
US0088.06357B2

(12) United States Patent (10) Patent No.: US 8,806,357 B2
Demant et al. (45) Date of Patent: Aug. 12, 2014

(54) PLUG-INS FOR EDITING TEMPLATES INA 999; R 38: Yyth et al.
Ohr et al.

BUSINESS MANAGEMENT SYSTEM 7,107,525 B2 9/2006 Purvis
7,168,035 B1 1/2007 Bell et al.

(75) Inventors: Hilmar Demant, Karlsdorf (DE); Frank 7,409,710 B1* 8/2008 Eil. T26, 19

Schertel, Walldorf (DE); Asif Raj, 7,415,669 B1 8, 2008 Davidson et al.
NT- 7,496,599 B2 2/2009 Brundage et al.

R (SNES kopf 7.562,304 B2 * 7/2009 Dixon et al. 715.738 angalore (IN); Eckhard Farrenkopf, 7,657,549 B2 2/2010 Morris et al.
Schriesheim (DE); Ramesh B.G., 7,676,689 B1 3/2010 Shioyama
Hyderabad (IN); Juergen Sattler, 22999. 388 SC et al.

- I a Kaly
Wiesloch (DE) 7,747,941 B2 6/2010 Campbell et al.

7,818,662 B2 10/2010 Nene et al.
(73) Assignee: SAP AG, Walldorf (DE) 7.882.489 B2 * 2/2011 Chandrasekharan et al. 717/106

7,890.478 B2 2/2011 Fiedler
(*) Notice: Subject to any disclaimer, the term of this 2002fO184310 A1 12/2002 Traversat et al.

patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 815 days.

(21) Appl. No.: 12/202,049 FOREIGN PATENT DOCUMENTS
ppl. No.: 9

EP 1302867 A2 4/2003
(22) Filed: Aug. 29, 2008 EP 1304614 A2 4, 2003

EP 1699007 A1 9, 2006
(65) Prior Publication Data EP 1855241 A1 11, 2007

US 2010/0058170 A1 Mar. 4, 2010 OTHER PUBLICATIONS

“European Application Serial No. 09010735.0, Search Reportmailed
(51) Int. Cl. Dec. 4, 2009'. 6

G06F 3/048 (2013.01) on Lec. 4, ZUUy, to pgs.

(52) U.S. Cl. (Continued)
USPC 715/762; 715/765; 715/771; 715/853; - - - -

71.5/970 Primary Examiner—Namitha Pillai
(58) Field of Classification Search (74) Attorney, Agent, or Firm — Schwegman, Lundberg &

USPC 71.5/854,762.765,771, 853,970 Woessner, PA.
See application file for complete search history. (57) ABSTRACT

(56) References Cited A template authoring method and system includes an appli

U.S. PATENT DOCUMENTS

5,819,293 A 10, 1998 Comer et al.
5,983,227 A 11/1999 Nazem et al.
5,987,480 A 11/1999 Donohue et al.
6,026,433 A 2/2000 Darlach et al.
6,286,007 B1 9, 2001 Miller et al.

5

DOCUMENT

DESCRIPTION

cation business component view that provides an interface to
a user to select templates. A dialog provides a wrapper for
each template to be edited by launching a server page and a
host using controls provides authoring abstractions for
selected authoring applications to edit the templates.

17 Claims, 17 Drawing Sheets

a

DOCUMENTTEMPLATE

6
LANGUAGE
WARIANT

PREDECESSOR
LANGUAGE
WARIANT

SCHEMA

.
3.

US 8,806,357 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2004/0088647 A1
2004.0143581 A1
2004/0172592 A1
2004/0230637 A1
2005/02O3747 A1
2006/0173865 A1
2007, OO1661.0 A1
2007/0044014 A1
2007/OO741.05 A1
2007/0208769 A1
2008/0059506 A1
2008.0117448 A1
2008/O120283 A1
2010.0057760 A1
2010.0058169 A1

OTHER PUBLICATIONS

5, 2004 Miller et al.
7/2004 Bohannon et al.
9, 2004 Collie et al.
11/2004 Lecoueche et al.
9, 2005 Lecoeuche
8/2006 Fong
1/2007 Cohen et al.
2/2007 Hanechak
3/2007 McVeigh et al.
9, 2007 Boehm et al.
3/2008 Kalia et al.
5/2008 Ijams et al.
5, 2008 Liu et al.
3/2010 Hilmar et al.
3/2010 Demant et al.

“U.S. Appl. No. 12/202,039, Response filed Aug. 3, 2011 to Final
Office Action mailed Jun. 13, 2011, 9 pgs.
“U.S. Appl. No. 12/202,039, Final Office Action mailed Jun. 13,
2011”, 17 pgs.
“U.S. Appl. No. 12/202,039, Non Final Office Action mailed Jan. 5,
2011”, 14pgs.
“U.S. Appl. No. 12/202,039, Response filed Apr. 1, 2011 to Non Final
Office Action mailed Jan. 5, 2011”, 8 pgs.
“U.S. Appl. No. 12/202,056, Final Office Action mailed Sep. 2,
2011’, 21 pgs.
“U.S. Appl. No. 12/202,056, Non Final Office Action mailed Mar. 8,
2011”, 16 pgs.
“U.S. Appl. No. 12/202,056, Response filed Jun. 8, 2011 to Non Final
Office Action mailed Mar. 8, 2011”. 10 pgs.
“European Application Serial No. 09010452.2. Extended European
Search Report mailed Apr. 14, 2010”, 5 Pgs.
“European Application Serial No. 09010452.2, Office Action mailed
Jan. 24, 2011”, 5 pgs.

“European Application Serial No. 09010517. Extended European
Search Report mailed Nov. 11, 2009”. 11 pgs.
Abiteboul, Serge, "On Views and XML, Proceedings of the 18th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, (May 1999), 1-9 pgs.
Benedikt, M. et al., “Managing XML Data: An Abridged Overview”.
Computing in Science and Engineering vol. 6, No. 4. (Jul. 4), 12-19.
Bossung, Sebastian, et al., “Automated Data Mapping Specification
via Schema Heuristics and User Interaction'. Proceedings of the 19
International Conference on Automated Software Engineering. (Sep.
4), 10 pgs.
Braganholo, Vanessa P. et al., “PATAXO: A Framework to Allow
Updates Through XML Views”, ACM Transactions on Database
Systems vol. 31, No. 3, (Sep. 2006), 839-886.
Groppe, Sven, et al., “Reformulating XPath queries and XSLT que
ries on XSLT views'. Data & Knowledge Engineering vol. 57, No. 1,
(Apr. 2006), 64-110.
Rajugan, R. et al., “Engineering XML Solutions Using Views”. Com
puter Information and Technology, (Sep. 2005), 116-123.
“U.S. Appl. No. 12/202,039, Non Final Office Action mailed Oct. 7,
2013, 17 pgs.
“U.S. Appl. No. 12/202,056. Response filed Aug. 23, 2013 to Final
Office Action mailed Jun. 27, 2013”.9 pgs.
“U.S. Appl. No. 12/202,056, Advisory Action mailed Sep. 25, 2013”,
4pgs.
“U.S. Appl. No. 12/202,056, Final Office Action mailed Jun. 27.
2013', 21 pgs.
“U.S. Appl. No. 12/202,056, Non Final Office Action mailed Nov. 26,
2012, 19 pgs.
“U.S. Appl. No. 12/202,056, Response filed Apr. 26, 2013 to Non
Final Office Action mailed Nov. 26, 2013, 9 pgs.
“U.S. Appl. No. 12/202,056, Response filed Nov. 2, 2011 to Final
Office Action mailed Sep. 2, 2011”. 10 pgs.
“U.S. Appl. No. 12/202.056, Pre-Appeal Brief Request filed Sep. 26.
2013, 5 pgs.
“U.S. Appl. No. 12/202,056, Decision on Pre-Appeal Brief mailed
Nov. 19, 2013', 2 pgs.

* cited by examiner

U.S. Patent Aug. 12, 2014 Sheet 3 of 17 US 8,806,357 B2

3) A1

TEMPLATE 33)
32) AUTHORNGADOBE

TEMPLATE TEMPLATE 325
AUTHORING AUTHORING EXCEL

3A)
TEMPLATE 335

BUSINESS AUTHORING TEXT
CONFIGURATION

DESIGNTIME DEPOY
RUNTIME

A. A1 35

TEMPLATESTORE

35 366 36
ASICF TEMPLATE BO ADOBE DOCUMENT TEMPLATERETRIEWAL

QUERIES AND SERVICES (PREPROCESSOR) SERVICES 355

ABAPFORMS
PROCESSING

SQ S5 3R)

OFFICE
INTEGRATION BTM NWOSIOMI,

FIG 3

US 8,806,357 B2 Sheet 4 of 17 Aug. 12, 2014 U.S. Patent

US 8,806,357 B2 Sheet 5 Of 17 Aug. 12, 2014 U.S. Patent

US 8,806,357 B2 Sheet 6 of 17 Aug. 12, 2014 U.S. Patent

US 8,806,357 B2 Sheet 7 Of 17 Aug. 12, 2014 U.S. Patent

09% ONIHONRINNOH SIV

U.S. Patent Aug. 12, 2014 Sheet 8 of 17 US 8,806,357 B2

FILTERED ASSOCATION: WARIANT
(LANGUAGE, INDUSTRY, COUNTRY, REGION)

DOCUMENTTEMPLATE WARIANTS

TEMPLATEGROUP

LANGUAGE

INDUSTRY

CO

REGION

WERSION

WERSION HISTORY 75Q

SchemaContentBlob
MainSchema-Flag

DEPENDANT SCHEMAS

FIG, 7A

US 8,806,357 B2 Sheet 9 Of 17 Aug. 12, 2014 U.S. Patent

O

=| | = | = | = | = | = | = | = |

@ || 5 || 5 || 5 || 5 || 5 || 5 || 5 || 5

RSION INTERNALID REGION COUNTRY

FIG, 7B

USTRY

WATER

WATER

WATER

ANGUAGE D

4711

UUI

U.S. Patent Aug. 12, 2014 Sheet 10 of 17 US 8,806,357 B2

<<A1S/Designtime Schema->
AIS Template

A. A5 5) RSS

<<APIRuntime Schema)<<APRuntime Schema)<<APIRuntime Schema->|<<APRuntime Schema)
DOCUMENTTEMPLATE TEMPLATEWARIANTS TEMPLATE SCHEMAS

if
FILTERED ASSOCATION: WARIANT

(LANGUAGE, INDUSTRY, COUNTRY, REGI ON)
1.

D

WERSION HISTORY

SCHEMA

SchemaContentBlob
MainSchema-Flag

ck

DEPENDANT SCHEMAS

FIG. 8

U.S. Patent Aug. 12, 2014 Sheet 12 of 17

(6

TEMPLATEBCREUSEU

TemplateCroup1 BCSETTEMPLATE
TemplateCroup1 BCSETTEMRLATE
TemplateCroup1 BCSETTEMPLATE3
TemplateCroup2 BCSETTEMPLAE4
TemplateCroup2 BCSETTEMPLATES

FIG 10

US 8,806,357 B2

U.S. Patent Aug. 12, 2014 Sheet 13 of 17 US 8,806,357 B2

AQ) N

A5 926

APPLICATIONBCVIEW (WD)

TEMPLATEBCREUSEU N
N

CONFIGURATION
WORKSPACE471

MODAL DIALOG)
EDITING/CREATING...

A5
TARGET-WINDOW
(HIDDEN) (ISP)

J2EE-TMP
STORE

A2)
AUTHORINGABSTRACTION

(HOST-ACTIVEX)

A36

ADOBE
DESIGNER

FIG 11
WW A1

2Q 25 A25 22) 225 23)

TEMPLATES DESCRIPTION
TEMPLATENAMEXYZ
TEMPLATENAMEosis
TEMPLATENAME47

US 8,806,357 B2 Sheet 14 of 17 Aug. 12, 2014 U.S. Patent

HI THM

O WWHHOS LWTH

U.S. Patent Aug. 12, 2014 Sheet 15 Of 17 US 8,806,357 B2

A
N

A9

SELECTBUSINESS OBJECTMODEL

A)

WISUALIZEBUSINESS OBJECTSTRUCTURE

A5

SELECT NODESFORINCULSION

A2)

COLLAPSENESTED STRUCTURES

A25

FIG, 14

US 8,806,357 B2 Sheet 16 of 17 Aug. 12, 2014 U.S. Patent

9I 9JAI

| | | | | | | | ?

US 8,806,357 B2
1.

PLUG-NS FOREDITING TEMPLATES INA
BUSINESS MANAGEMENT SYSTEM

RELATED APPLICATIONS

U.S. Application entitled, Integrated Document Oriented
Templates filed Aug. 29, 2008 and given U.S. application Ser.
No. 12/202,039; and

U.S. Application entitled, Generic Data Retrieval filed
Aug. 29, 2008 and given U.S. application Ser. No. 12/202,
O56.

BACKGROUND

Templates are commonly provided for many different
types of documents. The templates facilitate batch processing
that may pull information from a database to fill in placehold
ers of a template and result in customized documents. Some
examples include a mailing to multiple customers. The
address field and salutation may be placeholders in a template
of the mailing, and when filled in with data from a customer
database, each customer may be mailed a letter that is per
Sonalized. Other examples may include invoices, purchase
orders and many other types of business documents produced
by many different types of programs, from word processors to
spreadsheet programs.

In server oriented business management systems, many
different clients may be served by a single system, which may
consist of multiple computers and storage devices coupled to
the clients via network. Templates in Such systems may be
treated as a development object. Development objects are
available across all clients, while the data to populate the
templates for each client is separated between clients. Since
the development objects have global aspects, which means
that they are available to all the clients, a template change
instigated by one client will show up in the template for all
clients. Such a change may not be desired by all clients.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a document template
stored on a business management system according to an
example embodiment.

FIG. 2 is a block diagram of a system illustrating use of
customized templates with a business configuration design
time system and a run time system on a business management
service backbone according to an example embodiment.

FIG. 3 is a block diagram illustrating a logical component
view of handling document templates according to an
example embodiment.

FIG. 4 is an example screen shot of a template repository
according to an example embodiment.

FIG. 5 is a block diagram illustrating components at design
time according to an example embodiment.

FIGS. 6A and 6B are a block diagram of a component view
during runtime according to an example embodiment.

FIG. 7A is a block diagram of an example business object
document template design according to an example embodi
ment.

FIG. 7B is a table illustrating variants for an example
business object document template design according to an
example embodiment.

FIG. 8 is a block diagram illustrating business configura
tion integration of Schemas for document templates accord
ing to an example embodiment.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 9 is a block flow diagram illustrating fine tuning of

templates during business configuration activities according
to an example embodiment.

FIG. 10 is a block diagram illustrating a template business
configuration reuse user interface according to an example
embodiment.

FIG.11 is a block diagram illustration of a templateauthor
ing architecture according to an example embodiment.

FIG. 12 is a block diagram illustrating a list reuse user
interface that provides a list of templates according to an
example embodiment.

FIG. 13 is a block diagram of a schema builder that pro
vides schema transformations according to an example
embodiment.

FIG. 14 is a flow chart representation of a schema building
process according to an example embodiment.

FIG. 15 illustrates schema definition annotations used to
deliver Schema transformations according to an example
embodiment.

FIG. 16 illustrates schema definition annotations used to
deliver Schema transformations according to an example
embodiment.

FIG. 17 shows example screen shots illustrating example
user interactions for transformations according to an example
embodiment.

DETAILED DESCRIPTION

In the following description, reference is made to the
accompanying drawings that form a parthereof, and in which
is shown by way of illustration specific embodiments which
may be practiced. These embodiments are described in suf
ficient detail to enable those skilled in the art to practice the
invention, and it is to be understood that other embodiments
may be utilized and that structural, logical and electrical
changes may be made without departing from the scope of the
present invention. The following description of example
embodiments is, therefore, not to be taken in a limited sense,
and the scope of the present invention is defined by the
appended claims.
The functions or algorithms described herein may be

implemented in Software or a combination of Software and
human implemented procedures in one embodiment. The
Software may consist of computer executable instructions
stored on computer readable media Such as memory or other
type of storage devices. The term “computer readable media
is also used to represent any means by which the computer
readable instructions may be received by the computer. Such
as by different forms of wired or wireless transmissions.
Further, Such functions correspond to modules, which are
software, hardware, firmware or any combination thereof.
Multiple functions may be performed in one or more modules
as desired, and the embodiments described are merely
examples. The Software may be executed on a digital signal
processor, ASIC, microprocessor, or other type of processor
operating on a computer system, such as a personal computer,
server or other computer system.

In various embodiments, a system includes a server that
provides a business management service to multiple indepen
dent customers. The server has a template repository having
predefined templates that may be used by customers for tasks
Such as a mass mailings. The templates are stored as content,
and not as development objects. A configuration storage
stores customer changes to the predefined templates to pro
vide customized templates. A user interface facilitates selec
tion of customized templates as a function of Scope of work
and customized templates available for fine tuning corre

US 8,806,357 B2
3

sponding to the scope of work. In this manner, customers may
create customized templates that need not be shared across
the entire set of customers using the system. A common base
for templates like Adobe R print forms, Excel download tem
plates, text templates and many other types oftemplates may
be provided.

FIG. 1 is a block diagram illustrating a document template
100 stored on a business management system according to an
example embodiment. Template 100 is a business object that
defines the content, format, placeholders, and the structure for
creating new documents having a uniform style. Business
objects are objects used in a business management system to
represent business processes. They contain data related to the
business process, as well as methods for processing the data.
In one embodiment, the business object, template 100,
belongs to a process component referred to as document
management. This process component treats template 100 as
content as opposed to a development object.

Business objects, as described above, are a technical rep
resentation of a concept that includes data and logic. In some
embodiments, a business object has a structure that includes a
root node and Sub nodes. The nodes hold information such as
data and logic corresponding to various business processes
that can be modified in a design time environment.

Placeholders may be thought of as variables in a template
100 that refer to data to be looked up in a database when
documents are created based on template 100. One way to
represent the placeholders is in a well-structured XSD-XML
schema. Such a schema may be used to represent data which
is organized in a hierarchical way with dependencies and
different multiplicities. Placeholders provide for customiza
tion of the documents. In one example, template 100 is a
template for a word processing application, spreadsheet
application, or other application that can be used for mass
mailing via an output management function, or to create
reports via a spreadsheet application integrated with precon
figured content.
A document template 100, as indicated at a document

template node 110, contains meta information Such as type
and description and template content. Elements located at the
document template node 110 are defined by data type: Docu
mentTemplateElements, and may include a UUID (univer
sally unique identifier) for a document template, a MIME
Code that specifies the MIMECode for a document template,
a GroupCode that is a coded representation of a document
template group according to their business content, and Ver
sionEnabled Indicator that indicates whether versioning has
been enabled for the document template. These elements may
be used to respond to queries to provide a list of all document
templates 100 that meet selection criteria specified by query
elements.

Document template 100 has further subordinate nodes,
Such as a language variant 115, and some language variant
filter elements including a language variant schema 120,
name 125 and description 130. These are identified as nodes
in FIG. 1. Template 100 is a simplified template illustrating
only a language variant for one template. In further embodi
ments, many different types of variants may be handled by the
document template node structure.

Schema 120 contains binding information which describes
how placeholders in a document template 110 are replaced by
real business object data for a language variant of the docu
ment template 110. The elements located directly at the node
Schema 120 are defined by the data type: DocumentTem
plateSchemaElements. These elements may include a lan
guage independent name of the schema, Mainlindicator, that
specifies whether schema 120 is the main schema. In one

10

15

25

30

35

40

45

50

55

60

65

4
embodiment, the schema MainIndicator can only be set for
one schema. The main schema is the schema 120 that is
loaded first by an application, which is responsible for place
holder substitution. Schema 120 may also include a Binary
Object that describes the unstructured data in binary form.
Node name 125 is a language-dependent name of a docu

ment template 110. Elements located directly at the node
Name 125 are defined by the data type: DocumentTemplate
NameElements. These elements may include a name speci
fying the name of a document template. Node description 130
provides a language-dependent description of document tem
plate 110. The elements located directly at the node Descrip
tion are defined by the data type DocumentTemplateDescrip
tionElements. These elements may include a description that
specifies the description of the document template.
Node language variant 115 is a language specific variant of

a document template 110. The elements located directly at the
node language variant 115 may be defined by the data type,
DocumentTemplateLanguageVariantElements. These ele
ments may be a UUID, a VersionID that is a unique identifier
of a document template variant, and a System Administrative
Data that is stored in a system. In one embodiment, Creation
DateTime and LastChangeTime are relevant and used by the
Template Language Variant. A LanguageCode may also be
included, that defines the language in which the Document
Template Variant is specified, a CountryCode defines the
country for which the document template variant is specified,
and a RegionCode defines the region for which the document
template variant is specified.
The following composition relationships to Subordinate

nodes include a language variant predecessor version node at
135, and a language variant content node at 140.
From a business object identity node 150, a last change

identity identifies the identity that changed the language vari
ant 115. A creation identity identifies the identity that created
the language variant 115.

Language variant predecessor version 135 is a list of all
predecessing versions of a language variant 115. The ele
ments located directly at the node language variant predeces
sor version 135 may be defined by the data type, Document
TemplateLanguageVariantElements. These elements may
include a UUID for a document template variant, a versioned
that is a unique identifier of a document template variant, and
System AdministrativelData that is administrative data that is
stored in a system. CreationDateTime and LastChangeTime
are relevant and may be used by the Template Language
Variant. Further elements may include a LanguageCode that
defines the language in which the Document Template Variant
is specified, a CountryCode that defines the country for which
the document template variant is specified, and a RegionCode
that defines the region for which the document template vari
ant is specified. From the business object document template
110 node language variant, language variant 115 is an explicit
version of a language variant.

In one embodiment, language variant content 140 is the
binary content of the document template language variant. In
one embodiment, the node is provided due to potential large
quantities of data, the determination of which may have lead
to performance problems. The elements located directly at the
node Language Variant Content 140 may be defined by the
data type, such as BinaryObject that describes the unstruc
tured data in binary form. Such unstructured data has also
been referred to as binary large objects or BLOBs, and may
include data Such as image data.

In further embodiments, many other attributes of the tem
plate 110 may be defined. Such attributes may be added as
additional metadata in one embodiment. Time dependency

US 8,806,357 B2
5

(template is eventually valid for a period of time like a fiscal
year), or paper size (as a print form might be designed only for
A4 or Letter US) are just a few examples of such attributes.

In one embodiment, things directly influencing parameters
may be included as attributes on the language variant or
template header node, which are in common for different
kinds oftemplates. In yet further embodiments, the attributes
may be related to industry or layer-ID which gives the oppor
tunity to abstract from Vendor specific industry solutions.

In one embodiment, soft attributes may be included. Soft
attributes are specific to a template type or business context
stored in a kind of property bag attached to the template. For
example, papersize might only be applicable for print forms
and therefore could go into such a property bag. The template
infrastructure would still need to expose such soft attributes
via query services by the application context using this tem
plates, e.g. to query for a template variant in
papersize="Letter US”.

FIG. 2 is a block diagram of a system 200 illustrating use of
customized templates with a business configuration design
time system 210 and a run time system 215 on a business
management service backbone 220. Utilizing the previous
business object structure for templates, many different tem
plates may be created from a set of standard templates. Cus
tomers may create their own customized templates. In system
200, deciding which templates to use for a customer is sim
plified. By storing the templates as business configuration
objects, those objects may be selected and modified during
normal design time business configuration processes as illus
trated at design time system 210.

Design time system 210 provides for scope selection at
225. In one embodiment, scope selection 225 provides a list
ofareas, such as marketing, sales, after sales service, procure
ment, Supply chain control, financials, etc. Each of these
groups may be broken out into Smaller groups. For example,
financials may be subdivided into general ledger, which may
be further subdivided into GL Accounts, set of books, etc.
Other areas may also be listed.
When a customer selects one of the areas, at 235, a work

item list of predefined templates for the customer is dis
played. The list may be generated as a function of a customer
profile that specifies the business objects of the customer that
are available to that customer, including templates from the
business configuration objects. In this manner, a customer
will only see templates that may be needed based on the scope
selection. At this point, the customer may select one of the
templates for use, or may also select a template for further
modification.
When the customer has selected a template, or has modi

fied an existing template, decisions and changes are stored as
indicated at storage 240, and are provided to the server 220 for
storage at 242 and use by the run time system 215. The
decisions and changes are also provided to run time system
215 via a storage 245. Run time system 215 includes a test
tenant 250 and a production tenant 255. The decisions and
changes are run through a run time checklist 260 to ensure
that they are valid for live operation, and also through a
production unit 265 and a continuous change component 270,
which provides the modified templates back to the work item
list 235 for future selection by the customer. In one embodi
ment, the moving of the templates from development objects
to business configuration objects may be done with only very
few changes in the runtime 215. The runtime 215 is switched
to retrieve from a new persistency, the business configuration
document template object, but the complete output process in
printing need not be fundamentally changed.

10

15

25

30

35

40

45

50

55

60

65

6
One result of the selection of a template or modifying a

template is that the template may be associated with a busi
ness task. When that business task is next run during run time,
the associated template will be used, obtained by the runtime,
and documents will be produced and mailed, or sent to an
outside mailing service to be mailed in one embodiment
involving mass mailings. The runtime may utilize the schema
associated with the content of the template and customize the
appropriate placeholders. This is one approach which enables
dynamically changing the schema to fetch other or more
different data from business object models. A further
approach involves the use of a development object defining
the interface for data-retrieval. Changing the development
object may involve adaptation of a static interface and mes
sages types. The schema in the latter case is just a proxy
representation of the form message type where as in the first
approach the schema is defining on its own how data is to be
read.

In further embodiments, a postal service may be utilized
for the mailing, or email, or fax may be used. In still further
embodiments, an interactive form may be utilized that is sent
to a Supplier. It may be a purchase order in one embodiment.
The business task may than retrieve the data from the form
when it is returned, and store the data. The use of a template
for Such tasks may simplify dealing with different message
formats, as it may include appropriate logic for interacting
with the form.
A logical component view of handling document templates

is illustrated in block form in FIG. 3. The components are
divided into design time generally at 310 and run time gen
erally at 315. At design time 310, template authoring 320 may
occur when a template is selected from a list of templates at
235 that are listed under a particular selected scope, such as an
invoice template under a finances/invoices scope. When an
Excel based template is selected, template authoring Excel at
325 is selected to allow the customer to further customize the
template. If it is so customized, the changes will be stored, and
a new template reflecting those changes will be created and
stored. Further authoring may be provided for Adobe based
templates at 330 and text template authoring at 335. The
authoring blocks 325, 330 and 335 may be integrated editors,
and the resulting templates are stored in fine tuning 235.
A business configuration block 340 is used to deploy the

template in the form of a business configuration object. As a
business object, the template includes business data that is
exposed by one or more methods such as queries and other
actions to use and manipulate the business data.

In runtime 315, the templates are stored at 345, and queries
and services may be provided at 350 on such templates. In
Some embodiments, an additional layer may be provided
which allows end-user related templates which are not
present in the designtime. This additional layer provides fur
ther flexibility.
An example of processing an Adobe formatted template is

illustrated by ABAP forms processing block 355, an Adobe
document service block 360 and a system template retrieval
and pre-processing block 365. These blocks provide render
ing of the template and a callback into the runtime system
when completed. The runtime also includes office integration
370, business task management (BTM)375 and other system
functions at 380.

FIG. 4 is an example screen shot of a template repository
for Excel templates at 400 that can be displayed and viewed or
modified by template authoring 325. A top portion 410 of the
screen shot 400 describes the owner, version and business
option corresponding to several different applications. At
415, a list of application screens is provided, and includes as

US 8,806,357 B2
7

an example only, quotes comparison, export my employees
list, maintain forecast, product planning details, resource load
profile and other screens. As indicated above, these screens
may deal with many different types of business processes,
Such as finance related, and there may be many more available
than those shown in the list at 415.

The application screen'quotes comparison' is highlighted
in the list at 415. A corresponding list of actual templates
corresponding to this quotes comparison scope is shown at
420. The list at 420 includes a first master template, that is
provided by the maker of the business management system.
This master template may be available to all customers of the
business management system, but it should be noted that the
master template may be designed for the particular scope,
quotes comparison, in this embodiment. Following the mas
ter template are several customized templates. The templates
each have an associated creator, date of modification, and a
selection button to indicate whether the template is to be
included as an available template for that scope. This provides
the ability to present an uncluttered interface back in the
business configuration screens, allowing for easier navigation
for users of the customer when setting up mass mailing or
performing other tasks that utilize customized templates. For
instance, a template may be obsolete. By not setting that
template as available, it will not be mistakenly used. However
it may still be retrieved to re-create prior documents if
desired.

In one embodiment, an active flag may be used to indicate
whether a template is available. One use for the active flag is
to allow for resolving conflicting attribute combinations. A
customer may decide which of eventually concurring variants
should be the active one. This could happen if different ISVs
ship the same templates for a given attribute context. Or, if a
new language is shipped and the customer already has created
a language variant in a previous version.

FIG. 5 is a block diagram illustrating components at design
time generally at 500. At 510, a user may select a template
from a business configuration view of templates. In one
embodiment, fine tuning on the selected template are kept
separate form the business component. A request is made to a
simple enhancement user interface 515 to modify the selected
template. The user interface 515 generates a request to an
authoring user interface at 520. In one embodiment, the tem
plate appears to a user to look very much like the resulting
documents to be generated from the template. Complex data
structures are hidden from the user by use of a schema
builder/selector 525. A schema abstraction component 530
provides an abstraction from the actual data structures for
messages 532, models 533, business objects 534 and other
data structures. Such as relational databases from which data
is to be inserted into documents in accordance with the tem
plates.
The ability to abstract the schema or data structure from the

user enables the user to focus on the format of the actual
resulting documents, as reflected in the template being edited.
The template authoring user interface 520 thus provides an
editor which abstracts completely from the schema. Word
based templates appear as flowing text and paragraphs. The
resulting printed page of a document derived from the tem
plate is the result of the same flow of text.

In one embodiment, a template authoring abstraction 540 is
provided. The templates are represented in XML format by
the abstraction, interfacing with the abstraction provided via
requests from an Adobe type component 542, Excel compo
nent 543, text/email component 544 and InfoPath component
545. Other components may also be provided. The XML
abstraction is provided to the template authoring UI such that

10

15

25

30

35

40

45

50

55

60

65

8
a common set of editing functions may be provided for every
template regardless of the original Source of the template. The
editing functions may be fairly limited to ensure that they
operate on each type of template in the same way. For
instance, Some templates may utilize a pixel based approach.
It may not be easy in all cases to just convert between pixel
and text formats.

In one embodiment, the templates to select from at 510 are
provided from business configuration sets 550. Configuration
data is bundled together in one embodiment to form a con
tainer of data. The templates are schema based as indicated at
555 and may be built on top of a database table. A business
configuration workspace 560 holds business configuration
data for one customer going through configuration. The
modification oftemplates may be just one part of the configu
ration occurring. Constraints on branches of business pro
cesses may also be used to determine which business con
figuration sets 550 are needed.
On completion of the business configuration efforts, a

request is made to a deployment engine 565 in a run time
environment, and the templates are stored at 570 for use when
performing business management functions. Each modifica
tion of a template in design time leads to a new version of the
template. In the run time, the versions may be persisted sepa
rately. The run time can thus make the template or different
versions of the templates accessible from applications. The
desired template can be retrieve by a special identifier.

In one embodiment, a template may have one or more
schemas. These schemas may be associated with different
message types, such as one for printing or output, one for VC
(visual composer), and business object adaption, which is a
way to build views on business object models. The ability to
have multiple schemas for a template removes prior limita
tions of using merges to obtain the different message types.

FIGS. 6A and 6B are block diagrams of a component view
during runtime. Business object logic triggers an outbound
agent 610 that generates a request to an output manager 615.
Output manager 615 will determine whether the request is for
a NetWeaver output service 620, and route it appropriately
for handling by that service after template resolution at 625,
fetching the data and rendering at 623. Output service 620
spools the requests at 622 until it can process them appropri
ately. Such processing may include sending a request to a
renderer 623, which forms appropriate abstractions of the
form from various vendor formats at 624 such as in an XML
or other format as previously discussed.

If output manager 615 determines that the request is not for
output service 620, the request is routed to a template reso
lution component at 625. Template resolution component 625
will find an appropriate template for use to perform the func
tion that appears to be desired by a user. For instance, a user
may not know the exact template to use, but does know that
they want to print a purchase order in English. Using this
information, the template resolution component 625 obtains
the proper template and forms a request to either a FTG
management component at 627 or template management
component at 628, both corresponding to business object
document templates.

In a further embodiment, requests may be generated by a
pattern user interface at 650. The requests may be to an output
manager print preview component 652 or an output manager
export component 653. These components generate requests
to a form generator 655. Form generator 655 then makes
requests to one or more other components. One Such request
may be made to a generic data provider component 657,
which in turn makes a request to outbound agent component
610. Form generator 655 may also make a request to the

US 8,806,357 B2

template resolution component 625, which handles such
request in the same manner as request from output manager
615. In one embodiment, form generator 655, operating in a
Java environment, may make a request to a second renderer
660, which also provides for abstraction of various different
types of documents as indicated at 665. In non-Java environ
ments, such requests may not be necessary. Renderer compo
nent 660 may also make a request to a template preprocessor
670, which can make a request to a common form configu
ration management component 675, or to the template man
agement component 628 as desired. In a further embodiment,
the form abstraction component, via an Adobe component
680 may make a request to an adobe document server 685,
which also makes request to template preprocessor compo
nent 670.

FIG. 7A is a detailed block diagram of an example business
object document template design 700 providing further detail
than FIG.1. Design 700 includes a document template UUID,
and a template group code at 710. The template group code is
a logical group around templates to assign them to a specific
logical area. It can be used in queries to retrieve all templates
within a template group. In one embodiment, the code list is
an extensible code list.
The document template 710 is viewed as a logical concept

with a unique identifier. In one embodiment, document tem
plate 710 has a name, which may be a short description visible
to the user. The description may be language dependent and
stored in a separate table. A description of the document
template 710 may be used to describe the purpose of the
template and is visible during business configuration. This
description may also be language dependent and stored in a
separate table. For one logical template, there may be variants
for languages, industries, countries, regions and versions as
indicated at node 720. Some example variants are shown in
table 730 in FIG. 7B. A variant may have an internal GUID,
which can be used to directly access the specific variant
version. This may be useful for reprinting documents if
needed. If some of the variants, such as industry, country, etc.,
are not used by an application, they can be left as empty or
null. One template is persisted for each variant in one embodi
ment. In further embodiments, a mime type, such as XDP.
XLS, plain/text, Xhtml, etc., may be provided in a variants
node.

Table 730 may be used by template resolution component
625 in FIG. 6 to find an appropriate template variant when a
user does not uniquely specify the variant to use. Using infor
mation, including context information about the user and the
user request, a best fit may be found in the table. If insufficient
information is provided to uniquely identify a variant, a fall
back sequence may be used to revert back to the template
having matching information deemed more important. This is
easily done if the templates are hierarchically arranged. For
example, if language is not specified, the fall back may be an
English language persisted template, or other predetermined
language template.

Design 700 may also include variant content, such as a
binary large object as indicated at node 740. In one embodi
ment, a schema is provided at 750. As previously noted, there
may be more than one schema for each variant. All Schemas
may be related to a main schema root node shown. Each
schema 750 has a file name, Schema content and a main
schema flag, which is set if the schema is the main schema.
A query application programming interface (API) may be

provided to provide several different queries. A GetAllTem
platesByTemplateContainer query may be used to retrieve all
templates in a template container. It may be used to fill a
dropdown list in a user interface so that the user can choose a

10

15

25

30

35

40

45

50

55

60

65

10
specific template. A GetDefaultTemplateInTemplate
Container query may be used to retrieve a default template
within a template container. In one embodiment, a filtered
association may be used in a query to retrieve a variant for a
template starting from the root node of the template at 710.
Language, industry, country, region may be used as inputs,
and a variant ID is provided as an output. In one embodiment,
a version is not part of the filter association query interface.
Versions may be retrieved directly for special use cases with
an internal shortcut ID.

FIG. 8 is a block diagram illustrating business configura
tion integration of schemas for document templates generally
at 800. A top level design time schema 810 is exposed interms
of business configuration activities, including various nodes,
such as a root node 815, variants 820, template 825 and
schemas 830. These nodes may be exposed to allow modifi
cation by the user to create additional variants off a base
template. In one embodiment, the template node 825 is not
included in the design time schema to avoid increasing Stor
age and work space size, as well as increasing load times.
The exposed nodes may be generated from a runtime tem

plate store business object document template indicated at
700, the same as shown at 700 in FIG. 7. The template 700 is
translated into AP/runtime schemas as indicated at document
template schema 840, template variants schema 845, tem
plate schema 850 and schemas 855. In one embodiment, one
schema 855 is provided for each table in the schema node
representation. Transformation rules may be applied to
expose the design time schema 810 and other nodes used
during business configuration. Such transformation may
transform the run time versions to provide an XML version
fur such use.

FIG. 9 is a block flow diagram 900 illustrating fine tuning
of templates during business configuration activities. From a
business adaptation catalog that provides multiple business
options 905,910 under a business topic 915, a user, such as a
customer may select one or more options. Option A at 905 is
indicated as selected at a checkbox 920.
The selection of option A results in a configuration work

space 925 having multiple templates associated with a
selected business configuration set loaded as indicated at 930
and 932 in a global fine tuning set 935. The loaded sets
correspond to sets assigned to the selected options.

Fine tuning may occur where a customer starts fine tuning
via a fine tuning context 940 this is assigned to a fine tuning
relevant option. Context 940 allows a customer to select tem
plates. An application specific business configuration view
945 will thus select templates from the workspace 925. From
the view 945, a customer can check and change the configu
ration data. A delta of the configuration made by the customer
may be saved in the global fine tuning set.

In one embodiment, application specific business configu
ration view 945 includes a template business configuration
reuse user interface as indicated at 1005 in FIG. 10. A global
fine tuning set is indicated at 1010, and comprises a represen
tation oftemplates by business configuration set and template
group. The templates are stored in an abstract format to allow
invoking of a correct editor.

In one embodiment, reuse user interface 1005 is invoked
with a template group as a context-filter for the global fine
tuning set in the business configuration workspace 925. The
templates selected by this context may be displayed in the
reuse user interface 1005. If a template is added anew, it exists
in the business configuration template reuse user interface
1005. It may still not be persisted in the business configura
tion workspace 925. Therefore, the user interface 1005 offers
a function to send a notification after something has changed

US 8,806,357 B2
11

along with the current ids and template names. When the
business configuration view data is saved, it also invokes a
save on the business configuration template reuse user inter
face.

Template content may be content of a runtime schema, so
it is not part of a business configuration schema. The reuse
user interface will have to deal with two separate schemas
internally (in addition to the schema of the Surrounding appli
cation business configuration view. In one embodiment, for
transaction reasons, all content for the reuse user interface
may be stored in a separate buffer within the reuse user
interface, because multiple business configuration sets of the
two schemas could be manipulated and potentially
re-changed. Such sets may be managed via hashed-object
lists in one embodiment.
The Surrounding business configuration view may call a

save function for its content and than call save in the reuse
user interface and afterwards may call a do save to commit the
changes to ensure that all changes are stored at the same time.
In one embodiment, the reuse user interface provides the
information if unsaved data is available and the Surrounding
business configuration view can ask the user if save should be
applied.

In further embodiments, a cancel request results in a rever
sion back of the changes and initializes the reuse user inter
face again from the workspace/global fine tuning content. In
one embodiment, XML template descriptions may be com
pressed prior to saving.
A template authoring architecture is shown generally at

1100 in FIG. 11. The architecture 1100 invokes editors for
authoring templates, as well as editing existing templates
using plug-ins corresponding to the native editor for the tem
plate being edited. An application business configuration
view 1105 includes the template business configuration reuse
user interface that may be used to invoke a modal dialog at
1110 so that a wrapper is provided for each template to be
edited. The modal dialog1110 launches a server page. Such as
a Java server page (JSP) at 1115 with a universal resource
locator (URL) plus SSO (single sign on). At 1120, authoring
is invoked through a host such as by ActiveX(R) type controls.
Such controls allow developers to create software compo
nents that perform a particular function or a set of functions.
Software may encapsulate functionality as controls so that the
functionality can be embedded in other applications. Such as
on web pages. In further embodiments, editing functions may
be seamlessly integrated in a host application.

Several different authoring abstractions are provided for
native programs, such as Adobe Designer, Excel, and many
word processing programs indicated at 1125, 1130 and 1135
respectively. Data from the authoring abstraction 1120 may
be passed back to the JSP page at 1115 and may be tempo
rarily stored at a temp store at 1140. A returned storage ID
may be provided by the temp store 1140 as indicated at 1145.
A portal event may be invoked as indicated at 1150 from JSP
page 1115, and the dialog may be closed as indicated at 1155.
Template business configuration reuse user interface 1005
may access the temp store 1140 to retrieve data corresponding
to the edited template. A save may be invoked at 1160, and the
template business configuration set data may be saved to
configuration workspace 925. In embodiments where com
munication is permitted back and forth between external
components, direct back eventing or notification to the main
and original application user interface may be used in place of
the temp store 1140.

In one embodiment, template authoring as illustrated at
1100 is a business configuration view reuse plug-in, which
may be plugged into an existing business configuration view.

10

15

25

30

35

40

45

50

55

60

65

12
There are at least three modes for different use cases. In a first
mode a list reuse user interface illustrated at 1200 in FIG. 12
provides a list of templates within a container or a fixed
passed list of template-ids is provided. An overview of the
templates may be provided in the list mode user interface
1200, and templates or language versions may be edited,
added, or deleted as indicated at 1205,1210 and 1215 respec
tively. Different regions and industry variants of the templates
may also be added or deleted in various embodiments. A
language selector 1220 is provided in one embodiment, along
with region 1225 and industry 1230 selector lists from which
template variants and context attributes may be selected.

In a further embodiment, a single view mode of one tem
plate instance may be provided to support BTM cases, fax
coverletters for output management or other situations where
a list of templates is not required but the application context
knows already of one template. In a third mode, a list of
template and single edit details for text Support is provided.
Multiple templates in a template group may be listed to allow
in place editing. In these different modes, blank templates
may be provided for copying and schema storage. Existing
templates may be edited and stored as variants, or as new
templates.

In one embodiment, the business configuration template
authoring architecture or framework (TAF) provides a
mechanism to register plug-in authoring user interfaces for
specific mime-types. The plug-ins may contain controls. Such
as ActiveX controls to embed native design tools, such as
Adobe Designer, Excel, Word, etc. For a plug-in, TAF pro
vides a base implementation with functions to invoke modal/
dialog 1110 with parameters from the generic TAF business
configuration view to pass templates, schemas, etc. Further,
communications back to the generic TAF business configu
ration view 1105 are provided via events to pass changes to
templates and schemas back. In one embodiment, the func
tions are JSP based, allowing the use of such controls.

Template authoring using Adobe plug-ins inherits from the
TAF plug-in base implementation. Multiple schema files may
be passed to the Adobe Designer and hook in to close/save of
the Adobe Designer to return changed templates. With respect
to template authoring using Excel, uploads and downloads in
the generic TAF business configuration view 1105 are pro
vided. Automation of Excel is similar to the Adobe TAF
plug-in, as is automation of text based editors such as Word.

Templates use schemas, which may be considered as bind
ing information which describes how placeholders in a docu
ment template are replaced by real business object data for a
language variant of the document template. The schemas take
into account the organization of the database and identify how
to retrieve data for the placeholders. In one embodiment, the
data is stored in business objects in a backend that utilizes
multi-node hierarchical deep schemas to identify fields in a
database. The deep Schema is hierarchical in nature, and
works well at the database level to access data. However,
when creating templates in a design time environment, Such
deep Schemas are not conducive to being easily understood by
users, and also may have structures which vary with different
database implementations.

In one embodiment, a schema transformation is utilized to
convert from the deep schema to a flat schema and back. The
flat schema may be used in the design time environment,
while the deep Schema remains intact for the database, or
what is referred to as the back end of a business management
system. An example of a schema builder that provides schema
transformations is illustrated in block format 1300 in FIG.13.
A read service 1305 and a write service 1310 are used to read
and write data to and from a backend database. The read and

US 8,806,357 B2
13

write services 1305 and 1310 work with deep schemas as
indicated at actions such as response 1315, request 1320 and
confirmation 1325. In one embodiment, a root level node has
three next levels, A, B and C. Node C has three further nodes
at yet a further level, labeleda, b and c. Thus, the deep schema
structure in this simple example has three levels, a root, and
two deeper levels.

Several XML transformation modules 1330, 1335 and
1340 are coupled to the actions for providing transformation
back and forth between a flat schema representation 1350.
and the deep Schema structures. The transformation modules
are labeled as XSLT (Extensible Stylesheet Language Trans
formation) modules, and operate to track the path in the
original deep Schema, and exposes “a” as belonging to 'C'
and is a Sub element. Thus whena deep schema is transformed
to a flatschema, metadata is tracked to expand the flatschema
back out to the deep schema. The flat schema may be easily
converted to an XML map as indicated at 1355 and to various
other formats for use in editors, such as a spreadsheet 1360,
allowing users to view the data in a very user friendly manner,
and as a resulting document produced from a template may
appear.

In one embodiment, response action 1315 interfaces with
read service 1305 to retrieve data from a database using a deep
schema. The data is then transformed at 1330 to the flat
schema. Similarly, when a write request 1320 is processed,
the flat schema is transformed into the deep schema at 1335,
and upon confirmation 1325 by the write service 1310, the
deep schema is transformed back into the flat schema at 1340.

Schema builder 1300 operates to build a simplified flat
schema out of a potentially complex enterprise service
repository business object model for use in design time. Such
complex object models can be very difficult to comprehend
by ordinary users. Vertical schema reduction allows the inclu
sion or exclusion of associations, nodes and data structures of
the complex object model, while keeping track of metadata to
enable conversion back and forth. In one embodiment, the
data is pushed up to consolidate all the levels on a single node
level. A horizontal schema reduction allows the simplifica
tion of complex nested structures. The results of the schema
transformations may be provided as re-usable net compo
nents in one embodiment. Hooks may also be provided for
applications to enrich schema nodes with custom markups.
The generated Schemas may be used by a generic data pro
vider to retrieve business object instances at run time.
A schema building process is illustrated in flow chart form

at 1400 in FIG. 14. At 1405, a business object model is
selected. In one embodiment the business object structure is
visualized, illustrating internal and external associations to
enhance the visual representation at 1410. A top level of the
data structure definition of the business object nodes may be
included in the visual representation. Nodes may be selected
for inclusion at 1415. As indicated in FIG. 13, in vertical
schema building, each node of the visual representation of a
business object node is associated with a checkbox. Only
checked nodes are included in the custom schema in one
embodiment. With respect to horizontal schema building,
nested complex structures may be collapsed by virtually
inserting themata higher level of the business object structure
as indicated at 1420. Such an operation is also indicated at
request 1320 in FIG. 13. Cardinality constraints may be auto
matically enforced. Meta data is kept as indicated at 1425 to
identify where data was in the original deep schema tree
structure. The schema building process 1400 assists in opti
mization and providing a simplified view of the data.

In one embodiment, XSD (XML schema definitions) anno
tations are used to deliver the transformation. Other notations,

5

10

15

25

30

35

40

45

50

55

60

65

14
Such as SAP notations may be used to mark the transforma
tions as indicated in FIG. 15 at 1500 and FIG. 16 at 1600,
which are example schema definitions. The transformation
may be generated at run time. In further embodiments, a
creator of the schema may mark the transformation. For
simple scenarios, Such markups may be considered in normal
services, such as read and write services 1305 and 1310
respectively in FIG. 13.

In FIG. 15 at 1500, an element, “Customer' is shown for a
flat to deep transformation. A root in a target is identified at
1505, and a destination element is indicated at 1510 at the
same level as the root. In FIG.16 at 1600, an element, “Tele
phonel is shown for a flat to deep transformation to A, which
is a child node of Telephone. The destination, which may be
at a different level, is identified at 1605.

FIG. 17 provides some screen shots illustrating example
user interactions to transform source XML based on trans
form notations in the XSD, such as those illustrated in FIGS.
15 and 16. The output in one embodiment is the transformed
XML at 1705, resulting from a user selecting the XSD and
source XML at 1710 and pressing a process button at 1715.
This is just one example interface illustrating simple selection
of files and initiation of processing. Many other interfaces,
including simple command lines or drag and drop interac
tions may be used in further embodiments.
The Abstractis provided to comply with 37 C.F.R.S 1.72(b)

to allow the reader to quickly ascertain the nature and gist of
the technical disclosure. The Abstract is submitted with the
understanding that it will not be used to interpret or limit the
Scope or meaning of the claims.

What is claimed is:
1. A template authoring system comprising:
a computer system executing an application business com

ponent view that provides an interface to a user to select
templates, wherein the templates are business configu
ration objects stored on a storage device that include
variants, variant content, and Schemas identifying infor
mation in a database corresponding to placeholder vari
ables in the variant content to create customized docu
ments, and wherein the templates are organized as nodes
organized in accordance with a multi-node hierarchical
deep Schema:

the computer system executing a dialog that provides a
wrapper for each template to be edited by launching a
server page; and

the computer system executing a host using controls to
provide authoring abstractions for selected authoring
applications to edit the templates while abstracting the
underlying multi-node hierarchical deep Schemato a flat
Schema and converting the flat schema to a markup
language map Such that the template appears as multiple
documents it will produce when customized using infor
mation in the database, wherein abstracting the deep
Schema to the flat schema includes collapsing a plurality
of nodes of the multi-node hierarchical deep schema by
inserting the nodes at a higher level of the hierarchical
deep Schema.

2. The template authoring system of claim 1 wherein the
host controls comprise web page embedded controls.

3. The template authoring system of claim 1 and further
comprising a server page launched from the dialog that
invokes the host.

4. The template authoring system of claim 3 and further
comprising a temporary storage device that stores data from
the server page.

US 8,806,357 B2
15

5. The template authoring system of claim 4 wherein the
temporary storage device is coupled to the application busi
ness component.

6. The template authoring system of claim 5 and further
comprising a configuration workspace to which stores data
from the temporary storage device.

7. The template authoring system of claim 6 wherein the
server page invokes a portal event when editing is complete to
close the dialog, retrieve data from the temporary storage
device and save template data to the configuration workspace.

8. The template authoring system of claim 1 plug-in
wherein the host provides authoring abstractions by provid
ing active X controls to embed native design tools.

9. The template authoring system of claim 8 wherein the
native design tools includespreadsheet editors, word process
ing editors and pixel based editors.

10. A computer implemented method of authoring tem
plates in a business management system, the method com
prising:

providing an interface to a user to select templates via an
application business component view, wherein the tem
plates are business configuration objects stored on a
storage device that include variants, variant content, and
Schemas identifying information in a database corre
sponding to placeholder variables in the variant content
to create customized documents, and wherein the tem
plates are organized as nodes organized in accordance
with a multi-node hierarchical deep schema; and

providing authoring abstractions for selected authoring
applications to edit the templates via a host using con
trols while abstracting the underlying deep schema to a
flat schema such that the template appears as documents
it will produce when customized, wherein abstracting
the deep Schema to the flat schema includes collapsing a
plurality of nodes of the multi-node hierarchical deep
Schema by inserting the nodes at a higher level of the
hierarchical deep Schema.

11. The method of claim 10 wherein the host controls
comprise web page imbedded controls.

10

15

25

30

35

16
12. The method of claim 10 and further comprising a

launching a server page to invoke the host.
13. The method of claim 12 and further comprising storing

data from the server page in a temporary storage.
14. The method of claim 13 wherein the server page

invokes a portal event when editing is complete to close the
dialog, retrieve data from the temporary storage and save
template data to a configuration workspace.

15. The method of claim 10 wherein the host provides
authoring abstractions by providing active X controls to
embed native design tools.

16. The method of claim 15 wherein the native design tools
include spreadsheet editors, word processing editors and
pixel based editors.

17. A non-transitory computer readable storage device
having instructions that when executed by a computer cause
the computer to perform a method of authoring templates in a
business management system, the method compromising:

providing an interface to a user to select templates via an
application business component view, wherein the tem
plates are business configuration objects stored on a
storage device that include variants, variant content and
Schemas identifying information in a database corre
sponding to placeholder variables in the variant content
to create customized documents, and wherein the tem
plates are organized as nodes organized in accordance
with a multi-node hierarchical deep schema; and

providing authoring abstractions for selected authoring
applications to edit the templates via a host using con
trols while abstracting the underlying deep schema to a
flat schema Such that the template appears as documents
it will produce when customized, wherein abstracting
the deep Schema to the flat schema includes collapsing a
plurality of nodes of the multi-node hierarchical deep
Schema by inserting the nodes at a higher level of the
hierarchical deep Schema.

k k k k k

