
US 20010011341A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2001/0011341 A1 

HAYES JR. et al. (43) Pub. Date: Aug. 2, 2001 

(54) CLIENT-SERVER SYSTEM FOR Publication Classification 
MAINTAINING A USER DESKTOP 
CONSISTENT WITH SERVER APPLICATION (51) Int. Cl." ..................................................... G06F 15/00 
USER ACCESS PERMISSIONS (52) U.S. Cl. ............................................... 712/11; 709/203 

(57) ABSTRACT 
A System with a network interconnecting a server and a 

(76) Inventors: KENT FILLMORE HAYESJR., plurality of user Stations. The Server Stores a plurality of user 
CHAPEL HILL, NC (US); BRETT applications for downloading to user Stations and further 
GRAHAM KING, APEX, NC (US) Stores acceSS permissions for the applications for each user. 

When a user attempts to log onto the System, the Server uses 
the user's log-on identifier to build a list of applications for 

Correspondence Address: which the user has access permission. The Server downloads 
JERRY WHERNDON to the Station a list of applications to which the user has 
IBM CORPORATION acceSS permission. The user Station uses the list to build a 
T81 062 folder containing only the applications from the list to which 
POST OFFICE BOX 12195 the user has access permission. The System further verifies 
RESEARCH TRIANGLE PARK, NC 27709 from the list that the user has access to applications that are 

represented by objects that the user may have added to his 
(*) Notice: This is a publication of a continued pros- or her desktop at an earlier time. For each user desktop 

ecution application (CPA) filed under 37 preference Specified by the user at an earlier time that 
CFR 1.53(d). corresponds to a user application, the acceSS permission for 

the user to the user application is checked from the list, and, 
(21) Appl. No.: 09/072,597 if the application is not included on the list, the desktop 

object representing the application is removed from the 
(22) Filed: May 5, 1998 desktop. 

Administrator Applet 1 - 508 
Server 202 

522 
506 Config file(s) 

POfile for retrofitted 
Manager hardware 

52O 
Export Agent 

g 
s 

- - S. export(properties, context) 
S c 
s g|S 
s g 

2s. 53. 514 
d Profile Manager Servlet 

518 
Profile Mgm Properties P Web Server 

510 

  

  

  

  

  

  

  

  

  



Patent Application Publication Aug. 2, 2001 Sheet 1 of 21 US 2001/0011341 A1 

Fig. 1 

108 
Administrator 

102 104 
Desktop PC Laptop Computer 

Server 202 
Fig. 2 

- - - - - - - - -- 

Database 212 
USer Data 
Group Data 

Software ACCess Data 
Software Preferences 

214 

Pione Manager Servlet 

f 

Administrator Client i 
2OO 

Profile 
Manager 

— 
218 

Web Server 
203 

Profile Mgm Properties P 
- - - 

  



Patent Application Publication Aug. 2, 2001 Sheet 2 of 21 US 2001/0011341 A1 

Fig. 3 - - - - -- - - - - - 

AIUsers 
com ibn App3: BG=Elue, x=1, y=2, z=3 

Com.lotus. App3 x=2, y=3, z=4 
com Ibm.App.4: BG=Gray,x=2..y=2, z=2 
com.ibm. App5: BG=White.x=2, y=3, z=1 

r de 
--- com ibn App3 x = 2 

- - com.ibm.App6: as 1, b=2 
GroupX 

- - - - - - - - - - - - - - 

: Gfoup'Y1 
com ibn.App3 y = 3 
com.ibm.A6. a=33 

------- 

Group'Y2 
com.ibm.App5 y = 4 
- -- - --- 

| 
: 

- - I - 
USerN 

com.ibm.App.5.x=2 
| com.ibm. App4: y=3 

com.ibm.App.3. BG = Green L 

Fig. 4 UserList 
User Group Priority 
User1: Allusers. GroupX 1 

All Users. Group Y.GroupY1 2 
All Users 3 

UserN AIUsers.GroupY.Group Y2 1 
AIUSerS 2 



Patent Application Publication Aug. 2, 2001 

Fig 5 

ad 
Applet1 - 508 Administrator 

512 
506 Event 

Profile Listener 
Manager -- 

510 
Profile Mgm Properties P 

Fig 6 
600 
User 

-- - 

Sheet 3 of 21 US 2001/0011341 A1 

Server 202 

522 
Config file(s) 
for retrofitted 
hardware 

520 
Export Agent 

g -- 
- AP 

55 g export(properties, context) 
o 

SS 
B c 
s X 514 

Profile Manager Servlet 
t 

Web Server 

602 
User Applet2 

5 S. 
S. b 
oil 8 

3 s V 

9 S 
O o 

9. 
c 

604 

LoadOSaveO ListO ContextO 

Profile Mgm Properties P 

() 

8 o 
S. 

8 : 
606 

  

  

    

  

  

  

  

  



Patent Application Publication Aug. 2, 2001 Sheet 4 of 21 US 2001/0011341 A1 

Fig 7 

700 A 702 y 
V. Client / V server / 

704 serveruRL.Desktop.html 

706 Challenge 

708 User D, Password 

710 Desktop Object 

72 
Load and execute 
Desktop Object 

714 
End User Desktop 
Object - Generate 
ProfileManProperties 

Object P 
- 

i 716 

PenablePersistence( 
this) 

1) Get URL of Profile 718 Req context of user (ID, Password) 
Manager Servlet 214 
from Desktop Object, 
2) Get user ID from - 719 Context (ID, User) Desktop Object, 
3) Generate Key = 

i fully qualed class 720 Req. preferences (Key, Context(Ed. User)) (ID, 
name for Desktop Password) 

Object 
722 Preferences 

To Fig. 8 



Patent Application Publication Aug. 2, 2001 Sheet 5 of 21 US 2001/0011341 A1 

Fig. 8 
From Fig 7 From Fig. 7 

f Client - y f Server. 
Continued v Continued / 

8OO 
Desktop object - 

get desktop 
preferences 

802 Req. Applet list (Context(ID, User)) ID, Password 

y 804. Applet List 
806 

Build Applet folder in 
memory and 

generate applet 
window 

N 
Y 808 
Preferences 

include Applet 
outside of Applet 

window? . 

Yes 
Y. 
810 

Check user Not 
authorization to OK 

Applet v. 
T 814 N 

O QK Delete Applet from 
preferences 

812 

Generate Applet 818 Save(Context, Key, 
preferences icon 816 Preferences) id., Passwor 

Save 
preferences 

820 Save response 

-- - Y - 
Done --- - - - - - - - - l 

Y-- - 

  



Patent Application Publication Aug. 2, 2001 Sheet 6 of 21 US 2001/0011341 A1 

Fig. 9 
- - - - -- 

900 y f 902 N 
\ Client \ Server 
v Administrator Y- - 
Y---- --1 - 

904 URE ProfileManager.html 

906 Challenge 

908 User (Administrator) iD, Password 

910 Profile Manager Object 

912 
Load and execute 
Profile Manager 

-- W . 
914 

Profile Manager - 
Generate 

ProfileManProperties 
nonContextFloating 
Object PNCF 

v. 
916 

PNCF.enablePersis 
tence(This) 918 Req. Adm context (ID, Password) 

1) Get URL of Profile 
Manager Servlet 214 
from Profile Mgr. 

2) Get Adm.D from 
Profile Manager, 920 Context 
3) Generate Key = 
fully qualed class 
name for Profile 

Manager 

- - - - - --- 

922 Req. Adm preferences (Key, Context(ID, User) ID, Password) 

924 Preferences 

To Fig. 10 

  



Patent Application Publication Aug. 2, 2001 Sheet 7 of 21 US 2001/0011341 A1 

Fig. 10 9 r 9 

i? client- Y / server-y 
v. Continued & Continued 

1002 Req. info for tree (D, Password) 
Build left panel of adm 

Config window 
ree info 

y 
1004 

| Adm selects config. 
: context from left panel 

--- y - - - 
1OO6 

' Adm selects applet to be : 
configured 

1008 
Adm. Clicks Run/Customize 
to run Config applet (or end 1009 Request applet 

user applet) l 

—--- 
1010 

Config. applet (or end user 
appet) generates its 

ProfileManagement object 
P 

— 

1011 Return applet 

y 
1012 

Config. Applet calls 
PenablePersistence(this, 
full qual’ed class of applet 

being Configured) 

1014 
Register as Context change 

event listener 

- - - - --— (To Fig. 1 } (To Fig. 11) -- Y-------1 

    

    

  

  

  

  

  

  

  

  

  



Patent Application Publication Aug. 2, 2001 Sheet 8 of 21 US 2001/0011341 A1 

Fig 11 

?cient - y From Fig. 10 From Fig. 10 (Sever.) 
\ Continued continuedy 

- - 

1104 
Config. applet calls 

P. load0 to get 
preferences for config. 

Context 

1105 Req. preferences (Key, Context) (D, 
Password) 

1106 Preferences 

y 

1107 
Configure and save 

1108 
Administrator changes 

Context 

. . . W. 
1110 

Call to Config. Applet 
to reload preferences 

for new Context 

--- y 

1112 1114 Req preferences (Key, new context) (ID 
Event listener does Password) P. load() 

- 1116 Preferences 

--------- 
1118 

Profile Mgm Properties 
object Pupdates 

preferences 

V o - 
f y 
l DOne } 
Y -- 

  

      

  

  

  

  



Sheet 9 of 21 US 2001/0011341 A1 Aug. 2, 2001 Patent Application Publication 

OOZ). 

--> 

- - - - - --> 

  

  

  

  

  





Sheet 11 of 21 US 2001/0011341 A1 Aug. 2, 2001 Patent Application Publication 



Sheet 12 of 21 US 2001/0011341 A1 Aug. 2, 2001 Patent Application Publication 

  

  

  



FIJECJE WIL *** EÐ 

Sheet 13 of 21 US 2001/0011341 A1 

O- - - - - - a-- - - 

Aug. 2, 2001 Patent Application Publication 

  

    

  



Sheet 14 of 21 US 2001/0011341 A1 Aug. 2, 2001 Patent Application Publication 

„g/l ——> 

09/.. | 

OZ/ | 

ZL (61-) 

  

  

  

  

    

  
  
  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

  



- -, - ... ------------------ 

Sheet 15 of 21 US 2001/0011341 A1 

ewewgos ?Å E 

Aug. 2, 2001 

| | | 

|suoissiuued leiddw GJ|Sdnou6qns ?º|suequaw ? 

Patent Application Publication 

9 | -61-I 

  

  

  

  

  

  

      

  

    

    

    

  

  

  

  

  

  

  

  

  



Sheet 16 of 21 US 2001/0011341 A1 Aug. 2, 2001 Patent Application Publication 

:) 
1 

  

  

  

    

  

  

  



Sheet 17 of 21 US 2001/0011341 A1 

pu0^Assed 

Patent Application Publication 

  

  

  

    

  

  

  



or e o or a c e o E 

Sheet 18 of 21 US 2001/0011341 A1 Aug. 2, 2001 

3 
5 

Patent Application Publication 

  

  

  

    

  

  

  



No. 1.1 ± || || ? 

: : 

F'—E020G 
o PO e P) s e o 

Sheet 19 of 21 US 2001/0011341 A1 Patent Application Publication 

ZZ (61-) 

  

  

  

  

  

  

  

  

  



Patent Application Publication 

  



Patent Application Publication 

  

  

    

  

  

  

  

  

      

      

  

  

    

  

  

  

  

  

  



US 2001/0011341 A1 

CLIENT SERVER SYSTEM FOR MANTAINING A 
USER DESKTOP CONSISTENT WITH SERVER 
APPLICATION USER ACCESS PERMISSIONS 

TECHNICAL FIELD 

0001. The invention relates generally to the fields of 
personal computing and networking. Specifically, it relates 
to the new and evolving field of network computing, in 
which desktop computer users use a personal computer, 
possibly diskless, connected to a network Such as a corporate 
intranet, the Internet, or to an network or Internet Service 
Provider (ISP) to gain access to applications which are then 
executed on the desktop computer. More specifically, the 
invention relates to Server-based Storage of Software pref 
erences (configuration data) for Software retrieved from a 
Server and executing at the desktop computer. 

BACKGROUND OF THE INVENTION 

0002 The field of network computers is presently in its 
infancy. However, it is expected to evolve rapidly, especially 
in the corporate environment, for a number of reasons. The 
expectation is that as companies and possibly individual 
users reach hardware and Software upgrade points, it will be 
more efficient and less expensive to move to this new field, 
rather than upgrade in the traditional way with disk equipped 
computers and locally Stored and administered Software 
applications. For example, in the corporate environment, a 
user can be connected to a corporate intranet, using, for 
example, the TCP/IP and HTTP protocols of the Internet, 
and download Software applications as they are needed 
directly from a network Server to the desktop computer. An 
application is executed on the desktop in the traditional 
manner by the user to perform useful work. An advantage of 
this configuration is that network computers are Substan 
tially leSS expensive than traditional disk equipped comput 
ers. It might also cost less to purchase the required number 
of Software licenses for users, rather than purchase indi 
vidual copies of Software for each user. Certainly, the 
Software administration problems that attend large numbers 
of corporate users will be substantially reduced. At the 
present time, each user of a disk equipped computer or 
workstation often is effectively his or her own system 
administrator, a role that often consumes excessive 
resources due to lack of expertise. It is expected to be a great 
advantage to eliminate this problem by effectively offloading 
the problem to a small number of server administration 
experts, rather than having many users Struggle with the 
problems of Software installation, upgrades and computer 
administration. 

0003. As mentioned above, this vision of the future of 
personal computing is presently in its infancy. As a result, 
there are presently many problems and deficiencies with 
existing Systems. 
0004 Typically, in network computer systems, an admin 
istrator creates user profiles that are Stored on a network 
Server. The profiles may contain different types of informa 
tion, Such as user desktop preferences and user permissions 
for access to different Software applications that might reside 
on the Server. When a user logs onto the System, the user 
identifies him or herself to the server, the server locates the 
profile for the user and transmits it to the user computer 
where it is used to configure the computer and generate a 

Aug. 2, 2001 

desktop. The desktop might include a number of icons 
representing applications to which the user presumably has 
access. The profile likely also contains other attributes of the 
computer and desktop, Such as for example, the background 
color of the desktop, or character fonts and point sizes used 
on the desktop, or data file Search paths, etc. that are unique 
to the user. The profiles may be user modifiable or non 
modifiable. 

0005. In an environment in which users can modify their 
own profiles, a modified profile is uploaded back to the 
server at log-off time, where it is stored for retrieval the next 
time the user logs-on. In Some prior art Systems, to the best 
of our knowledge, the users can generate on their desktops 
any configuration of application icons they wish, whether or 
not they exist on the Server, and whether or not a user 
actually has access permission to an application on the 
server. The Lotus Workplace Desktop (previously called 
Kona Desktop) System is an example of this type of opera 
tion. In other Systems, the Server presents a list to the user 
of all applications that the Server has, from which the user 
can pick. In this case, there is no guarantee that the user 
actually has acceSS permission to an application that is 
selected from the list for inclusion on the desktop. The Sun 
HotJava ViewS System is an example of this type of System. 
In other words, the prior art Systems do not correlate 
between what the user can configure for the Set of desktop 
application icons and applications to which the user actually 
has permission access. In Such a case, when the user clickS 
on a icon to execute an application, an error message may 
occur (Such as an unauthorized access message) if access 
permission is not present, or in a worse case, the user's 
computer may crash. 

0006 Another limitation with existing art is that a flat 
data Structure is used to model users, user groups, terminals 
and groups of terminals. Modeled after a common Scheme 
for managing user access to computer resources, known 
network computer implementations (e.g., Lotus Administra 
tion Facility for Desktops, Microsoft Windows NT Profiles 
and Policies, and Sun Hot Java Views) implement a flat 
"groups' Structure on the Server for managing Software 
preferences (or attributes) in various contexts. A “context”, 
as used here, refers to an individual user, user group, 
terminal, or terminal group. Any grouping Structure for 
managing Software preferences on the Server allows an 
administrator to define preference attributes for different 
groups of users as well as for individual users. However, flat 
Systems are inflexible in many environments, especially in 
environments having large numbers of users. It is desirable 
to provide an administrative tool Supporting the organization 
of preference information into a hierarchical Structure. 
0007 Another limitation with existing systems is that 
they are limited in the ways that administrators and users 
have to perform user configuration of WorkStation desktops. 
For example, administrators are presently required to con 
figure user preferences using configuration programs that are 
Separate from, but associated with, a user application. It is 
desirable to allow vendors to provide only a single applica 
tion. To require only an end user application from a vendor 
necessitates that the central management facility be able to 
execute the end user application in a context of a user or user 
group. The prior art does not allow this administrative 
flexibility of operation. In other words, in the prior art, to the 
best of our knowledge, an administrator does not have the 



US 2001/0011341 A1 

ability to run a user application in the context of a user to Set 
preferences for that user and application. Further, in the art, 
an administrator cannot run a user application to Set pref 
erences in the context of a group of users. 

0008 Still another limitation in the prior art known to the 
inventors is the manner in which the prior art partitions 
Server permanent Storage Space to guarantee that a unique 
Space is reserved for Storing user preferences related to the 
different applications on the Server. To the knowledge of the 
inventors, the problem of preventing collisions in the Storage 
of preference information for different applications in 
object-oriented Systems, in which an object can be queried 
for its fully qualified class name which uniquely identifies 
and differentiates it from other classes, is Solved by having 
a first central authority assign a unique designation that 
applies to a Vendor and by then having a Second authority at 
the Vendor assign a Second designation relative to the first 
designation for each vendor application. For example, ven 
dor A might be assigned the designation vendorA by the first 
authority and that designation is guaranteed to be unique 
within the architecture for which the first authority is acting. 
The Second authority at Vendor Athen assigns the Second 
designation for each of its applications within that architec 
ture. For example, one of Vendor AS applications might be 
designated-VendorA.App1; another might be designated 
vendorA.App.2. The art maps the unique designation for 
each application in a System to a location in permanent 
Storage of the System to guarantee that preference data for 
the different applications do not collide in storage. An 
application, when running, informs the network computer 
Server of its unique Storage location and it is the responsi 
bility of the Server to partition an area at the Starting location 
according to a context (user, user group, terminal or terminal 
group) for storing preference information So as not to collide 
with preference information in a different context. Clearly, 
this manner of administering Storage Space is awkward and 
undesirable. It is desirable to devise a method to automati 
cally generate unique Storage locations for Storing prefer 
ence information for the afore mentioned object-oriented 
applications, without resorting to the requirement of having 
central authorities assign unique designations for the pur 
pose of preventing collisions in the Storage of preference 
information and without coding Storage location information 
into an application. 

0009 Still another limitation in the art lies in the lack of 
any provision to migrate existing applications and hardware 
into the new environment of the centrally managed network 
computing World without requiring changes to the existing 
hardware and applications. Existing hardware, a terminal for 
example, in a networked environment, gets its configuration 
information at boot-up time from a file in a specific format 
located on a Server. The terminal is programmed to know 
how to acceSS its configuration file. The terminal uses a 
unique identifier to access the file from the server. The 
unique identifier is often the media access control (MAC) 
address of the terminal. However, in a new centrally man 
aged environment involving protocols and APIs that are 
different from that to which the terminal is designed, the 
terminal cannot acceSS preference information in the new 
environment, the terminal can only acceSS its configuration 
file in the way for which it is designed. This is a serious 
problem, because there are many Such existing devices in 

Aug. 2, 2001 

use. The inability to use them in new Systems impedes 
Substantially the incentives for users to migrate to the new 
Systems. 

0010 Still another limitation in the prior art concerns the 
interface between an administrator and the configuration 
management System. When configuring Software within an 
administration facility to configure preference information 
for various users and user groups, and terminals and terminal 
groups, the administration Software launches in the context 
(user, user group, terminal or terminal group) set by the 
Administrator who is running the facility. When the Admin 
istrator changes the context that the application is running 
under, the application needs to be relaunched to load con 
figuration information for the new context. The process of 
relaunching Software each time a context is changed is time 
consuming and inconvenient for an administrator, especially 
in Systems with many users. In Such Systems, it is expected 
that an administrator will change contexts many times while 
configuring an application. 

SUMMARY OF THE INVENTION 

0011. The system described herein provides a common 
repository for configuration information for users and 
applets in a client-Server environment. This is referred to as 
client profile management. The System allows users to roam, 
that is, to log-in from any computer in the System at any time 
and have it configured automatically at run time according 
to the preferences stored for the user at the server. The 
preferred embodiment is a Java (Java is a Trademark of Sun, 
Inc.) based System and the client computers use a web 
browser interface arranged to execute Java applications. 
Thus, in the preferred embodiment, user applets and the 
desktop applet are assumed to be Java applets. However, it 
is not intended to limit the invention to a Java environment. 
Preferences for the locally Stored applications might be 
Stored locally in the traditional manner, while preferences 
for the Server-based applets might be handled in the way 
described herein. 

0012. The invention solves the problem whereby a user is 
able to configure his or her desktop So as presumably to be 
able to access an application on the Server when, in fact, the 
user does not have System permission to access the appli 
cation. When the user logs onto the System, the user iden 
tifies him or herself to the server by means of a system 
identifier and a password. The Server uses this information 
to built dynamically a list of applications to which the user 
has access permission. That list is transmitted to the users 
Station. The application list is then used to build a portion of 
the desktop, preferably a desktop folder, of applications to 
which the user has access permission. Preferably, the folder 
is composed of a number of application icons each of which 
correspond to a different application and which may be 
Selected by the user to launch the associated application. 
ASSociated with each application in the list are parameters 
necessary for the user to execute the associated application. 
For example, one Such parameter might be the URL on the 
Server used to invoke the application. Nothing prevents a 
user from modifying the desktop. For example, after the 
desktop is built, the user generally can add other application 
icons to the desktop, even though they would not be acces 
Sible to the user. A more common case might be where the 
user copies an application icon that is dynamically generated 
from the list from the generated folder to another part of the 



US 2001/0011341 A1 

desktop and then logs off. When the user logs off, or 
otherwise Saves his or her preferences for the desktop via 
any method the System might provide, the copied icon is 
Saved to the Server and becomes part of the preferences 
configured for the user. When the user later logs onto the 
System, the copied icon is reproduced on the desktop, not as 
part of the automatically generated list of accessible appli 
cations, but just as part of the individual preferences Set by 
the user. Thus, the user can Still wind up with applications 
configured on the desktop to which the user does not have 
access. A related feature of the invention prevents this 
occurrence from happening by also testing each application 
access preference Set by the user against the application 
permissions present on the Server. If a user has included an 
application object on the desktop to which he or she does not 
have acceSS permission, then the object is automatically 
excluded from the desktop object that is built by the server 
at log on time. 
0013 In a preferred embodiment comprising a system 
with a network interconnecting a Server and a plurality of 
user Stations, the Server Stores a plurality of user applications 
for downloading to user Stations and further Stores acceSS 
permissions for the applications for each user. When a user 
attempts to log onto the System from a user Station, the 
Server receives a user log-on identifier from the user. The 
server uses the identifier to build a list of applications for 
which the user has access permission. A desktop object is 
then downloaded to the user Station to control the interface 
between the user and the user's station. The server also 
downloads to the Station a list of applications to which the 
user has access permission. The user Station uses the list to 
build a folder containing only the applications from the list 
to which the user has access permission. The System further 
Verifies that the user has access to applications that are 
represented by icons that the user may have added to his or 
her desktop at an earlier time. For each user desktop 
preference Specified by the user at an earlier time that 
corresponds to a user application, the acceSS permission for 
the user to the user application is checked from the list, and, 
if the application is not included on the list, the desktop 
object representing the application is removed from the 
desktop. 

BRIEF DESCRIPTION OF THE DRAWING 

0014) In the Drawing, 
0015 FIG. 1 shows an illustrative network and user 
Stations, including an administrator's Station, in which the 
invention might be practiced; 
0016 FIG. 2 shows an illustrative block diagram form of 
the administrator's Station in communication with a server, 
and components of the administrator's Station and the Server 
for providing the central profile management and preference 
administration; 
0017 FIG. 3 shows one illustrative hierarchical organi 
Zation of user groups and users of a System. The illustrative 
hierarchical organization might also contain individual ter 
minals and terminal groups; however, these are omitted for 
Simplicity; 
0.018 FIG. 4 shows one illustrative listing of individual 
users and the group priority order that is used to determine 
a set of preferences from the hierarchical organization of 
FIG. 3 that apply to a user and a specific application 
executed by the user; 

Aug. 2, 2001 

0019 FIG. 5 shows a more detailed view of the admin 
istrator's station and server of FIG. 2; 

0020 FIG. 6 shows an illustrative view of the software 
objects at a user's terminal, including a user application and 
the API between the application and other components, that 
cooperate to establish the user preferences during execution 
of the application as the user's terminal; 
0021 FIGS. 7 through 8 show illustrative operations at 
both a user's terminal and a Server for user log-on and 
initially establishing the user's desktop, including desktop 
preferences, at the user terminal; 
0022 FIGS. 9 through 11 show illustrative operations at 
both an administrator's terminal and a Server for adminis 
trator user log-on, establishment of the administrator's desk 
top, and, by way of example, the Selection of an application 
and a context for configuration; the example also illustrates 
a context change during configuration the user's desktop and 
the resulting operations, and 
0023 FIGS. 12 through 24 show a variety of actual 
administrator Screen Snapshots in various phases of appli 
cation administration, including building of a hierarchy of 
which FIG. 3 is a representation of an example of, the 
creation and deletion of users, etc. the establishment of 
application preferences for applications, and context 
changes during preference establishment. 

DETAILED DESCRIPTION 

0024. The System described herein provides a common 
repository for configuration information for all users and 
applets in a client-Server environment. This is referred to as 
client profile management. The System allows users to roam, 
that is, to log-in from any computer in the System at any time 
and have it configured automatically at run time according 
to the preferences stored at the server. The preferred embodi 
ment is a Java (Java is a Trademark of Sun, Inc.) based 
System and the client computers use a web browser interface 
arranged to execute Java programs. 
0025. The terms “applet” and “servlet” are established 
terms in the Java programming language art and will be used 
herein, Since the terms have meaning to those skilled in this 
art. “Applet” refers to an independent Software module that 
runs within a Java enabled web browser. Servlet refers to a 
Software module that resides on a Java enabled web server. 
It is to be understood that the use of the terms “applet” and 
“servlet herein is not intended to limit the invention in any 
way. For clarification, the phrase “configuration applet” is 
used herein to refer to a Software module used to configure 
preferences for an end user Software application Such as a 
word processor, a database manager, etc. Since Software 
applications are also “applets” in the Java environment, the 
phrase “user applet” or just "applet” is used herein to refer 
to an end user application. 
0026. In the preferred embodiment, user applets and the 
desktop applet are assumed to be Java applets. However, it 
is understood that the invention is not limited to a Java 
environment. The invention can be used in any client-server 
System. For example, if desired, the System could be 
designed to use proprietary communication protocols and 
applications written and compiled in any desired program 
ming language. Further, even in the preferred Java based 
environment, disk-based computers might access Some 



US 2001/0011341 A1 

applications locally, and other applets from the Server. 
Preferences for the locally Stored applications might be 
Stored locally in the traditional manner, while preferences 
for the Server-based applets might be handled in the way 
described herein. Preferably, however, preferences for 
locally Stored applications are Stored on the Server using the 
Profile Management Properties API in addition to the pref 
erences for Server based applets described herein. 
0027) A simple Application Program Interface (API) 
allows applets written to the API to easily store and retrieve 
preference data when the applet is executed by a user or 
administrator. Applet permissions and user preferences can 
be defined based on group memberships and individual 
identity. 
0028 Client profile management includes the following 
Services: 

0029 Log-on Support-mapping to a user profile; 
003.0 User support-the administrative ability to cre 
ate user identifications and provide Services and pref 
erences directly to users, 

0031) User groups support-the administrative ability 
to create hierarchical groups of users and provide 
Services and preferences based on group memberships, 

0032 User applet context transparency-automatic 
determination of the context of user applet execution. 
That is, the determination of the user and/or group 
profiles that apply to a user applet execution and the 
automatic establishment of the profile environment; 

0033 User applet preferences repository-context 
Sensitive Server Storage for user applet configuration 
data; 

0034) Dynamic user applet preferences inheritance 
hierarchical load-time coalescence of user applet pref 
erences via the object-oriented principal of inheritance; 
and 

0035) User applet access control-control of user 
applet eXecution based on group default membership 
privileges. The administrator can override default 
group privileges and permit or deny additional acceSS 
privileges for individual users. 

0.036 Profile management provides a framework through 
which these tasks are performed. Some tasks are Supported 
by profile management directly, e.g. user/group manage 
ment, applet lists, context Switching, preference inheritance, 
etc., while configuration Services Specific to user applets are 
usually Supported by Separate configuration applets invoked 
by a System administrator within the client profile manage 
ment environment. Some end user applets might provide the 
configuration capability as part of the end user applet. If this 
is the case, the administrator can run the end user applet (as 
opposed to a separate configuration applet) in the context of 
individual users and groups to Set the configuration prefer 
ences for those users and groups. 
0037 FIG. 1 shows one high level view of an intended 
environment for practicing the invention. A network 100 is 
provided for interconnecting a plurality of user Stations, 
Such as desktop personal computerS 102, mobile laptop 
computers 104, workstations 106 (e.g., RISC computers), an 
administrator's station 108 and a server 110. In one embodi 

Aug. 2, 2001 

ment, network 100 might be a local area network. In another 
embodiment, network 100 might include wide area network 
ing for entities Such as corporations that have geographically 
displaced sites that are Still included within the System. 
There is no intent to limit the environment in which the 
invention might be practiced; indeed, a network of any type 
that interconnects many types of Stations is envisioned. 
0038 A high-level diagram of the profile management 
administrative operating environment is shown in FIG. 2. 
An administrator client network computer 200 is represented 
on the left of the Fig. and a server 202 for the system is on 
the right. The client and Server communicate via a network 
represented as 203. The particular example of FIG. 2 
assumes that the client computer is a System administrator's 
computer. 

0039) Profile manager 206 on the client side allows the 
administrator to configure user applet preferences at both 
user and group levels. The administrator can create new 
users and group hierarchies, add users to different groups, 
Specify applet permissions for each group and for individual 
users. And the administrator can configure applets in the 
context of an individual user or a group. The administrator 
can add, delete and reset passwords for users. Profile man 
agement Support is transparent to the general user. The 
administrator can invoke the profile manager 206 in the 
context of any user or group. Only the administrator can 
change from his/her context to administer clients (users) and 
groups. The Server will not allow a user without adminis 
trative authority to Switch context. When a request comes 
into the server, it will query the authenticated ID of the user 
trying to access this function. If the user does not possess 
administrative authority, (i.e., is not a member of the AllUS 
ers. Administrator group), the Profile Manager Servlet 214 
will reject the request. 

0040 Profile manager 206 invokes other applets, such as 
applet1 (208), as shown in FIG. 2. In this example, applet1 
might be the administrative applet for configuring prefer 
ences related to user desktops. Or applet1 could be a 
configuration utility related to an end user applet, Such as 
editors, word processors, databases, etc. It is preferred, but 
not required, that configuration appletS Such as 208 exist as 
modules Separate from their corresponding user applets. In 
the context of FIG. 2, Applet1 is typically a configuration 
applet for a user applet; the administrator runs the configu 
ration applet applet1 under a group context to Set group 
preference and permission defaults, or in a user context to 
customize user applet configurations for an individual. By 
implementing applet1 as a module Separate from its user 
applet, performance is enhanced, since the configuration 
applet1 will likely be Small compared to the user applet. 
Also, Separate configuration applets allow the administrator 
to control the end users ability to configure the user applet. 

0041 Traditional stand-alone computers store user applet 
configuration information locally in association with its the 
user applet. Traditional Stand-alone Java based computers 
Store user applet configuration information using the format 
provided by the java. util. Properties class. Both arrange 
ments require that the user applet Specify the name of a local 
file in which to Store configuration information related to the 
user applet. In other words, a relationship is required 
between the computer and the user applet loaded on it. 
Profile management as described herein provides the famil 



US 2001/0011341 A1 

iar capabilities of a real java. util. Properties object plus 
additional facilities Supporting user-roaming capabilities 
and Seamless pluggability into a powerful administrative 
framework (the Profile Manager). 
0.042 ProfileManagementProperties P210 is a properties 
object for applet1 and provides an API between Applet1 and 
the server that allows the server to determine where to store 
configuration information for applet1 in the context of users 
and groups. The ProfileManagementProperties object class 
provides all of the functionality of the java. util-properties 
class with the further ability to provide create, Save, and 
retrieve the configuration information for Software from 
permanent Storage. Storing Such information in a central 
location makes management of user and group configura 
tions possible. When a user is in the role of administrator, 
ProfileManagementProperties 210 allows the administrator 
to configure the user applet corresponding to configuration 
applet1, or to configure applet1 if applet1 is an end user 
applet, and Store the configuration information in the proper 
place on the Server in the proper context. This allows the 
establishment of a relationship between the user applet and 
the user, rather than between user applet and computer as in 
traditional systems. ProfileManagementProperties 210 is an 
extension of the java. util. Properties class. The extension 
allows the key/value pairs of preference information of a 
Properties object to be associated with a key, as opposed to 
a stream, as with java. util. Properties. This, in turn, allows 
application developerS to use the key to Specify a unique 
location relative to a context for preference information, 
rather than a file name and path. ProfileManagementProp 
erties 210 determines the key automatically. The generation 
of the key is discussed more in connection with FIGS. 8 and 
9. By modeling ProfileManagementProperties 210 after the 
java. util. Properties class, the System can take advantage of 
preference inheritance through recursive class-default evalu 
ation. Thus, this extended class provides a “group default 
capability by accumulating preferences Starting at a current 
context, as discussed with respect to FIG. 3, and traversing 
up the contextual hierarchy for defaults. 
0.043 Server 202 includes a database 212 that stores user 
data and group data, Such as user and group preferences and 
user applet access permissions. Webserver 218 represents a 
typical web server with Support for Java applets. Profile 
Manager Servlet 214 maps user and group identifications to 
preference data. It also maintains an access control list to 
manage user access to applications on the Server. 
0044) User and group preferences are stored as a tree 
hierarchy, as shown in FIG. 3. All users of the system 
automatically belong to the top group All Users. All users 
belong to the Allusers group; this group contains the default 
preferences for Some or all user applets on the Server. In 
FIG. 3, it is assumed that the server contains at least three 
user applets, identified as App3, App4 and App5. AS indi 
cated in the AllUsers group, the default background (BG) for 
App3 is BG=blue. Other illustrative preferences labeled as 
X, y and Z are shown to have the default values of 1, 2 and 
3 respectively. The terms X, y and Z are intended to represent 
any desired preference and the values 1, 2 and 3 are arbitrary 
and used merely to illustrate the point. The X preference 
might for example be the Screen font for the desktop; the 
value x=1 might call for a default font of Times-Roman. 
Similarly, the default preferences for App4 for all users are 
BG=gray, X=2, y=2 and Z=2. 

Aug. 2, 2001 

004.5 The default values in the All Users group can be 
modified in any desired way for other contexts, Such as for 
other user groups and individual users. By way of example, 
in addition to the context of All Users in FIG. 3, four other 
groups (GroupX, GroupY, GroupY1 and GroupY2) are 
shown. 

0046 Additionally, two individuals User1 and UserN are 
shown. Users can be members of more than one group. In 
FIG. 3, User1 is a member of All Users, GroupX and 
GroupY1; UserN is a member of All Users and GroupY2. If 
a user is a member of more than one group (another group 
in addition to AllUsers), then the groups are prioritized for 
the purpose of Selecting the preferences for a given applet 
for that user. The administrator configures the group priori 
ties for a user. Group priority is illustrated in FIG. 4. In FIG. 
4, User1 has GroupX (identified by the fully qualified name 
of All Users. GroupX for his or her highest priority group. 
User1's next highest priority group is Group Y1 (AllUsers 
GroupYGroup Y1). User1 's lowest priority group is the 
AllUsers group. When a user, Say USer1, requests to run an 
applet Say App3, the preferences are coalesced from the tree 
of FIG.3 according to the group or groups to which the user 
belongs and the user applet is configured on the user desktop 
accordingly. 

0047 The first step in coalescing preferences for any 
context is to get the defaults. The defaults for a user, if there 
are any, is the coalesced set of preferences for the applet 
from the highest priority group from which preference 
information for the applet can be obtained. The defaults for 
a group, if there are any, is the coalesced Set of preferences 
for the applet from the groups parent (i.e., The AllUsers 
group is the parent of AllUsers. GroupX). If a group has no 
parent (i.e., the top level AllUsers group), there are no 
defaults for that group. To coalesce the preferences for an 
applet at a context, the preferences for the applet explicitly 
Stored at the context, overwrite the default preferences for 
the applet for the context. Thus, to coalesce preferences into 
the default Set for an applet in a group context, recursive 
calls are made from each group node up to the All Users 
group requesting each parents Set of preferences for the 
applet. Please refer to FIG. 3 to illustrate the following 
example. For example, if the context is Allusers. GroupY 
..GroupY1, a call is made to the parent of GroupY1, which 
is GroupY, requesting its default preferences for the applet. 
GroupY1 makes a recursive call to its parent, which is 
All Users. All Users has no parent, so AllUsers returns it set 
of preferences for the applet to the call from GroupY. This 
Set of preferences is modified by the preferences Stored in 
GroupY for the applet, if any. This is now the default set of 
preferences for the applet for the context of GroupY1. This 
Set of default preferences is returned to GroupY1 as a result 
of the recursive call from Group Y1 to Group Y, and are 
modified by the preferences at Group Y1 for the applet, if 
any, to become the actual Set of preferences to be used in this 
instance. The Set of preferences for the context of a user is 
built in the same way, except that the highest priority group 
from which preference information can be obtained for the 
user is used to first establish the group context from which 
the defaults will be obtained. Then the recursive procedure 
described above is used to build the actual set of preferences 
for the user and the applet requested by the user. 



US 2001/0011341 A1 

0.048. The following examples illustrate the above pref 
erence coalescence and should be read in conjunction with 
FIG 3. 

EXAMPLE 1. 

0049. An Administrator runs a configuration Applet for 
App3 to Set Preferences for the Group AllUsers.GroupX. 
0050. To set the preferences for App3 in the context of 
Allusers. GroupX, the present Set of preferences must be 
determined. AllUsers.GroupX requests defaults for its par 
ent Allusers. Since AllUsers is the top level group, it returns 
its preferences for App3 to GroupX. These are the default 
preferences for App3 in the context of GroupX. Since 
GroupX has no preferences for App3, the default Set from 
Allusers is the real Set of preferences to be used. In this 
example, these preferences from the AllUsers group are: 
BG=Blue, x=1, y=2, z=3. The administrator can now modify 
use the configuration applet to modify the coalesced pref 
erences in any desired manner. 

EXAMPLE 2 

0051) User1 Requests Execution of com.ibm.App.3. Pref 
erences Must be Coalesced for com.ibm. App3 in the Con 
text of User1. 

0.052 FIG. 4 shows that the highest priority group for 
User1 is All Users. GroupX; this branch of the group hierar 
chy will be checked first for preference information pertain 
ing to App3. From here on, the example is essentially the 
Same as example 1 above, except that the coalesced Set of 
preferences is used to configure App3 on the user's work 
station. The preferences for App3 for User1 are: BG=Green, 
x=1, y=2, z=3 since the BG=Green preference stored in the 
User1's context for App3 over rides the default BG=Blue 
preference obtained from the All Users.GroupX branch of 
the preference tree. 

EXAMPLE 3 

0.053 Coalescing Preferences for com.ibm. App6 in the 
Context of User1. 

0054. This example illustrates the situation of the highest 
priority group containing no coalesed preferences for the 
context of USer1. Again, the highest priority group for User1 
is GroupX. This group and its parent All Users contain no 
preferences for App6. Therefore, the next highest priority 
group is Searched. The next highest priority group for User1 
is GroupY1. A set of preferences can be obtained from this 
group for App6. The coalescence of preferences proceeds as 
described in example 1. Recursive calls are made from 
GroupY1 up the tree to the root All Users group and the 
preference Sets are returned back down the recursive calls 
and modified along the way to form the default set. The 
default set is then modified with the preferences stored in 
GroupY1 to form the coalesced Set of preferences that apply 
to this context. Stated briefly, Allusers returns a null set of 
preferences, Since it has no preferences for App6. GroupY 
modifies this null set with the values a=1 and b=2 and 
returns this set to GroupY1 as the default set. GroupY1 
modifies the default set with a=33. This set is returned to the 
User1 context for use as its default Set. Since there are no 
preferences for App6 Stored at the USer1 context, the 
defaults obtained from the GroupY1 branch of the prefer 

Aug. 2, 2001 

ence tree represent the fully coalesced Set of preferences for 
App6. The real set of preferences thus becomes a-33, b=2 
for this context. 

0055. The above 3 examples described the gathering of 
preferences in response to a load() for a particular piece of 
Software. When preference information is Saved for a piece 
of Software, any preferences that have been explicitly writ 
ten at the Context being saved to will be written to the data 
store (212) at the location specified by the combination of 
the Context the software is being run in and the key for the 
Software whose preferences are being Stored. 
0056 Permissions operate similarly: a new group has 
access to all the applet names permitted by the group itself 
as well as to all applets permitted by its SupergroupS. 
However, just as Java allows the programmer to override a 
Superclass method, Profile Management allows the System 
Administrator the ability to override an inherited permis 
Sion. This is called overriding a permission. 

0057. As with Java's form of inheritance, Profile Man 
agement's form of preferences and permissions inheritance 
is called Single inheritance. Single inheritance means that 
each Profile Management group can have only one Super 
group (although any given Supergroup can have multiple 
Subgroups). 
0.058 Profile Management users (leaf nodes) may require 
membership in multiple groups, So a facility is required to 
limit preference inheritance to a single hierarchical group to 
minimize the chance of corrupt configurations due to the 
introduction of incompatible variable Subsets introduced by 
croSS group branch coalescing. By allowing a user's group 
memberships to be prioritized, profile management can 
follow a Search order when looking for preferences related 
to a particular applet. In other words, Starting with the group 
with the highest priority, the search will stop at the first 
group found to contain configuration data for the applet 
attempting to load its preferences. 

0059 A user inherits software permissions from group 
memberships. With careful enterprise modeling, the admin 
istrator can assign Software access to many users without 
having to navigate through panels, one user at a time. Profile 
management controls acceSS by programming the web 
Server to permit/deny access to applets. The Web Server 
enforces the acceSS control. The profile manager Servlet is 
also protected by the WebServer requiring user IDs and 
passwords to be passed to the webserver for authentication 
purposes. It is Standard browser functionality to prompt for 
user passwords as required. 

0060 FIG. 5 shows the system of FIG. 2 in more detail. 
Configuration applet Applet1 is invoked by the administra 
tor within the profile management framework. Applet1 may 
implement the application program interface (API) 515 for 
querying information about its operational environment 
(e.g., query context, context changed events, query access 
control list for this context, etc.) to integrate tightly within 
the profile management framework, but this is not a require 
ment for a configuration applet. In any event, the designer of 
applet1 need only understand the basic API methods: 
enable Persistence(), load(), and Save() in addition to the 
basic methods of a java. util. Properties object used to get 
preference information into and out of a java. util. Properties 
object. API 515 additionally provides list( ) 



US 2001/0011341 A1 

and getcontext() methods. Applet1 need only register with 
the ProfileManagementProperties class and call these meth 
ods as appropriate. The load() method can be called to 
retrieve the present State of preferences for the user applet 
being configured in the context of a user or group Selected 
by the administrator The administrator can then modify the 
preferences as desired and Store them using the configura 
tion Save functionality provided by the applet (which uses 
the save() method of its ProfileManagementProperties 
object. Similarly, if applet1 needs the list of user applets 
authorized for access by a user, it can use the list() method 
to obtain the list from the server. The getContext() method 
can be used by the applet to display the name of the context 
that it is running in or even to ensure that it only runs in a 
certain context (i.e., if an applet wanted to configure a 
Service on the Server using the export agent, it might only 
allow itself to be run at the All Users context since the 
configuration being exported is server Specific as opposed to 
user Specific. For applet1 to run in the profile management 
framework, all that is required is for the applet to register 
with ProfileManagementProperties 410 and implement the 
ProfileManagementProperties class, an extension of the jav 
a.util. Properties class. 

0061 The profile manager 506 also provides a context 
change API 516 for configuration applets. Applet1 may 
implement a context change event listener 512. The API 516 
and the event listener 512 allows the administrator to change 
contexts (user or group) while running the configuration 
applet, without having to Stop and restart it. For example, 
When configuring applet user preferences, the administrator 
will likely change contexts many times during the configu 
ration. If the configuration applet is registered as a listener 
to such events, profile manager 506 will notify it of a context 
change via API 516. This allows applet1 to refresh its 
preferences from the server for each new context. Without 
the event listener API, applet1 would have to be terminated 
by the administrator and restarted after a new context has 
been Selected to reference the existing preference informa 
tion for the new context and avoid being Stopped and 
restarted by the Profile Management applet. To register, 
applet1 calls a method on its properties object ProfileMan 
agementProperties 510 i.e., addContextChangeListener 
(API 516) to register itself. When the administrator sets a 
new context, profile manager 506 performs a Set context call 
(API 516) to object 510, which in response calls the reload 
method (API 516) on event listener 512. Event listener 512 
now performs a load properties call to its properties object 
510 to get the new preference data from the server for the 
new context, and causes applet1 to updates it GUI and 
internal variables to reflect the new preference information. 
0062) The above functionality avoids the possibility of a 
network administrator reading data from one context, chang 
ing context, and accidentally overwriting with a Save() 
when intending to load( ) before making configuration 
changes in the new context. 

0.063) Applets that do not register as listeners will be 
Stopped, destroyed, reloaded, and restarted by the profile 
manager applet when the administrator forces a context 
change. 

0064. The profile management also provides a “proper 
ties export Service to allow the easy retrofitting of existing 
hardware and Software into this profile management envi 

Aug. 2, 2001 

ronment. The properties export Service allows profile man 
ager 514 to Support user workstations (the physical hard 
ware) as well as users, groups, and user applications. Since 
existing WorkStations do not know about ProfileManage 
mentProperties 510, the export service allows workstation 
vendors to create WorkStation-configuration applets that 
specifies an export agent 520 to be invoked on the server 
when the vendor applet Saves it preference information. The 
export tag causes an instance of a vendor-Supplied class (the 
export agent 520 object) to be created and the export method 
to be invoked on the object to specify that workstation 
configuration information be saved in whatever proprietary 
file format and/file location(s) that are required by the 
WorkStation being configured. 
0065 Assume that applet1 is the configuration applet 
provided by a vendor for an existing terminal that is incom 
patible with the present profile management System. The 
vendor also Supplies export agent 520. An administrator can 
configure the terminal for operation in this System by 
running profile manager 506, Set the context to the terminal 
being configured, runs the Vendor Supplied configuration 
applet1 and configures the applet. When the administrator 
Saves the configuration, part of the information that is 
transmitted to the Server is a unique identifier that identifies 
the terminal being configured. Typically, this is the Media 
Access Control (MAC) address of the terminal. Profile 
manager Servlet 514 detects that an export agent is Specified 
on the save. Profile manager servlet 514 detects this from 
one of the preferences being Saved that specifies need for the 
export agent. The preference specifies the export tag in the 
form of a key value pair of 

0.066 XXXXEXPORT AGENTXXXX={fully 
qualified class name of export agent} 

0067. The Export Agent's export(Context context, config 
properties) method is called by the profile manager Servlet 
514 to create one or more files 522 on the server from the 
Save preferences information. The Specific file or files are 
identified by the unique identifier of the terminal that came 
with the properties information from applet1. When the 
terminal later boots up, it uses its unique identifier to locate 
and retrieve its configuration information from files 522 on 
the Server in the same manner that it always did, independent 
of the profile management System. 
0068 FIG. 6 illustrates an applet2 running on a client 
computer. Applet2 might be an end-user applet Such as a 
word processor. In any event, applet2 has access to Some of 
the same API methods as shown at 515 of FIG. 5 if it 
desires. Applet2 uses the load method to retrieve preferences 
and the Save method to Save any preferences that might be 
changed by the end user. Enable Persistence initializes the 
Profile Management Properties object for applet2 with con 
text equal to the user and generates the unique key for 
identifying the preference information Storage location on 
the Server, as described above relative to the administrator. 
0069 FIG. 7 shows the situation of a user bringing up his 
or her desktop. The user on the client (700) points his or her 
web browser at the URL of the desktop applet on the server 
and at step 704 sends a message http://server/Desktop.html). 
Since Desktop.html is a file that the Server protects, a 
challenge is Sent back to the web browser on the client at 
706. The web browser on the client responds by prompting 
the user for a user ID and password. The client then sends 



US 2001/0011341 A1 

the user ID and password information to the server at 708. 
The user ID and password are shown in bold at 708 of FIG. 
3 to illustrate that this information is passed by the web 
browser itself. This type of nomenclature is used in other 
places to illustrate the same thing. Since, presumably, the 
user has permission to run the desktop applet, the request 
will be honored. 

0070 There are a series of interactions between the client 
and the server (not shown) where the code for the desktop 
applet is loaded to the client from the server. The desktop 
object is created and begins to execute at 712. The desktop 
object needs its preference information (i.e., configuration 
information) So it can tailor the desktop for the end user who 
is invoking it. To this end, as part of the desktop object's 
initialization process, the desktop creates a ProfileManage 
mentProperties object P at 714, which is used to load, get, 
cache, Set, and Save a copy of the user's preference infor 
mation from the Server for the desktop applet. The desktop 
object then performs an API call PenablePersistence(desk 
topObject (applet)) at 716, which, at step 1) of 716, initial 
izes the ProfileManagementProperties object P with the 
URL of the profile manager servlet 214. This URL is derived 
from the URL of the desktop applet that was loaded from the 
server previously. The ProfileManagementProperties object 
Psends a request 718 to the profile manager servlet 214 to 
get the context for the user running the desktop applet. In 
this case, the context consists of two components, a context 
name which is the ID of the user, and a context type which 
in this case is User. The profile manager Servlet gets the ID 
of the user from the request 718 and returns the user context 
at 719. At step 2 of 716, the ProfileManagementProperties 
object P is initialized with the context of the user running the 
desktop. At step 3 of 716, the ProfileManagementProperties 
object P generates a unique key for the desktop Software by 
asking the Java desktop object P for its fully qualified class 
name. All Java objects know their class name. This unique 
key is combined with the user's context information to 
provide a parameter that specifies a unique location in the 
database 212 for Storing the user Specific preference infor 
mation for the desktop applet. Any desired method can be 
used for mapping the String consisting of the fully qualified 
class name and the user context information into the data 
store location. Next, a request 720 is sent to the profile 
manager Servlet 214 to get the preference information, 
tailored for the user, for the Desktop applet. The context and 
key are passed as part of the request 720 to identify the 
requested preference information. The profile manager Serv 
let 214 responds with the requested preference information 
at 722, which is cached in the ProfileManagementProperties 
object P 604. 
0071 Continuing on at FIG. 8, at 800 the Desktop object 
reads it's preference information out of its ProfileManage 
mentProperties object P, and begins to update the desktop 
accordingly (i.e., it might set the Screen color to blue, get 
information about the position of icons, etc.). The desktop 
object calls a method on its ProfileManagementProperties 
object P to get a list of the software to which the user has 
access permission. The ProfileManagmentProperties object 
P requests the information at 802 from the profile manager 
Servlet 214, which generates a response with the requested 
information at 804. For each such applet to which the user 
has access, the information includes a user friendly name, 
the applet’s URL, the URL of an icon for the applet, etc. 
(information that is required for the desktop to represent the 

Aug. 2, 2001 

applet on the desktop and to load and launch it). and other 
optional material which is not relevant to the invention. This 
information is stored in the ProfileManagmentProperties 
object P, and returned to the desktop object. At 806, the 
desktop object uses the applet information to build a folder 
for the applets and to generate a window displaying the icons 
and the user friendly name for each applet to which the user 
has access. 

0072 Assume that in a previous run of the desktop by the 
user, the user dragged and dropped the icons for Some of the 
Software displayed in the folder that was just described. It is 
possible that at this time the user no longer has access to the 
applets that were dragged and dropped from the folder to the 
desktop. However, these desktop objects normally would be 
a part of the users preferences that were Saved during the last 
run and would still be displayed on the desktop. To avoid 
this situation, the desktop examines its preferences from its 
ProfileManagmentProperties object P to check for applets 
that are configured to appear outside of the window that is 
generated to display all applets to which the user has access. 
FIG. 8 assumes that there is only one applet outside of the 
applet window that is generated. If there were more than one 
Such applet outside of the applet window, the following 
procedure would be looped for each such applet. At step 810 
the desktop checks each of these applets appearing outside 
of the applet window against the list of applets from the 
Server to which the user has access. If the applet appears in 
the list, the icon for the applet is placed on the desktop at 810 
in the same position as before. If the user no longer has 
access to the applet, the applet is removed from the desk 
top's preferences at step 814 and removed from the Profile 
ManagmentProperties object P. If any applets are removed 
as part of this process, the desktop tells the ProfileManag 
mentProperties object P to save the preferences at step 816. 
The ProfileManagmentProperties object P sends a request 
818 with the preference, key, and context information to the 
profile manager Servlet 214 to Save the new preferences 
information in the Database 212. The server sends a 
response 820 to the ProfileManagmentProperties object P 
informing the ProfileManagmentProperties object P that the 
request was Successfully completed. 

0073 FIG. 9 illustrates the situation of an administrator 
running a configuration applet to configure preferences for 
an applet for other users or groups of users. It is understood 
that the principles discussed here also apply generally to the 
configuration of terminals or groups of terminals. The 
administrator on the client 900 points his or her web browser 
to the URL of the profile manager applet 214 on the server, 
which is to be run. The URL is sent to the server at 904. 
Since ProfileManager.html is a file that the server protects, 
a challenge 906 is sent back to the web browser on the client. 
The web browser responds by prompting the administrator 
for a user ID and password. The request to get ProfileMan 
ager.html is then repeated at 908 to the server with the user 
ID and password information included in the message. Since 
presumably the administrator has permission to run the 
profile manager, the request is honored and a profile man 
ager applet is downloaded to the administrators terminal at 
910. There are a series of interactions between the client and 
the server (not shown) where the code for the profile 
manager applet is loaded to the client from the Server. The 
profile manager object is created and begins to execute at 
step 912. 



US 2001/0011341 A1 

0074 A ProfileManagementProperties nonContext 
Floating is used by the profile manager instead of a normal 
ProfileManagementProperties object. It has the same behav 
ior as a ProfileManagementProperties object with one 
exception: when preferences are loaded and Saved, they are 
loaded and Saved to and from the context of the adminis 
trator who is running the profile manager, as opposed to 
loading and Saving to and from the context (i.e., user or user 
group) for which the administrator is configuring. 
0075. The profile manager object needs its preference 
information (i.e., configuration information) So it can tailor 
the profile manager for the administrator is invoking it. To 
this end, as part of the profile manager objects initialization 
process, the profile manager creates a ProfileManagement 
Properties nonContextFloating object P NCF at step 914, 
which is used to load, get, cache, Set, and Save a copy of the 
administrator's preference information from the Server for 
the profile manager applet. The profile manager object then 
calls P NCF.enablePersistence(profileManagerObject 
(applet)), which in step 1 of 916 initializes the ProfileMan 
agementProperties nonContextFloating object P NCF with 
the URL of the profile manager servlet 214. This URL is 
derived from the URL of the profile manager applet. The 
ProfileManagementProperties nonContextFloating object 
P NCF sends a request 918 to the profile manager servlet 
214 to get the context name (ID) of the administrator and the 
context type (USER). The profile manager servlet gets the 
ID of the administrator from the request (918). The web 
browser passes the administrator ID and password in the 
message along with the information sent by the ProfileM 
anagementProperties nonContextFloating object P NCF. 
The ProfileManagementProperties nonContextFloating 
object P NCF is initialized with the context of the admin 
istrator running the applet at step 2 of 916. At step 3 of 916, 
the ProfileManagementProperties nonContextFloating 
object P NCF generates a unique key for the profile man 
ager applet by asking the Java profileManagerObject object 
(passed as a parameter in the enablePersistence call) for its 
fully qualified class name (i.e., profile ManagerObject.get 
Class( ).getName()). This unique key, combined with the 
administrator's context information, is mapped to specify a 
unique location in the database 212 for the administrator's 
Specific preference information for the profile manager 
applet. 

0.076 A request (922) is sent to the profile manager 
servlet 214 to get the preference information tailored for the 
profile manager applet as configured for the administrator. 
The request (922) includes the appropriate context name and 
type and key information to identify the appropriate prefer 
ence information. The profile manager Servlet 214 responds 
with the requested preference information (924), which is 
cached in the ProfileManagementProperties nonContext 
Floating object P NCF. The profile manager reads its pref 
erence information out of the Profile ManagementProper 
ties nonContextFloating and updates itself accordingly (i.e., 
Sets its background color to blue for example). 
0077 Operation continues at FIG. 10. The profile man 
ager requests the information about existing users, user 
groups, and Software from the profile manager Servlet 214 
and builds the tree in the left panel of the profile managers 
configuration window at 1002. See FIGS. 13 through 24 for 

Aug. 2, 2001 

examples of the administrator's left panel. At this point 
1004, the administrator selects a desired context for config 
uring by clicking on a user or group from the left panel tree. 
The profile manager sets the context for ProfileManage 
mentProperties objects by calling P NCF setContext(se 
lected context). See FIG. 13 for a selected context of “User 
Groups', which refers to the group of all System users, or to 
FIG. 18, where a group context of “Development” is 
Selected, or to FIG. 21 where a user context “colleend” is 
selected. Next, at step 1006, the administrator selects an 
applet to be configured from a list of all the applets on the 
server. See FIG. 17 for an example of selecting an applet. At 
step 1008, the administrator then clicks a Run/Customize 
button to run the applet Selected for configuration. This 
applet might be a separate configuration applet for an end 
user applet, or it might be the end user applet itself. The 
Selected applet is requested and loaded from the Server at 
1009 and 1011. At step 1010, the configuration applet object 
is created and begins to execute and to generate its Profile 
ManagementProperties object P. 
0078 If it is assumed that the applet is a separate con 
figuration applet for an end user applet, then at Step 1012, the 
applet calls p. enable Persistence(configAppletObject, full 
lyOualifiedClassName0fAppletBeingConfigured). On the 
other hand, if the applet is a user applet, rather than a 
Separate configuration applet, the call would be p. enableP 
ersistence(end User AppletObject) since it wants to configure 
its own preference information as opposed to the preference 
information for another applet. The current Context is 
already known by the ProfileManagementProperties object P 
Since it was previously Set by the administrator via the 
administrator's ProfileManagementProperties nonContext 
Floating object PM NCF. The location of the profile man 
ager Servlet 214 was previously generated when enable Per 
sistence was called on the Profile Managers ProfileManage 
mentProperties nonContextFloating object PM NCF. In the 
case of a configuration applet, the unique key for the applet 
does not need to be generated because it is passed by the 
configuration applet to the ProfileManagementProperties 
object P in the enablepersistence call. 
0079 At step 1014, the configuration applet registers 
itself with its ProfileManagementProperties object P as a 
context change listener. AS discussed earlier, this allows the 
applet’s ProfileManagentProperties object P to notify the 
applet if the administrator makes a context change So that the 
applet can load the preference information for the new 
context and update its Graphical User Interface to reflect the 
new configuration information, without requiring that the 
applet be terminated and relaunched in the new context. 
0080 Operation continues at FIG. 11. At step 1104, the 
configuration applet tells the ProfileManagementProperties 
object P to load the preferences from the current context for 
the applet being configured. A request 1105 is sent to the 
profile manager Servlet 214 to get the preference informa 
tion, tailored for the context previously Selected by the 
administrator, for the applet being configured. The request 
1105 includes the appropriate context name (the context the 
administrator has selected) and the context type (USER, 
USER GROUP, or ALL USERS GROUP as appropriate) 
and key information to specify the location of the appropri 
ate preference information. The profile manager Servlet 214 
responds with the requested preference information at 1106, 
which is cached in the ProfileManagementProperties object 



US 2001/0011341 A1 

P. The configuration applet gets preferences from the Pro 
fileManagementProperties object P and updates its Graphi 
cal User Interface accordingly. 
0081. The administrator configures the applet at 1107 and 
Saves the modified preferences, for example by clicking a 
SAVE button provided by the applet. As a result of this 
operation, the configuration applet calls the Save() method 
on its ProfileManagementProperties object p. The Profile 
ManagementProperties object P Sends the preferences and 
the unique key for the applet being configured and the 
information Specifying the current context to the profile 
manager Servlet 214. The profile manager Servlet Stores the 
preference information in the database 212 in the location 
specified by the Context and the key. 
0082 Step 1108 is an example of the administrator now 
changing context, while the configuration applet is still 
running. The administrator Selects a new context by clicking 
on a user or user group (see FIG. 18 for examples of new 
contexts in the administrators left Screen panel). As a result 
of the context change, profile manager 506 Sends a Set 
context message to ProfileMangementProperties object P 
(510) by calling PNCF.setContext(selected NEW context), 
which in turn causes object P to notify event listener 512 of 
the context change via the reload properties API 515. This 
occurs at step 1110. At step 1112, the event listener 512 
performs a load() call to retrieve the preferences for the new 
context and the object P is updated with the new preferences 
at step 1118. The administrator can now proceed to modify 
the new preferences for the new context, if desired, and to 
Save them if required, and then to proceed on with a new 
context change if necessary as described above. 
0083) The remaining FIGS. 12 through 24 show actual 
Screen Snapshots of an administrator's WorkStation while 
running portions of the profile manager 206. 

0084. The main configuration window 1200 is shown in 
FIG. 12. The tree view panel 1202 on the left of the window 
depicts profile management 1204 as one of Several Services 
available on the server. When this item 1204 is selected as 
shown in FIG. 12, the right panel 1205 of the main window 
displays a welcome message for the profile management 
Service. Expand and contract icons Such as 1208 are used to 
control the appearance of Sub-items under an item in the left 
panel, if any exist. The "+" in 1208 is called an “expand 
icon' and indicates that there are Sub-items beneath “Profile 
management'. The administrator can display these Sub 
items by clicking on the expand icon 1208, which will then 
become a “contract icon” (“-”). 
0085 FIG. 13 illustrates an expansion of the Profile 
management item 1208 in FIG. 12, which results in the 
display of three default Sub-items in FIG. 13-" Ap 
plets"1300, “User Groups' 1302 and “Users'1304. Expan 
Sion icons indicate that these items can also be expanded. 
“ Applets' 1300 allows the administrator to define the user 
applets available on server 202, “User groups' 1302 allows 
the administrator to create and populate the user group tree 
of FIG.3 and to set group preferences. “Users' 1304 allows 
the administrator to create new users and to Set their pref 
erences or to change preferences for existing users. In the 
example of FIG. 13" Applets' 1300 is selected. When this 
item is selected, panel 1305 on the right of the window 
displays a list 1306 of user applets that have already been 
defined to the System. Attributes of the application that is 

Aug. 2, 2001 

Selected in 1306 are shown at 1308. The administrator 
defines a new applet by selecting <NEW> in 1306 and 
entering the name and location information requested in 
1308. An existing applet “Database Explorer' is shown 
selected in 1306. At 1308, the “Applet name” field displays 
this applet name. The “URL (Universal Resource Locator) 
field displays the Intranet or Internet web address of this 
applet on server 202. The field “Complete path of html file' 
displays the directory path and file name of the applet in the 
disk directory structure of server 202. The field “Fully 
qualified class name' displays the fully qualified class name 
of the applet. The field “Icon URL' displays a web address 
of the image file used to generate an icon for the applet on 
a users desktop. The remaining fields are for optional 
information that may be required by the Software upon 
invocation. A command button 1310, “Import Applet List 
from File”, allows the administrator to append definitions of 
applets to the existing list 1306 from an existing text file. 
When button 1310 is clicked, the window shown in FIG. 14 
pops-up and allows the administrator to enter the path and 
file name of the text file containing the applet definitions to 
be appended. To Save all pending changes, the administrator 
clicks on File 1312 and then Save (not shown). 
0086). In the left panel, the User Groups item 1302 
corresponds to the AllUsers group of FIG.3 (“User Groups” 
and “AllUsers” are used interchangeably herein). FIG. 15 
shows the right panel of the administrators Station when the 
“User Groups” item 1302 is selected. In FIG. 15, a notebook 
panel is displayed on the right that contains three tabs-a 
Members tab. 1514, a Subgroups tab. 1516 and an Applet 
Permissions tab 1518. The Members tab is selected in FIG. 
15. The Members panel contains a list 1520 of the log-on 
identifications of all members that have been defined to the 
System. To create a new user (who will automatically gain 
membership into the presently Selected group context 
“User Group”), the administrator selects <NEW> from the 
list 1520, enters the appropriate information in the entry 
fields 1522 to the right of the list, and then clicks on the 
Create button 1522. When an existing member is selected 
from the list 1520, the attributes previously saved for that 
user are displayed at 1522. These attributes include the full 
name of the selected member, the member's system ID, 
password and any desired comments. The attributes, except 
ID, may be edited and the changes committed (but not 
Saved) by clicking the Modify button 1524, or the user may 
be removed from the system entirely by clicking the Delete 
button 1526. Any pending change may be removed by 
selecting the entry in the list 1520 and clicking the Undo 
button 1528. 

0087 FIG. 16 shows the administrator's right panel that 
is displayed when the Subgroups tab. 1516 is selected. 
Subgroup list 1620 shows existing groups that are Subgroups 
of the item selected in the left panel, which is “User Group” 
in this example. Therefore, list 1620 displays all immediate 
subgroups of the “AllUsers' group. In the left panel, “User 
Groups” is expanded. The subgroups shown in list 1620 are 
also the expanded items under “User Groups” in left panel. 
In list 1620, a status field shows the present status of each 
subgroup, such as “l delete”, “ Modify”, and “Create”. An 
empty Status field in list 1620 indicates that the subgroup 
exists and no actions are pending to be saved. The “” 
Symbol indicates that the status is pending (not yet saved). 
Attributes for the subgroup selected in list 1620 appear in 
1622. These attributes include the subgroup name and 



US 2001/0011341 A1 

desired comments about the Subgroup. To create a new 
subgroup, the administrator selects <NEW> from list 1620, 
enters the Subgroup name and desired comments in 1622, 
and clicks the Create button 1628. An entry of “ create 
<Subgroup name> then appears in list 1620 as a pending 
action. To Save all pending changes, the administrator clicks 
the File button in the top menu bar and then Save (not 
shown). 
0088 FIG. 17 shows the right panel that is displayed 
when the Applet Permissions tab. 1518 is selected. List 1720 
shows all names of all applets that have been defined to the 
System and the permission status (permit or deny access) 
that is assigned to each applet for the group or Subgroup (the 
current “context”) that is selected in the left panel. As with 
other notebook pages described, an exclamation point indi 
cates that the Status depicted is a change that is pending a 
Save. In FIG. 17, the group “User Groups” is selected in the 
tree shown in the left panel, which corresponds to the 
“All Users' group shown in FIG. 3. Since all users of the 
System have membership in the “User Groups' group, list 
1720 shows the global default permissions for all system 
users for each applet defined to the System. For example, the 
default permission status for applet “Database Explorer' is 
“permit” (meaning access is permitted) for the “All Users” 
group; Similarly, the default permission Status for all users to 
applet TFTP is “deny” (access is denied). The administrator 
can change the permission Status of an applet by Selecting it 
in list 1720 and clicking the “Permit group access” button 
1730 or the “Deny group access” button 1732. Furthermore, 
regardless of an applet’s permission Status for the Selected 
context, an administrator can Select an applet from 1720 and 
click the “Run/Customize” button 1734 to execute the user 
applet under the Selected context. The panel region previ 
ously showing the notebook for the current context then 
becomes occupied by the executing user applet. If the user 
applet happens to be a configuration applet for other Soft 
ware, the administrator can then Save Software preferences 
(through the configuration applets unique facilities provided 
for this function) which will then be saved as the software's 
default preferences for the Selected context. If the applet is 
an end user applet, the functions are the same, except the end 
user applet loads and Saves it own preferences rather than 
preferences for a separate piece of Software. 
0089 FIG. 18 shows the complete expansion of the 
administrators left panel Subgroup tree beneath "User 
Groups”. Immediately beneath “User Groups', there are two 
SubgroupS "Administrators', a default Subgroup that cannot 
be removed, and “IBM', a subgroup defined by the admin 
istrator. The “IBM' subgroup has also been expanded and 
contains three subgroups “Hardware”, “Services” and “Soft 
ware”. The “Software” Subgroup has been expanded and 
contains at least one Subgroup called “Development'. The 
“Development Subgroup contains at least one Subgroup 
called NCoD. Subgroup “NCoD' contains a number of 
subgroups, such as ConfigFW 58, which have no children. 
Also in this example, Subgroup “Development' is Selected 
in the expansion tree. Since “Development” is not at the top 
of the tree hierarchy (the “All Users' group), the notebook 
shown in the right panel is somewhat different from that of 
FIG. 15 when “User Groups' was selected, because all users 
are not automatically a member of “Development', as they 
are of “User Groups”. The list 1820 displays the log-on 
system IDs of all system members. The status beside each 
user ID in list 1820 shows whether the user owns a mem 

Aug. 2, 2001 

bership in the “Development” subgroup. A status of “yes” 
indicates that the user is a member of the “Development” 
Subgroup, “no' indicates that the user is not a member of the 
“Development” subgroup, and “inherited' indicates that the 
user inherits membership within the “Development” group 
by belonging to at least one of Development's Subgroups 
further down the tree. A user's membership status for a 
Subgroup is modified by the administrator by Selecting the 
user in list 1820 and then clicking on the “Add to Group” 
button 1836 or “Remove from group” button 1838. If the 
administrator wishes to create a new System user, or modify 
or delete an existing member, the administrator clicks on the 
“Create/Modify/Delete Users” button 1840. This action 
brings up the notebook page shown in FIG. 19. The right 
panel of FIG. 19 is similar to that of FIG. 15 and allows the 
administrator to create a new system user by selecting NEW 
in list 1920 and then clicking the “Create” button. Similarly, 
the administrator can modify or delete an existing System 
user by selecting the appropriate user in list 1920 and 
clicking the appropriate button “Modify” or “Delete'. Users 
created at any Subgroup context (e.g., “Development”) not 
only gain the required membership in “User Groups', but 
are automatically made members of the Selected Subgroup. 
Changes to the System user list are Saved by clicking on 
“File” in the top menu bar of the right panel and then 
clicking “Save” (not shown). 
0090 FIG. 20 shows a direct way to get to the system 
user list for editing, rather than through the group and 
subgroup route shown in FIG. 19. To get to FIG. 20, the 
administrator selects “Users' 1304 in the left panel of FIG. 
13, for example. Then in the right panel shown in FIG. 20, 
the administrator can create new users and modify and 
delete existing users, as already discussed., without being in 
the context of a group or Subgroup. 

0091. In FIG. 21, the administrator wishes to work 
directly on information corresponding to a user whose ID is 
“colleend”. To do this the administrator expands “Users” in 
the left panel of FIG. 21, for example, and then selects 
“colleend', as shown. The right panel then appears, which is 
devoted to colleend's System information. The right panel 
contains three tabs. The first tab “User Information' is 
selected by default. In this tab, the administrator can modify 
the name, ID, password and comments pertaining to col 
leend. 

0092 FIG. 22 shows the right panel when the adminis 
trator selects the second tab “Group Memberships”. List 
2220 shows all subgroups of which colleend is a member. 
The Subgroups are shown in this list in the order of Subgroup 
priority for colleend. The administrator can change col 
leend's Subgroup priority by Selecting a Subgroup and using 
the up and down arrows to the right of list 2220 to move the 
Selected Subgroup up or down the list as desired. If the 
administrator clicks the “Add/Remode Group Member 
ships' button 2242 in FIG. 22, the right panel then shows 
the contents of FIG. 23. The FIG. 23 right panel allows the 
administrator to modify the Subgroups of which colleend is 
a member. The administrator does this by clicking on an 
appropriate box corresponding to a desired Subgroup. If the 
box is clear (meaning that colleend is not presently a 
member), then a check mark is added to the box to include 
colleend in the Subgroup. Conversely, if a Subgroup box is 
already checked, then clicking on the box clears the check 
mark and removes colleend from the Subgroup. 



US 2001/0011341 A1 

0093 FIG. 24 shows the right panel when the Applet 
Permissions tab of FIG. 22 is selected by the administrator. 
In this right panel, list 2420 displays all applets that are 
defined in the System. The administrator can permit acceSS 
by colleend to an applet by selecting the applet in list 2420 
and then clicking the “Permit user access” button 2430; or 
access can be denied to colleend by clicking the "Deny user 
access button'2432. The administrator can also launch an 
applet in the context of colleend by clicking the “Run/ 
Customize” button 2434. When this is done, the applet 
selected in list 2420 is launched in the right panel. The 
administrator can then modify any preferences that the 
applet allows and Save the preferences in the manner pro 
Vided by the applet. A typical Scenario here is for the 
administrator to launch a configuration applet then to fill in 
a variety of preference fields. However, if a separate con 
figuration is not provided for a user applet, the administrator 
can launch the user applet in the context of a user and Set 
preferences from the user applet. A typical Scenario here is 
for the administrator to Select a group or user context and 
then to launch the user applet as described above. The 
administrator can then typically modify preferences from an 
options menu and Save them in any manner provided by the 
user applet. For example, typically, the user preferences are 
Saved when the options dialogue is closed, or the user applet 
may provide other methods of Saving the preferences. In any 
event, Since the administrator is running the applet in the 
context of colleend in this example, the preferences Set up by 
the administrator through the user applet are Saved on the 
server as if colleend had entered them directly herself by 
running the applet. 
0094) Not shown in the figures is a scenario whereby a 
user can modify Some preferences that pertain to a user 
applet. For example, a user applet may allow a user to Select 
a window background color or fonts and font sizes, So that 
each System user can individualize the applet to Some extent 
when the user applet executes on the users desktop. In this 
case, the user modified preferences are Saved in the same 
way as they are when the administrator runs the user applet. 
One difference, however, is that the administrator can run 
user applets to Set preferences in group contexts, whereas 
users can only affect preferences for their individual context. 

Aug. 2, 2001 

0.095. It is to be understood that the above described 
arrangements are merely illustrative of the application of 
principles of the invention and that other arrangements may 
be devised by workers skilled in the art without departing 
from the Spirit and Scope of the invention. 

What is claimed: 
1. In a network System comprising a network intercon 

necting a Server and a plurality of user Stations, a method of 
managing desktops on the user Stations from the Server, 
wherein the Server Stores a plurality of user applications for 
downloading to user Stations, and further Stores access 
permissions for the applications for each user, Said method 
comprising 

receiving at the Server a log-on request including a user 
identifier from a user Station, 

using the identifier to build a list of applications for which 
the user has acceSS permission, 

downloading to the Station the list of applications for 
which the user has acceSS permissions, and 

displaying on a portion of the desktop objects correspond 
ing to each application in the list, Said objects when 
Selected by the user being operative to request a down 
load of the corresponding application to the user Sta 
tion. 

2. The network System of claim 1 further comprising 

using the user identifier to built an icon on the desktop that 
represents a user application specified by the user at an 
earlier time, 

for each user desktop icon Specified by the user at an 
earlier time that corresponds to a user application, 
checking the access permission for the user to the user 
application, and 

omitting from the desktop any Such user-specified icon 
corresponding to a user application to which the user 
does not have access permission. 


