a9 United States

S 20010011341A

a2 Patent Application Publication o) Pub. No.: US 2001/0011341 A1

HAYES JR. et al.

(43) Pub. Date: Aug. 2, 2001

CLIENT-SERVER SYSTEM FOR
MAINTAINING A USER DESKTOP
CONSISTENT WITH SERVER APPLICATION
USER ACCESS PERMISSIONS

(54

(76) Inventors: KENT FILLMORE HAYES JR.,
CHAPEL HILL, NC (US); BRETT

GRAHAM KING, APEX, NC (US)

Correspondence Address:

JERRY W HERNDON

IBM CORPORATION

T81 062

POST OFFICE BOX 12195

RESEARCH TRIANGLE PARK, NC 27709

This is a publication of a continued pros-
ecution application (CPA) filed under 37
CFR 1.53(d).

Notice:

™

(21) Appl. No.: 09/072,597

(22) Filed: May 5, 1998

Admunistrator Applet1 - 508
(
| _
| ! 512 |
506 Event
Profile Listener ]
Manager —
- 1 - 4
>
Q
a
2.5 2
Al < 8 m g
ol of Bl & 2
w ol ol 2| 6 §|@
by 212 0 CII 3
g) - g :.p @] alQ
=1 3| o] 8| ™ © S
] B ol &l 8| 3|§
* 58l 2l & ¢
| ® & ) —
- w "5‘
AP 2 =
516 >
-i Yy v vyvy

510
Profile Mgm Properties P

Publication Classification

GO6F 15/00

(1) Int.CL7 ..
(52) US.CL oo 712/11; 709/203

(7) ABSTRACT

A system with a network interconnecting a server and a
plurality of user stations. The server stores a plurality of user
applications for downloading to user stations and further
stores access permissions for the applications for each user.
When a user attempts to log onto the system, the server uses
the user’s log-on identifier to build a list of applications for
which the user has access permission. The server downloads
to the station a list of applications to which the user has
access permission. The user station uses the list to build a
folder containing only the applications from the list to which
the user has access permission. The system further verifies
from the list that the user has access to applications that are
represented by objects that the user may have added to his
or her desktop at an earlier time. For each user desktop
preference specified by the user at an earlier time that
corresponds to a user application, the access permission for
the user to the user application is checked from the list, and,
if the application is not included on the list, the desktop
object representing the application is removed from the
desktop.

Server 202

522
Config file(s)
for retrofitted

hardware

520
‘ Export AgentJ

e

export{properties, context)
|

AP|
515

514
Profile Manager Servlet

T

, 518 i
1 Web Server |




Patent Application Publication Aug. 2,2001 Sheet 1 of 21  US 2001/0011341 A1

Fig. 1
=, I
=ik
Workstation
=5 - |
104 | 100
Laptop computer Network

| :
| |
= -
Workstation § By — 108
= ’ F——=a  Administrator

102 104
Desktop PC Laptop computer
Server 202
Fig. 2
. . Database 212
Admmlstzrg(t)or Client “User Data
| Group Data
Software Access Data
Software Preferences
[ |
_| ——
: 214
‘Proﬂe Manager Servlet
.- | —
206 !
Profile A20I2t1
Manager | PP
L . o] ——
I ' e |
I 210 --- 203
Profle Mgm Propemes P Web Server |




Patent Application Publication Aug. 2,2001  Sheet 2 of 21  US 2001/0011341 A1

Fig. 3 - R — —
AllUsers
com ibm App3: BG=Blue, x=1, y=2, z=3
com.lotus.App3 x=2, y=3, z= ’
i com ibm.App4d: BG=Gray,x=2 y=2, z=2 { :
I' com.ibm App5: BG=White.x=2, y=3, z=1 l
[ 'E;r'bJugY'
) --— com ibm.App3 x=2 -
. | com.ibm.App6: a=1, b=2
| GroupX

L o [~ T )
: , v GroupY1 GroupY2 ‘

| /com ibm.App3- y = 3 | com.bm.AppS y=4
{com.ibm.AppG: a=33 o o
com.ibm.App
|

— —_———- - -

3

|

i

B a

! Use
! B - T . com.ibm.AppS. x=2

[__ c?m.l_bm.App& BG —Gre_e_n i i com.ibm App4: V?Q___!

Fig. 4 UserList
User  Group Priority
Usert: AliUsers.GroupX 1 .
AllUsers.GroupY.GroupY1 2 '

AllUsers 3

UserN AllUsers.GroupY.GroupY2 1

AllUsers 2



Patent Application Publication

Fig 5

Administrator
[

i
506

Profile
Manager

XajuoJ 188

I Profile Mgm Properties P

Fig 6

600
User

510

Aug. 2, 2001
Applet1 - 508
Los12
Event
Listener]

[

>

o

Q

A ]

3| ol &] &

%:l<;g> APl

218l Bl 5 2|g| TF

ol 2 of @ a|l®

ol D o <| @

ol X{ o] @ AR @)

3|l ol 4| 3 9|8

Bl 3t g 3| 8iF

g gl a2l Bl 3%

gle] 3f 3| €

w Qm  d

5 | % &

[g]

3

[a']

|§LV Y _VV

Sheet 3 of 21  US 2001/0011341 A1

Server 202

522
Config file(s)
for retrofitted

hardware

|
520
Export AgentJ

e

export{properties, context)
|

514
Profile Manager Servlet

e

518 |

1 Web Server ;

602
User Applet2
|
1
i Load() Save() List() Context()
of & &
3
a o >
=] b Ql @
ol £ §| ¢
¢ 3 @0
7] B Ol 3
@ 3| 8| @
] b= gl X
3 g o
8 3 -
) vy %y 2y
604

Profile Mgm Properties P

saiuadolg
X0 o




Patent Application Publication Aug. 2,2001  Sheet 4 of 21  US 2001/0011341 A1

Fig 7
700 Ty T2
\_ Client / . Server /

—e —_ o — —
704 serverURL.Desktop.html >
- 706 Challenge
708 User ID, Password -
“ 710 Désktop Object
A |
| 712 !
Load and execute
Desktop Object
T4
End User Desktop |
Object - Generate
ProfileManProperties '
i Object P
— - .
...... -
716
P.enablePersistence(
this) >
1) Get URL of Profile 718 Req context of user (ID, Password)
iManager Servlet 214
from Desktop Object,
2) Get user ID from | = 719 Context (1D, User)
Desktop Object,
3) Generate Key = >
' fuily qual'ed class 720 Req. preferences (Key. Context( ID, Usen) (ID,
name for Desktop Password)
! Object
‘ - 722 Preferences
To Fig. 8




Patent Application Publication

Fig. 8
FromFig 7
7 Chent-
v Continued -
S "

800
Desktop object -
get desktop
preferences

Aug. 2,2001  Sheet 5 of 21

From Fig. 7
7 Server- _\'
\Continued J

802 Req. Applet list (Context{ID, User)} ID, Password

-
A .
| 806 .
| Build Applet folder in
memory and
generate applet |
window ’

Y

[N

AN
7 808 °
Preferences
include Applet

outside of Applet

window?,

I

Yes
| Y

; .
! [ 810
Check user
authorization {o
Applet

T
No OK
-y

812
Generate Applet
preferences icon

Y

N

R — -~

/ "
— Done - -

804 Applet List

_ Not
OK :
A
814
Delete Applet from

preferences

!—*—. 818 Save(Context, Key,

816 . Preferences) ID, Password
Save .
preferences | 4

820 Save response

e

US 2001/0011341 A1



Patent Application Publication

Fig. 9
l//- g_oo_ ) \\\
Client !

!

Aug. 2, 2001

Sheet 6 of 21  US 2001/0011341 A1

TN

{ 902 \

\\ waer /

904 URL.ProfileManager.html

Y

806 Chalienge

908 User (Administrator) ID, Password

L 4

-

A |

912
Load and execute
Profile Manager

N AN
914

| Profile Manager -

' Generate

ProfileManProperties

_nonContextFloating
Object P_NCF

916
P_NCF .enablePersis
tence(This)
1} Get URL of Profile

from Profile Mgr,
2) Get Adm ID from

Profile Manager,
3) Generate Key =
fully qual'ed class

name for Profile

Manager

I JR

Manager Serviet 2141

|

910 Profile Manager Object

918 Req. Adm context (ID, Password)

920 Context

922 Req. Adm preferences (Key, Context(ID, User) ID, Password)

924 Preferences

To Fig. 10




Patent Application Publication Aug. 2,2001  Sheet 7 of 21  US 2001/0011341 A1

Fig. 10 From Fig. 8 From Fig 9

/" Client - \ /" server-
' Continued - \_Continued /

| ved_

] 1002 Req. info for tree (ID, Password)
Build left panel of adm

config window
_ _g____ Tree info

\
1004

Adm selects config.
context from left panel

-

[ 1006 =
© Adm selects applet to be :
configured ’

"

[}

1008 N
Adm clicks Run/Customize'!

to run config applet (or end 1009 Request applet
user applet) ,

Y

|t
Ll

1011 Return applet

S - -

1010

Config. applet (or end user
apptet) generates its

ProfileManagement object

' P

- Y e
: 1012

Config. Applet calls
" P enablePersistence(ihis,
" full qual'ed class of applet
' being configured)

| 1014
Register as context change
event listener

4

TN ST
(\mﬁgﬁ ) (ﬂﬁ@11;

- e e




Patent Application Publication Aug. 2,2001 Sheet 8 of 21  US 2001/0011341 A1

Fig 11
7~ Client- \  FromFig. 10 From Fig. 10 ¢ enver ;\
\__ Continued ) \Continued /
1104 1105 Req. preferences (Key, Context) (ID, >
i Config. applet calls Password)

P.load() to get
| preferences for config.
' context *

1106 Preferences

Y.

1107
Configure and save

1108
. Administrator changes !
\ context

Y _

r 1110

« Call to config. Applet

" to reload preferences
for new context

B |

P ' ]
i 112 x 1114 Req preferences (Key, new context) (ID, >
i Event listener does | :
I Password)
' P.load() |-
B i N 1116 Preferences
IR S
1118

Profile Mgm Properties
object P updates
preferences

|
1_ — .
/ N
L Done )
SN



Sheet 9 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

‘t

A4S

/

Buiuuni sjieja a0l N6 aaudsisiad yiomiaNe wa) wod 19iddy|

/

&

wigjsas duy
sapiaoid juawabeuejy
3|yoid usng

AONB8 ‘Aljeay1nadsg

s|aaa} dnolb

pue 1asn au ujoq

Je sasualajeid jsjdde
pue suoissiuiad
181dde joijuo?

o} Ajige ayi sapnjaul
siy) sdnosb-1asn pue
s18sNJ0 alues ayy lol
sagualajaid aindiuc)
0} JojeJ)Siujwpe
WB)SAS 8y}

smofle juswebeuey
8[y0id WD

ijuswiabeuely a(1joid 0} SWOISAA

— juawabeuey a|0.d 0] BUI0I[BAA ip

¥

Poci

g3WIL "% ®
Qdldl ™ ®
Jatuafieueu a4 _ﬂ ®

puewad-uQ pooyloqubiaN ;i
SN ®
18A8S08AA 00 SN0 x|
dOHG 8 &
SNAQ i
1s8)-buoy @ e

_ “disH _ “aiy

_ “ disH _ “ suoido _ “ paya|ssg

‘881l

qoc! 00zl

JISWRSEUB] UODRINSTIUOT) PUBUIS(]-U() YIOM]

- - = mem N . - -

aN3




Sheet 10 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

OLEL —B _ * 8114 W01 4 1517 181ddy Hodw|

4 »
a

~

SJUBWIWOD
MI0AMJBNBAUGIGIASBI-b Lo iy _
N uo3|

siglaweled 1s|ddy

0P PUBLUBQUO %I0MJIBNSE WQ!I WOI _
sweu ssejs paglienb Ajn4

_ 58|14 buipoddng ejesossy

37XBQWPUBWS QUOTTALHUWAA I _
31U Uy Jo yled 8181dwod

8- xgQypuewiaquonsa-buolsy dyy _

opun

gjsleq

[E

T8N
1340|0x3 mmmnsmo_

aweu s ddy

80€l

_ AIPO

3181

:

J< | D
‘ 1581 AW

ZIS9L AW

ddy 1opuaa

U0 HIOMIBNB PUBLLIBQUD
a|ddy B0 mBIA 33elyB0N
10 puewa-ug sabiessap
puewaq up sabessa
Sd4N

dldl

18401dx3 aseqejeq
1aysuneje|ddy
uewsg-uQ pooysoqybian
UBWAa-ud pooysoqubian
INBYUS O Ao 4 8oel1s601
Allroe 4 8es /607

10 puewsg-ugQ sefiesse
puewsq ug sabessapw
S4N

dldl
laiod=g aseqee]

r— \ suieu Japldy

1S j8jday

— sja|ddy (7]

voeL CINIL * @
Adlil " @

//' w;me ‘ a

CO8} —— o anaig sasn e

00clL —P B (] @

wawafieuew sjyoid ¥t O
puewag-uQ PooyioqublaN é#-

S4N - ®

Zlel 13A18SOBM 09 SN0

o0€EL

* “diaH ) a4

~ “djaH * * suondo m “pajpalag _ “98i]

JURIURARUEB Y] UONRINGIIUO ) PUBIIZ(]-U() JOMJAN2

¢l bid

1s8}-buoys @ B



Sheet 11 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

_ auoqd

[ou poduwj

8|4 Jo Yjed a18(dwio)

]S0| 80 0} P8AES UB8(Y
jou aaey 1ey) sabueyd Buipuad Aue asnea (|im a1y & woliisi 1aidde ue Builodw

aj14 wWou4 3s1] 19|ddy podhu)

1 D14



Sheet 12 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

jpaaes jou safiueud

L.n 1
* fyiew

Yyiew
0204
Bxu

vuax

sesil|

FARED ajesld

<MIN=

(— Q_T_Emhocz_ws_
151748%N

‘dnolB siy; o siequidiLl J1911dxa ale S1asn (I

iy v
BCG 1L
v And unsny
C 9cst
SJUBWIIOD
piomssed
_ WHYUOD opun
\_ piomsseq | [Fo12120
ipoom | al| J #eow
aweu _ Aeald
PIEMPOOAA m}mum_ n
\\ \ 0zs}
Pcsl tcGl

dnolg 18)se :Unoig

— SuoISsIulad ja|ddy [ ? sdnoJBans gk

—¥ 9LSL \ﬂ? “dioH | "o

8161

siaquisi @

a3aniL #ﬂm.u
adldl 3!
siesnN @ @ |
SIS AT i ® u
sleiddy (7] @ -
Juawabeuew ajuold i m_
puewag-up pooyloqubian &8 -
SAN @
1BMBSTBM 0O SNIOT *gE
dOHA #g ©
SNAQ % |

1581-buo) @.m

“.Q_mI _|Hw:o_Pao _pumzm_mm ﬁ»moﬁ

A

A&
=

Gl ‘b4




Sheet 13 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

ipaAes jou sabueyy

—IF |Pala|ap 80 jJoUUE)

SUBLIWIOND

aweu

m_oﬁgm_c_EE_ dnoio

\

ZZsi

Opun

[@120

[TApow

| 8leald

4

8ZOL

T g
wai
1881 8PP |
<AIN>
swieu dno1g| snels

\ 1sn dnoufigng

0Z91 dnaiy Ja)sey :dnosn

— suoISSIWIad 18|ddy () — sdnoJBang gk — SELVEINE )

J3NIL % ®
QdLil * ®
s18sN @ @
1seL 1 @ m
wel e
siojensiuiwpy - ”
N 1as =
sja|ddy (5] I
juawshieuew ajyoid g.@
pueLwa-uo pooyioqubiaN ¥
SAN ™% @
JAAI3SOBAA 0O SN0 e -
dOHO "% @
SNQQ ¢

1s81-bual @ =)

_ “diaH _ ‘a4

“disH —>mco_ao _»umsm_mw _.mmﬁ

f1da

ol b4




Sheet 14 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

cell

vell

ipaAaes Jou safueyd

ssa3ae dnoib Auag

oeLl

$8833L dnoib Jluied

————P | BIW0ISNOMUNY
AU s18jddy pautllIed mous |._

I D

4
“ 2Q-uo poouioqubiaN

30-u0 pooyioqubieN
105 Apae 4 aselyyfion

Amioe 4 aaelsbon
ewag-uo sabessap
lewag uQ safiessap
S4N

_ :o_mm_‘::on__l

awuew |l

Ausp
juuad
Ausp
Auap
Augp
Huuad
yuuad
Auap

wanad

0cLL

s jedoy

dnoig J1B)sey «dnoig

— suoISSILLIBd 181ddy (] — sdno1Bans gl P STELIVET

— * djaH “» P

GIANIL ™ @
QdLdL *& &
slasnN ¢ @
umm.:ﬂﬂ 0.
wel gt @ o
s0teiSIIUIPY i 4
sdnra 180 -ﬂ 9
slalddy (7] ®
swabeuew a)yold W ©
puewaq-uQ pPooyIoqubIaN ¢k -
SdN % @
19ABSOBAA 00 SN0 %
dOHQ % &
SNQQ &%
158}-buoy @ &}

_ “disH w “suondo w “ payalag _ “aai]

Jr g a

Ll B4



Sheet 15 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

ov8i

ipeaes jou sabueyd

| 5193N 21019 Q/NIPON/BIERID

AJUO s18QUIAW Il AXB MOYS l._

dnoif wol sacwa
g

8¢e8l

oe8 F\‘

1 dnoib 0} PPy

0Z8l

l.llllﬂ B

buol pajuayul
SIUIWPY ou
Bxlew pajuayul
uxlew ou

6331 pajlayul
ujuay pajiayul
[~ sesy palsayul |
quit} ou
<M3N>
= o__.__sm_oa:_o_z
\ 1sinJ8sn

wawdojaAaq :dnoin

— suoissiuLad 18|ddy (7] _, sdnosBans gy — SELOICIN 3

jwbpwjord i
sfpamiIN 5,
wbwn -
feysut g |
NNdI 43
NS -
dLd :
x3eieq HY :
dOHQ M} - ;
sNaa Wy :
MmaBuuoO gy W

QoON i & ¢

puanLdg e R @
aremyos W4 ©
saames #¥
alemplen i .

wel ¥ ©

siojesiuLpy !
sdnoJg 1asnN «3 S
siplddy (] ®
Jusweheuew aiu0id it B

puewag-ud PooyYIoqybIBN &%k
SAN g @

18MBSUBAA 0O SNJ0T] My
dOHA * @

SNQQ i

[T URURERSRRES St Y

;
i
.
:
i

~ 1s81-buod @ o)

M *disH _ a4

_ ~dian _ ~suondo _ ~ pepa|sg _»mmF

JPOUWIDSEUB ] UOTJRINGIJUO,) PUBRUID(] -U() YOMIAND




Sheet 16 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

jpases Jou sabueud

4 >
-

| UMo|d

SJUBWIWO0D

plomssed
_ wijuod

_ plomssed

ONOQ— ai

aweu
ONDm\_ 1nn4

opun

[Tauoa

AlUO siaquiaw j19)1dxa moyg L

_.>I_.\|_ "

buo! pallayul

elSIUIWPY ou
ew pajusyu
ysiew ou

_ (kD] pajusyul
_ 8l8l18q yuay pajayul
_..|| 1
AIDOR sesl| payiayul |
quin ou
_ ajesid <MIN>
— Q__n_:whon:_os__

\ I FELN

0c6l wiewidojaaa( :dhoin

— suoISsIWIad 181ddy () — sdnoiBans ¥y — siagWal ¢

" “disH _ “ a4

wbps0id g.ﬂ
afipaminN 8-
JwBwn -
neisul gd
NNJ1 Y-
INO ¥4 |
dii gy !
x3eieq iy
doHA W
sNaG 8- -
M6UU0D HE-
QooN it ©

2JeMY0S ms E]
RIS mﬂ .
alempleH 5 .

wal W o
siojessiuiwpy g C
sdnoig Jasn s 5]
siaiddy (7 ®
Juawabeuew 8|uoid -3 =]
puewsd-ug pooysoqubiaN ¢
SIN ™ @
18MBSYBAA 0O SNJ0T] #y% |
dOHA *% @

SNAQ ¥

'

1s83-buoy @ 9

' ' )

“ * dieH _ “ su0ndo _ “ peyssies _ “a8l)

AP EY

61 Bi4




Sheet 17 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

jpaAeS J0u sebuey)

- g
) T T
* huol
olelsIuIpY A3NIL "% @
~ UMD} Ul UAO[I MBU Biews Q4L e O
SIUBWIWOD e ;
piomssed _||| 0zon  3J3IBP | sdn0Io 135N ME-B
tf«_ Wy opun Byl e :
siplddy ] @
ttL piomssed _ dieied a Hua awabeuew ajyold % ©
sesl| i
_ AIpow PUBWIBG-UO POOUIOOUBIAN i¥ -
zm:;_ al quin SiN I
sweu _mﬁeo
UMOIY L x_ iind IBAIBSAAM 0O SNJ0T *a -
i af_smeis dOHQ " @
Isndasn SNQQ 8%
— sia501 @ 1s3}-buoi H e
—.Q_mx —.m__u_ _ < diaH _ ~suondo —.umsm_mm _ “2a1)
WA 0 ] e

0¢ bi4



Sheet 18 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

: ybei6 e N M
ysbioahi ¢ w
wagezis ¢ m
puaaj|od
_I_.I o ® . )
n ozoq ¢ ,
sueq @ “
ON 'diy SBINEUD @ w
Z05/17€ 4 L
B [~ 1ado|sasp INO pea] uswaheuey s1yoid lojejsiuilipy @ ,
SUBLUIWODD %S0 9 8
— stnoigasn PN ® !
_ plomssed WIBU0D Seidty [ M
opun _ plomssed Jawsbeuew aiuoid #Y &
) HIpoW puUBWB-UQ POOYIOGYDIBN ¢k
puas)jo | al |
SN #g @
6uoraq usa|i0g | sweu in4 13AIBSOBA 0O SN0 g |
dOHQ * (B
- pPU33|103 125N SNQQ g _
_ suaissiwiad ja|ddy 7] — sdiysiaquiaiy dnoio Hy — uonewuojulsasn @ f I 1sar-ouos ] ©
_.n_mx —.m__u _,Q_mx _.wco_ao _.u%m_mm _.mm;




Sheet 19 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

|paAES jou sabuey) _‘.N

Zve7 _ *sgiysSlaguaiy dnolo aroWayIpRY
151] 8y} Jo doy ay) e sieadde Quoud jsaybiy ayL

I I g

1V v1s8t sdnoig 1asn I

_ opun [¥ ianaq alemyos wal sdnoio sesn

aweu dnotn

\ 13pI0 Aol dnoig

PUDa1j02 198N

AR

— SusISSILLEd 13|ddy (] — sdiysiaquiai dnoio gl — UOREUOJU[ IS P

ybalb
yabioab
ylegezl|e

BEEILE

H

qzoq

sueq
salliey)
10]elSIUILIPY @ - _
siasn ¢ B

sdnolg 1asn g.ﬂ
sieiddy (] ®
Juawabeuew ajyoid mﬂ S}
puewag-uo pooyloqubiaN ¢ -
SN #g3 @

18AIBSABAA 0O SN0 g - .
dOHQ %y m“w_

SNOQ #g |

00000200

ﬂ,gmx “,. a3

o 1s8)-buoi @.m

— “ digM _ “ supndo _ “ p8jas|as — “aai]

JU3lan ..:mE zcmumﬁﬂb_nw:.uu ~u=m=-®ﬁ— na-o u—.-_uaum.z&

ze b4




Sheet 20 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

jpaaes jou sabiuey)

[~

_ auoQ

(Mm@ e :
¥[8
183l ] 9
sajes [ :
Bunaxiew ] -
WYIA O |
wodd [
gawill [
wabiel [ :
didl [ ¢
bwod B |

T

i
1

sdiysiaquiap dnoig

Pusa|oD 198N

_ suoIssiwIad jaiday 7] ﬁ sdiysiaqua dnoio g _ uoneEWLIojU| JBSN @

ubalf
yabioalb
ylage21s
piza

H

0z00
sueq
s811eyd
10JEASIUIWPDY @ - ;
slasn 4 2
sdnoi9 1asn a ®
siaiddy ()-8
Juawabeuew ajoid g m_
puBwad-uO POoYI0auBIaN &
SN g &
IBMBSUBAL 0O SNI0T ek
dOHG "% &
SNAQ

8 o8 @ B 8 8 8 8

“ * djaH _ﬂ a4

~ 1521-buoi @ 2]

_ ~ dioH _ “ suondo _ “ pajs|es _ “ 831l

¢z B4



Sheet 21 of 21 US 2001/0011341 A1

Aug. 2, 2001

Patent Application Publication

N A [ szwoisnomuny

_‘wmwam;w: fuag

\ _ $sad)e Jasn jlwisd

ceve

oeve
0744

AUQ siejddy pajiwiad moys h._

14 L
- did nuusd
euel adA) axnosay nwiad
1ewag up sabessaw nuad
1810|dx3 sseqeieq LD
18ysune1a|ddy puad

aq-uo poouioaybiaN wuuad
= Ripoed saesyfion nuiad
lewag uQ sabessai nuiiad

laioil=g asedeiEg JLb e

sLul Jajddy :o_mm_::o%
1sI718|ddy

o

PUae|02 2198

suoissiwla g jaiddy ] — sdiysiaquiaw Q:Eomﬁ r uonewuoul 8sn @

[~

“ *dleH — “ajy

puewag-uo pooyIoaubIaN &% |

'

ybaib
yafioab
ulegezlis

frlaz|0a

0204
sueq
saljeyd
101ed}SIUIUPY
s:asN @ ©

sdnolg 188N g ®
sieiddy (] ®
Jswabeuew a|uoid ¥ O

88000000 -"

SIN ¢ ®
1BMBSUSAA 0O SNJOT e -
dOHA " ®
SNQQ e
1saybucs -0

e _.mco_ao _.umsm_mw ﬂ.mmﬁ

ye B4



US 2001/0011341 Al

CLIENT-SERVER SYSTEM FOR MAINTAINING A
USER DESKTOP CONSISTENT WITH SERVER
APPLICATION USER ACCESS PERMISSIONS

TECHNICAL FIELD

[0001] The invention relates generally to the fields of
personal computing and networking. Specifically, it relates
to the new and evolving field of network computing, in
which desktop computer users use a personal computer,
possibly diskless, connected to a network such as a corporate
intranet, the Internet, or to an network or Internet Service
Provider (ISP) to gain access to applications which are then
executed on the desktop computer. More specifically, the
invention relates to server-based storage of software pref-
erences (configuration data) for software retrieved from a
server and executing at the desktop computer.

BACKGROUND OF THE INVENTION

[0002] The field of network computers is presently in its
infancy. However, it is expected to evolve rapidly, especially
in the corporate environment, for a number of reasons. The
expectation is that as companies and possibly individual
users reach hardware and software upgrade points, it will be
more efficient and less expensive to move to this new field,
rather than upgrade in the traditional way with disk equipped
computers and locally stored and administered software
applications. For example, in the corporate environment, a
user can be connected to a corporate intranet, using, for
example, the TCP/IP and HTTP protocols of the Internet,
and download software applications as they are needed
directly from a network server to the desktop computer. An
application is executed on the desktop in the traditional
manner by the user to perform useful work. An advantage of
this configuration is that network computers are substan-
tially less expensive than traditional disk equipped comput-
ers. It might also cost less to purchase the required number
of software licenses for users, rather than purchase indi-
vidual copies of software for each user. Certainly, the
software administration problems that attend large numbers
of corporate users will be substantially reduced. At the
present time, each user of a disk equipped computer or
workstation often is effectively his or her own system
administrator, a role that often consumes excessive
resources due to lack of expertise. It is expected to be a great
advantage to eliminate this problem by effectively offloading
the problem to a small number of server administration
experts, rather than having many users struggle with the
problems of software installation, upgrades and computer
administration.

[0003] As mentioned above, this vision of the future of
personal computing is presently in its infancy. As a result,
there are presently many problems and deficiencies with
existing systems.

[0004] Typically, in network computer systems, an admin-
istrator creates user profiles that are stored on a network
server. The profiles may contain different types of informa-
tion, such as user desktop preferences and user permissions
for access to different software applications that might reside
on the server. When a user logs onto the system, the user
identifies him or herself to the server, the server locates the
profile for the user and transmits it to the user computer
where it is used to configure the computer and generate a

Aug. 2, 2001

desktop. The desktop might include a number of icons
representing applications to which the user presumably has
access. The profile likely also contains other attributes of the
computer and desktop, such as for example, the background
color of the desktop, or character fonts and point sizes used
on the desktop, or data file search paths, etc. that are unique
to the user. The profiles may be user modifiable or non-
modifiable.

[0005] In an environment in which users can modify their
own profiles, a modified profile is uploaded back to the
server at log-off time, where it is stored for retrieval the next
time the user logs-on. In some prior art systems, to the best
of our knowledge, the users can generate on their desktops
any configuration of application icons they wish, whether or
not they exist on the server, and whether or not a user
actually has access permission to an application on the
server. The Lotus Workplace Desktop (previously called
Kona Desktop) system is an example of this type of opera-
tion. In other systems, the server presents a list to the user
of all applications that the server has, from which the user
can pick. In this case, there is no guarantee that the user
actually has access permission to an application that is
selected from the list for inclusion on the desktop. The Sun
Hot Java Views system is an example of this type of system.
In other words, the prior art systems do not correlate
between what the user can configure for the set of desktop
application icons and applications to which the user actually
has permission access. In such a case, when the user clicks
on a icon to execute an application, an error message may
occur (such as an unauthorized access message) if access
permission is not present, or in a worse case, the user’s
computer may crash.

[0006] Another limitation with existing art is that a flat
data structure is used to model users, user groups, terminals
and groups of terminals. Modeled after a common scheme
for managing user access to computer resources, known
network computer implementations (e.g., Lotus Administra-
tion Facility for Desktops, Microsoft Windows NT Profiles
and Policies, and Sun Hot Java Views) implement a flat
“groups” structure on the server for managing software
preferences (or attributes) in various contexts. A “context”,
as used here, refers to an individual user, user group,
terminal, or terminal group. Any grouping structure for
managing software preferences on the server allows an
administrator to define preference attributes for different
groups of users as well as for individual users. However, flat
systems are inflexible in many environments, especially in
environments having large numbers of users. It is desirable
to provide an administrative tool supporting the organization
of preference information into a hierarchical structure.

[0007] Another limitation with existing systems is that
they are limited in the ways that administrators and users
have to perform user configuration of workstation desktops.
For example, administrators are presently required to con-
figure user preferences using configuration programs that are
separate from, but associated with, a user application. It is
desirable to allow vendors to provide only a single applica-
tion. To require only an end user application from a vendor
necessitates that the central management facility be able to
execute the end user application in a context of a user or user
group. The prior art does not allow this administrative
flexibility of operation. In other words, in the prior art, to the
best of our knowledge, an administrator does not have the



US 2001/0011341 Al

ability to run a user application in the context of a user to set
preferences for that user and application. Further, in the art,
an administrator cannot run a user application to set pref-
erences in the context of a group of users.

[0008] Still another limitation in the prior art known to the
inventors is the manner in which the prior art partitions
server permanent storage space to guarantee that a unique
space is reserved for storing user preferences related to the
different applications on the server. To the knowledge of the
inventors, the problem of preventing collisions in the storage
of preference information for different applications in
object-oriented systems, in which an object can be queried
for its fully qualified class name which uniquely identifies
and differentiates it from other classes, is solved by having
a first central authority assign a unique designation that
applies to a vendor and by then having a second authority at
the vendor assign a second designation relative to the first
designation for each vendor application. For example, ven-
dor A might be assigned the designation vendorA by the first
authority and that designation is guaranteed to be unique
within the architecture for which the first authority is acting.
The second authority at vendor A then assigns the second
designation for each of its applications within that architec-
ture. For example, one of vendor A’s applications might be
designated-vendorA.Appl; another might be designated
vendorA.App2. The art maps the unique designation for
each application in a system to a location in permanent
storage of the system to guarantee that preference data for
the different applications do not collide in storage. An
application, when running, informs the network computer
server of its unique storage location and it is the responsi-
bility of the server to partition an area at the starting location
according to a context (user, user group, terminal or terminal
group) for storing preference information so as not to collide
with preference information in a different context. Clearly,
this manner of administering storage space is awkward and
undesirable. It is desirable to devise a method to automati-
cally generate unique storage locations for storing prefer-
ence information for the afore mentioned object-oriented
applications, without resorting to the requirement of having
central authorities assign unique designations for the pur-
pose of preventing collisions in the storage of preference
information and without coding storage location information
into an application.

[0009] Still another limitation in the art lies in the lack of
any provision to migrate existing applications and hardware
into the new environment of the centrally managed network
computing world without requiring changes to the existing
hardware and applications. Existing hardware, a terminal for
example, in a networked environment, gets its configuration
information at boot-up time from a file in a specific format
located on a server. The terminal is programmed to know
how to access its configuration file. The terminal uses a
unique identifier to access the file from the server. The
unique identifier is often the media access control (MAC)
address of the terminal. However, in a new centrally man-
aged environment involving protocols and API’s that are
different from that to which the terminal is designed, the
terminal cannot access preference information in the new
environment, the terminal can only access its configuration
file in the way for which it is designed. This is a serious
problem, because there are many such existing devices in

Aug. 2, 2001

use. The inability to use them in new systems impedes
substantially the incentives for users to migrate to the new
systems.

[0010] Still another limitation in the prior art concerns the
interface between an administrator and the configuration
management system. When configuring software within an
administration facility to configure preference information
for various users and user groups, and terminals and terminal
groups, the administration software launches in the context
(user, user group, terminal or terminal group) set by the
Administrator who is running the facility. When the Admin-
istrator changes the context that the application is running
under, the application needs to be relaunched to load con-
figuration information for the new context. The process of
relaunching software each time a context is changed is time
consuming and inconvenient for an administrator, especially
in systems with many users. In such systems, it is expected
that an administrator will change contexts many times while
configuring an application.

SUMMARY OF THE INVENTION

[0011] The system described herein provides a common
repository for configuration information for users and
applets in a client-server environment. This is referred to as
client profile management. The system allows users to roam,
that is, to log-in from any computer in the system at any time
and have it configured automatically at run time according
to the preferences stored for the user at the server. The
preferred embodiment is a Java (Java is a Trademark of Sun,
Inc.) based system and the client computers use a web
browser interface arranged to execute Java applications.
Thus, in the preferred embodiment, user applets and the
desktop applet are assumed to be Java applets. However, it
is not intended to limit the invention to a Java environment.
Preferences for the locally stored applications might be
stored locally in the traditional manner, while preferences
for the server-based applets might be handled in the way
described herein.

[0012] The invention solves the problem whereby a user is
able to configure his or her desktop so as presumably to be
able to access an application on the server when, in fact, the
user does not have system permission to access the appli-
cation. When the user logs onto the system, the user iden-
tifies him or herself to the server by means of a system
identifier and a password. The server uses this information
to built dynamically a list of applications to which the user
has access permission. That list is transmitted to the users
station. The application list is then used to build a portion of
the desktop, preferably a desktop folder, of applications to
which the user has access permission. Preferably, the folder
is composed of a number of application icons each of which
correspond to a different application and which may be
selected by the user to launch the associated application.
Associated with each application in the list are parameters
necessary for the user to execute the associated application.
For example, one such parameter might be the URL on the
server used to invoke the application. Nothing prevents a
user from modifying the desktop. For example, after the
desktop is built, the user generally can add other application
icons to the desktop, even though they would not be acces-
sible to the user. A more common case might be where the
user copies an application icon that is dynamically generated
from the list from the generated folder to another part of the



US 2001/0011341 Al

desktop and then logs off. When the user logs off, or
otherwise saves his or her preferences for the desktop via
any method the system might provide, the copied icon is
saved to the server and becomes part of the preferences
configured for the user. When the user later logs onto the
system, the copied icon is reproduced on the desktop, not as
part of the automatically generated list of accessible appli-
cations, but just as part of the individual preferences set by
the user. Thus, the user can still wind up with applications
configured on the desktop to which the user does not have
access. A related feature of the invention prevents this
occurrence from happening by also testing each application
access preference set by the user against the application
permissions present on the server. If a user has included an
application object on the desktop to which he or she does not
have access permission, then the object is automatically
excluded from the desktop object that is built by the server
at log on time.

[0013] In a preferred embodiment comprising a system
with a network interconnecting a server and a plurality of
user stations, the server stores a plurality of user applications
for downloading to user stations and further stores access
permissions for the applications for each user. When a user
attempts to log onto the system from a user station, the
server receives a user log-on identifier from the user. The
server uses the identifier to build a list of applications for
which the user has access permission. A desktop object is
then downloaded to the user station to control the interface
between the user and the user’s station. The server also
downloads to the station a list of applications to which the
user has access permission. The user station uses the list to
build a folder containing only the applications from the list
to which the user has access permission. The system further
verifies that the user has access to applications that are
represented by icons that the user may have added to his or
her desktop at an earlier time. For each user desktop
preference specified by the user at an earlier time that
corresponds to a user application, the access permission for
the user to the user application is checked from the list, and,
if the application is not included on the list, the desktop
object representing the application is removed from the
desktop.

BRIEF DESCRIPTION OF THE DRAWING

[0014] In the Drawing,

[0015] FIG. 1 shows an illustrative network and user
stations, including an administrator’s station, in which the
invention might be practiced;

[0016] FIG. 2 shows an illustrative block diagram form of
the administrator’s station in communication with a server,
and components of the administrator’s station and the server
for providing the central profile management and preference
administration;

[0017] FIG. 3 shows one illustrative hierarchical organi-
zation of user groups and users of a system. The illustrative
hierarchical organization might also contain individual ter-
minals and terminal groups; however, these are omitted for
simplicity;

[0018] FIG. 4 shows one illustrative listing of individual
users and the group priority order that is used to determine
a set of preferences from the hierarchical organization of
FIG. 3 that apply to a user and a specific application
executed by the user;

Aug. 2, 2001

[0019] FIG. 5 shows a more detailed view of the admin-
istrator’s station and server of FIG. 2;

[0020] FIG. 6 shows an illustrative view of the software
objects at a user’s terminal, including a user application and
the API between the application and other components, that
cooperate to establish the user preferences during execution
of the application as the user’s terminal;

[0021] FIGS. 7 through 8 show illustrative operations at
both a user’s terminal and a server for user log-on and
initially establishing the user’s desktop, including desktop
preferences, at the user terminal;

[0022] FIGS. 9 through 11 show illustrative operations at
both an administrator’s terminal and a server for adminis-
trator user log-on, establishment of the administrator’s desk-
top, and, by way of example, the selection of an application
and a context for configuration; the example also illustrates
a context change during configuration the user’s desktop and
the resulting operations; and

[0023] FIGS. 12 through 24 show a variety of actual
administrator screen snapshots in various phases of appli-
cation administration, including building of a hierarchy of
which FIG. 3 is a representation of an example of, the
creation and deletion of users, etc. the establishment of
application preferences for applications, and context
changes during preference establishment.

DETAILED DESCRIPTION

[0024] The system described herein provides a common
repository for configuration information for all users and
applets in a client-server environment. This is referred to as
client profile management. The system allows users to roam,
that is, to log-in from any computer in the system at any time
and have it configured automatically at run time according
to the preferences stored at the server. The preferred embodi-
ment is a Java (Java is a Trademark of Sun, Inc.) based
system and the client computers use a web browser interface
arranged to execute Java programs.

[0025] The terms “applet” and “servlet” are established
terms in the Java programming language art and will be used
herein, since the terms have meaning to those skilled in this
art. “Applet” refers to an independent software module that
runs within a Java enabled web browser. Servlet refers to a
software module that resides on a Java enabled web server.
It is to be understood that the use of the terms “applet” and
“servlet” herein is not intended to limit the invention in any
way. For clarification, the phrase “configuration applet” is
used herein to refer to a software module used to configure
preferences for an end user software application such as a
word processor, a database manager, etc. Since software
applications are also “applets” in the Java environment, the
phrase “user applet” or just “applet” is used herein to refer
to an end user application.

[0026] In the preferred embodiment, user applets and the
desktop applet are assumed to be Java applets. However, it
is understood that the invention is not limited to a Java
environment. The invention can be used in any client-server
system. For example, if desired, the system could be
designed to use proprietary communication protocols and
applications written and compiled in any desired program-
ming language. Further, even in the preferred Java based
environment, disk-based computers might access some



US 2001/0011341 Al

applications locally, and other applets from the server.
Preferences for the locally stored applications might be
stored locally in the traditional manner, while preferences
for the server-based applets might be handled in the way
described herein. Preferably, however, preferences for
locally stored applications are stored on the server using the
Profile Management Properties API in addition to the pref-
erences for server based applets described herein.

[0027] A simple Application Program Interface (API)
allows applets written to the API to easily store and retrieve
preference data when the applet is executed by a user or
administrator. Applet permissions and user preferences can
be defined based on group memberships and individual
identity.

[0028] Client profile management includes the following
services:

[0029] TLog-on support—mapping to a user profile;

[0030] User support—the administrative ability to cre-
ate user identifications and provide services and pref-
erences directly to users;

[0031] User groups support—the administrative ability
to create hierarchical groups of users and provide
services and preferences based on group memberships;

[0032] User applet context transparency—automatic
determination of the context of user applet execution.
That is, the determination of the user and/or group
profiles that apply to a user applet execution and the
automatic establishment of the profile environment;

[0033] User applet preferences repository—context-
sensitive server storage for user applet configuration
data;

[0034] Dynamic user applet preferences inheritance—
hierarchical load-time coalescence of user applet pref-
erences via the object-oriented principal of inheritance;
and

[0035] User applet access control—control of user
applet execution based on group default membership
privileges. The administrator can override default
group privileges and permit or deny additional access
privileges for individual users.

[0036] Profile management provides a framework through
which these tasks are performed. Some tasks are supported
by profile management directly, e.g. user/group manage-
ment, applet lists, context switching, preference inheritance,
etc., while configuration services specific to user applets are
usually supported by separate configuration applets invoked
by a system administrator within the client profile manage-
ment environment. Some end user applets might provide the
configuration capability as part of the end user applet. If this
is the case, the administrator can run the end user applet (as
opposed to a separate configuration applet) in the context of
individual users and groups to set the configuration prefer-
ences for those users and groups.

[0037] FIG. 1 shows one high level view of an intended
environment for practicing the invention. A network 100 is
provided for interconnecting a plurality of user stations,
such as desktop personal computers 102, mobile laptop
computers 104, workstations 106 (e.g., RISC computers), an
administrator’s station 108 and a server 110. In one embodi-

Aug. 2, 2001

ment, network 100 might be a local area network. In another
embodiment, network 100 might include wide area network-
ing for entities such as corporations that have geographically
displaced sites that are still included within the system.
There is no intent to limit the environment in which the
invention might be practiced; indeed, a network of any type
that interconnects many types of stations is envisioned.

[0038] A high-level diagram of the profile management
administrative operating environment is shown in FIG. 2.
An administrator client network computer 200 is represented
on the left of the Fig. and a server 202 for the system is on
the right. The client and server communicate via a network
represented as 203. The particular example of FIG. 2
assumes that the client computer is a system administrator’s
computer.

[0039] Profile manager 206 on the client side allows the
administrator to configure user applet preferences at both
user and group levels. The administrator can create new
users and group hierarchies, add users to different groups,
specify applet permissions for each group and for individual
users. And the administrator can configure applets in the
context of an individual user or a group. The administrator
can add, delete and reset passwords for users. Profile man-
agement support is transparent to the general user. The
administrator can invoke the profile manager 206 in the
context of any user or group. Only the administrator can
change from his/her context to administer clients (users) and
groups. The server will not allow a user without adminis-
trative authority to switch context. When a request comes
into the server, it will query the authenticated ID of the user
trying to access this function. If the user does not possess
administrative authority, (i.e., is not a member of the AllUs-
ers.Administrator group), the Profile Manager Servlet 214
will reject the request.

[0040] Profile manager 206 invokes other applets, such as
appletl (208), as shown in FIG. 2. In this example, appletl
might be the administrative applet for configuring prefer-
ences related to user desktops. Or appletl could be a
configuration utility related to an end user applet, such as
editors, word processors, databases, etc. It is preferred, but
not required, that configuration applets such as 208 exist as
modules separate from their corresponding user applets. In
the context of FIG. 2, Appletl is typically a configuration
applet for a user applet; the administrator runs the configu-
ration applet appletl under a group context to set group
preference and permission defaults, or in a user context to
customize user applet configurations for an individual. By
implementing appletl as a module separate from its user
applet, performance is enhanced, since the configuration
appletl will likely be small compared to the user applet.
Also, separate configuration applets allow the administrator
to control the end users ability to configure the user applet.

[0041] Traditional stand-alone computers store user applet
configuration information locally in association with its the
user applet. Traditional stand-alone Java based computers
store user applet configuration information using the format
provided by the java.util.Properties class. Both arrange-
ments require that the user applet specify the name of a local
file in which to store configuration information related to the
user applet. In other words, a relationship is required
between the computer and the user applet loaded on it.
Profile management as described herein provides the famil-



US 2001/0011341 Al

iar capabilities of a real java.util.Properties object plus
additional facilities supporting user-roaming capabilities
and seamless pluggability into a powerful administrative
framework (the Profile Manager).

[0042] ProfileManagementProperties P 210 is a properties
object for appletl and provides an API between Applet1 and
the server that allows the server to determine where to store
configuration information for appletl in the context of users
and groups. The ProfileManagementProperties object class
provides all of the functionality of the java.util.properties
class with the further ability to provide create, save, and
retrieve the configuration information for software from
permanent storage. Storing such information in a central
location makes management of user and group configura-
tions possible. When a user is in the role of administrator,
ProfileManagementProperties 210 allows the administrator
to configure the user applet corresponding to configuration
appletl, or to configure appletl if appletl is an end user
applet, and store the configuration information in the proper
place on the server in the proper context. This allows the
establishment of a relationship between the user applet and
the user, rather than between user applet and computer as in
traditional systems. ProfileManagementProperties 210 is an
extension of the java.util.Properties class. The extension
allows the key/value pairs of preference information of a
Properties object to be associated with a key, as opposed to
a stream, as with java.util.Properties. This, in turn, allows
application developers to use the key to specify a unique
location relative to a context for preference information,
rather than a file name and path. ProfileManagementProp-
erties 210 determines the key automatically. The generation
of the key is discussed more in connection with FIGS. 8 and
9. By modeling ProfileManagementProperties 210 after the
java.util.Properties class, the system can take advantage of
preference inheritance through recursive class-default evalu-
ation. Thus, this extended class provides a “group default”
capability by accumulating preferences starting at a current
context, as discussed with respect to FIG. 3, and traversing
up the contextual hierarchy for defaults.

[0043] Server 202 includes a database 212 that stores user
data and group data, such as user and group preferences and
user applet access permissions. Webserver 218 represents a
typical web server with support for Java applets. Profile
Manager servlet 214 maps user and group identifications to
preference data. It also maintains an access control list to
manage user access to applications on the server.

[0044] User and group preferences are stored as a tree
hierarchy, as shown in FIG. 3. All users of the system
automatically belong to the top group AllUsers. All users
belong to the AllUsers group; this group contains the default
preferences for some or all user applets on the server. In
FIG. 3, it is assumed that the server contains at least three
user applets, identified as App3, App4 and App5. As indi-
cated in the AllUsers group, the default background (BG) for
App3 is BG=blue. Other illustrative preferences labeled as
X, y and z are shown to have the default values of 1, 2 and
3 respectively. The terms x, y and z are intended to represent
any desired preference and the values 1, 2 and 3 are arbitrary
and used merely to illustrate the point. The x preference
might for example be the screen font for the desktop; the
value x=1 might call for a default font of Times-Roman.
Similarly, the default preferences for App4 for all users are
BG=gray, x=2, y=2 and z=2.

Aug. 2, 2001

[0045] The default values in the AllUsers group can be
modified in any desired way for other contexts, such as for
other user groups and individual users. By way of example,
in addition to the context of AllUsers in FIG. 3, four other
groups (GroupX, GroupY, GroupY1l and GroupY?2) are
shown.

[0046] Additionally, two individuals Userl and UserN are
shown. Users can be members of more than one group. In
FIG. 3, Userl is a member of AllUsers, GroupX and
GroupY1; UserN is a member of AllUsers and GroupY?2. If
a user is a member of more than one group (another group
in addition to AllUsers), then the groups are prioritized for
the purpose of selecting the preferences for a given applet
for that user. The administrator configures the group priori-
ties for a user. Group priority is illustrated in FIG. 4. In FIG.
4, Userl has GroupX (identified by the fully qualified name
of AllUsers.GroupX for his or her highest priority group.
User1’s next highest priority group is GroupY1 (AllUsers-
.GroupY.GroupY1). Userl ’s lowest priority group is the
AllUsers group. When a user, say Userl, requests to run an
applet say App3, the preferences are coalesced from the tree
of FIG. 3 according to the group or groups to which the user
belongs and the user applet is configured on the user desktop
accordingly.

[0047] The first step in coalescing preferences for any
context is to get the defaults. The defaults for a user, if there
are any, is the coalesced set of preferences for the applet
from the highest priority group from which preference
information for the applet can be obtained. The defaults for
a group, if there are any, is the coalesced set of preferences
for the applet from the groups parent (i.e., The AllUsers
group is the parent of AllUsers.GroupX). If a group has no
parent (i.c., the top level AllUsers group), there are no
defaults for that group. To coalesce the preferences for an
applet at a context, the preferences for the applet explicitly
stored at the context, overwrite the default preferences for
the applet for the context. Thus, to coalesce preferences into
the default set for an applet in a group context, recursive
calls are made from each group node up to the AllUsers
group requesting each parents set of preferences for the
applet. Please refer to FIG. 3 to illustrate the following
example. For example, if the context is Allusers.GroupY-
.GroupY1, a call is made to the parent of GroupY1, which
is GroupY, requesting its default preferences for the applet.
GroupY1 makes a recursive call to its parent, which is
AllUsers. AllUsers has no parent, so AllUsers returns it set
of preferences for the applet to the call from GroupY. This
set of preferences is modified by the preferences stored in
GroupY for the applet, if any. This is now the default set of
preferences for the applet for the context of GroupY1. This
set of default preferences is returned to GroupY1 as a result
of the recursive call from GroupY1 to GroupY, and are
modified by the preferences at GroupY1 for the applet, if
any, to become the actual set of preferences to be used in this
instance. The set of preferences for the context of a user is
built in the same way, except that the highest priority group
from which preference information can be obtained for the
user is used to first establish the group context from which
the defaults will be obtained. Then the recursive procedure
described above is used to build the actual set of preferences
for the user and the applet requested by the user.



US 2001/0011341 Al

[0048] The following examples illustrate the above pref-
erence coalescence and should be read in conjunction with
FIG. 3.

EXAMPLE 1

[0049] An Administrator runs a configuration Applet for
App3 to Set Preferences for the Group AllUsers.GroupX.

[0050] To set the preferences for App3 in the context of
Allusers.GroupX, the present set of preferences must be
determined. AllUsers.GroupX requests defaults for its par-
ent AllUsers. Since AllUsers is the top level group, it returns
its preferences for App3 to GroupX. These are the default
preferences for App3 in the context of GroupX. Since
GroupX has no preferences for App3, the default set from
Allusers is the real set of preferences to be used. In this
example, these preferences from the AllUsers group are:
BG=Blue, x=1, y=2, z=3. The administrator can now modify
use the configuration applet to modify the coalesced pref-
erences in any desired manner.

EXAMPLE 2

[0051] Userl Requests Execution of com.ibm.App3. Pref-
erences Must be Coalesced for com.ibm.App3 in the Con-
text of Userl.

[0052] FIG. 4 shows that the highest priority group for
Userl1 is AllUsers.GroupX; this branch of the group hierar-
chy will be checked first for preference information pertain-
ing to App3. From here on, the example is essentially the
same as example 1 above, except that the coalesced set of
preferences is used to configure App3 on the user’s work-
station. The preferences for App3 for Userl are: BG=Green,
x=1, y=2, z=3 since the BG=Green preference stored in the
User1 ’s context for App3 over rides the default BG=Blue
preference obtained from the AllUsers.GroupX branch of
the preference tree.

EXAMPLE 3

[0053] Coalescing Preferences for com.ibm.App6 in the
Context of Userl.

[0054] This example illustrates the situation of the highest
priority group containing no coalesed preferences for the
context of Userl. Again, the highest priority group for Userl
is GroupX. This group and its parent AllUsers contain no
preferences for App6. Therefore, the next highest priority
group is searched. The next highest priority group for Userl
is GroupY1. A set of preferences can be obtained from this
group for App6. The coalescence of preferences proceeds as
described in example 1. Recursive calls are made from
GroupY1 up the tree to the root AllUsers group and the
preference sets are returned back down the recursive calls
and modified along the way to form the default set. The
default set is then modified with the preferences stored in
GroupY1 to form the coalesced set of preferences that apply
to this context. Stated briefly, Allusers returns a null set of
preferences, since it has no preferences for App6. GroupY
modifies this null set with the values a=1 and b=2 and
returns this set to GroupY1 as the default set. GroupY1
modifies the default set with a=33. This set is returned to the
Userl context for use as its default set. Since there are no
preferences for App6 stored at the Userl context, the
defaults obtained from the GroupY1 branch of the prefer-

Aug. 2, 2001

ence tree represent the fully coalesced set of preferences for
App6. The real set of preferences thus becomes a=33, b=2
for this context.

[0055] The above 3 examples described the gathering of
preferences in response to a load( ) for a particular piece of
software. When preference information is saved for a piece
of software, any preferences that have been explicitly writ-
ten at the Context being saved to will be written to the data
store (212) at the location specified by the combination of
the Context the software is being run in and the key for the
software whose preferences are being stored.

[0056] Permissions operate similarly: a new group has
access to all the applet names permitted by the group itself
as well as to all applets permitted by its supergroups.
However, just as Java allows the programmer to override a
superclass method, Profile Management allows the System
Administrator the ability to override an inherited permis-
sion. This is called overriding a permission.

[0057] As with Java’s form of inheritance, Profile Man-
agement’s form of preferences and permissions inheritance
is called single inheritance. Single inheritance means that
each Profile Management group can have only one super-
group (although any given supergroup can have multiple
subgroups).

[0058] Profile Management users (leaf nodes) may require
membership in multiple groups, so a facility is required to
limit preference inheritance to a single hierarchical group to
minimize the chance of corrupt configurations due to the
introduction of incompatible variable subsets introduced by
cross group branch coalescing. By allowing a user’s group
memberships to be prioritized, profile management can
follow a search order when looking for preferences related
to a particular applet. In other words, starting with the group
with the highest priority, the search will stop at the first
group found to contain configuration data for the applet
attempting to load its preferences.

[0059] A user inherits software permissions from group
memberships. With careful enterprise modeling, the admin-
istrator can assign software access to many users without
having to navigate through panels, one user at a time. Profile
management controls access by programming the web
server to permit/deny access to applets. The web server
enforces the access control. The profile manager servlet is
also protected by the WebServer requiring user ID’s and
passwords to be passed to the webserver for authentication
purposes. It is standard browser functionality to prompt for
user passwords as required.

[0060] FIG. 5 shows the system of FIG. 2 in more detail.
Configuration applet Appletl is invoked by the administra-
tor within the profile management framework. Appletl may
implement the application program interface (API) 515 for
querying information about its operational environment
(e.g., query context, context changed events, query access
control list for this context, etc.) to integrate tightly within
the profile management framework, but this is not a require-
ment for a configuration applet. In any event, the designer of
appletl need only understand the basic API methods:
enablePersistence( ), load( ), and save( ) in addition to the
basic methods of a java.util.Properties object used to get
preference information into and out of a java.util.Properties
object. API 515 additionally provides list( )



US 2001/0011341 Al

and getcontext( ) methods. Appletl need only register with
the ProfileManagementProperties class and call these meth-
ods as appropriate. The load( ) method can be called to
retrieve the present state of preferences for the user applet
being configured in the context of a user or group selected
by the administrator The administrator can then modify the
preferences as desired and store them using the configura-
tion save functionality provided by the applet (which uses
the save( ) method of its ProfileManagementProperties
object. Similarly, if appletl needs the list of user applets
authorized for access by a user, it can use the list( ) method
to obtain the list from the server. The getContext( ) method
can be used by the applet to display the name of the context
that it is running in or even to ensure that it only runs in a
certain context (i.e., if an applet wanted to configure a
service on the server using the export agent, it might only
allow itself to be run at the AllUsers context since the
configuration being exported is server specific as opposed to
user specific. For appletl to run in the profile management
framework, all that is required is for the applet to register
with ProfileManagementProperties 410 and implement the
ProfileManagementProperties class, an extension of the jav-
a.util.Properties class.

[0061] The profile manager 506 also provides a context
change API 516 for configuration applets. Appletl may
implement a context change event listener 512. The API 516
and the event listener 512 allows the administrator to change
contexts (user or group) while running the configuration
applet, without having to stop and restart it. For example,
when configuring applet user preferences, the administrator
will likely change contexts many times during the configu-
ration. If the configuration applet is registered as a listener
to such events, profile manager 506 will notify it of a context
change via API 516. This allows appletl to refresh its
preferences from the server for each new context. Without
the event listener API, appletl would have to be terminated
by the administrator and restarted after a new context has
been selected to reference the existing preference informa-
tion for the new context and avoid being stopped and
restarted by the Profile Management applet. To register,
appletl calls a method on its properties object ProfileMan-
agementProperties 510 ie., addContextChangelistener
(API 516) to register itself. When the administrator sets a
new context, profile manager 506 performs a set context call
(API 516) to object 510, which in response calls the reload
method (API 516) on event listener 512. Event listener 512
now performs a load properties call to its properties object
510 to get the new preference data from the server for the
new context, and causes appletl to updates it GUI and
internal variables to reflect the new preference information.

[0062] The above functionality avoids the possibility of a
network administrator reading data from one context, chang-
ing context, and accidentally overwriting with a save( )
when intending to load( ) before making configuration
changes in the new context.

[0063] Applets that do not register as listeners will be
stopped, destroyed, reloaded, and restarted by the profile
manager applet when the administrator forces a context
change.

[0064] The profile management also provides a “proper-
ties export” service to allow the easy retrofitting of existing
hardware and software into this profile management envi-

Aug. 2, 2001

ronment. The properties export service allows profile man-
ager 514 to support user workstations (the physical hard-
ware) as well as users, groups, and user applications. Since
existing workstations do not know about ProfileManage-
mentProperties 510, the export service allows workstation
vendors to create workstation-configuration applets that
specifies an export agent 520 to be invoked on the server
when the vendor applet saves it preference information. The
export tag causes an instance of a vendor-supplied class (the
export agent 520 object) to be created and the export method
to be invoked on the object to specify that workstation
configuration information be saved in whatever proprietary
file format and/file location(s) that are required by the
workstation being configured.

[0065] Assume that appletl is the configuration applet
provided by a vendor for an existing terminal that is incom-
patible with the present profile management system. The
vendor also supplies export agent 520. An administrator can
configure the terminal for operation in this system by
running profile manager 506, set the context to the terminal
being configured, runs the vendor supplied configuration
appletl and configures the applet. When the administrator
saves the configuration, part of the information that is
transmitted to the server is a unique identifier that identifies
the terminal being configured. Typically, this is the Media
Access Control (MAC) address of the terminal. Profile
manager servlet 514 detects that an export agent is specified
on the save. Profile manager servlet 514 detects this from
one of the preferences being saved that specifies need for the
export agent. The preference specifies the export tag in the
form of a key value pair of

[0066] XXXXEXPORT AGENTXXXX={fully
qualified class name of export agent}

[0067] The Export Agent’s export(Context context, config
properties) method is called by the profile manager servlet
514 to create one or more files 522 on the server from the
save preferences information. The specific file or files are
identified by the unique identifier of the terminal that came
with the properties information from appletl. When the
terminal later boots up, it uses its unique identifier to locate
and retrieve its configuration information from files 522 on
the server in the same manner that it always did, independent
of the profile management system.

[0068] FIG. 6 illustrates an applet2 running on a client
computer. Applet2 might be an end-user applet such as a
word processor. In any event, applet2 has access to some of
the same API methods as shown at 515 of FIG. 5 if it
desires. Applet2 uses the load method to retrieve preferences
and the save method to save any preferences that might be
changed by the end user. EnablePersistence initializes the
Profile Management Properties object for applet2 with con-
text equal to the user and generates the unique key for
identifying the preference information storage location on
the server, as described above relative to the administrator.

[0069] FIG. 7 shows the situation of a user bringing up his
or her desktop. The user on the client (700) points his or her
web browser at the URL of the desktop applet on the server
and at step 704 sends a message http://server/Desktop.html).
Since Desktop.html is a file that the server protects, a
challenge is sent back to the web browser on the client at
706. The web browser on the client responds by prompting
the user for a user ID and password. The client then sends



US 2001/0011341 Al

the user ID and password information to the server at 708.
The user ID and password are shown in bold at 708 of FIG.
3 to illustrate that this information is passed by the web
browser itself. This type of nomenclature is used in other
places to illustrate the same thing. Since, presumably, the
user has permission to run the desktop applet, the request
will be honored.

[0070] There are a series of interactions between the client
and the server (not shown) where the code for the desktop
applet is loaded to the client from the server. The desktop
object is created and begins to execute at 712. The desktop
object needs its preference information (i.e., configuration
information) so it can tailor the desktop for the end user who
is invoking it. To this end, as part of the desktop object’s
initialization process, the desktop creates a ProfileManage-
mentProperties object P at 714, which is used to load, get,
cache, set, and save a copy of the user’s preference infor-
mation from the server for the desktop applet. The desktop
object then performs an API call P.enablePersistence(desk-
topObject (applet)) at 716, which, at step 1) of 716, initial-
izes the ProfileManagementProperties object P with the
URL of the profile manager servlet 214. This URL is derived
from the URL of the desktop applet that was loaded from the
server previously. The ProfileManagementProperties object
P sends a request 718 to the profile manager servlet 214 to
get the context for the user running the desktop applet. In
this case, the context consists of two components, a context
name which is the ID of the user, and a context type which
in this case is User. The profile manager servlet gets the ID
of the user from the request 718 and returns the user context
at 719. At step 2 of 716, the ProfileManagementProperties
object Pis initialized with the context of the user running the
desktop. At step 3 of 716, the ProfileManagementProperties
object P generates a unique key for the desktop software by
asking the Java desktop object P for its fully qualified class
name. All Java objects know their class name. This unique
key is combined with the user’s context information to
provide a parameter that specifies a unique location in the
database 212 for storing the user specific preference infor-
mation for the desktop applet. Any desired method can be
used for mapping the string consisting of the fully qualified
class name and the user context information into the data
store location. Next, a request 720 is sent to the profile
manager servlet 214 to get the preference information,
tailored for the user, for the Desktop applet. The context and
key are passed as part of the request 720 to identify the
requested preference information. The profile manager serv-
let 214 responds with the requested preference information
at 722, which is cached in the ProfileManagementProperties
object P 604.

[0071] Continuing on at FIG. 8, at 800 the Desktop object
reads it’s preference information out of its ProfileManage-
mentProperties object P, and begins to update the desktop
accordingly (i.e., it might set the screen color to blue, get
information about the position of icons, etc.). The desktop
object calls a method on its ProfileManagementProperties
object P to get a list of the software to which the user has
access permission. The ProfileManagmentProperties object
P requests the information at 802 from the profile manager
servlet 214, which generates a response with the requested
information at 804. For each such applet to which the user
has access, the information includes a user friendly name,
the applet’s URL, the URL of an icon for the applet, etc.
(information that is required for the desktop to represent the

Aug. 2, 2001

applet on the desktop and to load and launch it). and other
optional material which is not relevant to the invention. This
information is stored in the ProfileManagmentProperties
object P, and returned to the desktop object. At 806, the
desktop object uses the applet information to build a folder
for the applets and to generate a window displaying the icons
and the user friendly name for each applet to which the user
has access.

[0072] Assume that in a previous run of the desktop by the
user, the user dragged and dropped the icons for some of the
software displayed in the folder that was just described. It is
possible that at this time the user no longer has access to the
applets that were dragged and dropped from the folder to the
desktop. However, these desktop objects normally would be
a part of the users preferences that were saved during the last
run and would still be displayed on the desktop. To avoid
this situation, the desktop examines its preferences from it’s
ProfileManagmentProperties object P to check for applets
that are configured to appear outside of the window that is
generated to display all applets to which the user has access.
FIG. 8 assumes that there is only one applet outside of the
applet window that is generated. If there were more than one
such applet outside of the applet window, the following
procedure would be looped for each such applet. At step 8§10
the desktop checks each of these applets appearing outside
of the applet window against the list of applets from the
server to which the user has access. If the applet appears in
the list, the icon for the applet is placed on the desktop at 8§10
in the same position as before. If the user no longer has
access to the applet, the applet is removed from the desk-
top’s preferences at step 814 and removed from the Profile-
ManagmentProperties object P. If any applets are removed
as part of this process, the desktop tells the ProfileManag-
mentProperties object P to save the preferences at step 816.
The ProfileManagmentProperties object P sends a request
818 with the preference, key, and context information to the
profile manager servlet 214 to save the new preferences
information in the Database 212. The server sends a
response 820 to the ProfileManagmentProperties object P
informing the ProfileManagmentProperties object P that the
request was successfully completed.

[0073] FIG. 9 illustrates the situation of an administrator
running a configuration applet to configure preferences for
an applet for other users or groups of users. It is understood
that the principles discussed here also apply generally to the
configuration of terminals or groups of terminals. The
administrator on the client 900 points his or her web browser
to the URL of the profile manager applet 214 on the server,
which is to be run. The URL is sent to the server at 904.
Since ProfileManager.html is a file that the server protects,
a challenge 906 is sent back to the web browser on the client.
The web browser responds by prompting the administrator
for a user ID and password. The request to get ProfileMan-
ager.html is then repeated at 908 to the server with the user
ID and password information included in the message. Since
presumably the administrator has permission to run the
profile manager, the request is honored and a profile man-
ager applet is downloaded to the administrators terminal at
910. There are a series of interactions between the client and
the server (not shown) where the code for the profile
manager applet is loaded to the client from the server. The
profile manager object is created and begins to execute at
step 912.



US 2001/0011341 Al

[0074] A ProfileManagementProperties_nonContext
Floating is used by the profile manager instead of a normal
ProfileManagementProperties object. It has the same behav-
ior as a ProfileManagementProperties object with one
exception: when preferences are loaded and saved, they are
loaded and saved to and from the context of the adminis-
trator who is running the profile manager, as opposed to
loading and saving to and from the context (i.e., user or user
group) for which the administrator is configuring.

[0075] The profile manager object needs its preference
information (i.e., configuration information) so it can tailor
the profile manager for the administrator is invoking it. To
this end, as part of the profile manager object’s initialization
process, the profile manager creates a ProfileManagement-
Properties_nonContextFloating object P_NCF at step 914,
which is used to load, get, cache, set, and save a copy of the
administrator’s preference information from the server for
the profile manager applet. The profile manager object then
calls P_NCF.enablePersistence(profileManagerObject
(applet)), which in step 1 of 916 initializes the ProfileMan-
agementProperties_nonContextFloating object P_NCF with
the URL of the profile manager servlet 214. This URL is
derived from the URL of the profile manager applet. The
ProfileManagementProperties_nonContextFloating  object
P_NCF sends a request 918 to the profile manager servlet
214 to get the context name (ID) of the administrator and the
context type (USER). The profile manager servlet gets the
ID of the administrator from the request (918). The web
browser passes the administrator ID and password in the
message along with the information sent by the ProfileM-
anagementProperties_nonContextFloating object P_NCEF.
The ProfileManagementProperties_nonContextFloating
object P_NCF is initialized with the context of the admin-
istrator running the applet at step 2 of 916. At step 3 of 916,
the ProfileManagementProperties_nonContextFloating
object P_NCF generates a unique key for the profile man-
ager applet by asking the Java profileManagerObject object
(passed as a parameter in the enablePersistence call) for its
fully qualified class name (i.e., profileManagerObject.get-
Class( ).getName( )). This unique key, combined with the
administrator’s context information, is mapped to specify a
unique location in the database 212 for the administrator’s
specific preference information for the profile manager
applet.

[0076] A request (922) is sent to the profile manager
servlet 214 to get the preference information tailored for the
profile manager applet as configured for the administrator.
The request (922) includes the appropriate context name and
type and key information to identify the appropriate prefer-
ence information. The profile manager servlet 214 responds
with the requested preference information (924), which is
cached in the ProfileManagementProperties_nonContext
Floating object P_NCF. The profile manager reads its pref-
erence information out of the Profile ManagementProper-
ties_nonContextFloating and updates itself accordingly (i.e.,
sets its background color to blue for example).

[0077] Operation continues at FIG. 10. The profile man-
ager requests the information about existing users, user
groups, and software from the profile manager servlet 214
and builds the tree in the left panel of the profile managers
configuration window at 1002. See FIGS. 13 through 24 for

Aug. 2, 2001

examples of the administrator’s left panel. At this point
1004, the administrator selects a desired context for config-
uring by clicking on a user or group from the left panel tree.
The profile manager sets the context for ProfileManage-
mentProperties objects by calling P_NCF.setContext(se-
lected context). See FIG. 13 for a selected context of “User
Groups”, which refers to the group of all system users, or to
FIG. 18, where a group context of “Development” is
selected, or to FIG. 21 where a user context “colleend” is
selected. Next, at step 1006, the administrator selects an
applet to be configured from a list of all the applets on the
server. See FIG. 17 for an example of selecting an applet. At
step 1008, the administrator then clicks a Run/Customize
button to run the applet selected for configuration. This
applet might be a separate configuration applet for an end
user applet, or it might be the end user applet itself. The
selected applet is requested and loaded from the Server at
1009 and 1011. At step 1010, the configuration applet object
is created and begins to execute and to generate its Profile-
ManagementProperties object P.

[0078] If it is assumed that the applet is a separate con-
figuration applet for an end user applet, then at step 1012, the
applet calls p.enablePersistence(configAppletObject, ful-
lyQualifiedClassNameOfAppletBeingConfigured). On the
other hand, if the applet is a user applet, rather than a
separate configuration applet, the call would be p.enableP-
ersistence(endUser AppletObject) since it wants to configure
its own preference information as opposed to the preference
information for another applet. The current Context is
already known by the ProfileManagementProperties object P
since it was previously set by the administrator via the
administrator’s ProfileManagementProperties_nonContext
Floating object PM_NCF. The location of the profile man-
ager servlet 214 was previously generated when enablePer-
sistence was called on the Profile Managers ProfileManage-
mentProperties_nonContextFloating object PM_NCF. In the
case of a configuration applet, the unique key for the applet
does not need to be generated because it is passed by the
configuration applet to the ProfileManagementProperties
object P in the enablepersistence call.

[0079] At step 1014, the configuration applet registers
itself with its ProfileManagementProperties object P as a
context change listener. As discussed earlier, this allows the
applet’s ProfileManagentProperties object P to notify the
applet if the administrator makes a context change so that the
applet can load the preference information for the new
context and update its Graphical User Interface to reflect the
new configuration information, without requiring that the
applet be terminated and relaunched in the new context.

[0080] Operation continues at FIG. 11. At step 1104, the
configuration applet tells the ProfileManagementProperties
object P to load the preferences from the current context for
the applet being configured. A request 1105 is sent to the
profile manager servlet 214 to get the preference informa-
tion, tailored for the context previously selected by the
administrator, for the applet being configured. The request
1105 includes the appropriate context name (the context the
administrator has selected) and the context type (USER,
USER_GROUP, or ALL,_USERS_GROUP as appropriate)
and key information to specify the location of the appropri-
ate preference information. The profile manager servlet 214
responds with the requested preference information at 1106,
which is cached in the ProfileManagementProperties object



US 2001/0011341 Al

P. The configuration applet gets preferences from the Pro-
fileManagementProperties object P and updates its Graphi-
cal User Interface accordingly.

[0081] The administrator configures the applet at 1107 and
saves the modified preferences, for example by clicking a
SAVE button provided by the applet. As a result of this
operation, the configuration applet calls the save( ) method
on its ProfileManagementProperties object p. The Profile-
ManagementProperties object P sends the preferences and
the unique key for the applet being configured and the
information specifying the current context to the profile
manager servlet 214. The profile manager servlet stores the
preference information in the database 212 in the location
specified by the Context and the key.

[0082] Step 1108 is an example of the administrator now
changing context, while the configuration applet is still
running. The administrator selects a new context by clicking
on a user or user group (see FIG. 18 for examples of new
contexts in the administrators left screen panel). As a result
of the context change, profile manager 506 sends a set
context message to ProfileMangementProperties object P
(510) by calling P_NCF.setContext(selected NEW context),
which in turn causes object P to notify event listener 512 of
the context change via the reload properties API 515. This
occurs at step 1110. At step 1112, the event listener 512
performs a load( ) call to retrieve the preferences for the new
context and the object P is updated with the new preferences
at step 1118. The administrator can now proceed to modify
the new preferences for the new context, if desired, and to
save them if required, and then to proceed on with a new
context change if necessary as described above.

[0083] The remaining FIGS. 12 through 24 show actual
screen snapshots of an administrator’s workstation while
running portions of the profile manager 206.

[0084] The main configuration window 1200 is shown in
FIG. 12. The tree view panel 1202 on the left of the window
depicts profile management 1204 as one of several services
available on the server. When this item 1204 is selected as
shown in FIG. 12, the right panel 1205 of the main window
displays a welcome message for the profile management
service. Expand and contract icons such as 1208 are used to
control the appearance of sub-items under an item in the left
panel, if any exist. The “+” in 1208 is called an “expand
icon” and indicates that there are sub-items beneath “Profile
management”. The administrator can display these sub-
items by clicking on the expand icon 1208, which will then
become a “contract icon” (“=").

[0085] FIG. 13 illustrates an expansion of the Profile
management item 1208 in FIG. 12, which results in the
display of three default sub-items in FIG. 13—“Ap-
plets”1300, “User Groups”1302 and “Users”1304. Expan-
sion icons indicate that these items can also be expanded.
“Applets”1300 allows the administrator to define the user
applets available on server 202, “User groups”1302 allows
the administrator to create and populate the user group tree
of FIG. 3 and to set group preferences. “Users”1304 allows
the administrator to create new users and to set their pref-
erences or to change preferences for existing users. In the
example of FIG. 13“Applets”1300 is selected. When this
item is selected, panel 1305 on the right of the window
displays a list 1306 of user applets that have already been
defined to the system. Attributes of the application that is

Aug. 2, 2001

selected in 1306 are shown at 1308. The administrator
defines a new applet by selecting <NEW> in 1306 and
entering the name and location information requested in
1308. An existing applet “Database Explorer” is shown
selected in 1306. At 1308, the “Applet name” field displays
this applet name. The “URL” (Universal Resource Locator)
field displays the Intranet or Internet web address of this
applet on server 202. The field “Complete path of html file”
displays the directory path and file name of the applet in the
disk directory structure of server 202. The field “Fully
qualified class name” displays the fully qualified class name
of the applet. The field “Icon URL” displays a web address
of the image file used to generate an icon for the applet on
a users desktop. The remaining fields are for optional
information that may be required by the software upon
invocation. A command button 1310, “Import Applet List
from File”, allows the administrator to append definitions of
applets to the existing list 1306 from an existing text file.
When button 1310 is clicked, the window shown in FIG. 14
pops-up and allows the administrator to enter the path and
file name of the text file containing the applet definitions to
be appended. To save all pending changes, the administrator
clicks on File 1312 and then Save (not shown).

[0086] In the left panel, the User Groups item 1302
corresponds to the AllUsers group of FIG. 3 (“User Groups”
and “AllUsers” are used interchangeably herein). FIG. 15
shows the right panel of the administrators station when the
“User Groups” item 1302 is selected. In FIG. 15, a notebook
panel is displayed on the right that contains three tabs—a
Members tab 1514, a Subgroups tab 1516 and an Applet
Permissions tab 1518. The Members tab is selected in FIG.
15. The Members panel contains a list 1520 of the log-on
identifications of all members that have been defined to the
system. To create a new user (who will automatically gain
membership into the presently selected group context—
“User Group”), the administrator selects <NEW> from the
list 1520, enters the appropriate information in the entry
fields 1522 to the right of the list, and then clicks on the
Create button 1522. When an existing member is selected
from the list 1520, the attributes previously saved for that
user are displayed at 1522. These attributes include the full
name of the selected member, the member’s system ID,
password and any desired comments. The attributes, except
ID, may be edited and the changes committed (but not
Saved) by clicking the Modify button 1524, or the user may
be removed from the system entirely by clicking the Delete
button 1526. Any pending change may be removed by
selecting the entry in the list 1520 and clicking the Undo
button 1528.

[0087] FIG. 16 shows the administrator’s right panel that
is displayed when the Subgroups tab 1516 is selected.
Subgroup list 1620 shows existing groups that are subgroups
of the item selected in the left panel, which is “User Group”
in this example. Therefore, list 1620 displays all immediate
subgroups of the “AllUsers” group. In the left panel, “User
Groups” is expanded. The subgroups shown in list 1620 are
also the expanded items under “User Groups” in left panel.
In list 1620, a status field shows the present status of each
subgroup, such as “! delete”, “! Modify”, and “! Create”. An
empty Status field in list 1620 indicates that the subgroup
exists and no actions are pending to be saved. The “!”
symbol indicates that the status is pending (not yet saved).
Attributes for the subgroup selected in list 1620 appear in
1622. These attributes include the subgroup name and



US 2001/0011341 Al

desired comments about the subgroup. To create a new
subgroup, the administrator selects <NEW> from list 1620,
enters the subgroup name and desired comments in 1622,
and clicks the Create button 1628. An entry of “! create
<subgroup name>" then appears in list 1620 as a pending
action. To save all pending changes, the administrator clicks
the File button in the top menu bar and then Save (not
shown).

[0088] FIG. 17 shows the right panel that is displayed
when the Applet Permissions tab 1518 is selected. List 1720
shows all names of all applets that have been defined to the
system and the permission status (permit or deny access)
that is assigned to each applet for the group or subgroup (the
current “context”) that is selected in the left panel. As with
other notebook pages described, an exclamation point indi-
cates that the status depicted is a change that is pending a
Save. In FIG. 17, the group “User Groups™ is selected in the
tree shown in the left panel, which corresponds to the
“AllUsers” group shown in FIG. 3. Since all users of the
system have membership in the “User Groups” group, list
1720 shows the global default permissions for all system
users for each applet defined to the system. For example, the
default permission status for applet “Database Explorer” is
“permit” (meaning access is permitted) for the “AllUsers”
group; similarly, the default permission status for all users to
applet TFTP is “deny” (access is denied). The administrator
can change the permission status of an applet by selecting it
in list 1720 and clicking the “Permit group access” button
1730 or the “Deny group access™ button 1732. Furthermore,
regardless of an applet’s permission status for the selected
context, an administrator can select an applet from 1720 and
click the “Run/Customize” button 1734 to execute the user
applet under the selected context. The panel region previ-
ously showing the notebook for the current context then
becomes occupied by the executing user applet. If the user
applet happens to be a configuration applet for other soft-
ware, the administrator can then save software preferences
(through the configuration applets unique facilities provided
for this function) which will then be saved as the software’s
default preferences for the selected context. If the applet is
an end user applet, the functions are the same, except the end
user applet loads and saves it own preferences rather than
preferences for a separate piece of software.

[0089] FIG. 18 shows the complete expansion of the
administrators left panel subgroup tree beneath “User
Groups”. Immediately beneath “User Groups”, there are two
subgroups “Administrators”, a default subgroup that cannot
be removed, and “IBM”, a subgroup defined by the admin-
istrator. The “IBM” subgroup has also been expanded and
contains three subgroups “Hardware”, “Services” and “Soft-
ware”. The “Software” subgroup has been expanded and
contains at least one subgroup called “Development”. The
“Development” subgroup contains at least one subgroup
called NCoD. Subgroup “NCoD” contains a number of
subgroups, such as ConfigFW 58, which have no children.
Also in this example, subgroup “Development” is selected
in the expansion tree. Since “Development” is not at the top
of the tree hierarchy (the “All Users” group), the notebook
shown in the right panel is somewhat different from that of
FIG. 15 when “User Groups” was selected, because all users
are not automatically a member of “Development”, as they
are of “User Groups”. The list 1820 displays the log-on
system IDs of all system members. The status beside each
user ID in list 1820 shows whether the user owns a mem-

Aug. 2, 2001

bership in the “Development” subgroup. A status of “yes”
indicates that the user is a member of the “Development”
subgroup, “no” indicates that the user is not a member of the
“Development™ subgroup, and “inherited” indicates that the
user inherits membership within the “Development” group
by belonging to at least one of Development’s subgroups
further down the tree. A user’s membership status for a
subgroup is modified by the administrator by selecting the
user in list 1820 and then clicking on the “Add to Group”
button 1836 or “Remove from group” button 1838. If the
administrator wishes to create a new system user, or modify
or delete an existing member, the administrator clicks on the
“Create/Modify/Delete Users” button 1840. This action
brings up the notebook page shown in FIG. 19. The right
panel of FIG. 19 is similar to that of FIG. 15 and allows the
administrator to create a new system user by selecting NEW
in list 1920 and then clicking the “Create” button. Similarly,
the administrator can modify or delete an existing system
user by selecting the appropriate user in list 1920 and
clicking the appropriate button “Modify” or “Delete”. Users
created at any subgroup context (e.g., “Development”) not
only gain the required membership in “User Groups”, but
are automatically made members of the selected subgroup.
Changes to the system user list are saved by clicking on
“File” in the top menu bar of the right panel and then
clicking “Save” (not shown).

[0090] FIG. 20 shows a direct way to get to the system
user list for editing, rather than through the group and
subgroup route shown in FIG. 19. To get to FIG. 20, the
administrator selects “Users”1304 in the left panel of FIG.
13, for example. Then in the right panel shown in FIG. 20,
the administrator can create new users and modify and
delete existing users, as already discussed., without being in
the context of a group or subgroup.

[0091] In FIG. 21, the administrator wishes to work
directly on information corresponding to a user whose ID is
“colleend”. To do this the administrator expands “Users” in
the left panel of FIG. 21, for example, and then selects
“colleend”, as shown. The right panel then appears, which is
devoted to colleend’s system information. The right panel
contains three tabs. The first tab “User Information” is
selected by default. In this tab, the administrator can modify
the name, ID, password and comments pertaining to col-
leend.

[0092] FIG. 22 shows the right panel when the adminis-
trator selects the second tab “Group Memberships”. List
2220 shows all subgroups of which colleend is a member.
The subgroups are shown in this list in the order of subgroup
priority for colleend. The administrator can change col-
leend’s subgroup priority by selecting a subgroup and using
the up and down arrows to the right of list 2220 to move the
selected subgroup up or down the list as desired. If the
administrator clicks the “Add/Remode Group Member-
ships” button 2242 in FIG. 22, the right panel then shows
the contents of FIG. 23. The FIG. 23 right panel allows the
administrator to modify the subgroups of which colleend is
a member. The administrator does this by clicking on an
appropriate box corresponding to a desired subgroup. If the
box is clear (meaning that colleend is not presently a
member), then a check mark is added to the box to include
colleend in the subgroup. Conversely, if a subgroup box is
already checked, then clicking on the box clears the check
mark and removes colleend from the subgroup.



US 2001/0011341 Al

[0093] FIG. 24 shows the right panel when the Applet
Permissions tab of FIG. 22 is selected by the administrator.
In this right panel, list 2420 displays all applets that are
defined in the system. The administrator can permit access
by colleend to an applet by selecting the applet in list 2420
and then clicking the “Permit user access” button 2430; or
access can be denied to colleend by clicking the “Deny user
access button”2432. The administrator can also launch an
applet in the context of colleend by clicking the “Run/
Customize” button 2434. When this is done, the applet
selected in list 2420 is launched in the right panel. The
administrator can then modify any preferences that the
applet allows and save the preferences in the manner pro-
vided by the applet. A typical scenario here is for the
administrator to launch a configuration applet then to fill in
a variety of preference fields. However, if a separate con-
figuration is not provided for a user applet, the administrator
can launch the user applet in the context of a user and set
preferences from the user applet. A typical scenario here is
for the administrator to select a group or user context and
then to launch the user applet as described above. The
administrator can then typically modify preferences from an
options menu and save them in any manner provided by the
user applet. For example, typically, the user preferences are
saved when the options dialogue is closed, or the user applet
may provide other methods of saving the preferences. In any
event, since the administrator is running the applet in the
context of colleend in this example, the preferences set up by
the administrator through the user applet are saved on the
server as if colleend had entered them directly herself by
running the applet.

[0094] Not shown in the figures is a scenario whereby a
user can modify some preferences that pertain to a user
applet. For example, a user applet may allow a user to select
a window background color or fonts and font sizes, so that
each system user can individualize the applet to some extent
when the user applet executes on the users desktop. In this
case, the user modified preferences are saved in the same
way as they are when the administrator runs the user applet.
One difference, however, is that the administrator can run
user applets to set preferences in group contexts, whereas
users can only affect preferences for their individual context.

Aug. 2, 2001

[0095] 1t is to be understood that the above described
arrangements are merely illustrative of the application of
principles of the invention and that other arrangements may
be devised by workers skilled in the art without departing
from the spirit and scope of the invention.

What is claimed:

1. In a network system comprising a network intercon-
necting a server and a plurality of user stations, a method of
managing desktops on the user stations from the server,
wherein the server stores a plurality of user applications for
downloading to user stations, and further stores access
permissions for the applications for each user, said method
comprising

receiving at the server a log-on request including a user
identifier from a user station,

using the identifier to build a list of applications for which
the user has access permission,

downloading to the station the list of applications for
which the user has access permissions, and

displaying on a portion of the desktop objects correspond-
ing to each application in the list, said objects when
selected by the user being operative to request a down-
load of the corresponding application to the user sta-
tion.

2. The network system of claim 1 further comprising

using the user identifier to built an icon on the desktop that
represents a user application specified by the user at an
earlier time,

for each user desktop icon specified by the user at an
earlier time that corresponds to a user application,
checking the access permission for the user to the user
application, and

omitting from the desktop any such user-specified icon
corresponding to a user application to which the user
does not have access permission.



