(19) **RU** (11)

2 715 329⁽¹³⁾ **C1**

(51) MПК *C12N 1/20* (2006.01) *C12Q 1/04* (2006.01)

МПК

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(52) CПK

C12N 1/20 (2019.08); C12Q 1/04 (2019.08)

(21)(22) Заявка: 2019126972, 26.08.2019

(24) Дата начала отсчета срока действия патента: 26.08.2019

Дата регистрации: **26.02.2020**

Приоритет(ы):

(22) Дата подачи заявки: 26.08.2019

(45) Опубликовано: 26.02.2020 Бюл. № 6

Адрес для переписки:

344000, г. Ростов-на-Дону, пер. Газетный, 119/262/157, ФБУН РостовНИИ микробиологии и паразитологии

(72) Автор(ы):

Голошва Елена Владимировна (RU), Алешукина Анна Валентиновна (RU)

(73) Патентообладатель(и):

Федеральное бюджетное учреждение науки "Ростовский научно-исследовательский институт микробиологии и паразитологии" (RU) Z

S

ယ

N

ထ

(56) Список документов, цитированных в отчете о поиске: SU 1351975 A1, 15.11.1987. BY 11975, 19.11.2007. ЮНУСОВА Р.Ю., Разработка хромогенных питательных сред для выделения и ускоренной идентификации условно патогенных энтеробактерий, Автореф. дисс. на соискание уч. степ. кандидата биологических наук, Махачкала, 2011, с. 8-22. RU 2534342 C2, 27.11.2014.

(54) Питательная среда для выделения и идентификации неферментирующих бактерий

(57) Реферат:

Изобретение относится к области медицинской микробиологии. Питательная среда выделения и идентификации неферментирующих бактерий содержит питательный бульон сухой, кормовых дрожжей экстракт микробиологических питательных сред, глюкозу, Д-галактозу, натрия хлорид, натрий серноватистокислый, железо (III) лимоннокислое водное, натрий углекислый, натрий сернистокислый, феноловый красный, бромтимоловый синий, кальций углекислый, агар микробиологический и дистиллированную воду при заданных количествах компонентов. Изобретение позволяет дифференцировать неферментирующие бактерии от ферментирующих с одновременной первичной дифференциацией различных представителей бактерий по изменению цвета среды и/или цвета колоний. 3 табл., 3 пр.

ပ T

2715329

□ ~

(19) **RII** (11)

2 715 329⁽¹³⁾ **C1**

(51) Int. Cl. C12N 1/20 (2006.01) C12Q 1/04 (2006.01)

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(52) CPC

C12N 1/20 (2019.08); C12Q 1/04 (2019.08)

(21)(22) Application: 2019126972, 26.08.2019

(24) Effective date for property rights:

26.08.2019

Registration date: 26.02.2020

Priority:

(22) Date of filing: 26.08.2019

(45) Date of publication: 26.02.2020 Bull. № 6

Mail address:

344000, g. Rostov-na-Donu, per. Gazetnyj, 119/262/157, FBUN RostovNII mikrobiologii i parazitologii

(72) Inventor(s):

Goloshva Elena Vladimirovna (RU), Aleshukina Anna Valentinovna (RU)

(73) Proprietor(s):

Federalnoe byudzhetnoe uchrezhdenie nauki "Rostovskij nauchno-issledovatelskij institut mikrobiologii i parazitologii" (RU)

(54) NUTRIENT MEDIUM FOR SEPARATION AND IDENTIFICATION OF NON-FERMENTING BACTERIA

(57) Abstract:

FIELD: microbiology.

SUBSTANCE: invention relates to medical microbiology. Nutrient medium for separation and identification of non-fermenting bacteria contains nutrient broth dry, extract of fodder yeast for microbiological nutrient media, D-glucose, D-galactose, sodium chloride, sodium thiosulphate, iron (III) citric acid hydrate, sodium carbonate, sodium sulphate, phenol

red, bromothymol blue, calcium carbonate, microbiological agar and distilled water at preset amounts of components.

EFFECT: invention allows to differentiate nonfermenting bacteria from fermenting with simultaneous primary differentiation of different bacteria according to color change of medium and / or colony color.

1 cl, 3 tbl, 3 ex

Z

Y

6

2

S

Изобретение относится к области медицинской микробиологии и может быть использовано для выделения и идентификации неферментирующих грамотрицательных бактерий (НФБ) из клинического материала: отделяемого ран, мокроты, мочи, кала, с подозрением на загрязнение нормальной микрофлорой.

Неферментирующие грамотрицательные бактерии являются одними из основных возбудителей внутрибольничных инфекций (ВБИ). Частота возникновения обусловленных НФБ внутрибольничных инфекций достигает 15% от всех ВБИ, связанных с аэробными и факультативно-аэробными грамотрицательными бактериями. При этом их видовой состав в последние годы существенно расширился.

5

Выделение штаммов НФБ на простых питательных средах типа мясо-пептонного агара или кровяного осложнено, поскольку в этих средах сильнее разрастаются культуры Staphylococcus и других сопутствующих бактерий, маскирующих присутствие НФБ, при этом идентификация НФБ на указанных средах также затруднена в связи с малой ферментативной активностью данных штаммов и относительной близостью их морфологических и культуральных признаков.

Для выделения штаммов НФБ, таких, как Pseudomonas aeruginosa, из клинических образцов и для дифференцирования их от других псевдомонад на основании формирования пигмента пиоцианина используют BD Pseudomonas Isolation Agar (агар для выделения псевдомонад. Агар содержит пептон Bacto (источник углерода и азота), противомикробный агент иргазан (Irgasan), избирательно ингибирующий сопутствующие грамположительные и грамотрицательные бактерии, в качестве источника энергии глицерин, способствующий выработке пигмента пиоцианина, а также хлорид магния и сульфат калия, способствующие формированию синего или сине-зеленого пигмента пиоцианина от P. аегидіпоsа. Данный пигмент диффундирует в среду, окружающую зону роста (Инструкции по применению - готовая к использованию среда в чашках PA-257002.04 Peд.: April 2013 http://www.bd.com/resource.aspx?IDX=25359)

Для выделения и идентификации НФБ используют также дифференциальнодиагностические среды нового поколения - флюорогенные и хромогенные, позволяющие
идентифицировать различные микроорганизмы непосредственно в процессе
культивирования на питательных средах на этапе первичного посева. Принцип действия
указанных сред основан на выявлении высокоспецифичных ферментов у искомых
микроорганизмов. В состав этих сред входит хромогенный субстрат - вещество, при
расщеплении которого ферментами, специфичными для определенного вида
микроорганизмов, образуются окрашенные и/или флюоресцирующие продукты. В
результате колонии искомых микроорганизмов и/или среда окрашиваются в
определенный цвет, или приобретают способность к флюоресценции при
ультрафиолетовом облучении.

Известна основа ХайФлюоро агара для Pseudomonas aeruginosa - HiFluoro Pseudomonas Agar Base (HiMedia Laboratories Pvt. Limited, Индия), предназначенная для селективного выделения и идентификации бактерий P. aeruginosa из клинического материала флюоресцентным методом, в состав которой входит цетримид для подавления роста сопутствующих микроорганизмов и флюорогенная смесь. P. aeruginosa при росте на среде разрушает флюорогенный субстрат, освобождая флюороген, который дает видимую флюоресценцию при ультрафиолетовом облучении (Инструкция по применению: http://art-medika.com/catalog/mikrobiologia/chromo/product-487.html (http://www.himedialabs.ru/m1469).

Известны хромогенные питательные среды, предназначенные для выделения неферментирующих бактерий Burkholderia серасіа из клинических образцов:

- BD Серасіа Medium (Becton Dickinson GmbH Heidelberg/Germany), содержащая источники азота (пептоны, сульфат аммония), фосфаты для поддержания стабильного рН, источник углерода (пируват натрия), факторы роста НФБ (магний, железо), а также ингибиторы для подавления сопутствующей микрофлоры (соли желчных кислот, кристаллический фиолетовый, тикарциллин и полимиксин В), и, в качестве индикатора рН -феноловый красный. В процессе метаболизма пирувата натрия происходит накопление ионов натрия, вызывающих повышение рН, что приводит к изменению цвета среды с желто-оранжевого на розовый или красный вокруг колоний В. серасіа и интенсивно-розовый в областях плотного роста (BD Серасіа Medium BD OFPBL Agar Инструкции по применению готовая к использованию среда в чашках PA-254481.04 Ред.: Oct 2014: http://www.bd.com/resource.aspx?IDX=25339):
 - BD OFPBL Agar (Becton Dickinson GmbH Heidelberg/Germany), содержит ингибиторы сопутствующих бактерий (бацитрацин ингибитор грамположительных микроорганизмов и Neisseria, полимиксин В грамотрицательной микрофлоры), калия гидрофосфат для поддержания стабильного рН, и бромтимоловый синий в качестве индикатора рН. При ферментации лактозы в кислотные продукты, и, соответственно, понижении рН среды индикатор рН бромтимоловый синий изменяет цвет среды с синего на желтый, колонии В. серасіа также будут иметь желтый цвет. При этом в Инструкции по применению среды приведены ограничения применения среды, заключающиеся в том, что на агаре OFPBL возможен рост других микроорганизмов, например В. gladioli, которые внешне похожи на В. серасіа (желтые колонии), и подчеркнуто, что данная среда не должна использоваться в качестве единственной среды для идентификации В. серасіа. (ВD Серасіа Medium BD OFPBL Agar Инструкции по применению готовая к использованию среда в чашках РА-254481.04 Ред.: Oct 2014: www.bd.com/ resource.aspx?IDX=25919).

Таким образом, известные питательные среды зарубежного производства, предназначенные для выделения отдельных видов НФБ, не обеспечивают возможности одновременного выделения и идентификации нескольких видов НФБ, особенно при проведении широкомасштабного эпидемиологического мониторинга за ассоциациями штаммов НФБ, циркулирующими внутри стационаров, к тому же являются дорогостоящими.

Известна также отечественная дифференциально-диагностическая среда для выделения неферментирующих грамотрицательных бактерий (SU 1351975), которая содержит селективный агент - 2,3,5-трифенил-тетразолий хлористый и, в качестве индикатора - бромтимоловый синий, и позволяет выделить НФБ из клинического материала и дифференцировать их от ферментирующих сахара энтеробактерий и протеев.

Указанная среда имеет следующий состав:

45

	Ингредиенты	Концентрация
	сухой питательный агар КД	25,0-35,0 г
5	экстракт кормовых дрожжей агаризованный	1,5-2,5 г
	лактоза	4,0-6,0 г
	мальтоза	4,0-6,0 г
10	2,3,5-трифенил-тетразолий хлористый	0,01-0,03 г
	бромтимоловый синий водорастворимый	0,05-0,07 г
	железо(III) лимонно-амиачное зеленое	1,0-2,0 г
15	натрий тиосульфат	4,0-6,0 г
	алкилбензолсульфонат натрия	0,8-0,9 г
	натрий углекислый	0,5-0,65 г
20	Вода дистиллированная	до 1 л

$pH 7,4\pm0,1$

Данная среда, являясь хромогенной, обеспечивает окраску группы неферментирующих бактерий в бордовый цвет, ферментирующих - в желтый цвет, Proteus mirabilis формирует колонии черного цвета. Но указанная среда не обеспечивает дифференциацию между отдельными представителями неферментирующих бактерий.

Целью предлагаемого изобретения является дифференциально-диагностическая среда, позволяющая проводить дифференциацию неферментирующих бактерий от ферментирующих и, одновременно, первичную дифференциацию разных представителей неферментирующих бактерий по изменению цвета среды и/или колоний бактерий, и содержащая отечественные ингредиенты.

Поставленная задача достигается введением в состав питательной среды двухкомпонентной индикаторной системы (феноловый красный + бромтимоловый синий), обеспечивающей дифференциацию неферментирующих бактерий от ферментирующих и, одновременно, первичную дифференциацию разных представителей НФБ по изменению цвета колоний и характеру роста. Добавление карбоната кальция предотвращает чрезмерное закисление среды продуктами жизнедеятельности бактерий. Среда содержит отечественные ингредиенты.

Предлагаемая питательная среда (МодСИ - Модифицированная Среда с Индикатором) имеет следующий состав:

	Ингредиенты	Концентрация
	питательный бульон сухой	20,0 г
5	экстракт кормовых дрожжей для микробиологических питательных сред	1,0 г
	Д-глюкоза	1,0 г
10	Д-галактоза	20,0 г
10	натрия хлорид	5,0 г
	натрий серноватистокислый	0,3 г
1.5	железо (III) лимоннокислое водное	0,6 г
15	натрий углекислый	0,5 г
	натрий сернистокислый	0,5 г
20	феноловый красный	0, 05 г
20	бромтимоловый синий	0,05 г
	кальций углекислый	5,0 г
25	агар микробиологический	11,0± 2,0 г
	дистиллированная вода	до 1 л
	pH 7,5±0,1	

Способ приготовления питательной среды МодСИ. Для приготовления 1 литра среды навески ингредиентов (питательный бульон сухой, экстракт кормовых дрожжей для микробиологических питательных сред, Д-глюкоза, Д-галактоза, натрия хлорид, натрий серноватистокислый, железо (III) лимоннокислое водное, натрий углекислый, натрий сернистокислый, феноловый красный, бромтимоловый синий, кальций углекислый, агар микробиологический) растворяют в небольшом количестве дистиллированной воды, доводят объем до 1 литра, нагревают до кипения до полного растворения ингредиентов; рН среды доводят до 7,5±0,1. Среду МодСИ разливают по флаконам и стерилизуют при 0,5 атм. в течение 30 минут. Готовая среда сиреневорозового цвета, непрозрачная. Перед употреблением флакон со средой расплавляют на кипящей водяной бане и разливают в стерильные чашки Петри по 15-20 мл. Готовые чашки со средой МодСИ хранят при температуре +6 С° в течение недели.

Пример 1. Подбор концентраций индикаторов в составе среды МодСИ Предлагаемая питательная среда МодСИ приготовлена по вышеуказанному способу в 2-х вариантах, отличающихся концентрацией индикаторов: феноловый красный и бромтимоловый синий при добавлении в среду МодСИ использованы в двух концентрациях: по 0,025 г и по 0,05 г.

Вариант 1

RU 2715329 C1

	Ингредиенты	Концентрация
	питательный бульон сухой	20,0 г
5	экстракт кормовых дрожжей для микробиологических питательных сред	1,0 г
	Д-глюкоза	1,0 г
	Д-галактоза	20,0 г
10	натрия хлорид	5,0 г
	натрий серноватистокислый	0,3 г
1.5	железо (III) лимоннокислое водное	0,6 г
15	натрий углекислый	0,5 г
	натрий сернистокислый	0,5 г
20	феноловый красный	0,025 r
20	бромтимоловый синий	0,025 г
	кальций углекислый	5,0 г
25	агар микробиологический	11,0± 2,0 г
	дистиллированная вода	до 1 л
	Вариант 2	
	Ингредиенты	Концентрация
30	питательный бульон сухой	20,0 г
	экстракт кормовых дрожжей для микробиологических питательных сред	1,0 г
35	Д-глюкоза	1,0 г
	Д-галактоза	20,0 г
	натрия хлорид	5,0 г
40	натрий серноватистокислый	0,3 г
	железо (III) лимоннокислое водное	0,6 г
	натрий углекислый	0,5 г

	натрий сернистокислый	0,5 г
	феноловый красный	0, 05 г
5	бромтимоловый синий	0,05 г
	кальций углекислый	5,0 г
	агар микробиологический	11,0± 2,0 г
10	дистиллированная вода	до 1 л

Для определения оптимальных концентраций индикаторов в составе среды использовали следующие тест-штаммы: НФБ - Pseudomonas aeruginosa №453, Burkholderia серасіа № B-7518, Stenotrophomonas maltophilia № B-7520. Указанные тест-штаммы выращивают на скошенном мясо-пептонном агаре (МПА) 24 часа при +37°C, выросшие культуры смывают стерильным изотоническим раствором хлорида натрия (0,85%), готовят взвесь бактерий по оптическому стандарту мутности 10 МЕ и титруют до содержания 1000 мт/мл. 0,1 мл полученной взвеси культур высевают сплошным газоном шпателем Дригальского на 2 варианта предлагаемой среды МодСИ. Посевы инкубируют при +37°C в течение 24 час. Эффективность роста бактерий и дифференцирующие свойства 2 вариантов МодСИ определяют по количеству колониеобразующих клеток (КОЕ) и по изменению цвета колоний и характеру роста.

Результаты представлены в таблице 1.

25

30

35

Таблица 1 Подбор концентрации индикаторов в составе среды МодСИ

		да МодСИ			
Тест-штаммы НФБ	вариант 1 (концентрация индикаторов 0,025 мл/л)		вариант 2 (концентрация индикаторов 0,05 мл/л)		
	характер роста	КОЕ	характер роста	KOE	
P.aeruginosa	Серые, 1,5-2,0 мм	90	Черно-фиолетовые с металлическим блеском, 1,5-2,0 мм	91	
B.cepacia	Серые, 1,5-2,0 мм	95	Нежные, белые, флюоресцирующие, 1,0-1,5 мм	97	
S.maltophilia	Серые, 1,5-2,0 мм	91	Серые, 1,5-2,0 мм	91	

Как видно из таблицы 1, установлены оптимальные концентрации в составе предлагаемой питательной среды МодСИ индикаторов феноловый красный - 0,05 г и бромтимоловый синий - 0,05 г (вариант 2), при которых эффективность роста неферментирующих бактерий составляет 91-97 КОЕ, а дифференцирующие свойства среды обеспечивают различие разных представителей неферментирующих бактерий между собой, в отличие от среды по варианту 1 с концентрацией индикаторов - 0,025

Пример 2. Эффективность роста бактерий (НФБ, грамотрицательных энтеробактерий, стафилококков) на предлагаемой среде МодСИ (в сравнении с дифференциальнодиагностической средой по SU 1351975, питательной средой Эндо и желточно-солевым агаром).

При изучении эффективности роста бактерий использовали следующие тест-штаммы:

НФБ - Pseudomonas aeruginosa №453, Burkholderia cepacia №B-7518, Stenotrophomonas maltophilia № B-7520; грамотрицательные энтеробактерий - Escherichia coli M-17, Proteus vulgaris №869, Proteus mirabilis №878, Klebsiella pneumoniae №63, Salmonella typhimurium №67, Salmonella enteritidis №2269, Salmonella dublin №1976; грамположительные кокки - Staphylococcus aureus №209-р, Staphylococcus epidermidis №136.

Указанные тест-штаммы выращивают на скошенном мясо-пептонном агаре (МПА) 24 часа при +37°C, выросшие культуры смывают стерильным изотоническим раствором хлорида натрия (0,85%), готовят взвесь бактерий по оптическому стандарту мутности 10 МЕ, и титруют до содержания 1000 мт/мл. 0,1 мл полученной взвеси культур высевают сплошным газоном шпателем Дригальского: на предлагаемую среду МодСИ - все тестштаммы (НФБ, грамотрицательных энтеробактерий, стафилококков); на дифференциально-диагностическую среду по SU 1351975 - тест-штаммы НФБ, грамотрицательных энтеробактерий; на питательную среду Эндо - тест-штаммы грамотрицательных энтеробактерий; на желточно-солевой агар - тест-штаммы стафилококков. Посевы инкубируют при +37°C в течение 24 час. Учитывают количество колониеобразующих клеток (КОЕ), и процент высеваемости на чашках со средой, исходя из количества микробных тел в 1 мл микробной взвеси.

Результаты представлены в таблице 2.

20

25

30

35

40

Таблица 2 Эффективность роста тест-штаммов бактерий на предлагаемой среде МодСИ (в сравнении с дифференциально-диагностической средой по SU 1351975, питательной средой Эндо и желточно-солевым агаром).

Тест-штаммы		Рост микроорганизмов на питательных средах (КОЕ)				Эффективн ость роста
		Среда МодСИ	Среда SU 1351975	Эндо	ЖСА	на среде МодСИ %
НФБ	P.aeruginosa	91	90			91
	B.cepacia	97	100			97
	S.maltophilia	91	91			91
Грамотрицател	E.coli	98	98	98		98
ьные	P.vulgaris	92		92		92
энтеробактерии	P.mirabilis	97	96	99		97
	K.pneumoniae	94		96		94
	S.typhimurium	98		98		98
	S.enteritidis	96		90		96
	S.dublin	91		89		91
Стафилококки	S.aureus	92			92	92
	S.epidermidis	90			90	90

Как видно из таблицы 2, на предлагаемой питательной среде МодСИ эффективность роста неферментирующих бактерий составила 91-97 КОЕ (91-97%), что сопоставимо с результатами роста НФБ на дифференциально-диагностической среде по SU 1351975 (91-100 КОЕ).

При этом установлена также достаточно высокая эффективность роста на предлагаемой среде грамотрицательных энтеробактерий (КОЕ 91-98) и стафилококков (КОЕ 90-92), соответствующая показателям роста указанных бактерий на элективных,

питательных средах (среда Эндо для грамотрицательных энтеробактерий, ЖСА - стафилококков), что позволит использовать МодСИ для выращивания широкого спектра микроорганизмов.

Пример 3 Изучение дифференцирующих свойств предлагаемой питательной среды МодСИ и контрольных сред для неферментирующих бактерий, грамотрицательных энтеробактерий, стафилококков

При изучении дифференцирующих свойств МодСИ использовали следующие тестштаммы: НФБ - Pseudomonas aeruginosa №453, Burkholderia серасіа № В-7518, Stenotrophomonas maltophilia № В-7520; грамотрицательные энтеробактерий - Escherichia coli М-17, Proteus vulgaris №869, Proteus mirabilis №878, Klebsiella pneumoniae №63, Salmonella typhimurium №67, Salmonella enteritidis №2269, Salmonella dublin №1976; грамположительные кокки - Staphylococcus aureus №209-р, Staphylococcus epidermidis №136. Указанные тест-штаммы выращивают, готовят взвесь, и высевают на чашки с испытуемыми средами, как указано в примере 2.

Данные по изучению дифференцирующих свойств представлены в таблице 3.

Таблица 3 Изучение дифференцирующих свойств модифицированной среды с индикатором (МодСИ)

Тест-штам	имы	Сопоставляемые питательные среды					
		МодСИ	Питательная	Среда Эндо	ЖСА		
			среда SU 1351975				
НФБ	P.aeruginosa	Черно- фиолетовые с металлически м блеском, 1,5- 2,0 мм	Зеленые колонии с бордовым центром, 1,5-2,0 мм	Розовые колонии с ажурным краем, до 4,0 мм	-		
	B.cepacia	Нежные, белые, флюоресциру ющие, 1,0-1,5	Зеленые колонии с бордовым центром, 1,5-2,0 мм	Бледно- розовые, 1,5- 2,0 мм	-		
	S.maltophilia	Серые, 1,5-2,0	Зеленые колонии с бордовым центром, 1,5-2,0 мм	Бледно- розовые, 1,5- 2,0 мм	-		
Грамотр ицательн ые	E.coli	Ярко-желтые, 1,5-2,0 мм	Плоские желтые колонии, 3,0	Малиновые колонии с металлически			

40

15

20

25

30

35

	энтероба			мм с желтым	м блеском, 4,0	
	ктерии			ореолом	MM	la.
	1			вокруг		
				колонии		
5		P.vulgaris	Розово-		Бледно-	
			фиолетовые,		розовые,	
			до черного, с		полупрозрачн	
			«роением» 2,0-		ые, с	
			5,0 мм		«роением», 4,0	
10					и более мм	
		P.mirabilis	Сиреневые с	Изолированн	Бледно-	
			«роением» 1,5-	ые черные	розовые,	
			4,0 мм	колонии с	полупрозрачн	
				зеркальным	ые, с	
				блеском, 3,5	«роением», 4,0	
15				MM	и более мм	
		K.pneumoniae	Розово-		Розовые,	
			желтые,		слизистые 2,0-	
			слизистые 2,0-		4,0 мм	
			3,0 мм			
20		S.typhimurium	Розовые с		Бледно-	
			металлически		розовые,	
			м блеском, 1,5-		прозрачные,	
			2,0 мм		1,5-2,0 мм	
		S.enteritidis	Желтые, 1,5-		Бледно-	
		,	2,0 мм		розовые,	
25					прозрачные,	
		~		········	1,5-2,0 мм	
		S.dublin	Желто-		Бледно-	
			розовые, 1,5-		розовые,	
			2,0 мм		прозрачные,	
30			274		1,5-2,0 мм	
	Стафило	S.aureus	Желтые 0,5-1,0			Желтые
	кокки		MM			, c
						опалесц
						ирующ
						ИМ
35						ореоло
						м, 0,5-
		C and a 11.	T			2,5 мм
		S.epidermidis	Белые 0,5-1,0			Белые,
			MM	,	ļ	1,0-2,0
40						MM

Как видно из таблицы 2, на предлагаемой питательной среде МодСИ тест-штаммы НФБ (Paeruginosa, B.cepacia, S.maltophilia) отличались по цвету колоний и характеру роста как от тест-штаммов других бактерий (грамотрицательных энтеробактерий, стафилококков), так и между собой.

Таким образом, из вышеприведенных таблиц следует, что на предлагаемой среде МодСИ эффективность роста всех микроорганизмов, взятых в качестве тест-штаммов, достаточно высока и сопоставима со средами, предназначенными для выделения и дифференциации соответствующих микроорганизмов (среда Эндо для

RU 2715329 C1

грамотрицательных энтеробактерий, ЖСА - для стафилококков, дифференциальнодиагностическая среда для выделения неферментирующих грамотрицательных бактерий по SU 1351975), что свидетельствует о возможности использования МодСИ для выращивания широкого спектра микроорганизмов.

При оценке дифференцирующих свойств среды МодСИ установлено, что предлагаемая среда позволяет по цвету колоний и характеру роста отличить тестштаммы НФБ (Paeruginosa, B.cepacia, S.maltophilia) как от тест-штаммов других бактерий (грамотрицательных энтеробактерий, стафилококков), так и между собой.

Таким образом, предлагаемая питательная среда МодСИ может быть использована для дифференциации неферментирующих бактерий от ферментирующих и, одновременно, первичной дифференциации разных представителей неферментирующих бактерий, по изменению цвета среды и различному цвету колоний, при первичном посеве образцов клинического материала, и, что особенно важно, при эпидемиологическом мониторинге за штаммами НФБ, циркулирующими в стационаре.

(57) Формула изобретения

Питательная среда для выделения и идентификации неферментирующих бактерий, содержащая питательный бульон сухой, экстракт кормовых дрожжей для микробиологических питательных сред, Д-глюкозу; Д-галактозу, натрия хлорид, натрий серноватистокислый, железо (III) лимоннокислое водное, натрий углекислый, натрий сернистокислый, кальций углекислый, агар микробиологический, дистиллированную воду, в которую дополнительно введены индикаторы феноловый красный и бромтимоловый синий при следующих количествах компонентов:

	питательный бульон сухой	20,0 г
25	экстракт кормовых дрожжей для микробиологических	1,0 г
	питательных сред	
	Д-глюкоза	1,0 г
	Д-галактоза	20,0 г
	натрия хлорид	5,0 г
	натрий серноватистокислый	0,3 г
30	железо (III) лимоннокислое водное	0,6 г
	натрий углекислый	0,5 г
	натрий сернистокислый	0,5 г
	феноловый красный	0,05 г
	бромтимоловый синий	0,05 г
	кальций углекислый	5,0 г
35	агар микробиологический	11,0±2,0 г
	дистиллированная вода	до 1 л
	pH	7,5±0,1

40

5

15