to
provide at the decoder output layer a reconstructed representation of the input data;

the connecting node weights of the hidden layers of the decoder neural network having
been trained together with the connecting node weights of the hidden layers of the encoder
neural network to seek to minimise an objective function characterising a reconstruction error
between the input-output pairs of training data, consisting of information source samples, which
are passed to the encoder neural network, and the corresponding reconstructions at the
decoder output layer of the decoder, using an appropriate optimization algorithm operating on

the objective function.
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4. A communication system, transmitter, or receiver as claimed in any preceding claim,
wherein the hard quantized signal values represent in-phase and quadrature components for

modulation of the carrier signal for transmission over the communication channel.

5. A communication system, transmitter, or receiver as claimed in any preceding claim,
wherein the predefined alphabet is a fixed, predefined constellation of symbols for digitally
modulating the carrier signal to encode the input data for transmission over the communication

channel.

6. A communication system, transmitter, or receiver as claimed in any preceding claim,
wherein the predefined alphabet is selected to be one that compatible with the modulator of the

transmitter and/or compatible with the demodulator of the receiver.

7. A communication system, transmitter, or receiver as claimed in any preceding claim,
wherein the alphabet of symbols is mapped onto a constellation diagram for Phase Shift Keying
or Quadrature Amplitude Modulation of the carrier signal, or wherein the alphabet of symbols is
mapped onto the signal values for an existing inner channel code for the communications
channel.

8. A communication system, transmitter, or receiver as claimed in any preceding claim,
wherein the encoder neural network and decoder neural network have been trained together
using a gradient descent algorithm operating on the objective function based on a differential of
at least the decoder neural network, the soft quantization function and the encoder neural

network

9. A communication system, transmitter, or receiver as claimed in any preceding claim,
wherein the encoder neural network and decoder neural network have been trained together
using training data in which a model of the communication channel is used to estimate channel
noise and add it to the transmitted hard quantized signal values to generate a noise-affected

version of the vector of hard quantized signal values in the input-output pairs of training data.

10. A communication system, transmitter, or receiver as claimed in claim 9, wherein during
training the gradient descent algorithm has further operated on the objective function further

based on a differential of the channel model.
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1. A communication system, transmitter, or receiver as claimed in claim 9, wherein during
training the gradient descent algorithm has operated on the objective function further based on
a differentiable representation of the channel model generated using a generative adversarial

network.

12. A communication system, transmitter, or receiver as claimed in any of claims 1 to 8,
wherein the encoder neural network and decoder neural network have been trained together
using training data in which input-output pairs of training data are transmitted over the
communication channel by the transmitter, in order to add noise to the transmitted hard
quantized signal values to generate the noise-affected version of the vector of hard quantized

signal values in the input-output pairs of training data.

13. A communication system, transmitter, or receiver as claimed in any preceding claim,
wherein the symbol alphabet set size S is a parameter of the soft and hard quantization
modules, and wherein during training the gradient descent algorithm has further operated over
a range of symbol alphabet set sizes S of different cardinality to learn the optimal modulation

scheme for the information source.

14. A communication system, transmitter, or receiver as claimed in any preceding claim,
wherein the objective function sought to be minimised by the training together of the encoder
neural network and decoder neural network additionally characterises a relative entropy
between the probability distribution of the symbols of the hard quantized signal values output

from the hard quantization module and a uniform distribution across the symboils.

15. A communication system, transmitter, or receiver as claimed in claim 13, wherein the
Kullback-Liebler divergence between the symbol distribution and the uniform distribution is used

in the objective function to characterise the relative entropy for minimisation during training.

16. Method of training an encoder neural network and decoder neural network for use in a
communication system as claimed in claim 1, for conveying data from an information source
across a communication channel using joint source channel coding, the method comprising:
for input-output pairs of a set of training data from the information source passed to the
encoder neural network, determining an objective function characterising a reconstruction error
between input-output pairs of training data from the information source passed to the encoder
neural network and the representation of the input data reconstructed at the decoder output

layer;
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using an appropriate optimisation algorithm operating on the objective function, updating
the connecting node weights of the hidden layers of the encoder neural network and decoder

neural network to seek to minimise the objective function.
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