I*I Innovation, Sciences et Innovation, Science and CA 3109915 A1 2020/02/20
Développement économique Canada Economic Development Canada
en 3109 915

Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office

t2 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13 A1

(86) Date de dépo6t PCT/PCT Filing Date: 2019/08/16 (51) ClInt./Int.Cl. GO6F 8/67(2018.01)
(87) Date publication PCT/PCT Publication Date: 2020/02/20 | (71) Demandeur/Applicant:

(85) Entrée phase nationale/National Entry: 2021/02/17 IVANTI, INC., US

86) N° demande PCT/PCT Application No.: US 2019/046818| (72 Inventeurs/Inventors:

LIVNE, ERAN, US;
(87) N° publication PCT/PCT Publication No.: 2020/037204 BARON, SEBASTIEN, FR

(30) Priorité/Priority: 2018/08/17 (US62/719,155) (74) Agent: BLAKE, CASSELS & GRAYDON LLP

(54) Titre : PROCEDES ET APPAREIL DE DISTRIBUTION SECURISEE ET INTELLIGENTE DE CORRECTIFS
LOGICIELS
(54) Title: METHODS AND APPARATUS FOR SAFE AND SMART DISTRIBUTION OF SOFTWARE PATCHES

100 —

Server 108

Compute Device
101

Communication Network 106

Computs Device
104

Compute Device
102

Carnpute Device
103

FIG. 1

(57) Abrégé/Abstract:
Systems, devices, and methods are disclosed to send a signal to deploy a software patch at a compute device, to identify, based
on a dependency map, a set of system components on the compute device that are likely to be impacted by the software patch, to

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 e Gatineau, Quebec KIAO0C9 e www.cipo.ic.gc.ca ( Eal lada



CA 3109915 A1 2020/02/20

en 3 109 915
(13 A1

(57) Abrégé(suite)/Abstract(continued):

monitor a set of parameters for a set of applications on the compute device that interact with a set of system components, to
compare values for the set of parameters to one or more predefined criteria and to determine a compatibility classification for the
software patch. Systems, devices, and methods are disclosed to update the dependency map based on the compatibility
classification to define an updated dependency map, and based on the updated dependency map send a signal to deploy the
software patch at a set of compute devices.



wO 2020/037204 A1 |0 H000 0 KO0 O 0 0

CA 03109915 2021-02-17

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert 3
(e Organization > | 000 0 O 0 A O
International Bureau / (10) International Publication Number
(43) International Publication Date = WO 2020/037204 A1

20 February 2020 (20.02.20200 WIPO | PCT

(51) International Patent Classification: (72) Inventors: LIVNE, Eran; 9179 S. Cherbourg Place,
GO6F 8/61 (2018.01) Sandy, Utah 84093 (US). BARON, Sébastien; 110 Impasse

(21) International Application Number: de la Roussellerie, 79230 Aiffres (FR).
PCT/US2019/046818  (74) Agent: HOPKINS, David W. et al.; COOLEY LLP, 1299
Pennsylvania Ave. Suite 700, Washington, District of Co-

(22) International Filing Date: Jumbia 20004 (US).

16 August 2019 (16.08.2019)
(81) Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

(25) Filing Language: English

(30) Priority Data:

62/719,155 17 August 2018 (17.08.2018)  US HR. HU. ID. IL. IN. IR, IS, JO. JP. KE. KG. KH. KN. KP.
(71) Applicant: IVANTI, INC. [US/US]; 698 West 10000 KR,KW,KZ,LA,LC,LK,LR,LS, LU, LY, MA, MD, ME,
South, South Jordan, Utah 84095 (US). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(54) Title: METHODS AND APPARATUS FOR SAFE AND SMART DISTRIBUTION OF SOFTWARE PATCHES

1060 -

Server 103

Compute Device
101

Communication Network 106

Compute Device
104

Compute Devics

Cornpute Device
103

FIG. 1

(57) Abstract: Systems, devices, and methods are disclosed to send a signal to deploy a software patch at a compute device, to identify,
based on a dependency map, a set of system components on the compute device that are likely to be impacted by the software patch, to
monitor a set of parameters for a set of applications on the compute device that interact with a set of system components, to compare
values for the set of parameters to one or more predefined criteria and to determine a compatibility classification for the software patch.
Systems, devices, and methods are disclosed to update the dependency map based on the compatibility classification to define an updated
dependency map, and based on the updated dependency map send a signal to deploy the software patch at a set of compute devices.

[Continued on next page]



CA 03109915 2021-02-17

WO 2020/037204 A1 [ 1000000000 0 0 O

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

Published:

—  with international search report (Art. 21(3))

—  before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

METHODS AND APPARATUS FOR SAFE AND SMART DISTRIBUTION OF
SOFTWARE PATCHES

(1601} This application claims prionty and the benefit of U.S. Provisional Application No.
62/719,155, filed August 17, 2018, entitled “Methods and Apparatus for Safe and Smart

Distribution of Software Paiches,” which is hereby incorporated by reference in its entirety.
Background

11602} The embodiments described herein relate to methods and apparatus for smast

management and distnbution of software patches to compute devices connected within a smart

patching system,
[1803] Some known software applications nstalied m compute devices can be maintamed

and/or apdated, which can include periodic deployment or distribution of supplemental
information referred to as “software patches™. The deployment and installation of software
patches can sometimes alter the runtime functionality of existing software applications and/or
other associated svstem components 1n compute devices. For example, the installation of
software patches to application A can affect the fimetionality of a software application B. These
collateral effects can be unpredictable, difficult and/or time-consuming o resolve, and often

dehilitating for the functioning of an organization using the compute devices.

1604} Some known approaches to distributing software patches include deploying
potential software patches in a select few test compute devices and assessing the effects of the
new software patches on the test devices. Based on the assessment of the performance of
patches in the test devices, the same software paiches can be distributed to a relatively wider
network of compuic devices in a gradual manner. Such an approach, however, does not account
for the fact that other compute devices in the wider network may be different from the test
compute devices and may face problems that are not encountered in the test compute devices.
Furthermore, the problems faced i the compute devices in the wider network may be
unpredictably different or completely vnrelated to problems faced and resolved i the test

compute devices.

[1005] Thus, a need exists for improved apparatuses and methods for a sate, predictable

approach to the management and distribution of scfiware patches.



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818
Summary
[1806] A method ncludes recerving, from cach compute device from a set of compute

devices, data associated with (1} a set of software applications installed on that compute device
and (2) mteractions between the set of software applications installed on that compute device
and a set of system components of that compute device. The method includes identifying, based
on the data, dependencies between the set of software applications installed on cach compute
device from the set of compute devices and the set of system components of cach compute
device from the set of compute devices. The method includes defining a set of dependency
maps based on the dependencies. The method further includes receiving information related to
potential deployment of a software patch; and predicting a group of system components hikely
to be aliered by the software patch. The method includes predicting, based on the set of
dependeney maps and the group of systom components likely to be altered by the software
patch, a set of software applications likely to be affected by the software patch. The method
further mcludes identifying, based on the set of software applications likely to be affected by
the software patch, a subset of compute devices as test compute devices for the software patch.
The method further mcludes sending a signal to deploy the software patch at each compute

device from the subset of compuie devices identified as test compute devices.

[1607] In some embodiments, a non-transitory processor-readable medium stores code
representing instroctions to be executed by a processor. The instructions can inclade code to
cause the processor to receive, from a compute device, data associated with (1) a set of software
applications instatied on the compute device and (2} interactions between the set of sofiware
applications installed on the compute device and a set of system components of the compute
device. The code can cause the processor to identify dependencies between the set of software
applications and the sot of svstem components, based on the data, and update at feast one
dependency map associated with the compute device. The code can further cause the processor
to receive information related to potential deplovment of a software patch at the compute
device, and predict, based on the information, a group of system components likely
incompatible with the software patch. The instructions can further include code to cause the
processor to send a signal to deploy the software patch at the compute device 1o response to the
dependency map ndicating that the set of software applications are unlikely to interact with

the group of system components.



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

(1008} In some embodiments, an apparatus includes a memory and a processor. The
processor 1s configured to send a signal to deploy a software patch at a compute device. The
processor 18 configured to identity, based on a dependency map, a set of system components
on the compute device that are likely to be impacted by the software patch. The processor is
further configured to monitor a set of parameters for a set of applications on the compute device
and that interact with at least one system component from the set of system components. The
processor is further configured to compare valucs for the set of parameters to one or motre
predefined criferia to determune a compatibility classification for the software patch. The
processor can be further configured to update the dependency map based on the compatibility
classification to define an updated dependency map, and, based on the updated dependency

map, send a signal to deploy the software patch at a set of compute devices.

1609} in some cmbodiments, an apparatus includes a memory and a processor. The
processor 18 configured to receive, from an agent monitoring cach compute device from a first
set of compute devices, mformation related to mstalled software applications and system
components in the first set of compute devices. The processor is configured to build
dependency maps between the mstalled sofiware applications and svstem components in the
first set of compute devices. The processor is configured to recetve information related to a
first set of software patches that are deploved on the first set of compute devices and the system
components i the first set of compute devices that are impacted by each software patch from
the fivst set of software paiches. The processor is configured to build dependency maps relating
the first set of software patches and system components on the first set of compute devices.
The processor s further configured to receive information related to a second set of sofiware
patches to be deploved on the first set of compute devices and provide a set of predicted effects
on the matalied software applications {or software enviromment} on the first sct of compute
devices predicted to ocour in response to the potential deployment of the second set of software
patches, based on the dependency maps generated between sofiware patches and system
components on the first set of compute devices, and the dependency maps generated between
the nstalled software applications and system components on the first set of compute devices.
The predictions can be used to select ideal candidate compute devices for safe software patch
deployment and to preemptively resolve potential issues that may arise from patch deployment
in non-tested compute devices. The processor i further configured to receive mformation
related to installed software applications and system components on a second set of compute

devices, and based on the dependency maps gencrated between sofiware patches and system



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

components on the first set of compute devices, and/or the dependency maps generated between
the 1stalled software applications and system components on the first set of compute devices,
provide a set of predicted effects on the installed software applications on the sccond set of
compute devices predicted to occur i response to the potential deployment of the set of the

untested software patches.
Brief Bescription of the Brawings

(1810} FIG. 11s a schematic ilustration of a smart patch management system, according

to an embodiment.

[1611] FIG. 2 13 a schematic represeniation of a compute device within a smart patch

management system, according to an embodiment.

(1612} FIG. 3 18 a schematic representation of a server within a smart patch management

system, according to an embodiment.

[1613] FIG. 4 s a schematic representation of a dependency map between potential
software patches and the systern components of compute devices with which the patches may

nteract, according to an embodiment.

11014} FIG. 5 1s a schematic representation of a dependency map between system
components i compute devices and software applications installed on the compute devices,

according to an embodiment.

[1615] FIG. 6 13 a flowchart describing a method of building and using dependency maps
between software patches, system components and software applications, according to an

embodiment.

(1816} FIG. 7 15 a schematic representation of a prospective effect map of several compute
devices, and the effects of potential deployment of a software patch on the system components

and the installed software applications in each compute device, according to an embodiment.
Betailed Description

[1817] In some embodiments, a method includes receiving, from cach compute device
from a set of compute devices, data associated with (1) a set of software applications installed
on that compute device and (2} micractions between the set of software applications installed

4



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

on that compute device and a set of svstem components of that compute device. The method
includes identifving, based on the data, dependencies between the set of sofiware applications
installed on each compute device from the set of compute devices and the st of system
components of each compute device. The method includes defining a set of dependency maps
based on the dependencies. The method further mcludes receiving information related to
potential deployment of a software patch; and predicting a group of system components likely
to be altered by the software patch. The method includes predicting, based on the sct of
dependency maps and the group of system components likelv to be altered by the sofiware
patch, a set of software applications likely to be affected by the software patch. The method
further mcludes identifying, based on the sct of software applications likely to be affected by
the software paich, a subset of compute devices as test compute devices for the software patch.
The method further mcludes sending a signal to deploy the software patch at each compute

device from the subset of compuie devices identified as test compute devices.

[1618] In some embodiments, a non-transttory processor-readable medium stores code
representing instructions to be executed by a processor. The instructions can include code to
cause the processor to receive, from a compute device, data associated with (1) a set of sofiware
applications installed on the compute device and (2} interactions between the set of software
applications instalied on the compute device and a set of system components of the compute
device. The code can cause the processor to identify dependencies between the set of software
applications and the set of svstem components, based on the data, and update at least one
dependency map associated with the compute device. The code can further cause the processor
to receive information related to potential deplovment of a software patch at the compute
device, and predict, based on the information, a group of system components likely
incompatible with the software pateh. The mstructions can further include code to cause the
processor to send a signal to deploy the scftware patch at the compute device in respouse to the
dependeney map mdicating that the set of software applications are unlikely to mteract with

the group of systern components.

[1819] In some embodiments, an apparatus includes a memory and a processor. The
processor 18 configured to send a signal to deploy a software patch at a compute device. The
processor is configured to identify, based on a dependency map, a set of system components
on the compute device that are likely to be impacted by the software patch. The processor is

further configured to monitor a set of parameters for a set of applications on the compute device



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

and that mnteract with at least one svstem component from the set of system components. The
processor is further configured to compare values for the set of parameters to one or more
predefined criteria to determine a compatibility classification for the software patch. The
processor can be further configured to update the dependency map based on the compatibility
classification to defing an updated dependency map, and based on the updated dependency map

send a signal to deploy the sofiware patch at a set of compute devices.

11624 In some embodiments, an apparatus mchides a memory and a processor
operatively coupled to the memory. The processor can be configured 1o receive information
related to interaction between system components and software applications from a set of
compute devices, and baild dependency maps between the system components and the software
applications. The processor is configured to receive information from a set of test compute
devices and related to a software patch deployed on the set of test compute devices and build
dependency maps between the software patch and the system components that were altered by
the software patch. In some embodiments, the processor can be configured to build prospective
cffect maps based on the dependency maps to predict the effects that may be encountered on
software applications in a set of uniested compute devices when the software paich is deploved

in the set of untested compute devices.

[1621] FIG. 1 15 a schematic illustration of a smart paich management system 100, also
referred to herein as “an 5PM system” or “a system” . The smart patch management system 100
is configured to manage distribution and deploymeunt of software patches to a set of compute
devices 101-104 by building dependency maps between software patches and sofiware
applicattons. The smart patch management system 100 can evaluate new and/or untested or
partially tested software patches, based on the dependency maps, to predict potential issues and
proactively resolve the potential issues that may anse during deplovment of the software
patches, according to an embodiment. The SPM system 100 includes compute devices 101,
102, 103, and 104, connected o a smart patch management server 105 (also referred to as “the
server”) through a communications network 106, as illustrated in FIG. 1. While the system 100
ts itlustrated to include four compute devices 101-104, a sinular SPM system can include any

number of compute devices.

[1622] In some embodiments, the communication network 106 {also referred 1o as “the
network™) can be any suitable communications network for transferring data, operating over

public and/or private networks. For example the network 106 can include a private network, a

6



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

Virtual Private Network (VPN), a Multiprotocol Label Switching (MPLS)} circuit, the Internet,
an intranet, a local arca network (LAN}), a wide area network (WAN), a metropolitan area
network (MAN), a worldwide interoperability for microwave access network (WiMAX®), an
optical fiber {or fiber optic)-based network, a Bluetooth® network, a virtual network, and/or
any combination thereof. In some mstances, the communication network 106 can be a wireless
network such as, for example, a Wi-Fi or wireless local area network ("WLAN™), a wireless
wide arca network ("WWAN), and/or a cellular network.,  In other instances, the
communication network 106 can be a wired network such as, tor example, an Ethernet network,
a digital subseription line ("DSL”} network, a broadband network, and/or a fiber-optic network.
In some mstances, the network can use Application Programming Interfaces (APls) and/or data
interchange tormats, (¢.g., Representational Siate Transter (REST), JavaScript Object Notation
(ISON), Extensible Markup Language (XML}, Simple Object Access Protocol (SOAP), and/or
Fava Message Service (JMS)}. The communications sent via the network 106 can be encrypted
or unencrypted. In some instances, the communication network 106 can nclude multiple
networks or subnetworks operatively coupled to one another by, for example, network bridges,

routers, switches, gateways and/or the like (not shown).

(1623} The compute devices 101, 102, 103, and 104, in the SPM system 100 can cach be
any suttable hardware-based computing device and/or a muluimedia device, such as, for
example, a server, a deskiop compute device, a smartphone, a tablet, a wearable device, a laptop

and/or the hike.

[10624] FIG. 2 1s a schematic block diagram of an example compute device 201 that can be
a part of an SPM svstem such as the SPM system 100 described above with reference FIG. 1,
according to an embodument. The compute device 201 can be structurally and functionally
stmilar to the compute devices 101-104 of the system 100 iHustrated in FIG. 1. The compute
device 201 can be a hardware-based computing device and/or a multimedia device, such as, for
example, a server, a desktop compute device, a smariphone, atablet, a wearable device, alaptop
and/or the like. The compute device 201 includes a processor 211, a memory 212 {c.g.,

inchuding data storage), and a communicator 213,

1625} The processor 211 can be, for example, a hardware based mtegrated circuit (1C) or
any other suttable processing device configured to run and/or execute a set of nstructions or
code. For example, the processor 211 can be a general purpose processor, a central processing

amit {CPU}, an accelerated processing vait {APU), an application specific integrated circuif

7



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

(ASIC}, a field programmable gate array (FPGA), a programmable logic array (PLA), a
complex programnmable logic device (CPLD), a programmable logic controlier (PLC) and/or
the like. The processor 211 can be operatively coupled to the memory 212 through a system

bus (for example, address bus, data bus and/or control bus).

1626} The processor 211 can be configured to receive software patches and associated
nstructions distributed by a server in an SPM system and mstall the received software patch
following the associated mstructions. In some embodiments, the processor 211 can be
configured to maintain logs or schedules of software patches and associated instructions
distributed by the server. The processor 211 can also be configured to mamtain a log of
information related to the installation of the received software patches {e.g., name or cther
identifier of the software patch, time and date of receiving the sofiware patch with instructions

and time, time and date or mstallation, etc))

[1827] The processor 211 can include a data collection agent 214 {also referred to hercin
as “the agent™), a dependency mapper 215 (also referred to as “the mapper” herein), system
components 231A and 231B and softwarc applications 241 A and 241B. In some embodiments,
the system components 231A and 231B can be a process, program, utility, or a pait of a
computer's operating svstem, in the form of code that can be stored and executed by the
processor 211, The system components 231A and 231B can be configured to, when executed
by the processor 211, help to manage portions of the compute device 201, The system
components 231A and 231B can each be configured to serve or contribute to specific functions
such as process management, memory management, file management, access management,
resource management, and the like. For example, the system components 231A and 231B can
be dynamic link bibraries (DLLs), executable system component files (EXEg), registry keys,
and/or the like. The software applications 241 A and 241B can cach be any suttable software or
code that when executed by the processor 211 can be contigured (o perform a group of
coordimated funchions, tasks, or activities for the bepefit of a user of the compute devics 261,
Software applications 241A and 2418 can be, for example. browser applications, word
processing  applications, media plaving applications, JAVA based applications, image

rendenng or editing applications, text editing applications, and/or the hike.

[1628] In some embodiments, each of the data collection agent 214, the dependency
mapper 215, the system components 231A and 231B, and/or the software applications 241A

and 241B can be software stored in the memory 212 and executed by processor 211, For

3



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

example, each of the above mentioned portions of the processor 211 can be code to cause the
processor 211 to execute the data collection agent 214, the dependency mapper 2135, the system
components 2314 and 231B and/or the software applications 241A and 241B. The code can
be stored in the memory 212 and/or a hardware-based device such as, for example, an ASIC,
an FPGA, a CPLD, a PLA, a PLC and/or the like. In other embodiments, each of the data
collection agent 214, the dependency mapper 215, and/or the systen: components 231A and
2318 can be bardware configured to perform the respective functions. Moreover, while
described heren as updating and/or patching software applications 241A and 241B, in other
tmplementations, dependencies for hardware devices and/or applications {¢.g., applications
implemented on a hardware device such as an ASIC, an FPGA, a CPLD, a PLA, a PLC, ctc)

can be maintained and patches can be applied to such hardware devices and/or applications.

1629} The data collection agent 214 can be configured fo run as a background process and
collect data related to interactions between svstem components 231 and the software
applications 241 m the compute device 201, For example, the data collection agent 214 can
momitor, collect and/or store information related fo interactions between cach of the one or
more system components 231 i the compute device 201 such as dynamic hink ibraries (DLLs),
other suitable executable system component files (EXFEs) and/or the like, and each of the
software applications 241 installed and/or run in the compute device 201, by one or more users.
In some instances, the data collection agent 214 can be configured to monitor and/or collect
any suitable data related to the configuration or setup of the compute device 201 that may be
aseful m the consideration of potential deployment of software patehes. For example, the agent
214 can be configured o monitor and/or collect data related to whether the compute device
201 can serve as a candidate fest compute device, if the compute device 201 can be delaved in
receiving a potential software patch. The data collected by the agent 214 can mclude a set of
parameters agsociated with cach of the software applications 241 installed and/or run in the
compute device 201. For example, the set of parameters can include processor use, memory

use, nput/output use, or bandwidth use associated with a software apphication.

[1830] The data collected by the agent 214 can include data related to the compute device
201, data related to an operating sysiem on the compute device 201 (e.g., types and/or versions
of operating systemi{s)), identity of associated hardware and/or peripheral devices of the
compute device 201, tvpes and/or versions of sccurity measures installed on the compute device

201, tvpes of user privileges allowed on the compute device 201, types of access or exposure



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

to malware threats of the compute device 201, number of users, hours or schedules of use, type
of use {¢.z., controlling sensitive equipment, Hnked to sensitive data, etc) of the compute
device 201 and/or the like. The agent 214 can further be configured to collect any suitable
information that may be usetul in the consideration of potential deployment of a software paich,
such as whether the compute device 201 can serve as a candidate test compute device, if the

compute device 201 can be delaved in receiving a potential software patch, etc.

(1831} In some instances, the data collection agent 214 can store the mformation collected
in anv suitable form such as, for example, in the form of text based narrative of events or
inferactions between sysiem components and software applications. In some instances the data
collection agent 214 can also analyze the data collected and store the results of the analysis n
any suitable form such as, for example, in the form of interaction logs, or look-up tables, etc.
The data collected by the agent 214 and/or the results of analyses can be stored for any suitable
period of time m the memory 212, In some instances, the data collection agent 214 can be
further configured to send the collected and/or analyzed data, via the communicator 213, to a
server that may be part of an SPM system to which the compute device 201 is connected (¢ g.,
the server 105 of the system 100 itlustrated in FIG. 1), In some mstances, the agent 214 can be
configared to send the collected and/or analvzed data automatically (g.g., periodically with a

predetermined frequency of communication) and/or in response to a query from the server.

11032} The dependency mapper 2135 can be configured to receive data and/or analyses from
the data collection agent 214 and generate relationship maps of dependencies between software
applications 241 A and 241B m the compute device 201 and the system components 231A and
231B m the compute device 201, For example, the dependency mapper 215 can, in some
implementations, be configured to build maps between specific software applications {e.g.,
JAVA-based application) and the svsiem components on which cach specific software
application depends or uses for its execution and functioning. The dependency mapper 213
can generate the dependency maps between systom components and software applications, and
store these dependency maps in the memory 212 of the compute device 201, The dependency
mapper 215 is further configured to send, via the communicator 213, either antomatically {c.g.,
periodically with a predetermuned frequency of communication) or n response to a query from
a server of an SPM system (sumilar to the server 1035 of the systerm 100 dlustrated 1 FIG 1)

the dependency maps, the associated data collected and/or the results of analyses, 1o a server

10



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

{¢.g., a server sinlar to the server 105 llustrated in FIG. 1), as described m further detad

herein.

{1633} The memory 212 of the compute device 201 can be, for example, a random access
memory {RAM), a memory buffer, a hard drive, & read-only memory (ROM), an crasable
programmable read-only memory (EPROM), and/or the like. The memory 212 can store, for
example, one or more software modules and/or code that can inclade instructions to cause the
processor 211 to perform one or more processes, functions, and/or the like (e g, the data
collection agent 214, the dependency mapper 215, the system components 231A and 2318
and/or the software applications 24 1A and 241 B). In some embodiments, the memorv 212 can
include extendable storage units that can be added and used merementally. In some
implementations, the memory 212 can be a portable memory {(for example, a flash dnave, a
portable bard disk, and/or the like) that can be operatively coupled to the processor 211, In
other instances, the memory can be remotely operatively coupled with the compute device. For
example, a remote database server can serve as a memory and be operatively coupled to the

compuic device.

11634} The communicator 213 can be a hardware device operatively coupled to the
processor 211 and memory 212 and/or software stored in the memory 212 executed by the
processor 211, The communicator 213 can be, for example, a network mterface card (NIC), a
Wi-Fi'™ module, a Bluctooth® module and/or any other suitable wired and/or wircless
communication device. Furthermore the communicator 213 can include a switch, a router, a
hub and/or any other network device. The communicator 213 can be configured to connect the
compute device 201 to a commumnication network {such as the communication network 106
shown in FIG. 1), In some 1ostances, the communicator 213 can be configured to connect o a
communication network such as, for example, the Intemet, an intranct, a local area network
(LAN), a wide arca network (WAN), a metropolitan arca network (MAN), a worldwide
nteroperability for microwave access network (WiMAX®), an optical fiber {or fiber optic)-

based network, a Bluctooth® network, a virtual network, and/or any combination thereof.

11635] In some instances, the communicator 213 can facilitaie receiving andfor
transmitting a file and/or a set of files through a commumnication nctwork (c.g. the
communication network 106 in the SPM system 100 of FIG. 1). In some instances, a received
file can be processed by the processor 211 and/or stored in the memory 212 as described in

further detail herein. In some instances, as descnbed previously, the communicator 213 can be

3



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

configured to send data collected and/or analyzed by the agent 214 to a server of an SPM
system to which the compute device 201 is connected. The communicator 213 can also be
configured to send data collected and analyzed by the dependency mapper 215 and the results
of anv analyses such as the dependency maps generated, to the server of an SPM system to

which the compute device 201 1s connected.

11036} Returning to FIG. 1, the compute devices 101-104 that are connected to SPM
system 100 can be configured to communicate with an SPM server 105 via the communication
network 106, FIG. 3 is a schematic representation of a server 305 that is part of an SPM svstem.
The server 305 can be structurally and functionally similar to the server 105 of the system 100
illustrated in FIG. 1. The server 305 includes a server communicator 353, a server memory

352, and a server processor 351,

[1637] Similar to the communicator 213 within compute device 201 of FIG. 2, the server
compunicator 353 can be a hardware device operatively coupled to the server processor 351
and the server memory 352 and/or software stored in the server memory 352 executed by the
server processor 351, The server commumicator 353 can be, for example, a network nterface
card (NIC), a Wi-Fi'™ module, a Bluetooth® module and/or any other suitable wired and/or
wircless comnmunication device. Furthermore the communicator 353 can include a switch, a
router, a hub and/or any other network device. The server communicator 353 can be configured
1o connect the server 303 to a communication network (such as the communication network
106 shown in FIG. 1), In some instances, the server communicator 3533 can be configured to
connect to a communication network such as, for example, the Internet, an intranet, a focal area
network (LAN}, a wide arga network (WAN), a metropolitan area network (MAN), a
worldwide mmteroperability for microwave access network (WiMAX®), an optical fiber {or
fiber optic)-based network, a Bluctooth® network, a virtual network, and/or any combination

thereof.

[1038] The server memory 352 can be a random access memory (RAM), a memory buffer,
a hard drve, a read-only memory (ROM), an erasable programmable read-only memory
(EPROM), and/or the like. The server memory 352 can store, for example, one or more
software modules and/or code that can include instructions to cause the server processor 351
to perform one or more processes, functions, and/or the like. In some implementations, the
server memory 352 can be a portable memory (e.g., a flash drive, a portable hard disk, and/or

the bike) that can be operatively coupled to the server processor 351, In other instances, the

12



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

server memory can be remotely operatively coupled with the server. For example, the server
memory can be a remoie database server operatively coupled to the server and its components

and/or modules.

11639} The server processor 351 can be a hardware based mntegrated circait (IC) or any
other suitable processing device configured to run and/or execute a sct of mstructions or code.
For example, the server processor 351 can be a general purpose processor, a central processing
amit {CPU}, an accelerated processing vait {APU), an application specific integrated circuif
(ASIC), a field programmable gate amay (FPGA), a programmable logic array (PLA)Y, a
complex programmable logic device (CPLD), a programmable logic controller (PLC) and/or
the hke. The server processor 351 is operatively coupled to the server memory 352 through a
system bus {e.g.. address bus, data bus and/or control bus). The server processor 351 is
operatively coupled with the server communicator 353 through a suitable connection or device

as described m further detail.

(1840} The server processor 352 can be configured to include and/or execute several
components, units and/or modules that may be configared to perform several functions, as
described in further detail herein. The components can be hardware-based components {e.g.,
an integrated circuit (IC) or any other suitable processing device configured to run and/or
execute a set of instructions or code) or software-based components (executed by the server
processor 3523, or a combination of the two. As tllustrated in FIG. 3, the server processor 351
includes a data collector 353, a dependency mapper 356, a smart patch manager 357, a predictor

358, and a patch deplover 359,

1641} The data collector 355 of the server processor 351 can be configured fo receive
communications between the server 305 and compute devices connected to the server 303
through suitable communication networks (e.g., compute devices 101-104 connected to the
server 105 via the communication network 106 1n the system 100 in FIG. 1), The data collector
355 15 configured to receive, from the compute devices, information collected and/or gencrated
by the one or more data collection agents in the compute devices {e.g., agent 214 of compute
device 201 shown and described with respect to FIG. 2). The data from agents of various
compute devices can, in some instances, inchide one or more logs or records or other data
relating to interactions between system components and installed software applications, and
ong or more users. The data collector 355 18 further configured to recetve the dependency maps

generated by dependency mappers in the compute devices {¢.g., dependency mapper 215 on

13



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

compute device 201 i FIG. 2). The dependency maps received from mappers from various
compute devices can be in any suttable form such as maps {e.g., maps illustrated 1n FIGS . 4

and 3}, look-up tables, text based lists of svstem components and/or software applications, etc.

11642} In some instances, the data collector 335 can be hurther configured to receive,
analyvze, and store communications from compute devices regarding any suitable system
nformation. The system information recetved from a compute device can melude, for example,
the type of compute device, the tvpe and version of operating system runming on the compute
device, the type of hardware {c.g., processor, cxtended storage modules, etc.), peripheral
devices associated with the compute device, the types of security measures and/or protection
against malware tostalled, and/or the like. In some instances, the svstem information received
from a compute device can include the types of system components and installed software
applications on the compute device, the history of installation of software patches for the
compute device, the history of any break or change in functionality due {o installation of one
or more software applications and/or software patches on the compute device, a frequency
and/or an amount of use of specific system components and/or software applications on the
compute device, a level of access to external sources or potential exposure to malware of the

compute device, and/or the like.

[1643] ¢ data collector 355, in some mstances, can also be configured fo receive usage
mformation related to the comnected compuate devices, such as a usage profile including
common functions performed by each of the connected compute devices. For example, in some
instances, the data collector 353 can receive information related to whether a particular
compute device is a personal device generally used by a single user {e.g., a personal desktop
o1 laptop computer), or if the compute device is associated with and used by several users (e g,
of a work group). In some instances the compute device may be associated with other hardware
or equipment and be accessible to any user with appropriate credentials. For example, the
compute device may be used to run sensitive or lngh demand equipment, or the compute device
may be a local server. The data collector 355 can be further configured to receive information
related to use of a compute device such as hours of operation and/or schedules of heavy or ight
processing load on the compute device. The data collector 355 can be configured to receive
information about the types of operations or services supported by a compute device such as
text editing, image processing, data processing, mathematical modelling, accessing and

secarching remote databases, hardware control, and/or the ke, The data collector 355 is

14



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

configured to receive data and store the data in a suitable mamer in the server memory 352
such that other units, components or modules of the server 303 can use the data for further

processing.

11644] The server processor 351 nclades a dependency mapper 356 that can be configured
1o generate and/or update one or more dependency maps such as dependency maps between
software patches and known system components, and dependency maps between system
components and software applications installed in compute devices within the SPM gystem
{e.g., the cxample dependency maps 411 and 511 illustrated m FIGS. 4 and 5, respectively). In
some instances, the dependency mapper 356 can generate one or more generalized or specific
dependency maps that can be applicable to groups of compute devices or a specific compute
device, respactively. For example, the dependency mapper 356 can use data collected and
stored by the data collector 335 to generate dependency maps between system components and
software applications for a specific compute device or a specific set of compute devices. For
example, the dependency mapper 356 can gencrate a set of generalized dependency maps
between system components and software applications 1 a set of compute devices that run on
a particular kind of operating system (08} (c.g., Windows, MacOS, Linux, etc.) within the
SPM system. As another example, the dependency mapper 336 can generate a set of
generalized dependency maps between system components and software applications in a set
of compute devices that are used for a common purpose such as, for example, text or image
cditing, or a set of compuie devices that extensively use a set of system components or
associated software applications such as, for example, a aystem component DLL
“o\javajre dll” and/or JAV A based applications. As ancther example, the dependency mapper
356 can generate a set of generalized dependency maps between a software patch and system
components that might be altered by that software patch i a set of compute devices that are
used to operate equipment or machinery, and vse one or more software applications to interface

with the hardware.

(1045} In some instances, the dependency mapper 356 can asstmilate data obtained from
the compute devices to gencrate the dependency maps between system components and
software applications. In some instances, the dependency mapper 356 can assimilate previously
generated dependency maps between system components and software applications that may
be specific to one or more compute devices and can modify, update, or combine the dependency

maps to generate new dependency maps. For example, dependency mapper 336 in server

15



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

processor 351 can recetve device specific dependency maps generated by mappers within
individual compute devices {e.g., the mapper 215 of compute device 201 1 FIG. 2} and
combine the device specific dependency maps recetved from multiple similar compute devices
{c.g., devices running the same U5, using similar hardware, eic.) to generate new generalized
dependency maps. In some instances, the dependency mapper 336 can receive dependency
maps generated by mappers within a first compute device with a particular configuration {e.g.,
running a particular version of a particular O8) and using data collected by a data collector 355,
update the dependency map to be applicable 1o one or more compuie devices that may be
similar in configuration to the first compute device but have some differences (e.g., devices
running a different version of the same 08 as the first compute device). In some instances, the
dependency mapper 356 can use data collected by the data collector 355 and/or mformation
received by the smart paich manager 357 about new software patches to be distriboted, and
generate dependency maps between potential software patches and system components of one

o1 more compuie devices.

[1846] The server processor 351 meludes a smart patch manager 357 that is configured to
recetve, from vendor or suppliers of software applications and/or sottware patches, new and/or
updated software patches to be deployed. The smart patch manager 357 can be configured to
manage logs or schedules of software patches to be distnibuted and the compute devices to
which they are to be distnibuted. In some embodiments, the smart paich manager 337 can
recetve a schedule of a set of software patches that are to be distributed and deployed in a set
of compute devices. The smart patch manager 357 can be configured to aggregate, classify
and/or group the set of software patches according to one or more software paich fanulies based
on predetermined criteria met by the set of software patches. In some implementations, the
smart patch manager 357 can be configured o identfy properties of software patches from the
information received along with the software patches. For example, the smart patch manager
357 can identify that a software patch named JDKI18 222 15 a Java software paich and
aggregate, classify and/or group the software patch into a Java-related software patch family.
The smart patch manager 357 can use the identified propertics of the software patches and the
ageregated software patch famly information to generate dependency maps and/or prospective

cffect maps for one or more compute devices.

11047} The smart patch manager 357 is configured to use data obtained by the data collector

355 to monitor and maintain a history of connected compute devices m an SPM systermn of the

16



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

server 303, past history of software patches distributed and patches deployed m each compute
device, the outcomes of deployment of specific sofiware patches, and user or compute device
provided feedback or input regarding systern function that mayv or may not be related to patch
deployment. In some embodiments, the smart patch manager 357 can be configured to generate
system profiles for compute devices conngcted to the SPM system, based on compute device
specific information collected by the data collector 3535, For example, the smart patch manage

357 can generate systern profiles for mndividual compute devices i the SPM system based on
the details specific to each compute device such as, for example, tvpe and version of system
components and sofiware applications running on the compuie device, operating framework
and associated hardware, type and amount of use, level of malware protection, cic. Such a

systerm profile can be used to generate dependency maps, as described herein.

1648} The server processor 351 further includes a predictor 358 configured to use
dependency maps generated by the dependency mapper 356 to perform predictions of effects
of pateh deplovment. In some mmstances, the predictor 358 can be configured to gencrate one
or more prospective effect maps, as described in further detail herein. In some mstances, the
predictor 358 can generate one or more prospective effect maps to predict eftects that may be
encountered on system components and/or software applications in specific compute devices
or specific types of compute devices upon deployment of a particular software paich. In some
instances, the predictor 358 can include a machine learning model that generates and/or updates
prediction maps based on incoming data from cormpute devices, software patch vendors and/or
test compute devices that have undergone test deplovments of particelar software patches. In
some instances, the predictor 358 can be configured to work 1n collaboration with one or more
other components of the server processor 351 {¢.g., the smart patch manager 357) to generate
and/or maintain one or more smart patch distribution profiles for one or more compute devices
connected to the server. For example, compute-device-specific smart patch distribution profiles
can include, for cxample, compatibility profiles for deployment of one or more software
patches, test candidate profiles for testing effects of potential software patches, etc., to manage

safe and efficient distribution and deployment of software patches.

[1049] The server processor 331 further mcludes a patch deployer 359 configured to use
the mformation from dependency maps generated by dependency mapper 356 and/or prediction
maps generated by predictor 358, and deploy particular software patches to particular target

compute devices. In some nstances, the patch deployer 359 can work with the smart patch

17



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

manager 357 to deploy one or more patches in a safe and targeted manner. For example, in
some instances, the smart patch manger 357 can use the information from one or more
prediction maps to identity one or more candidate compute devices that can serve as test
compute devices to test the deplovment of a particular software patch, and the patch deplover
359 can communicate with the selected candidate compute device and distribute the software
patch to be tested. The patch deplover 359 can be configured to monitor and maintain suitable
logs or records of software patches deploved and the compute devices to which the patches

have been deploved.

(1850} While the server 305 1s described to have one each of a data collector, a dependency
mapper, a smart patch manager, a predictor and a patch deployer, in other embodiments, a
server similar to the server 305 can be configured with several instances of the above mentioned
unifs, components, and/or modules. For example, in some embodiments, the server may include
several data collectors and several dependency mappers associated with one or more compute
devices or groups of compute devices. In some embodiments, the server may include several
predictors assigned to perform certain kinds of predictions such as, for example, to predict
components that are likely to be affected n a specific group of compute devices, to predict

software applications that are likely to be affected in a specific group of compute devices, etc.

[1651] ¢ compute device 201 in FIG. 2 is described to have a dependency mapper 213
configured to generate and/or update dependency maps specifically applicable to the compute
device 201, and the server 305 in FIG. 3 is descnibed to include a dependency mapper 356
configured to generate and/or update dependency maps that may be apphicable to individual
compute devices and/or to generate generalized dependency maps that may be apphicable to
groups of compute devices. In some ermbodiments. the server in an SPM system may include a
dependeney mapper (similar to the dependency mapper 356 of the server 3035} and the compute
devices in the SPM system may not mnclude a dependency mapper. The dependency mapper
ncluded m the server of the SPM system, in such embodiments, may be configured to receive
the data collected from agents within compute devices via the data collector of the server, and
perform the functions related fo generating and/or updating dependency maps described herein

with respect to dependence mapper 213 of FIG. 2.

[1652] While the server 305 1s described herein to have a data collector, a dependency
mapper, a smart patch manager, a predictor and a patch deployer, in other embodiments, a

server similar to the server 303 can be configured such that portions of the above described

18



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

functions and/or modules can be carried out in and/or executed by compute devices that are
included in the SPM gystem {¢.g., compute device 201) for example, via client side applications
installed in the compute devices (e.g., within agent 214 of FIG. 2}, Similarly stated, in some
instances, functions described as being performed on a server {e.g., server 305) can be

performed on a compute device 201 and vice versa.

[1053] FIG. 4llustrates an example dependency map 411 that can be generated by an SPM
server {e.g., server 105, server 303} relating a sot of software patches 421, 422, 423, and 424,
with a set of systom components 431, 432, 433, and 434. The lines 415 indicate the relationship
between each software paich 421-424 and the system components 43 §-434 that are hikely to be
affected by the software patch when installed. The set of software patches 421-424 can be
software paiches received by a server of an 5PM system to be distributed 1o a set of compute
devices within the SPM system {c.g .. the systern 100 in FIG. 1). In some implementations, the
set of compute devices can be a group of compuie devices within the SPM system that have

comparable system components {e.g., including the set of system components 431-434).

[1654] In some mstances, the server can receive data from external remots sources {¢.g.,
vendor servers that distribute sofiware patches or remote databases that distribute software
patches) and/or data from the compute devices within the SPM system and., based on the data,
generate the dependency map 411, For example, a received software patch JDK18-222 can be
wdentified as a JAV A-related software patch and that the JAV A related software patch updates
the system component “d:\javayre.dil”. Thus, a ling can be mdicated between the software
patch JDKI8-222 and the system component jre.dll because the software patch JDRI8-222

affects the system component jre.dil.

[1635] In some nstances, the dependency map 411 can include different types of tines 415
ndicating different types of relationships between a software patch and a system component,
as shown by solid lines 416 and dashed line 417 in FIG. 4. The solid lines 416 can indicate
known changes or c¢ffocts on system components due to nstallation of a software patch. For
example, the solid lincs connecting the sottware patch 423 to the system components 433 and
434 indicate known effects or changes in the system components 433 and 434 due to
installation of the software patch 423 The dashed line 417 can mdicate a predicted (but not vet
known) etfect and/or change in a system component due to the installation of a software patch.
For example, the dashed line connecting the software patch 423 to the system component 432

can indicate that although unknown o have a relationship, the system component 432 is

19



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

predicted to be affected or changed 1n some form due to the installation of the software patch

42

43

i

[1656] In some instances, the dependency map 411 can be generated by an SPM server for
software patches 421-424 that are new and untested software patches. In some other instances,
the dependency map 411 can be generated for software patches 421-424 that have previousty
been partially tested in a set of test compute devices. The dependency map 411 can be
applicable to a gencralized set of compute devices connected to the SPM server. For example,
the dependency map 411 can be applicable to a set of compute devices running the same
operating system, having the same hardware configuration, having a similar software

configaration, and/or the like.

(1057} While the dependency map 411 1s illustrated to be in the form of a schematic map
associating a set of software patches with a set of system components, a similar dependency
map relating sofiware patches o system components can be generated, stored, reprosented,
used, and/or presenied for further analysis by an SPM system in any suttable form. For
example, i some instances such dependency maps can be i the form of lock-up-tables, text

based lists, cte.

[1058] FIG. 5 illustrates an example dependency map 511 relating a set of system
components 531- 534, within a compute device, to collections of software applications 541-
544 that may depend on or be affected by changes to the systern component 531-334. For
example, the dependency map 511 can generate relationship mdicators to represent that a
software application A, uses the system component DLE “cijavajre dif”. The dependency map
511 can be generated by a processor of an SPM server {e.g., server 105 or server 305 descrbed
herein). The hines 515 indicate the relationship between each system component and the
corresponding collection of software applications that mav depend on or be affected by changes
to the system component. The changes to the systern component may be caused, for example,

by the installation of a sottware patch.

1659} in some nstances, the set of system components 531-534 can be within a particular
compute device connected to an SPM system. In some instances, the set of svstem components
531-534 can be svstem components found within each compute device from a group of
compute devices within an SPM system. In some instances, the group of compute devices can

be simlar in some predefined manner. For example, the set of systern components 531-534 can



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

be common aystem components found within compote devices running a particular operating
system, compuie devices handling a particelar set of hardware or peripheral devices, compute
devices commonly tasked with a specific sct of operations, ¢te. In some instances, the set of
collections of software applications 541-344 can be collections of software applications that
depend on and/or are directly or idirectly affected bv changes to the associated system
component. The dependency map 511 can be gencrated by an SPM server {e.g., the server 105
in FIG. 1, or server 305 dlustrated in FIG. 3). The server can receive data from the compute
devices connected to the SPM system and based on the data gencrate the dependency map 511
While descnbed herein as being generated by a mapper i a server within an SPM system, in
some implementations, the dependencv map 511 can be generated by a mapper included in a
compute device within an SPM system {e.g., the mapper 215 i compute device 201 n FIG.

2}. Such a dependency map can then be provided to the server.

[1664] In some mstances, the dependency map 311 can include sofiware applications that
are known to depend on certain system components such as the collection of sofiware
applications 541 mecluding software applications 1 and 2 that directly depend on the system
component 531, In some instances, the dependency map 511 can include software applications,
indicated by dashed lings in FIG. 3 that are predicted to depend on and/or be otherwise affected
by changes to a system component. For example, in the collection of software applications 543,
the software application 2 can be known to depend on the system component 333 to function
properly whereas the software apphication 3 can have no known direct dependence on the
system component 333 to be functional. The SPM server, however, can receive data from the
connected compute devices and analyze the data to predict that the software application 3, n
the software environment including the software applications 543, will be indirectly dependent
on and/or affected by changes to the system components 533. The SPM server thas can include
the software application 3 in the collection of software applications 543 that is predicted to be

affected by changes to the system component 533,

11861} As described previcusly with respect to the dependency map 411, while the
dependency map 511 is illustrated to be a schematic map associating a set of system
components with collections of software applications, such a dependency map can be
generated, stored, represented, used, and/or presented for further analysis by an SPM system
i any other suitable form. For example, in some instances dependency maps can be in the form

of look-up-tables, text based lists, eic.



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

11062} Returning to FIG. 1, i use, the data collection agents in compute devices 101-104
within the SPM system can monitor and collect data related o the interaction between system
components and software applications, and data related to the configuration or setup of the
compute device. In some instances, the agents can additionally coliect mformation related to
the deployment and/or installation of one or more software patches. In some mstances, the
agents can also be configured to collect information related to user interaction with the compute
device and any input from the user {¢.g.. user input regarding crrors in software applications
encountered or previous installations of software patches). In some mstances, the collected data
can be used to gencrate or update dependency maps by the dependency mappers within the
compute devices 101-104. The collected data and/or the dependency maps can then be sent to
the SPM server 103 via the communication network 106, The SPM server 105 receives the data
collected by agents and/or data generated by a mapper from the compute devices and uses this
information to generate and/or modify other dependency maps {¢.g., generalized dependency
maps that apply to more than one compute device). In some instances, the collected data in
compute devices can be sent to the SPM server and the dependency maps can be generated by
dependency mappers in the server. The server can use the dependency maps to generate
prospective effect maps, which are maps predicting prospective effects of installing a software
patch in a compute device of a group of compute devices. An example prospective effect map

1s lustrated i FIG. 7 and described below.

[1663] FIG. 6 illustrates an example method 600 of using the data received from the
compute devices to generate dependency maps and prospective effect maps at an SPM server
{c.g., server 105, 305). At 671, the SPM server receives data from a set of compute devices.
The data received can be about a set of software applications nstalled within each of the set of
compute devices, mteractions of the set of software applications with a set of system
components withio the set of compute devices, and/or the effects of deployment of one or more
software patches. As described previcusly, the data received from compute devices can include
a hist of software applications nstalled in cach compute device, and usage and inferactions
between the system components of cach compute device and the listed software applications
of that compute device. The data received can also include documentation of effects of previous
deployments of software patches in cach compute device from the set of compute devices. In
some mnstances, the data can include a history of instaliation of software patches that were
previousty deployed and the ensuing effects in the respective compute devices, such as

breakdown or dvstunction in software applications. In some instances, the data can mclude



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

mformation related to the configuration and/or sctup of the compute devices, as described
herein. In some instances, the SPM server can additionally receive additional information about

one or more software patches that are to be deploved and instalied in the set of compute devices.

11664] At 672, the SPM server extracts a3 list of system: components that are altered,
changed or modified by cach of a set of previously-deployved software paiches. In some
mstances, the list of system components modified by a previcusty-deployed software patch can
be directed to or applicable to a specific group of compute devices. For example, the list of
systemn components modified by a previously deploved software patch can be classified by
groups of compute devices munning the same operating sysiem, having the same operational or

functional requirements {¢.g., compute devices used for image processing, ¢tc.) and/or the hike.

[1665] At 673, the SPM server builds and/or defines dependency maps between software
patches and system components altered by the software patches. The SPM server can identify,
based on data received from a compute device, dependencies between the set of sofiware
apphications and the set of systemn components mcluded in the compute device. In some
instances, the SPM server can update a dependency map assoctated with the compute device.
For example, the SPM server can build dependency maps similar to the dependency map 411

described with reference to FiG. 4.

11866} In some instances, the dependency maps between software patches and system
components gencrated at 673 can be applicable to a group of compute devices. In some
instances the dependency maps can be generated for individaal compute devices connected to
the SPM system. In some instances a combination of dependency maps applicable to groups of
compute devices and dependency maps specific to cach compute device can be generated

and/or use

[1867] At 674, the SPM server builds and/or defines dependency maps between system
components and software applications nstatled on the set of compute devices. The SPM server
uses information received from the compute devices and/or svstem profiles to buld
dependeney maps similar to the dependency map 511 dlustrated m FIG. 5, between system
components and software applications mstalled on the set of compute devices. As described
previously, in some instances, the dependency maps between system components and software
apphications gencrated at 674 can be applicable to a group of compute devices. In some

instances the dependency maps can be generated for individual corpute devices connected to

[
5]



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

the SPM system, and in some instances, a combmation of dependency maps applicable to
groups of compute devices and dependency maps specific to cach compute device in the SPM

system can be generated and/or used.

11668] At 675, the SPM server receives information related o a deployment of a software
patch. For example, the SPM server can receive information related o a potential deployment
of a software patch at a particelar compute device from which the SPM server has received
data and identified dependencies between software applications and sysiem components. Based
on the identificd dependencies the SPM server mav have updated one or more dependency
maps associated with the particular compute device. In some mstances, the software paich can
be new and/or uniested. In some tnstances, the software patch can be partially tested with

respect to system components and/or software applications common within the SPM system.

[1669] At 676, the SPM server predicts, based on the dependency maps between software
patches and svstem components, a set of system components that may be altered by the
software patch received at 673 As an example, the SPM server can predict, based on
information related to a potential deployment of a software patch at the particular compute
device described above, a group of system components likely to be impacted by mstallation of
the software patch. For example, if the software paich 1s a Java-related software patch, the
predictor in the SPM server {e.g., predictor 358 1 the SPM server 303 in FIG. 3) can use the
appropriate dependency map to predict that the system component “¢\javayre dil” may be

changed.

11670} At 677 the SPM server can predict, based on the dependency maps between system
components and installed software applications, a set of applications that may be affected by
the sottware patch. As an example, the SPM server can predict based on information related to
a potential deployment of a software patch at the particular compute deviee desertbed above, a
group of system components likely mcompatible with the installation of the software patch.
For example, having identified a Java-related software patch and having predicted, at 676, that
the system component “¢:\javayre.dil” may be changed by the software patch, the SPM server
can use the appropriate dependency maps gencrated at 674 for JAVA-related software
applications to predict the list of software applications that may be affected by the software
patch. In some instances, the information can be derived by previous installations of similar
software patches (e.g., monitoring the impact soch an installation had on the compute device).
In some mstances, the SPM server can additionally use nformation provided by a user to

24



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

generate predictions of which software applications may be affected due to installation of a
software patch. The SPM server can perform predictions of which system components, and/or
software applications may be affected by a software patch for groups of compute devices and/or

for individual compute devices.

11671} At 678, the SPM server identifies, based on the dependency maps for cach compute
device relating software patches, system components, and software applications, a set of
compute devices that can serve as candidate test compute devices for the deployment of the
software patch. The SPM server uses dependency maps relating software patches to system
components, and dependency maps relating systerm components to software applications, that
arc applicable to cach compute device within an SPM system, and generates a prediction of
expected effects on each compute device in the SPM system. In some instances, the SPM server
can determine, based on at least one dependency map associated with a compute device, that a
set of software applications at the compute device are unlikely to interact with a group of
system components predicted to be incompatible with the mstallation of a software patch and/or
predicted to be adversely impacted by the installation of g software patch. In some mstances,
based on this determination, the SPM server can send a signal to deploy the sottware patch at

the compute device.

[1672] In some instances, the SPM server can calculate a nisk of deployvment of a software
patch {e.g., a Java software paich) on each of the comnected compute devices. The risk
calculation can use a switable metric {¢.g., a percentage, a ratio, a numenc ranking, gic.} to
quantify and compare relative risk between various compute devices. Based on the prediction
of effects on cach compute device in the SPM system, the 5PM server identifies a set of
compute devices that can serve as candidate test compute devices for the deployment of the
software patch. The SPM server can use additional information related to the compute devices
to wdentify the candidate test compute devices. For example, information related fo usage,

sensitivity, requirement of down-time in the event of a breakdown of an application, ¢tc.

[1873] At 679 the SPM server bwilds prospective effect maps, relating software patches,
the system components potentially altered by the software patches, and the applications
dependent on the system components alicred by the sottware patches. The SPM server uses the
dependency maps generated at 673 and 674 and the predictions from 676, 677, and 678, to
build prospective effect maps that apply to particular compute devices or particular groups of
compute devices within the SPM gystem. For example, the predictor in the SPM server {e.g.,

25



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

predictor 338 of SPM server 303 in FIG. 3) can be used to build the prospective effect maps.
The prospective effect maps are configured to indicate relationships between software patches
and system components potentially altered by the software patches. The prospective effect
maps are further configured to indicate the software applications installed 1 the particular
compute devices or groups of compute devices that may be dependent on or affected by
changes to the systerm components altered by the software patches. The prospective effect maps
generated can be sent 1o a smart patch manager of the SPM server to update the management
strategies used bv the smart patch manager to orgamze the maintenance, distribution, and/or
deployment of software patches i an SPM system. For example, using the prospective offect
maps the smart patch manager can make calculated risk asscssments of deploying a software
patch v a set of compute devices, or withholding deplovment from a set of compute devices

until further notice.

[1674] At 680 the SPM server deploys the sofiware patch. The SPM server deplovs the
software 1o a set of targeted compute devices such as candidate test compute devices via, for
cxample, a patch deplover following instructions from a smart patch manager, with
consideration to the prospective effect maps generated at 679. In some instances, the steps of
predicting, based on dependency maps, the set of svstem components and/or software
applications that may be altered by a software patch, at 677 and 683, and of building
prospective effoct maps at 679, can be repeated for multiple groups of compute devices and/or

for multiple software patches.

[1875] Ag described above, the SPM servers described herein {e.g., servers 105, 305) can
be configured to generate prospective cffect maps to predict the effect of installation of
software patches on a set of compute devices, as described previously herein. FIG. 7 illostrates
an example prospective effect map 711 that can be gencrated by an SPM server {c.g., server
105 and/or server 305}, The prospective eftect map 711 can be used to predict the effects of
mstallation of a particelar software patch 721 on the compute devices 704, 705, 706, and 707,
The prospective effect map 711 can be generated by an SPM server based on one or more
dependency maps also generated by the SPM server (c.g., dependency maps 411 and 511
described with reference to FIGS. 4 and 3, respectively). The SPM server may also use
information received from the compute devices 704-707 via one or more data collection agents
(c.g., agent 214 of the compute device 201) or dependency mappers {c.g., mapper 215 of

compute device 201} to generate the prospective effect map 711



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

[1676] Ag illustrated in FIG. 7, the prospective effect map 711 can mdicate relationships
between the software patch 721 and system components within cach compute device that may
be modified, changed or altered by the software patch 721. For example the software patch 721
can change the system component 731 m compute device 704, the system component 732 in
compute device 705, ete. The progpective effect map 711 further includes relationship
indicators between the system components of ¢ach compute device and the collection of
software applications that depend on and/or are affected by changes to that system component,
For example, the prospective effect map 711 iflusirates the relationship between the system
component 731 m the compute device 704, and the collection of software applications 741 that
depend on or are affected by changes to the system component 731 that may be caused by the
wnstaliation of software paich 721, The collection of software applications 741 in the compute
device 704 includes software applications with known direct dependency on the system
component 731 indicated by solid rectangles and software applications that have no kaown
dependency on the system component 731 but are predicted to be affected by changes to the
system component 731, indicated by dashed rectangles. The prospective effect map 711 can
wdentify which compute devices can serve as test compute devices, as well as identify which
applications within the compute devices (test compute devices as well as non-~test compute

devices) may not work or may not work as mntended once the software paich is deploved.

11677} In some instances, the prospective cffect maps can incorporate sccondary
information or secondary considerations that may be uscful for the distribution and deployment
of software patches. For example, the prospective effect map 711 can include information about
what may be the best time to mstall the software pateh in a particular compute device {e.g.,
when a user is expected to not use a software apphication that might be affected). In some
instances, the prospective effect map can include and/or prediet information such as whether a
reboot is expected upon deployment of the software patch and whether a reboot is permitted in
the compute device in consideration {(¢.g., a test compute dovice). In some wnstances, the
prospective effect map can also include user reported or user provided information. For
example, the vser may provide and/or the agent {e.g., agent 214 shown in FIG. 2} can collect
information related to use of the compute device and/or use of software apphications n the

compute device, which can be included 1 generating the prospective effect maps.

11078} in some cmbodiments, the SPM system can be used to monitor and gather

nformation related o secondary effects of installation of software patches. For example, the



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

SPM server can be used to predict if a reboot of a compute device will be required following
the mstallation of a scfiware patch. fn some instances, the software patch can be installed o a
sct of test compute devices and the agents in the test compute devices can monitor, collect and
transmit, to the SPM server, data related to which software applications were “locking” files
from being updated. For example, as a result of mstallation of a software patch “P7 a file “X”
may need 1o be updated. As another example, while the software patch installer may try o
update file “X”, the file “X” mav be locked by anocther software application “Y”. In some
mstances, the SPM server can receive mnformation from a compute device via the agents or
mappers of that compute device or through a user input, that a reboot 1s needed when installing
a software patch “P” in a compute device with a specific apphcation. In some instances, the
SPM server can transmuit information to the compute device to alert the user, with suitable
messages that a reboot may be required, or that a software application needs to be closed for
the installation of the software patch to progress. The SPM system can learn from the effects
of installation of the software patch in the test compute devices whether a reboot is required,
and use this mformation i the further distnbution of the software patch to other compute

devices.

(1679} In some instances, the SPM server can query and/or or receive mformation from
users of compute devices to gather information related to effects of mstallation of a software
patch. For example, the SPM server can query the user whether a software application caused
a failure to successtully mstall a software patch or if a sofiware application has been observed
to breakdown in function following an mstallation of a software patch. For example, m the
event of a broken application following installation of a software patch, the compute device
can provide a list of software applications that have been running on the compute device around
the time of the mstallation of the software patch. The compute device can present, in the list,
names of software applications as may be familiar to the user (¢.g., as reported by the operating
system of the user) and request that the user select the software application that is broken. When
the user selects the sofiware application that is broken, the compute device can provide an
indication to the SPM server and the SPM server can determine the software patch that bkely
tmpacted the user reported software application. In some mstances, the SPM server can store
the user’s input and use the mformation to further update, modify and/or define dependency

maps.

28



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

(1080} In some instances, the SPM server can receive and/or generate data configured to
update one or more dependency maps {¢.g., dependency maps that relate the scheduled software
patches and system components in the set of compute devices that may be changed by the
scheduled software patches, dependency maps that relate the scheduled sofiware patches and
software applications running on the set of compute devices that mav be impacted by the
scheduled software patches) The data can further be used to generate dependency maps
between svstem components within compute devices and the software applications instalied on

the compute devices that depend on or are affected by changes to the svstem components.

[1081] In some instances, upon the installation of a software patch at a compute device, the
SPM server can receive an mdication of an application affected by the software patch. Based
on the indication, the SPM server can vse the mformation to update one or more dependency

maps associated with the compute device and/or the software patch.

[1882] In some nstances, the SPM server can receive, from a compute device, information
related to crashes and/or an unexpected termination of one or more nstalled software
applications. In some mstances, the imformation can be recetved in response {0 querying the
compute device, in response to the compute device detecting a crash and/or the like. In some
instances, the SPM server and the compute devices can be programmed such that the SPM
server automatically receives information related to crashes and/or an unexpected termination
of installed software applications. The mformation can be, for example, in the form of a crash
report including the identity of the software application that crashed, terminated unexpectedly,
and/or lost some or ail ofits functionality. The crash report may also, in some instances, include
information related to change in behavior of software apphications {e.g., newly observed
interactions between the software application and certain system components that were not
previously observed). The crash report can also include information related to potential
relationships between the events of loss in functionality of the sofiware apphcation and
software patches that were deployed in that compute device before the events. Thus, the SPM
can develop possible links between a software crash and/or unexpected termination and a

recently installed software patch.

1683} in some instances, the SPM server {(e.g., the server 105, and/or the server 305) can
automatically detect malfunctioning or loss of functionality in one or more software
applications that may be related to an installation of a software patch, without the involvement

of a human analyst or human user. For example, the SPM server {2.g., a processor of the SPM

29



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

server} can be programmatically configured to automatically receive information related to a
schedule of distribution and deployment of a set of software patches in a set of compute
devices. Based on the schedule of distribution and deplovment of software patches, the SPM
server can monitor the set of compute devices for messages or reports related to crashes, loss
of functionality, and/or an unexpected terminatton of one or more mmstalled software
apphications. The SPM server can use the information about the crash, loss of functionality, or
uncxpected termination of the one or more installed software applications to update
dependencies between the mstalled software applications and the recently deploved software
patches. For example, the SPM server can update dependencies associated with an instalied
software application reported to have crashed after the deployment of a particular software
patch, by updating dependencies between the software application that crashed and the system
components that may have been impacted by the software patch in the compute device
reporting the crash. As another example, the SPM server can identify (using the dependency
maps} the specific system components that are likely to interact with the software application
reported to have crashed at the compute device and vpdate dependencies between a particular
deploved software patch and the specific system components to indicate that the particular

software patch may impact the specific svstem components.

11684} In some 1nstances, the SPM server can receive information regarding a successful
mstallation of a sofiware patch n a first set of compute devices without loss of functionality
and/or performance or with an acceptable rate of loss of functionality and/or performance (e.g.,
below a predetermined threshold criterion) for software applications. The mformation reporting
successful installation of software patches can be used to increase accuracy of predictions made
{(e.g., accuracy of one or more prospective effect maps by a predictor such as predictor 358)
regarding the expected ocutcomes of installation of the software patch in a second set of compute

devices.

11085} As deseribed previously, the SPM server can receive crash reports from compute
devices. In some instances, the crash reports can including identity of the software application
that crashed, terminated unexpectedly, and/or lost some or all of its functionality. The crash
report can also include information related to potential relationships between the events of foss
in functionality of the software application and software patches that were recently deploved
in that compute device before the crash events. For example, a crash report can include

information related to changes n behavior of the software applications including changes in

30



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

resource consumption (consumption of processor (CPU), memory, Input/Output, bandwidth,
¢tc.,}), changes in interactions between the software application and certain systen: components

that were not previously observed before the installation of a software patch, etc.

11686} In some instances, analyses of crash reports and/or predictions of expected
outcomes, made using a SPM server, regarding the tostallation of a set of software patches in
a set of compute devices can be used to prioritize and/or schedule the deplovment of the set of
software patches. For example, an SPM server can receive a first set of reports {e.g.. 100
reports}) related to the deplovment of a first software patch A. Of the first set of reports a first
number (¢.2., 99 reports) or percentage (99%) of the reporis may indicate that the first software
patch A was successfully mstalled in a first subset of the designated compute devices, and a
second number {e.g.. 1 report) or percentage {(e.g., 1%} of reports may mdicate that the first
software patch A was found to be related to an unacceptable loss of functionality and/or
performance {e.g., a loss of functionality and/or performance above a threshold or meeting a
criterion) or a crash of one or more software applications running at a second subset of the
designated compute devices. The SPM server may additionally receive a second set of reports
{c.g.. 100 reports) related to the deplovment of a second software paich B. Ot the second set of
reports a third number {¢.g., 60 reports) or percentage (60%) of the reports may indicate that
the second software patch B was successfully installed in a third subset of the designated
compute devices, and a fourth number (e.g., 40 reports) or percentage {c.g., 40%;) of reporis
may indicate that the second software patch B was found to be related to an unacceptable ioss
of functionality and/or performance {(e.g., a loss of functionality and/or performance above a
threshold or meeting a criterion} or a crash of one or more software applications running at a
fourth subset of the designated compute devices. In some instances, the SPM server can use
the sets of reports to determine a second prionty associated with the first software patch A and
a first priority associated with the second software patch B such that any issues associated with
the second software patch B can be addressed prior to any issues associated with the first
software patch A, as 1t 1s more likely that the 1ssue with the first software patch A is a false

positive than the issue with the second software patch B.

[1887] In some mmstances, the SPM server can use a prediction algorithm {(e.g., via a
predictor such as predictor 358} or provide results that can be used by a human analvst, o
predict the impact of instaliation of the first software patch A and the second software paich B

on a new set of compute devices. For example, based on a prediction of better success with

31



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

the nstallation of the first software patch A on the new set of compute devices, the SPM server
can prioritize the deplovment of the first software paich A over the deplovment of the second
software patch B. In some instances, the SPM server can use results from analvses of crash
reports and/or predictions to flag a software paich {(e.g., software patch B) as a “potentially

problematic” software patch that may require further analysis.

[1088] In some implementations, the SPM server can be configured to manage deployment
of a software patch to a set of compute devices and monitor the messages from the set of
compute devices for potential crash reports related to the deploved software patch. In some
implementations, the SPM server can be configured to monitor the messages from the set of
compute devices in which a software patch has been mstalled for a predetermined period of
time following deployment of the software patch. For example, the SPM server can monttor
the set of compute devices or messages from the set of compute devices for crash reports over
a period of 24 hours, 48 hours, or 72 hours, or any suitable amount of time. For example, the
SPM server can be configured to use a predetermmed period of time for monitoring messages
for crash reports following the deplovment of a software patch based on one or more propertics
ot the software patch (e.g., the svstem components impacted by the software patch, the number
of software applications mteracting with the system components impacted by the software
patch, the sensitivity of data associated with the compute devices, the freguency of use of a set
of software applications in the compute devices, etc ). The predetermined time period may be

set by a user or automatically set by the SPM server.

[1089] Following the deplovment of a sofiware paich, and afier the predetermuned time
period has passed, based on the mumber of crash reports received from the compute devices,
the SPM server can flag the software patch to be a successfully deplovable software patch. For
cxample, the SPM server can compare the number of crash reporis received against a preset
threshold value. In some instances, when the number of crash reports 1s less than the preset
threshold value the SPM server can flag or label the software patch as a successfully deployable
software patch. In some instances, when the mumber of crash reports is greater than a preset
threshold value the SPM server can label the software patch as potentially problematic software

patch that may require further analysis.

[1694] In some mstances, information received from user input can also be unrelated to
mstallation of a software patch and may mform the SPM server of functioning software

applications in the computie devices, usage of the compute devices, etc. In some instances, such



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

as in the nstallation of several software patches, the information gathered from user input can
be used to correlate effects of each of the software patches installed. In some instances, the
SPM server can use information gathered from user mput in addition to the data received from
the compute devices {e.g., data collected and/or generated by agents and mappers) to schedule
the distribution and deployment of a set of software patches i a set of compute devices. For
cxample, the SPM se¢rver can generate instructions and schedules of deployment of a set of
software patches that are customized for each compute device to meet the requirements of cach

ndividual compute device.

(1091} In some implementations, the SPM server described herem (e.g., server 10§
described with reference to FIG 1, and/or server 305 described with reference to FIG. 3} can
be configured to send a signal to deploy a software patch at a compute device (c.g., a test
compute device) such that the SPM server can identify, based on one or more dependency
maps, a set of system components on the compute device that are likely to be mpacted by the
software patch. The SPM server can then monitor a set of parameters for a set of applications
on the compute device that interact with at least one system component from the set of system
components wentified to be hikely impacted by the software patch. The parameters can include
data associated with a software application, for example, feedback related to resource usage by
the software application, as described in further detail below. The SPM server can be
configured to compare values for the sct of parameters 1o one or more predefined cntenia to
determine a compatibility classification for the software patch. In some instances, the
compatibility classification can be used to update the one or more dependency maps to define
ong or more updated dependency maps. Based on the updated dependency maps the SPM

server can send a signal to deploy the software paich at a set of compute devices

1692} in some implementations, an SPM server can be configured to monitor a compute
device mn which a software patch was deploved to determine a compatibility classification for
a software patch. For example, a compatibility classification can include whether the software
patch is successtully deplovable (e.g.. good sofiware patch) or not successfully deployable
{c.g., bad software patch) for cach compute device, an extent to which the sofiware patch
affects applications on each compute device, and/or the like. For example, the SPM server can
be configured to monitor and/or obtain data {c.g., data collecied by an agent) associated with
cach application on the compute device that has a dependency on a recently installied software

patch over a period of time. In some mstances, the data associated with a software application



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

can include feedback related to resource usage associated with the software application. For
example, data associated with a scfiware application can include feedback associated with
processor usaze associated with the application {e.g., CPU usage), storage or memory used by
the application, rate of data transfer, also referred to as mput/output use or 10 {e.g., rate of
reading and writing between a non-volatile storage device and a volatile memory) associated
with the application, and a communication bandwidth usage, also referred to as BW, associated
with the software application {(¢.g., bandwidth over a communication channel associated with
the software application). In some mstances, the SPM server can identify the compatibility
classification for the software patch based on the data associated with the software application
including feedback related to resource usage associated with the software application. In some
instances, the SPM server can identify the compatibility classification for the software patch
based on feedback associated with the software patch {¢.g., feedback obtained from an agent

gxecuting on a compute device in which a software patch was recently deployed).

[1693] In some instances, the period of monitoring and/or data collection can melude a first
time period before and a second time period afier the software patch was deploved. In some
instances, the SPM server can use time-averaged data represented as a function of time over
the first and/or second periods of time {e.g., a moving average of memory and/or processer

USage Over time}.

[1694] The SPM server can compare the data obtained before the deployment of the
software patch and the data obtained afier the deplovment of the software patch. In some
implementations, the SPM server can be configured to detect any significant changes {(¢.g.,
changes greater than a presct threshold value) in the data between the first time period before
the deployment of the software patch and the second time period after the deployment of the
software patch. For example, the SPM server can be configured to detect and measure a
significant merease 1 the usage of CPU, memory, 10 and/or BW afier the installation of a
software patch compared to the usage of CPU, memory, 10 and/or BW before the installation
of the software patch. H the measured increase meets a criterion {e.g., is above a threshold
value), the SPM server can label the software patch to be potentially problematic and associated
with crashing and/or an unacceptable decrease 1n performance of the software application. For
example, it a software application A is found to have consomed 3% CPU on average before
the mstallation of a software patch and after the installation of a sottware patch the software

application A 1s tound to have increased consumption of CPU on average to 70%, the 5PM

34



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

server can detect this change in CPU usage greater than a threshold value {¢.g., threshold
change in CPU usage of 10%;) and label and/or report this sofiware patch as cauvsing the

software application A to crash.

11695] In some instances, the SPM server (¢ g, server 105 described with reference to FIG.
1, and/or server 305 described with reference to FIG. 3) can be configured fo detect a
consumption associated with a software application (e.g., usage of CPU, memory, 10 and/or
BW) that meets a criterion {¢.g., is above a threshold value) afier the mstallation of a sofiware
patch. In some instances, the SPM scrver can be configured to detect an absolute value of
consumption associated with a sotbware apphication {e.g., usage of CPU, memory, 10 and/or
BW) that meets a criterion {¢.g., is above a threshold value) after the installation of a software
patch, regardless of a degree of change between a time period before and after the imstallation
of the software patch. Forexample, if before the mstallation of a sottware pateh the CPU usage
associated with a software application is 1% and afier the mastallation of the sottware patch the
CPU usage is 2% (i.e., indicating a 100% increase). In some instances, the SPM server can be
configured to recognize that such a change in data associated with the software application can
be negligible from the perspective of a user and not indicative of a crash or loss of functionahity
of the software application and thus not regard the change as the software patch being
problematic. For example, in some implementations, the SPM server can be configured to
detect a problem and/or the software application crashing based on installation of the software
patch only when CPU usage associated with the software application increases above a
threshold value. In some instances, the threshold value can be an absolute threshold (e g, 60%3.
In some mstances, the threshold value can be a comparative threshold {c.g., CPU usage
associated with the software apphication after the installation of the sofiware patch 1s more than
100 % higher than the CPU usage associated with the software application before the
installation of the software patch.) In some instances, the threshold value can include two or
more values that indicate a combination of an absolute threshold and a comparative or relative
threshold between the usage before and after the mstallation of a software patch. The SPM
server can be configured to detect the software application as crashing only if all the threshold
criteria are met. For cxample, the SPM server can be configured to detect the software
application crashing based on installation of the software patch only when (1) CPU usage
associated with the software application afier the installation of the software patch is more

than 100 % higher than the CPU usage associated with the sofiware application before the

L2
A



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

mstallation of the software patch, and (11} the absolute value of CPU usage associated with the

software application afer the installation of the software patch is higher than 60%.

[1696] In some mplementations, the devices and methods descnbed above can be used to
collect data and use the data to generate dependency maps that relate software patches and
system components in compute devices that may be changed by the software patches. The data
can further be used to generate dependency maps between system components within compute
devices and the software applications installed in the compute devices that depend on or are

affected by changes to the systern components.

11697} In some implementations, the devices and methods descnibed above can be used to
generate prospective effect maps that predict offects of installation of a software patch 1n a set
of compute devices. The devices and methods described can identify, based on the predictions
and prospective effect maps, a set of compute devices that can serve as candidate test compute
devices. For example, the devices and methods deseribed herein can receive, from a sct of
compute devices, data associated with (1) a set of software applications installed on cach
compute device and (2} interactions between the set of software applications installed on that
compute device and 3 set of system components of that compute device. Based on the data, the
devices and methods described herein can identity dependencies between the set of software
applications mstalled on each compute device and the set of system components of each
compute device. The devices and methods described herein can be used to define a set of
dependency maps based on the dependencies, as described herein. Upon receiving information
related to potential deployment of a software paich, the devices and methods described herein
can be used to predict a group of system components likely to be altered by the software patch,
and/or a set of software applications likely to be affected by the software patch. The devices
and methods described hercin can further be used to identify a subset of compute devices as
test compute devices for the software patch and to send a signal to deploy the software patch

at each of the test compute devices.

[18698] In some mplementations, the devices and methods described herein can generate
and distribate instructions and schedules for the deployment of a set of sofiware patches in a
set of compute devices. In some imoplementations, the instructions and schedules can be

customized for each compute device.

36



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

(1699} In some implementations, the dependency maps can be used to generate prospective
cffect maps that identify an order in which software patches should be mstalied on a compute
device. Specifically, based on the system components and/or the software applications
wnstalled on a compute device, it may be beneficial to update a first system component prior (o
updating a sccond system component. For example, based on the dependencies of the software
applications, an order can be defined to install certain software paiches prior to the mstallation
of other sottware patches to reduce the likelihood of an adverse effect based on the installation

of the software paiches.

(1100} While the devices and methods described above relate to the analysis and
management of distribution and deplovment of software patches to a set of compute devices,
the devices and methods described can be used towards any other suttable application that can
benefit from collection of data, and/or the generation of dependency maps, prospective effect
maps, and/or predictions based on the collected data. For example, in some implementations
the devices and methods described herein can be used to collect data related to mbound and
outbound data connections between compute devices that are implemented for vanous
processes running within the compute devices. The collected data can be used to buwild
dependency maps for connections and the effect of connections on system components. For
example, the dependency maps can be used to predict which system components may be
changed due to a specific set of connections. The dependency maps can be used to predict
cffects of certain events that may affect one or more processes and/or system components. For
example, in the event of a malware threat or attack, the dependency maps can be used to predict
which system components should be closed to minimize effects of the malware threat. The
dependency maps can further be used fo predict effects on sofiware applications that may
depend on one or more system components that may have been affected by malware, and the
software applications themselves may be impacted or infoected. In some instances, the
dependeney maps can be used to evaluate which other compute devices are connected to a
potentially infected compute device, and this information can be used to nunimize the spread
of malware. In some instances, the dependency maps can be used trace the origin or source of

the malware.

11101} While various embodiments have been described above, it should be vnderstood
that they have been presented by way of example only, and vot himitation. Where methods

and/or schematics described above indicate certain events and/or flow patterns occurring n

37



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

certain order, the ordering of certain events and/or flow patierns may be modified. While the
cmbodiments have been particularfy shown and described, it will be understood that various

changes in tform and details may be made.

11192} Although varicus embodiments have been described as having particular features
and/or combinations of components, other embodiments are possible having a combination of

any features and/or components from any of embodiments as discussed above.

[1103] Some embodiments described herein relate to a compuier storage product with a non-
transttory computer-readable medium (also can be referred to as a non-transitory processor-
readable medium)} having instractions or computer code thereon for performing various
computer-implemented operations.  The computer-readable medivm {or processor-readable
medium) is non-transitory n the sense that 1t does not include transitory propagating signals
per se {e.g.. a propagating electromagnetic wave carrying information on a frapsmission
medium such as space or a cable). The media and computer code (also can be referred to as
code) may be those designed and constructed for the specific purpose or purposes. Examples
of non-transitory computer-readable media include, but are not himited to, magnetic storage
media such as hard disks, floppy disks, and magnetic tape; optical storage media such as
Compact Disc/Bigital Video Piscs (CD/DVDs), Compact Disc-Read Ounly Memories (CD-
ROMs), and holographic devices; magneto-optical storage media such as optical disks; carrier
wave signal processing modules; and hardware devices that are specially configured to store
and execute program code, such as Application-Specific Integrated Circuits (ASICs),
Programmable Logic Devices (PLDs), Read-Only Memory (ROM) and Random-Access
Memory {RAM) devices. Other embodiments described herein relate to a computer program
product, which can include, for example, the instructions and/or computer code discussed

herein.

[1104] In this disclosure, references to items in the singular should be understood to include
ttems in the plural, and vice versa, unless explicitly stated otherwise or clear from the context.
Grammatical conjunctions are mitended to express any and all disjunctive and conjunctive
combinations of conjoined clauses, sentences, words, and the like, unless otherwise stated or
clear from the context. Thus, the term “or” should generally be understood to mean “and/or”
and so forth. The use of any and all examples, or exemplary language (“e.g..,” “such as,”
“inclading,” or the like} provided heremn, i1s ntended merely to better illuminate the

cmbodiments and does not pose a limitation on the scope of the embodiments or the claims.

38



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

[1105] Some embodiments and/or methods described herein can be performed by software
{executed on hardware}, hardware, or a combination thereof Hardware modules may include,
for example, a general-purpose processor, a field programmable gate array (FPGA), and/or an
application specific mtegrated circunt (ASIC). Software modules {(executed on hardware) can
be expressed in a varicty of software languages (¢.g., computer code), including C, C++,
Fava™, Ruby, Visual Basic™ and/or other ohjcct-oriented, procedural, or other programming
language and development tools. Examples of computer code include, but are not linvted to,
micro~code or micro-instructions, machine instructions, such as produced by a compler, code
used to produce a web service, and files containing higher-level mnstractions that are executed
by a computer using an imterpreter.  For example, cmbodiments may be tmplemented using
imperative programming languages {(¢.g., C, Fortran, etc.), functional programming languages
(Haskell, Erang, etc}, logical programming languages {(e.g., Prolog), obiect-oriented
programming languages {(¢.g., Java, C++, etc.) or other suitable programming languages and/or
development tools.  Additional examples of computer code melude, but are not limited to,

control signals, encrvpied code, and compressed code.

39

<



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818
CLAIMS:
1. A non-transitory processor-readable medium storing code representing instructions o

be exccuted by a processor, the instructions comprising code 1o cause the processor to:

recetve, from a compute device, data associated with (1) a set of software applications
installed on the compute device and {2} mteractions between the set of sofiware applications
installed on the compute device and a set of systern components of the compute device;

identify, based on the data, dependencics between the set of software applications and
the set of systen components;

update at least one dependency map associated with the compute device;

receive information related to potential deplovment of a software patch at the compute
device;

predict, based on the information, a group of system components likely incompatible
with the software paich; and

send a signal to deploy the software patch at the compute device in response to the at
lcast one dependency map indicating that the set of software applications arc unlikelv to interact

with the group of system components.

2. The non-transitory processor-readable medium of claim 1, wherein the set of system
components includes at least one of a dynamic link library {DLL), an executable system

component file or a registry key.

3 The non-transitory processor-readable medivm of claim 1, the mstructions further

comprising code to cause the processor to:

receive, from the compute device, an indication of an application affected by the

software patch; and

update the at least one dependency map based on the indication.

4. The non-transitory processor-readable medium of claim 1, the mstructions further

comprising code to cause the processor to:

44



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

receive, from the compute device, feedback associated with at least one of processor

use, memory use, input/cutput use, or bandwidth use; and

wdentify a compatibility classification for the sofiware patch based on the feedback.
5. The non-transitory processor-readable medinm of claim 1, the mstructions further
comprising code to cause the processor to:

receive, from the compute device, feedback associated with the software patch; and

identify a compatibility classification for the software paich based on the feedback.

6. The non-transitory processor-readable medium of claim 1, wherein the code to cause
the processor to receive the data includes code to cause the processor o receive the data from

an agent executing on the compute device.

7. An apparatus, comprising;

amemory; and
a processor operatively coupled to the memory, the processor configured to:

send a signal to deploy a software patch at a compute device,

identify, based on a dependency map, a set of system components on the
compute device and likely to be impacted by the software patch,

monttor a set of parameters for a set of applications (1} on the compute devige
and {2) that interact with at least one system component from the set of system
compounents,

compare values for the set of parameters to one or more predefined criteria to
determine a compatibility classification for the software patch,

update the dependency map based on the compatibility classification to define
an updated dependency map, and

send a signal to deploy the software patch at a set of compute devices based on

the updated dependency map.

41



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

8. The apparatus of claim 7, wheren the set of system components mchudes at feast one

ot a dvnamic link hibrary (BLL}, an executable system component file or a registry key.

9. The apparatus of claim 7, wherein the set of parameters ncludes at least one of

ProCessor use, memory use, input/output use, or bandwidth use.

10, The apparatus of claim 7, wherein the processor is configured to monitor the set of

parameters by receiving data from an agent executing on the compute device.

11 The apparatus of claim 7, wherein the processor is configured to select to deploy the
software patch on the compute device based on a classification of the software patch and the

set of system components on the compute device.

12 A method, comprising:

receiving, from each compute device from a set of compute devices, data associated
with {1} a set of software applications installed on that compute device and (2} interactions
hetween the set of software applications instalied on that compute device and a set of svstem

components of that compute device;

dentifving, based on the data, dependencies between the set of software applications
installed on each compute device from the set of compute devices and the st of system
components of gach compute device from the set of compute devices;

defining a set of dependency maps based on the dependencies;

receiving information related to potential deplovment of a software patch;

predicting, based on the information, a group of svstem components likelv to be aliered
by the software patch;

predicting, based on the set of dependency maps and the group of system components
hikely to be altered by the software patch, a set of software applications likely to be affected by

the software pateh;



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

identifving, based on the set of software applications likely to be affected by the
software patch, a subset of compute devices from the set of compute devices as test compute

devices for the software patch; and

sending a signal to deplov the software patch at cach compute device from the subset

of compute devices.

13, The method of claim 12, wherein the dentifving the subset of compute devices is based
on the subset of compute devices not including a software application from the set of software

applications likely to be affected by the software patch.

14, The method of claim 12, wherein the set of dependency maps is a first set of dependency
maps, the method further comprising:

defining a second set of dependency maps based on the information related fo potential
deployment of the software paich, the information including an indication of the group of
system components likely to be altered by the software patch, the predicting being based on

the second set of dependency maps.

15, The method of claim 12, wherein the set of system components of cach compute device
from the set of compute devices includes at least one of a dynamic link library (BLL)Y, an

executable svstem component file or a registry key.

16. The method of claim 12, further comprising;

recetving, from at least one compute device from the subset of compute devices, an

mdication of an application affected by the software patch; and

updating the set of dependency maps based on the indication.

17. The method of claim 12, further comprising:

recetving, from the subset of compute devices, feedback associated with the sofiware

patch; and



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

identifving a compatibility classification for the software patch based on the fecdback.

18 The method of claim 12, wherein the receiving the data is from an agent executing on

cach compute device from the set of compute devices.

19, The method of claim 12, further comprsing;

clagsifving the sofiware patch based on the mformation related fo the potential
deployment of the software paich, the predicting the set of system components likely to be

altered by the software patch being based on the classifying.

20, The method of claim 12, further comprising;

receiving, from each compute device from the subset of compute devices, data

associated with at least one of processor use, memory use, mput/output use, or bandwidih use.



CA 03109915 2021-02-17

PCT/US2019/046818

WO 2020/037204

1/7

I "Old

cal

eoaa sinduwion

col
a0iAsc] eindwion

P01
aniraq sinduwion

GT NIOMIBN UCHEIIUNULILLCS

Lot
eniney sindwion

GOl Jonjes

T 004



CA 03109915 2021-02-17

PCT/US2019/046818

WO 2020/037204

2/7

¢ "Old

=18 24
O i
V4
\\\n\llllnlni/lll o
eLe h
JOLROIUNUILLGT m m -
¢1 7 saddepy
A Y4
ACWIB|
1111111 yig wueby
—
e ..III:///
\ ™ L17Z JO558204d

L& 80iAa( mwjﬁmwccmu

—d1el

Rl A AN




CA 03109915 2021-02-17

PCT/US2019/046818

WO 2020/037204

3/7

€ Oid

£se
JOJBOILMULIOD

Jenieg

66¢ seAodaqg yoied

FASS
Aiowiain

85T Jaipald

LGT memﬁmu}m Yaled Uewg

g6¢ seddepw Asuspusda(]

FEYSETS

S4¢ Jolaljiod Bled

LGE J0SS8n0I4 J8aieg

GOL I8neg




CA 03109915 2021-02-17

WO 2020/037204 T
4/7
491 —_
Y
¥
415
N\
e 431
421 = y /f
4B
432
422 -’f
447 ’
43
423, "”/
434
424 o] pjﬂ

FIG. 4



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818

5/7
511~
¥ 515
N
531 -
L v 541
1 o ,,J
532 m e 542
AN L i
533%\% m% _saa
2 |3 W
Lo
534 e
. 544
\"“-u 4 5 _j

FIG. 5



CA 03109915 2021-02-17

WO 2020/037204 PCT/US2019/046818
6/7

800

Receive data, from sei of compute devices, about instalied software
applications, interaction of software applications with system
components, and/or the effects of deployment of one or more software
patches 871

v

Exiract list of system components allered by each of a set of
previously deployed software patches 672

¥

Build dependency maps between software paiches and system
components altered by sach software patch 873

v

Build dependency maps between system components and software
applications installed on the set of compute devices 74

¥

Receive information related o a deployment of a software patch 675

¥

Predict, based on the dependency maps between software patches
and system components, a set of system componenis that may be
altered by the software paich 676

¥

Predict, based on the dependency maps between system components
and installed software applications, a set of applications that may be
affected by the software patch 677

¥

tdentify, based on the dependency maps for each compute device
relating software patches, system components, and software
applications, a set of compute devices as candidate test compute
devices for the deployment of the software paich 678

¥

Build prospective effect maps, relating software patches, the system
components potentially altered by the sofiware patches, and the
applications dependent on the system components altered by the

software patches §79

¥

Deploy the software patch €80

FIG.6



WO 2020/037204

CA 03109915 2021-02-17

PCT/US2019/046818
717

704 =

b
=
-
|
A

705

706 =

707

721
- 732 742
N\ H;’JE e
v L
721
- 733 L
7N - L;‘" " )/-743
./ L]
721

734

C
=

744

FIG. 7



100 —

Server 105

Compute Device
101

Communication Network 108

Compute Device
102

Compute Device

103

FIG. 1

Computs Device
104




	Page 1 - COVER_PAGE
	Page 2 - COVER_PAGE
	Page 3 - ABSTRACT
	Page 4 - ABSTRACT
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - CLAIMS
	Page 45 - CLAIMS
	Page 46 - CLAIMS
	Page 47 - CLAIMS
	Page 48 - CLAIMS
	Page 49 - DRAWINGS
	Page 50 - DRAWINGS
	Page 51 - DRAWINGS
	Page 52 - DRAWINGS
	Page 53 - DRAWINGS
	Page 54 - DRAWINGS
	Page 55 - DRAWINGS
	Page 56 - REPRESENTATIVE_DRAWING

