
(19) United States
USOORE41922E

(12) Reissued Patent (10) Patent Number: US RE41,922 E
Gough et al. (45) Date of Reissued Patent: Nov. 9, 2010

(54) METHOD AND APPARATUS FOR (56) References Cited
PROVIDING TRANSLUCENT IMAGES ON A
COMPUTER DISPLAY U.S. PATENT DOCUMENTS

4,555,775 A * 1 1/1985 Pike 715,790
(75) Inventors: Michael L. Gough, Ben Lomond, CA 4,686,522 A 8, 1987 Hernandez

(US); Joseph J. MacDougald, Saint (Continued)
Petersburg, FL (US); Gina D. Venolia,
Bellevue, WA (US); Thomas S. Gilley, FOREIGN PATENT DOCUMENTS
New York, NY (US); Greg M. Robbins,
Issaquah, WA (US); Daniel J. Hansen, E. . ck 3.
Jr., Georgetown, TX (US); Abhay EP O635779 1, 2001
Oswal, Rancho Santa Fe, CA (US)

OTHER PUBLICATIONS

(73) Assignee: Apple Inc., Cupertino, CA (US)

(21) Appl. No.: 10/163,748

(22) Filed: Jun. 5, 2002

(Under 37 CFR 1.47)

Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,072,489

Issued: Jun. 6, 2000
Appl. No.: 08/130,079
Filed: Sep. 30, 1993

U.S. Applications:
(63) Continuation-in-part of application No. 08/060,572, filed on

May 10, 1993, now Pat. No. 5,638,501.

(51) Int. Cl.
G06T IS/00 (2006.01)

(52) U.S. Cl. 715/803; 715/762; 715/781;
34.5/629

(58) Field of Classification Search 345/418,
345/419, 629; 715/204, 762, 781, 803: 395/133-135,

395/155–158, 160
See application file for complete search history.

92

RAM overlay screen buffer

IBM Technical Disclosure Bulletin, “Transparent Window
Selection”, vol. 30, No. 11, Apr. 1988, pp. 268-270.*

(Continued)
Primary Examiner Phu KNguyen
(74) Attorney, Agent, or Firm Wong, Cabello, Lutsch,
Rutherford & Brucculeri LLP

(57) ABSTRACT

A method and apparatus is described for producing a trans
lucent image over a base image created on the display Screen
of a computer system by a selected first application program,
and conducting image operations either on the base image
created by the selected application program with reference
to the translucent image produced, or conducting image
operations on the translucent image with reference to the
base image of the first application program. The first appli
cation program runs on a central processing unit (CPU) of a
computer system to produce a base image, and another
application program referred to as the overlay program is run
to produce the translucent image such that portions of the
base image which are overlapped by the overlay image are at
least partially visible through the translucent image. There is
also a mechanism for blending the first video data and the
second video data to produce a blended image on the screen
assembly.

7 Claims, 34 Drawing Sheets

WRAM scree buffer

US RE41,922 E
Page 2

U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

4,783,648 A * 1 1/1988 Homma et al. 715,794 Anonymous, Method to Allow. Uers to Select Transparent
4,823,281 A 4/1989 Gough Color for Windows, Mar. 1993, Research Disclosure, pp.
4,827,253 A 5, 1989 Maltz 1 3.
4,868,765 A 9, 1989 Diefendorff Bier et al., “Toolglass and Magic Lenses: The See Through
4.914,607 A * 4/1990 Takanashi et al. 715,790 Interface. 1993, Computer Graphics Proceedings, Annual
4.954,970 A 9, 1990 Walker Conference Series, pp. 73–80.
4.959,803 A * 9/1990 Kiyohara et al. 715/791 Foley, J.D., Van Dam, A., Feiner, S.K., Hughes, J.F., Com
4,974,196 A * 1 1/1990 Iwami et al. T15,804 puter Graphics: Principles and Practice, 1990, pp. 754–758,
4,992,781 A 2f1991 Iwasaki 909–910, Second Edition, Addison Wesley Publishing
5,119,476 A 6, 1992 Texier 715,809 Company, Reading, Massachusetts.
5,124,691 A 6, 1992 Sakamoto et al. 71.5/799 Hearn, Donald and Baker, M. Pauline, Computer Graphics,
5,185,808 A 2, 1993 Cok 1994, pp. 508–511, Second Edition, Prentice Hall, Inc.,
.5% ck y E. 71.5/729 Englewood Cliffs, New Jersey.

4 w- artlett . Vince, John, Computer Animation, 1992, pp. 134, 314. Add
5,283,867 A 2/1994 Ayley - ison-Wesley Publishing Company, Reading, Massachusetts.
5,307.452 A 4, 1994 Hahn Angel, Edward, Interactive Computer Graphics: A Top
5,313,227 A 5, 1994 Aoki D A h with OpenGL, 1997 57 58. 214 215 5,313,571 A 5/1994 Hirose Down Approach with OpenGL. pp. 1-3s. 4144 13.
5.351,067 A * 9/1994 Lumelsky et al. 34556 412–414, Addison-Wesley Longman, Inc., Reading, Massa
5.425,137 A 6/1995 Mohan chusetts.
5,425,141 A 6/1995 Gedye Glassner, Andrew S., Editor, Graphics Gems, 1990, pp.
5,463,726 A 10, 1995 Price 397–399, Academic Press, Inc., San Diego, California.
5,463,728 A * 10/1995 Blahut et al. 345,807 Hiroshi Ishii and Kazuho Arita, "ClearFace: Translucent
5,467,441 A 11/1995 Stone Multiuser Interface for TeamWorkStation.” in ACM Sigchi
5,467,443 A 1 1/1995 Johnson Bulletin, Oct. 1991, pp. 67–68, vol. 23, No. 4, ACM, New
5,469,540 A 11, 1995 Powers York, New York.
5,469,541 A 1 1/1995 Kingman Douglas C. Engelbart and William K. English, “A Research
5,475,812 A 12/1995 Corona 99 Center for Augmenting Human Intellect AFIPS Confer 5,581,670 A 12, 1996 Bier
5,590,265 A 12/1996 Nakazawa ence Proceedings of the 1968 Fall Joint Computer Confer
5,596,690 A 1, 1997 Stone ence, Dec. 1968, pp. 395 410, vol. 33, San Francisco, Cali
5,617, 114 A 4, 1997 Bier fornia. Reprinted by Thompson Book Company, Washington
5,638,501 A 6/1997 Gough et al. 345,639 D.C.
5,651,107 A 7, 1997 Frank et al. 345,768 Hiroshi Ishii and Kazuho Arita, "ClearFace: Translucent
5,652,851 A 7, 1997 Stone Multiuser Interface for TeamWorkStation.” Proceedings of
2. A RE S. ECSCW-91, Sep. 1991, pp. 163–174, Amsterdam, The

- w UXO

5,818.455 A 10, 1998 Stone Nethnds Editors L. Bannon, M. Robinson and K.
5,831,615 A * 1 1/1998 Drews et al. 345,768
5,949,432 A 9/1999 Gough * cited by examiner

U.S. Patent Nov. 9, 2010 Sheet 2 of 34 US RE41,922 E

LAUNCH
APPLICATION
PROGRAM

Figure 2
APPLICATION
DISPLAYS AN

IMAGE

PROCESS
CURSOR

OVERLAY TASK

Y
TRANS
LUCENT OPAQUE
REQUEST? REQUEST?

50

MAKE IMAGE
OPAQUE

MAKE IMAGE
TRANSLUCENT

52

U.S. Patent Nov. 9, 2010 Sheet 3 of 34 US RE41,922 E

File Edit &

Figure 3b

U.S. Patent Nov. 9, 2010 Sheet 4 of 34 US RE41,922 E

Fife Edst

Figure 3d

U.S. Patent Nov. 9, 2010 Sheet 5 of 34 US RE41,922 E

File Edit (2) &

78
2222222, .

Figure 3e

Figure 3f

U.S. Patent Nov. 9, 2010 Sheet 6 of 34 US RE41,922 E

79

Figure 3i

U.S. Patent Nov. 9, 2010 Sheet 7 of 34 US RE41,922 E

(-32,767; -32,767) 80

OPERATING
SYSTEM
SCREEN

A OVERLAY

(O', 0') ? SCREEN

(+32,767; +32,767)

SCREEN

85 20

Figure 4

60

U.S. Patent Nov. 9, 2010 Sheet 8 of 34 US RE41,922 E

150

RECORD REACTIVE OR
NON-REACTIVE STATE

MOVE IMAGE
CONTROL FROM

SYSTEM SCREEN TO
OVERLAY SCREEN

BLEND SYSTEM
SCREEN AND

OVERLAY SCREEN
INTO VRAM

DISPLAY CONTENTS OF
VRAM ON PHYSICAL
DISPLAY MONTOR

Figure 5a

U.S. Patent Nov. 9, 2010 Sheet 9 of 34 US RE41,922 E

Y a is as a wr w r w is a w r A w w rv w

Frate Rect
Routine

Overlay Shield
Cirst atc.

..
Sw Suro Routine O3

...r.l.
i Shield Cursor
Rutine

U.S. Patent Nov. 9, 2010 Sheet 10 of 34 US RE41,922 E

10

/
INTERCEPT CALL

TOSHIELD 123
CURSOR ROUTINE

STORE COORDNATES
OF SHIELD RECTANGLE
FOR FUTURE BLENDING

OPERATION

124

FIRST TIME
DRAWING TO
OVERLAY

26 CREATE OVERLAY

127 COPY VRAM
SCREEN TO RAM
SCREEN BUFFER

128 REDIRECT FUTURE
PSS; 3SIEEP DRAWING OUTPUT

INTENDED
(STEP 107, FIG 5b) FOR VRAM TO RAM

Figure 5c

U.S. Patent Nov. 9, 2010 Sheet 11 of 34 US RE41,922 E

3.

EXECUTE AN APPLICATION
PROGRAM

EXECUTE THE OVERLAY
UTILITY

34

32 Figure 6a
133

Figure 6b

DISPLAY ANOVERLAY MAGE ON
THE SCREEN SUCH THAT IMAGES
ON THE SCREEN WHICH IT MAY

OVERLAP CAN BE SEEN
THROUGH THE OVERLAYIMAGE

138

INTERCEPTSCREEN INPUTS
WHICH CONTACT THE

OVERLAY IMAGE & PROCESS
THE SCREEN INPUTS

139

UPDATE ACTIVE APPLICATION
PROGRAMACCORDING TO
PROCESSED SCREEN INPUTS

140

U.S. Patent Nov. 9, 2010 Sheet 12 of 34 US RE41,922 E

112

INTERCEPT SHOWCURSOR 142
ROUTINE CALL

RECALL SHIELD
RECTANGLE COORDNATES

CALL BLENDING ENGINE

PASS CONTROL TO
SHOWCURSOR
ROUTINE CALL

144

146

148

Figure 7

U.S. Patent Nov. 9, 2010 Sheet 13 of 34 US RE41,922 E

14

/
DIVIDE SHIELD RECTANGLE

INTO INDIVIDUALLY
BLENDABLE UNITS (1-32. PDXELS)

S4

156
RETRIEVE RAM SCREEN BUFFER
DATA WITHIN SHIELD RECTANGLE

FOR ONE BLENDABLE UNIT

RETRIEVE RAM OVERLAY
SCREEN BUFFER WITHIN
SHIELD RECTANGLE FOR
ONE BLENDABLE UNIT

BLEND RETRIEVED DATA - 160
TO FORM BLENDED DATA

WRITE BLENDED DATA
TO VRAM

ALL BLENDABLE
UNITS DONE

PASS CALL TO SHOW 66
CURSORROUTINE

Figure 8

U.S. Patent Nov. 9, 2010 Sheet 14 of 34 US RE41,922 E

Figure 8a

| | | |2 Ns Figure 8c
& N 1

2 Figure 8d 1
N 1

SI -1

U.S. Patent Nov. 9, 2010 Sheet 15 of 34 US RE41,922 E

T. System Tigure 9
1.

Application 22
Prograin -- i74 YY
Y

overlay Shield
Cursin Pikit Pitirate

weeesserra-assessw

N '.
a-... ---....a.....

se Shickyrsor S.- Show curso
Rotre Routine

U.S. Patent Nov. 9, 2010 Sheet 16 of 34 US RE41,922 E

92

VRAM scree buffer

RAM overlay screen buffer

Tigure 10

U.S. Patent Nov. 9, 2010 Sheet 17 of 34 US RE41,922 E

(E) 2O Figure 11
186

INTERCEPT CALL TO SHIELD 212 /
CURSORROUTINE

STORE COORDNATES OF
SHIELD RECTANGLE FOR 214

FUTURE BLENDING

26 28

DRAWING TO
OVERLAY

CREATE
OVERLAY 220
BUFFER

DETERMINE WHICH PAGES
OF VRAM ARE TOUCHED
BY OVERLAY DRAWING

OPERATION 222

COPY DATA FROM VRAM
TO RAM FOREACH 224
TOUCHED PAGE

REDIRECT DRAWING
TO RAM FOREACH
TOUCHED PAGE

226

PASS CALL TO
SHIELD CURSOR

ROUTINE

RECORD BUFFER
OVERFLOWERROR

IF ANY
228

U.S. Patent Nov. 9, 2010 Sheet 18 of 34 US RE41,922 E

I-II
W.
f

S 3

S. s n

t| II
N É :

i-YI

U.S. Patent Nov. 9, 2010 Sheet 19 of 34 US RE41,922 E

na
V
r

|U"
IWV

S.

|
N.

i-YI

III
N
É

U.S. Patent Nov. 9, 2010 Sheet 20 of 34 US RE41,922 E

190

/

DIVIDE SHIELD RECTANGLE INTO
COMPONENT RECTANGLES THAT
INTERSECT REDIRECTED PAGES

OF DISPLAY MEMORY

248

BLEND COMPONENT
RECTANGLE

252
ALL

COMPONENT
RECTANGLES

DONE)

U.S. Patent Nov. 9, 2010 Sheet 21 of 34 US RE41,922 E

Figure 14
2O2

INTERCEPTSYSTEMTASK CALL 258

MOVE REDIRECTED PAGES BACK
TO VRAM WHEN OVERLAY FOR 260

SAID PAGE(S) IS CLEAR

BUFFER YES USE NEWLY CLEARED
OVERFLOW RAM PAGESTO 264
RROR FLAG2. RECONCLE ERROR

3. 266
ALLOCATE
ADDITIONAL
MEMORY

268

CALL
SYSTEM
TASK 270

ALLOCATIO
ERROR2

NO

GE) 278 USE NEWLY 272
ALLOCATED PAGESTO
RECONCLE ERROR

U.S. Patent Nov. 9, 2010 Sheet 22 of 34 US RE41,922 E

282

Figure 15a Figure I5b

U.S. Patent Nov. 9, 2010 Sheet 23 of 34

MOVE IMAGES FROM 402
OVERLAY SCREEN
AND SYSTEM SCREEN

BLEND SYSTEM
SCREEN AND 404

OVERLAY SCREEN
INTO VRAM

DSYSONTENSOF-4 VRAM ON PHYSICAL O6
DISPLAY MONITOR

Figure 16

US RE41,922 E

U.S. Patent Nov. 9, 2010 Sheet 24 of 34 US RE41,922 E

420

REACTIVE
MODE)

IS THE
CURSOR WITHN
THE BOUNDS OF
AN OVERLAY

IMAGE

SET CURSOR TO BE
ON THE SYSTEM

SET CURSORTO BE
ON OVERLAY

SCREEN

Figure 17

US RE41,922 E Sheet 25 of 34 Nov. 9, 2010 U.S. Patent

US RE41,922 E Sheet 26 of 34 Nov. 9, 2010 U.S. Patent

bb 9 Z.

$$$

Sasaas 383&

s
CD

2.

US RE41,922 E

cy
wa
CN

ap

Sheet 28 of 34 Nov. 9, 2010 U.S. Patent

C

S.

e
CD

<

US RE41,922 E

O
v

CN

o
L

~~~~ ~~~~~sºxae 

Sheet 29 of 34 Nov. 9, 2010 

• • • • • • • • • • 

××××××× 

U.S. Patent 

• • • • • • • • •: 

  



US RE41,922 E Sheet 30 of 34 Nov. 9, 2010 U.S. Patent 

s 
CD 

4. 

• • • • • • • • • • • • • •* • ***** 

**** 
9 

  



Qu?nON JOSJu0 AOUIS 

US RE41,922 E 

?OJBA JOS InD 

0! I Ip19ILIS K??19AO 

U?O?B&H 

IOS.In.C. | _ _ _ _ , - -\ - - - - -/- - - - - - - - - - - - - - - - - - - - - - - -; 

Sheet 31 of 34 Nov. 9, 2010 

- - -) – – – – – + = = = * * = = = = = ** * * 

ULIGIÃOJA 

U.S. Patent 

VO 
ON 

s 

E 
92 

  

  

  

  

  

  

  

  



Z8 I I 

US RE41,922 E U.S. Patent 

cr) 
CN 

so 
H 

  

  

  

  

  

  

  

  





U.S. Patent Nov. 9, 2010 Sheet 34 of 34 US RE41,922 E 

1302 

68030 Bus N D(31:24) 1308 
A D D(31:16) 16 VRAM 

* 
VRAM 

SD(31:24 

A(18:0) D(23:16) 
CSC 

SIZC1:0 1307 SD(23:16 
DSACK(1:0)/ 128KX 8 

1304 
1306 

SD(31:16) 
e LCD Control & Data 

Fig. 25 1312 B/W or Color LCD 
(Prior Art) 
(New) 

1302 With Overlay VRAM and Blending 
N (4 bits main buffer + 4 bits overlay) 

68030 Bus D(3 :24) 1 308 
SD(31:28) 

VRAM 

128KX8 SD(23:20) 

30 o SZ) 97. MA SD(27:24) 
SZO DSACK 128KX 8 
5SACRi SD(19:16) 1304 1310 

SD(31:16) 
LCD Control & Data 

1312 B/W or Color LCD 

  



US RE41,922 E 
1. 

METHOD AND APPARATUS FOR 
PROVIDING TRANSLUCENT IMAGES ON A 

COMPUTER DISPLAY 

Matter enclosed in heavy brackets appears in the 
original patent but forms no part of this reissue specifica 
tion; matter printed in italics indicates the additions 
made by reissue. 

CROSS-REFERENCE TOIA RELATED 
APPLICATION RELATED APPLICATIONS 

This application is a broadening reissue of U.S. Pat. No. 
6,072,489, issued on Jun. 6, 2000. U.S. Pat. No. 6,072,489 is 
a continuation-in-part of patent application Ser. No. 08/060, 
572, filed May 10, 1993 under the title “Method and Appa 
ratus for Displaying an Overlay Image.” now U.S. Pat. No. 
5,638,501 on behalf of Gough et al. and assigned to the same 
assignee as herein, the disclosure of which is hereby incor 
porated herein by reference in its entirety. Priority rights and 
claims of benefit based upon this earlier-filed patent applica 
tion are claimed. More than one reissue application has been 
filed for the reissue of U.S. Pat. No. 6,072,489. The reissue 
applications are application Ser: Nos. 10/163,748 (the 
present application), and 12/437,500 a continuation reissue 
of U.S. Pat. No. 6,072,489. 

BACKGROUND OF THE INVENTION 

This invention relates generally to computer systems, and 
more particularly to computer systems utilizing graphical 
user interfaces. 

Graphical user interfaces or GUI are becoming increas 
ingly popular with computer users. It is generally accepted 
that computers having graphical user interfaces are easier to 
use, and that it is quicker to learn an application program in a 
GUI environment than in a non-GUI environment. 
A relatively new type of computer which is well suited for 

graphical user environments is the pen-based or pen-aware 
computer system, hereinafter generically referred to as a 
“pen computer system.’ “pen computer or the like. A pen 
based computer system is typically a small, hand-held com 
puter where the primary method for inputting data includes a 
“pen' or stylus. A pen-aware computer system is one which 
has been modified to accept pen inputs in addition to tradi 
tional input methods. 
A pen computer system is often housed in a relatively flat 

enclosure, and has a dual-function display assembly which 
serves as both an input device and an output device. When 
operating as an input device, the display assembly senses the 
position of the tip of a stylus on the viewing screen and 
provides this positional information to the computer's cen 
tral processing unit (CPU). Some display assemblies can 
also sense the pressure of the stylus on the Screen to provide 
further information to the CPU. When operating as an output 
device, the display assembly presents computer-generated 
images on the screen. 

Typically, graphical images can be input into the pen com 
puter systems by merely moving the stylus across the Surface 
of the screen, i.e. making a "stroke' on the screen. A stroke 
can be defined as the engagement of the screen with a stylus, 
the movement of the stylus across the screen (if any), and its 
Subsequent disengagement from the screen. As the CPU 
senses the position and movement of the stylus, it can gener 
ate a corresponding image on the screen to create the illusion 
that the stylus is drawing the image directly upon the screen, 
i.e., that the stylus is “inking an image on the screen. With 
Suitable recognition Software, text and numeric information 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
can also be entered into the pen-based computer system in a 
similar fashion. Methods for recognizing the meaning of 
“ink’ are well known to those skilled in the art. 

Pen computer systems tend to discourage the use of a 
keyboard as an input device. Most of the software written for 
pen computers is designed to function well with pen strokes 
and by "tapping the stylus against the computer screen in 
defined areas. A “tap' is a stroke which does not move sub 
stantially across the screen. In addition, a primary feature of 
many pen computer systems is their portability, which a 
keyboard, if included with the pen system, would seriously 
degrade. 

In some instances, however, the need arises on a pen 
based computer for data entry in a keyboard-like fashion. 
For example, the pen-based computer might be running a 
non-pen aware program that normally accepts characters 
from a keyboard. Also, in some cases, the only way to enter 
data efficiently might be to use a keyboard-like input device. 

In particular, a need might arise on a pen computer to 
enter command or character that is normally or most effi 
ciently executed with keystrokes on a keyboard-based sys 
tem. In some pen computer systems, such keyboard-like 
entry of commands can be accomplished using a keyboard 
image displayed on the screen of the pen computer. The 
keyboard image resembles a standard keyboard, and keys are 
selected using a stylus. Most keyboard commands and char 
acters can be entered in this fashion. Another alternative is to 
provide a recognition window for inputting handwritten data 
which is then recognized and sent to an application program 
as if it were typed from a keyboard. A problem with all such 
input approaches is that they occupy valuable screen space, 
which is often very limited on pen computer systems. 
The efficient use of the available display screen space for 

observation of images and windows containing images, 
while particularly pronounced for pen computer systems, is 
common to all computer systems which display information 
or images to the user. No matter how large a particular dis 
play may be, a particular user will be tempted to attempt to 
display more information on the screen than can effectively 
be handled. 

Images or information presented on a display Screen are 
typically presented as opaque images, i.e., images "behind 
a displayed image are obscured. This is the case with display 
windows which are layered on a particular screen, with the 
uppermost window image partially or completely blocking 
the view of the lower windows. For two windows to be 
capable of interaction, it is preferable that the user be able to 
observe both images at the same time, or at close to the same 
time. 

SUMMARY OF THE INVENTION 

The present invention provides for the selective creation, 
establishment, and processing of opaque and translucent 
images and opaque and translucent windows independently 
or in connection with other translucent images or a base 
opaque image provided on a display Screen of a computer 
system. The provision of the translucent image of the present 
invention makes it possible to optimize space usage of the 
computer Screen itself. Further, the invention also advanta 
geously allows a translucent image to be formed proximate 
to and with specific reference to particular elements of 
opaque application images beneath it. 
The invention further includes a method for providing a 

translucent image on the screen of a computer system 
including the steps of: 1) displaying a translucent image on 
the screen Such that at least one opaque image can be seen 



US RE41,922 E 
3 

through the translucent image, and 2) conducting operations 
with respect to either the translucent image or upon opaque 
images on the screen of the computer system. Both translu 
cent and opaque image fields can be employed, which can 
each be completely blank without any features or elements. 
Particular operations upon images are considered to be 
image operations in regions or domains which are defined to 
be either translucent or opaque regions. Further, the translu 
cent image involved may be a so-called "overlay image 
produced by a computer implemented process of the present 
invention referred to herein as the “overlay utility.” 

The present invention additionally provides a transparent 
overlay image over a base image provided on a screen of a 
pen computer system. The overlay image can serve as an 
input device for application programs without obscuring 
images made on the screen by the application programs. The 
provision of the transparent overlay image of the present 
invention makes it possible to use much or all of the screen of 
the pen computer system for input. It also advantageously 
allows controls in the overlay image to be formed proximate 
to specific elements of application images beneath it. 
A method for providing an overlay image on the screen of 

a computer system in accordance with the present invention 
includes the steps of: 1) Displaying a base image on the 
screen of the computer system, and 2) displaying an overlay 
image on the screen such that overlapped portions of the 
application image can be seen through the overlay image. 
Preferably, the base image is produced by an unmodified 
application program running on the computer system, and 
the overlay image is produced by a computer implemented 
process of the present invention referred to herein as the 
"overlay utility'. 
A method for displaying images on a screen of a selected 

computer system in accordance with the present invention 
includes the steps of: 1) running an application program on a 
central processing unit (CPU) of a computer system to pro 
duce a base opaque image on a screen coupled to the CPU: 
and 2) running an overlay program on the CPU to produce a 
translucent image on the screen Such that portions of an 
opaque base image which are overlapped by the overlay 
image are at least partially visible through the overlay 
image. Preferably, the step of running the overlay program 
includes the steps of: 1) displaying a translucent image on 
the screen; 2) intercepting screen inputs which contact the 
overlay image; 3) processing the intercepted Screen inputs in 
the CPU; and 4 updating the application program based 
upon the process screen inputs. The step of displaying a 
translucent image preferably involves the blending of a 
translucent image with the base image. In one embodiment 
of the present invention, the blending is accomplished within 
the CPU, and in another embodiment of the present 
invention, the blending is accomplished externally to the 
CPU in specialized video driver circuitry. 
A computer system in accordance with the present inven 

tion includes a central processing unit (CPU), a screen 
assembly coupled to the CPU, a mechanism coupled to the 
screen assembly for displaying a base image on the screen 
assembly, and a mechanism coupled to the screen assembly 
for displaying a translucent image on the screen assembly 
Such that portions of the base image which are overlapped by 
the overlay image are at least partially visible through the 
overlay image. Preferably, the screen assembly includes an 
LCD matrix display provided with input from a stylus, a pen, 
a trackball, a mouse, or a keyboard, as the case may be. 

In the computer system of the present invention, the 
mechanism for displaying the opaque base image preferably 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
includes a first computer implemented process running on 
the CPU to produce first video data, and video driver cir 
cuitry coupled between the CPU and the screen assembly, 
which is receptive to the first video data. Also preferably, the 
mechanism for displaying the translucent image includes a 
second computer implemented process running on the CPU 
producing second video data, wherein the video driver cir 
cuitry is also receptive to the second video data. The com 
puter system blends the first video data and the second video 
data to produce a blended image on the screen assembly. In 
one embodiment of the present invention, the blending is 
part of the second computer implemented process running 
on the CPU. In another embodiment of the present invention, 
the blending is accomplished within the hardware of the 
video driver circuitry. 
The computer system according to the invention includes 

a central processing unit (CPU), a screen for displaying 
images, the screen being coupled to said CPU, a display 
coupled to the screen for displaying a translucent image, and 
an arrangement for conducting image operations beneath the 
level of a translucent image produced by the display. The 
computer system may for example, according to one 
embodiment, be effective to perform image operation with 
reference to a translucent image on the screen. The computer 
system according to the invention may further include a 
screen coupled to the CPU, a display coupled to the screen 
for displaying a translucent image on the screen, and an 
arrangement for conducting image operations with reference 
to a translucent image or an opaque image on the display. 
The computer system may further include an arrangement 
effective for conducting selectable image operations with 
reference to a translucent image or an opaque image on a 
display screen. 
An advantage of the present invention is that a translucent 

overlay can be provided which permits a user to input data 
into an active application program without obscuring the 
user's view of the programs display window. The overlay 
image of the present invention is therefore well suited for 
computer systems having limited display areas, including 
for example pen computer systems. 

Another advantage of the overlay image of the present 
invention is that it works with both pen-aware and non-pen 
aware application programs. Therefore, the overlay image of 
the present invention can be used with the many thousands 
of application programs which are not designed to be used in 
pen computer systems. 

These and other advantages of the present invention will 
become apparent upon reading the following detailed 
descriptions and studying the various figures of the draw 
1ngS. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of a pen computer system in 
accordance with the present invention; 

FIG. 2 is flow diagram illustrating the process for launch 
ing an application program and the steps of handling opaque 
and translucent images and cursor operations; 

FIG.3a illustrates an Apple Computer display screen with 
a single non-translucent overlay window shown on one por 
tion of the screen, and a gadget bar including a wand icon for 
transforming the overlay window been opaque and translu 
cent States: 
FIG.3b illustrates an Apple Computer display screen with 

a pair or overlapping non-translucent windows shown on 
one portion of the screen, and a gadget bar including a wand 
icon for transforming the overlay window been opaque and 
translucent states; 



US RE41,922 E 
5 

FIG.3c illustrates an Apple Computer display screen with 
a pair of overlapping windows shown on one portion of the 
screen, the overlaying window having been rendered 
translucent, the opaque window portion within the overlap 
ping region of the two windows having the image of a circle 
displayed, and a gadget bar including a wand icon for trans 
forming the overlay window been opaque and translucent 
States: 

FIG. 3d illustrates an Apple Computer display screen with 
a pair of overlapping windows shown on one portion of the 
screen, the overlaying window having been rendered 
translucent, the opaque window portion within the overlap 
ping region of the two windows having the image of a circle 
displayed, there being an additional circle image traced over 
the underlying circle in the opaque window, that additional 
circle being traced as an image in the translucent window 
which translucently is Superimposed over the opaque win 
dow in the overlap region of the two windows, and a gadget 
bar including a wand icon for transforming the overlay win 
dow been opaque and translucent states; 

FIG.3e illustrates an Apple Computer display screen with 
a pair of overlapping opaque windows shown on one portion 
of the screen, the overlaying opaque window displaying the 
traced circle made during the window's translucent phase, 
and a gadget bar including a wand icon for transforming the 
overlay window been opaque and translucent states; 

FIG. 3 fillustrates an Apple Computer display screen with 
a single non-translucent window shown on one portion of 
the screen, and a gadget bar including a wand icon for trans 
forming the overlay window been opaque and translucent 
States: 
FIG.3g illustrates an Apple Computer display screen with 

a pair of overlapping windows shown on one portion of the 
screen, the overlay window of the pair being translucent and 
having an circle image in the overlapping region of the two 
windows, and a gadget bar including a wand icon for trans 
forming the overlay window been opaque and translucent 
States: 

FIG.3h illustrates an Apple Computer display screen with 
a single non-translucent window shown on one portion of 
the screen, the non-translucent window including the image 
of a circle which was created by tracing under the translu 
cent circle image shown in FIG. 3g, and a gadget bar includ 
ing a wand icon; 

FIG. 3i illustrates the display screen of the prior figures 
including an opaque window having an overlay translucent 
window superimposed thereover with a predetermined trans 
lucent image, in this case the legend “TOP SECRET:” 

FIG. 4 illustrates the coordinate space on which images 
are expressed for loading onto a video random access 
memory (VRAM) for presentation on a display screen; 

FIG. 5a is a flow diagram showing the basic steps to 
accomplish presentation of a translucent image according to 
the invention herein; 

FIG. 5b is a diagram illustrating the process of displaying 
E translucent image, according to the invention herein; 

FIG. 5c is a diagram illustrating the process of performing 
at overlay shield cursor patch operation as discussed herein; 

FIG. 6a is a flow diagram showing the implementation of 
translucent overlay image operations; 

FIG. 6b is a flow diagram illustrating the “Overlay Shield 
Cursor Patch” step of FIG.5b: 

FIG. 7 is a flow diagram illustrating the “Overlay Show 
Cursor Patch” step of FIG.5b: 

FIG. 8 is a flow diagram illustrating the “Blending 
Engine' of FIG.5b: 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
FIGS. 8a–8f illustrate a computer-implemented blending 

process; 

FIG. 9 illustrates an alternate embodiment of the “Display 
an Overlay Image' step of FIG. 6b; 

FIG. 10 illustrates the operation of the “Blending Engine' 
of FIG.9; 
FIG 11 is a flow diagram illustrating the “Overlay Shield 

Cursor Patch” step of FIG 9: 
FIG. 12a illustrates a known memory management unit 

(MMU) data structure; 
FIG.12b illustrates a modification to the MMU data struc 

tures used to implement the “Redirect Drawing to RAM 
step 226 of FIG. 11; 

FIG. 13 is a flow diagram illustrating the operation of the 
“Blending Engine” 190 of FIG.9; 

FIG. 14 is a flow diagram illustrating the “Overlay System 
Task Patch” step of FIG.9; 

FIG. 15a and 15b illustrate a RAM memory pool format 
used if the present invention; 

FIG. 16 is a flow diagram illustrating the process of mov 
ing an image from overlay Screen to system screen, as well 
as the use of VRAM memory after blending operation to 
produce a blended image on the display Screen; and 

FIG. 17 is a flow diagram showing the process of handling 
cursor setting between system and overlay modes of opera 
tion. 

FIG. 18 is a view of a Macintosh computer screen show 
ing a desktop, a window produced by an application pro 
gram called "AppleShare' and a utility program known as 
"PenBoard'. 
FIG. 19 illustrates a non-transparent overlay which 

mostly obscures the desktop and window of the AppleShare 
application program, 

FIG. 20 illustrates the overlay keyboard after it has been 
made transparent by the method and apparatus of the 
present invention, 

FIGS. 21 a 21c illustrate the entry of data to the active 
window of the AppleShare program, 

FIG. 22 is a diagram illustrating the "Display an Overlay 
Image 'step 138 of FIG. 6B. 

FIG. 23 illustrates an alternate embodiment of the "Dis 
play an Overlay Image 'step 138 of FIG. 6B. 

FIG. 24 illustrates the operation of the 'Blending 
Engine' I 190 of FIG. 23; 

FIG. 25 illustrates a video driver circuitry of a prior art 
Macintosh computer system produced by Apple Computer, 
Inc. of Cupertino, Calif., and 

FIG. 26 illustrates video driver circuitry in accordance 
with the present invention which provides overlay VRAM 
and blending capabilities. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

As shown in FIG. 1, a computer system 10 in accordance 
with the present invention includes a central processing unit 
(CPU) 12, read only memory (ROM) 14, random access 
memory (RAM) 16, expansion RAM 17, input/output (I/O) 
circuitry 18, display assembly 20, and expansion bus 22. The 
computer system 10 may also optionally include a mass Stor 
age unit 24 Such as a disk drive unit or nonvolatile memory 
Such as flash memory and a real-time clock 26. 
The CPU 12 is preferably a commercially available, 

single chip microprocessor, and is preferably a complex 



US RE41,922 E 
7 

instruction set computer (CISC) chip such as the 68040 
microprocessor available from Motorola, Inc. CPU 12 is 
coupled to ROM 14 by a data bus 28, control bus 29, and 
address bus 31. ROM 14 contains the basic operating system 
for the computer system 10. CPU 12 is also connected to 
RAM 16 by busses 28, 29, and 31 to permit the use of RAM 
16 as scratch pad memory. Expansion RAM 17 is optionally 
coupled to RAM 16 for use by CPU 12. CPU 12 is also 
coupled to the I/O circuitry 18 by data bus 28, control bus 
29, and address bus 31 to permit data transfers with periph 
eral devices. 

I/O circuitry 18 typically includes a number of latches, 
registers and direct memory access (DMA) controllers. The 
purpose of I/O circuitry 18 is to provide an interface between 
CPU 12 and such peripheral devices as display screen 
assembly 20 and mass storage 24. 

Display assembly 20 of computer system 10 is both an 
input and an output device. Accordingly, it is coupled to I/O 
circuitry 18 by a bi-directional data bus 36. When operating 
as an output device, the display assembly 20 receives data 
from I/O circuitry 18 via bus 36 and displays that data on a 
suitable screen. The screen for display assembly 20 can be a 
liquid crystal display (LCD) of the type commercially avail 
able from a variety of manufacturers. The input device 
(“tablet) of a preferred display assembly 20 in accordance 
with the invention can be a thin, clear membrane which cov 
ers the LCD display and which is sensitive to the position of 
a stylus 38 on its surface. Alternatively, the tablet can be an 
embedded RF digitizer activated by an “active RF stylus. 
Combination display assemblies are available from a variety 
of vendors. 

Other types of user inputs can also be used in conjunction 
with the present invention. While the method of the present 
invention is described in the context of a pen system, other 
pointing devices such as a computer mouse, a track ball, or a 
tablet can be used to manipulate a pointer or a cursor 39 on a 
screen of a general purpose computer. Therefore, as used 
herein, the terms “pointer,” “pointing device.” “pointer 
inputs” and the like will refer to any mechanism or device 
for pointing to a particular location on a screen of a com 
puter display. 
Some type of mass storage 24 is generally considered 

desirable. However, the mass storage 24 can be eliminated 
by providing a sufficient amount of RAM 16 and expansion 
RAM 17 to store user application programs and data. In that 
case, RAMs 16 and 17 can be provided with a backup bat 
tery to prevent the loss of data even when the computer 
system 10 is turned off. However, it is generally desirable to 
have some type of long term storage 24 Such as a commer 
cially available miniature hard disk drive, nonvolatile 
memory such as flash memory, battery-backed RAM, 
PC-data cards, or the like. 

In operation, information is input into the computer sys 
tem 10 by “writing on the screen of display assembly 20 
with stylus 38. Information concerning the location of the 
stylus 38 on the screen of the display assembly 20 is input 
into the CPU 12 via I/O circuitry 18. Typically, this informa 
tion comprises the Cartesian (i.e., X & y) coordinates of a 
pixel of the screen of display assembly 20 over which the tip 
of the stylus is positioned. Commercially available combina 
tion display assemblies include appropriate circuitry to pro 
vide the stylus location information as digitally encoded data 
to the I/O circuitry of the present invention. The CPU 12 
then processes the data under control of an operating system 
and possibly an application program stored in ROM 14 and/ 
or RAM 16. The CPU 12 then produces data which is output 
to the display assembly 20 to produce appropriate images on 
its screen. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
Expansion bus 22 is coupled to the data bus 28, the control 

bus 29 and the address bus 31, similar to the other compo 
nents in System 10. Expansion bus 22 provides extra ports to 
couple devices such as modems, display switches 
microphone, speaker, etc., to the CPU 12. 

FIG. 2 is flow diagram illustrating the process for launch 
ing a selected application program on computer system 10 
and the steps of handling opaque and translucent images and 
cursor operations in accordance with the invention herein. 
By launching, it is meant to begin execution and perform a 
range of activities typically considered ancillary to begin 
ning execution, including for example conducting appropri 
ate memory allocation activities. The application program 
can be any of a number of application programs effective for 
producing images or windows on display screens 20. 
Typically, the images or windows produced will be opaque 
or translucent and full tone, but half-tone and partial tone 
images are workable with the invention herein as well, irre 
spective of the particular color or whether a black and white 
image system is employed. The process of the selected 
application program begins at start step 40, and the applica 
tion program launches operation at step 42. According to a 
preferred version of the invention, the selected application 
program then displays a desired image on display Screen 20, 
or even the lack of any image, i.e., a blank image, according 
to step 44. The image launched is preferably opaque, but 
could be translucent, according to another version of the 
invention. 

Next, a “process cursor operation is undertaken, accord 
ing to step 46. According to this step, as will be noted in 
greater detail below, particularly with reference to FIG. 17, it 
is determined whether the cursor 39 is in a region of a coor 
dinate system of the computer associated with a translucent 
image domain or whether cursor 39 is operating within a 
monitor coordinate space. FIG. 4 and the corresponding text 
discuss the coordinate system in greater detail. It is typically 
considered true that computer operations are conducted with 
regard to the particular region in which the cursor is opera 
tive. While this is generally true, it is considered to be within 
the scope of this invention for the cursor to act upon images 
or windows that are either above or below the actual cursor 
39. 

Next, according to step 48, it is determined whether or not 
an overlay task is requested. If not, process control returns to 
point A preceding the process cursor step 46, and system 
operation cycles though the process cursor step 46 and deci 
sion step 48 repeatedly until an overlay task is requested in 
step 48. 
Two overlay tasks in accordance with the present inven 

tion include “translucent request' and an "opaque request.” 
If there is a translucent request then step 50 undertakes the 
operation of rendering a desired image translucent Similarly, 
if there is an opaque request, then step 52 is undertaken to 
render a desired image opaque. After completing either step 
50 or 52, control returns to point A with a subsequent pro 
cess cursor operation being conducted according to step 46. 
The essential functions of the process cursor operation are as 
expressed with reference to FIG. 17 below. In particular, as 
will be seen, these include making a determination as to 
whether to enter the reactive mode. If the reactive mode is in 
fact indicated, a determination is made as to whether the 
cursor 39 is within the bounds of an overlay or translucent 
image. If the cursor is within the bounds of an overlay image 
or a translucent image, the cursor 39 is set to be on the 
overlay or translucent image. If the cursor is not within the 
bounds of a translucent image, the cursor 39 is set to be on 
the system monitor. Once the correct situs of the cursor 39 
has been established, the process is considered to be com 
plete. 



US RE41,922 E 
9 

To indicate the implementation of the invention in greater 
detail, FIG.3a illustrates an Apple Computer Macintosh dis 
play screen 60 with a single non-translucent window 62 
shown on one portion of screen 60, and a gadget bar 64 
including a wand icon 66 for transforming selected image 
windows between opaque and translucent states. Window 62 
encloses an image, in this case a circle 68, for example. This 
circle 68 is considered to represent an arbitrary image of 
interest to the user. Window 62 can be considered to be an 
image produced by a first application or “APPH1 program 
selected by the user. This image production is described in 
detail in co-pending patent application Ser. No. 08/060,438, 
filed May 10, 1993 under the title “Interfacing with a Com 
puter System” on behalf of Gough et al. and assigned to the 
same assignee as herein, the disclosure of which is hereby 
incorporated herein by reference in its entirety. 

FIG. 3b illustrates an Apple Computer Macintosh display 
screen 62 with a pair of overlapping non-translucent, i.e., 
opaque windows, respectively, 62 and 70, shown on one 
portion of screen 60. Window 60 is produced by a first appli 
cation program “APPH1 and window 70 is produced by a 
second application program “APPH2. Gadget bar 64 is 
shown including wand icon 66 as in FIG.3a. Wand icon 66 is 
effective for transforming either of windows 62 or 70 or the 
images which may reside in the respective windows between 
opaque and translucent states. The topmost or “active' win 
dow 70 is shown superimposing over a portion of lower 
window 62. Typically, the window selected for translucency 
is the uppermost or "overlay' window 70, as this permits 
Selected images in the overlapped region of the two 
windows, to be seen by virtue of the translucency of the 
uppermost window 70. As it is, prior to window 70 being 
changed to a translucent state, circle image 68 shown in FIG. 
3a is obscured by the overlap between the two windows 62, 
70. By clicking on wand icon 66 of FIG. 3b, the user effec 
tively renders the top-most or overlay window 70 partially or 
completely translucent. By “translucent it is meant herein 
that the overlay image or window can be seen, but it can also 
be seen through. It is understood that this creates the impres 
sion that light can travel through the particular image. By 
translucent, it is further meant that the lines of a-particular 
image can be seen, but that the spaces between the lines and 
the spaces around the lines can be seen through. 

FIG. 3c illustrates a display screen 60 with the pair of 
overlapping windows 62 and 70 shown on one portion of 
screen 60. In this Figure, the overlaying window 70 has been 
rendered translucent. Further, opaque window 62 has the 
image of circle 68 displayed within the overlapping region 
of the two windows 62, 70. Finally, gadget bar 64 including 
wand icon 66 for transforming a selected one of windows 62, 
70, is shown. This permits image operations to be conducted 
in translucent overlaying window 70 with reference to the 
image of circle 68 in window 62. Image operations can be 
any kind of operation conducted on an image or window. 
Drawing an image, placing an image, or for that matter 
modifying, moving, expanding, or changing an image or a 
window, are considered to be image operations. 
Alternatively, according to a preferred version of the 
invention, another image in opaque window 62 or elsewhere 
could be the Subject of image operations with overlay win 
dow 70. An example of one image operation which could be 
implemented, is simply the operation of copying or tracing 
the image of circle 68 from the opaque window 62 onto 
translucent window 70. 

It should be noted that, in this preferred embodiment, 
wand icon 66 is used to designate the overlay task which is 
tested in step 48 of FIG. 2. If the active window is opaque, a 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
selection of wand icon 66 will indicate a “translucent 
request, and if the active window is translucent, a selection 
of wand icon 66 will indicate an "opaque request. Wand 
icon 66 is preferably selected by a tap of stylus 38 over the 
icon 66. 

FIG. 3d illustrates display screen 60 with overlapping 
windows 62 and 70 shown on a portion of the screen 60. The 
image operation suggested above has been accomplished 
and the circle 68 has been traced onto the translucent win 
dow 70 as a circle 78 based upon or with reference to the 
images established in window 62. This new circle 78 on 
translucent window 70 may be of the same size, larger, or 
smaller, than circle 68. Further, it may be offset from the 
corresponding location of opaque window 62. The object is 
simply to provide the user with ideas, choices or alternatives 
in connection with a secondary image or window which is 
created by reference to information contained in a primary 
image or window. Additional circle 78 is conveniently cre 
ated by the user either by tracing directly upon the display 
screen over the underlying image on the screen based upon 
circle 68 with stylus 38, or by moving cursor 39 active at the 
window 70 to define the circle or other image subject to 
image operations, with a mouse, track ball, stylus, or the 
like. By thus acting and tracing an image, the user thus 
implements a selected computer implemented process and 
the process receives screen inputs which contact or are oth 
erwise associated with a particular window as the computer 
implemented process is effective for processing the screen 
inputs. According to one version of the invention, it is a 
second computer implemented process which receives 
screen inputs which contact or are otherwise associated with 
a translucent window, and the second computer imple 
mented process effectively processes the screen inputs. 

FIG. 3e illustrates display screen 60 with overlapping 
opaque windows 62, 70, made by respective application pro 
grams APPH1 and APPH2. In particular, FIG. 3e shows win 
dow 70 after it has once again been made opaque displaying 
traced circle image 78 made during the windows translu 
cent phase, and gadget bar 64 which includes wand icon 66. 

Accordingly, by following the steps of FIGS. 3a–3e, the 
user has been able to conduct image operations and to make 
traces or reference images based upon the underlying circle 
image 68 onto overlay window 70. Window 70 has been 
created by its own application program, i.e., APPH2, as an 
opaque window in the first instance (FIG. 3b), which has 
then been converted into translucent window (FIG. 3c) to 
enable desired image operations to be conducted between 
the two windows. In particular, the image of interest was the 
circle image on the opaque, underlying window 62. The trac 
ing operation was illustrated in FIG. 3d and, in FIG. 3e, the 
window 70 was made opaque again 

Translucency and opaqueness can be selected in a variety 
of manners, such as by express keyboard commands. 
Furthermore, a user may perform a number of image activi 
ties in the translucent window with reference to underlying 
opaque window 62. In this case, the user has selected a 
simple tracing operation to duplicate the image of underly 
ing circle 68, albeit with a slightly smaller radius. The pro 
cess of the invention accordingly permits the accomplish 
ment of any of a range of desired tasks. For example, if 
instead of circle 68, a complex image of a photograph of a 
house were displayed in opaque window 62, according to the 
process of the invention, a translucent overlay window could 
be suitably positioned thereover, permitting the user to make 
a sketch of selected features of the house on the overlying 
translucent window. 
An alternate version of the invention is shown with refer 

ence to FIGS. 3f 3h. According to this version, in the figure 



US RE41,922 E 
11 

sequence which follows, the active screen (or “reactive 
screen as it might be called, because it is responsive to 
external influences) or window will be considered to be the 
opaque window underneath at a selected lower level, while 
the overlying translucent window 62 carries a selected image 
of interest with reference to which image operations are to 
be performed in the underlying opaque window 70. Toward 
this end, FIG. 3f illustrates display screen 60 with a single 
non-translucent window 71 shown on one portion of Screen 
60. Gadget bar 64 is omitted for simplicity, but may be 
present for providing the functionality described previously. 
The non-translucent, opaque window 71 is initially com 
pletely blank, in this example. Thus, while in the sequence of 
figures starting with FIG.3a the image operations conducted 
were performed on the active overlying window 71 (which 
was translucent), the image operations in the figure sequence 
starting with FIG. 3f entail image operations on the active 
underlying window 71, while a translucent window 73 (See 
FIG.3g) is passive and is employed for reference with regard 
to operations conducted on the underlying window 71 
below. It is considered typical that cursor operations are 
treated as happening on the active Screen, whether it is the 
underlying opaque screen or the overlying translucent Screen 
on which the activity is taking place. 

FIG. 3g illustrates this in display screen 60 with a pair o 
overlapping windows 73, 71. The Figure shows overlay win 
dow 73 on on portion of screen 60. Overlay window 73 is 
translucent and has a circle image 75 in the overlapping 
region of the two windows, 73, 71. In this case, cursor 39 is 
non-reactive as to the overlay window 73. However, cursor 
39 is operative in the underlying, opaque window 71, below 
translucent overlay window 73. Accordingly, since the cur 
sor is active on the underlying window 71 and the desired, or 
selected, image 75 is to be established in the translucent 
window 73, tracing along its image can be accomplished by 
sketching underneath image 75. 

FIG. 3h illustrates display screen 60 with single non 
translucent window 71 shown on one portion of the screen. 
Non-translucent window 71 includes the image of a circle 78 
which was created by “tracing under translucent circle 
image 75 shown in FIG. 3g. At this stage, the desired image 
78 sought to be created has been made, and translucent win 
dow 73 has been “closed, i.e., removed from view on screen 
60. 

FIG. 3i illustrates display screen 60 of the prior figures 
including an opaque window 77 selected for image opera 
tions. Opaque window 70 is “overlain” with an overlay 
translucent window 79 which, in this case, is larger than the 
display screen 60. Formed within window 79 is a translucent 
image including the legend “TOP SECRET' Overlay win 
dow 79 is non-reactive, and thus no image operations within 
overlay window 79 are permitted. Image operations below 
overlay translucent window 79 are considered generally 
independent of and not with reference to the particular trans 
lucent image on overlay translucent window 79. Preferably, 
cursor 39 operates “under the overlay window 79 to per 
form operations at a lower level or at one or more of lower 
levels underneath overlay window 79, such as within opaque 
window 77, according to an embodiment of the invention. 
The object of having the translucent overlay in this case is 
simply to warn of the security status of the underlying infor 
mation as “Top Secret.” The user can accordingly work with 
the underlying opaque window 77 with the image operations 
and cursor movements desired, and as though the overlay 
translucency did not even exist except visually to the user. In 
the case of this embodiment, the translucent overlay is com 
pletely passive and the information on the translucency is 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
generally though not necessarily external information and 
not typically specific information relevant to the image 
operations being conducted on any underlying active win 
dow or image 

With respect to the question of precisely how the image 
operation outlined in FIGS. 3a–3i may be conducted in 
accordance with a preferred embodiment of the present 
invention, reference is made to FIG. 4. In particular, FIG. 4 
illustrates a “coordinate space” 80 on which selected images 
are expressed, which is standard on all Macintosh brand 
computers from Apple Computer, Inc. of Cupertino, Calif. In 
this case, operating system screen 81 for a selected monitor 
being employed by the user is shown. Further, there is shown 
a portion 80' of coordinate space 80 reserved for non 
physical monitor representations, on which, in turn, a region 
is reserved for expression of the translucent overlay screen 
82. The images on the respective operating system and trans 
lucent or overlay screens, respectively 81 and 82, are 
combined, or “blended as will be discussed below, for load 
ing into a video random access memory (VRAM) 85 and 
Subsequent presentation on display Screen 60 of display 
assembly 20. 
The coordinate space 80 defined for the particular com 

puter system 10 ranges from coordinates (-32,767: -32,767) 
to (+32,767; +32,767), thereby defining the space in terms of 
a selected pair of diagonal corner points. The top left corner 
coordinate points of the respective operating system and 
translucent or overlay screens, respectively 81 and 82, are 
respectively, for example, (0,0) and (0'0"). The blending pro 
cess to be discussed below essentially blends the domains of 
the respective coordinate image screens 81 and 82 together 
for display on screen 60. According to a preferred version of 
the invention, the blended or overlapping regions are dis 
played on screen 60 as 50% half-tone images, whether in 
color or otherwise. 

FIG. 5a is a flow diagram showing the basic steps to 
accomplish presentation of translucent or overlay images 
according to the invention herein, and within the scope of 
process step 50 shown in FIG. 2, calling for the creation of a 
translucent image. The general process begins at Step 91. At 
a next process step 93, the operating system records entry of 
a particular window or image into a reactive or non-reactive 
state of operation. By way of reference, a non-reactive state 
of operation for a translucent window is generally consid 
ered to be a mode of operation in which cursor operations 
and activities are performed on another window or image. 
Similarly, when image operations are to be performed on a 
translucent window or image, the translucent window is con 
sidered to be reactive. In either case, whether or not opera 
tions as to particular window or image are in the reactive or 
non-reactive state, operation is conducted at step 95 to create 
an overlay Screen image which is represented on coordinate 
space 80' in its overlay screen 82. Next, according to step 96, 
the separate images in Screens 81 and 82 are combined or 
“blended according to operations to be discussed below. 
After blending operation has been completed, the results of 
blending are loaded into VRAM 85 to create the combined 
image established on display screen 60, according to step 98. 
At this point, operations are considered to be completed, 
according to step 99. 

FIG. 5b is a diagram illustrating the process of displaying 
a translucent or overlay image in connection with an associ 
ated underlying opaque image or window within the scope 
of the invention herein. In particular, FIG. 5b shows the 
operating system, application program, overlay utility, sys 
tem routines, etc., in hierarchical fashion. At the highest level 
is operating system 100 of computer system 10 of FIG. 1. 



US RE41,922 E 
13 

Running under the operating system 100 is an application 
program 101, Such as the AppleShare application program. 
Application program 101, when it wants to open a window 
such as window 62 of FIG. 3a, calls a set of routines 102 
provided by the operating system 100. The window opened 
is automatically active, as the newest window created or 
activated. Another window or image can be activated merely 
by user selection in positioning the cursor over the window 
or image and clicking on the mouse, trackball or another 
applicable interface device. More specifically, in the Macin 
tosh operating system, application program 101 calls a “New 
Window'routine 103 which, in turn, calls a “Frame Rect' 
routine 104. The Frame Rect routine uses a pointer table 106 
to call a “Shield Cursor routine 107 and a “Show Cursor 
routine 108. If the application program 101 were running on 
system 100 without the process 133 (see FIG. 6a) of the 
present invention, this would be the entirety of the calls to 
open up the window 79 of FIG. 3b. This process is exten 
sively documented in the multi-volume reference set, Inside 
Macintosh, by C. Rose et al., Addison-Wesley Publishing 
Company, Inc., July 1988 and is well known to those skilled 
in the art of programming on the Macintosh operating sys 
tem 

FIG.5c illustrates the “Overlay Shield Cursor Patch” pro 
cess 110 of FIG. 5b in greater detail. The process 110 begins 
at 122 and, in a first step 123 the call from the Frame Rect 
routine 104 to the Shield Cursor Routine 107 (see FIG.5b) is 
intercepted. This is accomplished by modifying the pointer 
table 106 such that the process control jumps to the Overlay 
Shield Cursor Patch address area rather than the Shield Cur 
sor Routine area 107 upon a call from the Frame Rect rou 
tine 104. The Overlay Shield Cursor Patch routine 110 must 
however, remember the proper address for the Shield Cursor 
Routine so that the process control can be passed to the 
Shield Cursor Routine 107 at the appropriate time. Next, in a 
step 124, the coordinates of the shield rectangle are stored 
for future blending operations. The shield rectangle is essen 
tially the rectangle of the window to be developed by the 
application program, Such as the window 116. The coordi 
nates of the shield rectangle can therefore be fully described 
with two corner coordinates, as is well known to those 
skilled in the art of programming on the Macintosh com 
puter system. Next in a step 125, it is determined whether 
this is the first time that the application program 101 is draw 
ing to the screen 60 after an overlay image has been pro 
duced. If it is, a step 126 creates an overlay buffer, and the 
image of the screen that is stored in the video RAM 
(VRAM) is copied from the system's VRAM to a RAM 
screen buffer provided in general system RAM, according to 
step 127. Next, in a step 128, the system is set such that 
future drawing output which is intended, by the operating 
system, to go to VRAM is sent to the RAM screen buffer of 
the present invention instead. Finally, the call made by the 
Frame Rect routine 104 is finally passed to the Shield Cursor 
Routine 107 in a step 129, and the process is completed as 
indicated at step 130. 
The implementation of computer process 133, as will be 

seen with reference to FIG. 6a, is effective to implement an 
overlay utility application process effective to modify the 
normal flow of routine calls implemented by a particular 
application program 101 as follows. First, application pro 
gram 101 calls New Window routine 103 which in turn calls 
Frame Rect routine 104. Frame Rect routine 104 next 
attempts to call the Shield Cursor Routine. However, accord 
ing to the invention, Frame Rect routine 104 instead calls a 
portion of a process of step 138 of FIG. 6b known as the 
Overlay Shield Cursor Patch 110, which will be discussed 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
below. This is accomplished by having process 138 modify 
the pointer table 106 such that when the Frame Rect routine 
104 is trying to call the Shield Cursor Routine 107, it, 
instead, calls the Overlay Shield Cursor Patch 110. After 
Overlay Shield Cursor Patch 110 completes its process, 
Shield Cursor Routine 107 is called. As far as the Frame 
Rect routine 104 is concerned, it does not know of the diver 
sion of process control to the Overlay Shield Cursor Patch 
process 110, and instead believes that it directly called the 
Shield Cursor Routine 107. 
When the Frame Rect routine 104 goes to pointer table 

106 in an attempt to call Show Cursor Routine 108, process 
control is instead diverted to a process 112 known as “Over 
lay Show Cursor Patch.” The Overlay Show Cursor Patch 
process 112 interacts with a Blending Engine process 114 to 
blend a first screen image 116 (see FIG.5b) generated by the 
Macintosh operating system and the application program, 
with a second, “overlay' image 118 to form the blended 
image 120. After the completion of blending process of step 
114. Overlay Show Cursor Patch process 112 turns over pro 
cess control to the “Show Cursor Routine' process 108. 
Again, as far as the Frame Rect routine 104 is concerned, it 
made a direct call to the “Show Cursor Routine'. 108 and 
was ignorant of the diversion of the process control to the 
Overlay Show Cursor Patch 112 and the Blending Engine 
114. 

In FIG. 6a, the process in accordance with the present 
invention for implementing translucent overlay image opera 
tions is shown beginning at process step 131. At Step 132, a 
Selected application program is started, loaded, or 
“executed on computer system 10 to produce a particular 
image or window desired for image operations either within 
its own right or with reference to another image or window. 
The application program could for example be the Apple 
Share application program which produced window 62 on 
screen 60. Next, in step 133, the “overlay utility” is started or 
“executed on computer system 10. This “overlay utility” is 
an application program (often referred to as a “utility” or 
“routine') which implements the computer process of the 
present invention. Step 133 may include, for example, acti 
vating the wand icon 66 of gadget bar 64 shown in FIG. 3a. 
After performance of a range of other selected activities, the 
process is completed as indicated at step 134. 

In FIG. 6b, process 133 of FIG. 6a is illustrated in greater 
detail. Process 133 begins at step 135, and in a step 136, it is 
determined, as a threshold question, whether process 133 is 
already to be treated as completed. In this instance, process 
133 is considered to be completed when a particular “but 
ton' of the translucent selected image is tapped. If the pro 
cess is in fact completed, overlay utility 133 is terminated as 
indicated at 137. If the process is not completed, step 138 
displays a translucent or "overlay image on the screen Such 
that images on the screen that it overlaps can be seen through 
the overlay image. Of course, other overlay images besides 
selected images can be provided by the present invention, 
e.g. handwriting “recognition' windows, etc. Alternatively, 
translucent windows or images can overly other translucent 
windows or images. Next, in a step 139, the overlay utility 
intercepts screen inputs which contact the overlay image, 
and these screen inputs are processed. Finally, in a step 140, 
the active application program which is executing in step 
132 of FIG. 6a, is updated according to the processed screen 
inputs. Process control is then turned over to step 136 which 
again determines whether the process 133 is completed. 
By way of additional detail, process step 138 of FIG. 6b is 

effective to implement its process when Frame Rect routine 
104 calls the Show Cursor Routine 108 of FIG. Sb. In that 



US RE41,922 E 
15 

instance, when the Frame Rect routine 104 goes to pointer 
table 106 in an attempt to call Show Cursor Routine 108, 
process control is instead diverted to a process 112 known as 
“Overlay Show Cursor Patch.” 

In FIG. 7, process step 112 of FIG. 5b is described in 
greater detail. The process 112 begins at 140 and, in a step 
142, the Show Cursor Routine call made by the Frame Rect 
routine 104 is intercepted. This step 142 is, again, preferably 
implemented by modifying a pointer table to cause process 
control to jump to the Overlay Show Cursor Patch 112 
instead of the Show Cursor Routine 108. The starting 
address of the Show Cursor Routine 108 is stored by the 
Overlay Show Cursor Patch 112 for later use. Next, in a step 
144, the shield rectangular coordinates of the window being 
opened by the application program 101 are recalled. These 
coordinates were stored by step 124 of the Overlay Shield 
Cursor Patch process 110. Next, in a step 146, the Blending 
Engine 114 of FIG. 7 is called. After the Blending Engine 
146 has completed its process, a step 148 passes the process 
control back to the Show Cursor Routine 108 such that the 
Frame Rect routine 104 had no knowledge of the intervening 
steps 112 and 114. The process is then completed as indi 
cated at 150. The “Blending Engine' process 114 begins at 
152 and, in a step 154, the shield rectangle is divided into 
individually blended units. For example, these blendable 
units can be anywhere in the range of 1 to 32 pixels, where a 
pixel is the smallest display unit provided on the screen 60. 
Next, in a step 156, the RAM screen buffer data within the 
shield rectangle is retrieved for one blendable unit. In a step 
158, the RAM overlay image buffer from within the shield 
rectangle has been retrieved for the one blendable unit. The 
data retrieved from steps 156 and 158 is blended to form 
blended data in the step 160. Next, in a step 162, the blended 
data is written to VRAM to be displayed on the screen 20. 
Next, in a step 164, it is determined whether all of the blend 
able units created by step 154 have been blended by the 
process steps of 156–162. If not, the loop comprising steps 
156–164 is repeated. If step 164 determines that all blend 
able units have been blended, the call that was initially made 
by the Frame Rect routine 104 is passed to the Show Cursor 
Routine 108 in a step 166, and the process is completed at 
168. Again, the Frame Rect routine 104 is unaware of the 
activities of process 114 and, instead, believes that its call 
was passed directly to the Show Cursor Routine 108 for 
processing. 

FIGS. 8a–8f are used, as an example, to further explain 
the process 114 of FIG. 8. FIG. 8a represents the RAM 
shield buffer within the shield rectangle, and has been 
divided into 16 individually-blendable units. These units are 
arranged in a four-by-four matrix, where the rows have been 
numbered 1, 2, 3, and 4. FIG. 8c illustrates the RAM screen 
overlay buffer in the shield rectangle, and again has 16 
individually-blendable units formed in a four-by-four array, 
with the rows numbered 1, 2, 3, and 4. In FIG. 8c, the row 1 
from FIG. 8a and the row 1 from FIG. 8b are blended 
together to form a blended row 170c. In FIG. 8d, rows 2 
from FIGS. 8a and 8b are blended together to form a blended 
row 170d. In FIG. 8e, rows 3 and 4 are blended together to 
form a blended row 170e, and in FIG. 8f rows 4 from FIGS. 
8a and 8b are blended together to form a blended row 170f. 
This “blending process allows a base image (opaque or 
translucent) on the screen 60 to be seen through a translucent 
overlay image produced by the process of the present inven 
tion. 

FIG. 9 illustrates an alternate embodiment of the present 
invention which has been optimized for screen-writing 
speed. While the process of FIG. 8b works very well, it 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
requires that the entirety of the base screen 116 be rewritten 
whenever the blended image 120 is to be refreshed. The 
alternative process of FIG. 9 only refreshes the portions of 
the blended image that need, to be refreshed, thereby greatly 
increasing the writing speed to the screen 60. 
Much of the operation of the process illustrated in FIG. 9 

is similar to that described in FIG. 5b. An operating system 
172 supports an application program 174 which, when it 
wants to open a window, calls a set of routines 176 including 
a “New Window routine’ 178 and Frame Rect routine 180. 
The Frame Rect routine 180 then, as before, attempts to first 
call the Shield Cursor Routine 182 first and then the Show 
Cursor Routine 184. Again, as before, the pointer table is 
modified such that when the Frame Rect routine tries to call 
the Shield Cursor Routine 182, it instead calls the Overlay 
Shield Cursor Patch 186 of the present invention, and when 
the Frame Rect routine 180 attempts to call the Show Cursor 
Routine 184, it instead calls the Overlay Show Cursor Patch 
188. The Overlay Show Cursor Patch calls along a Blending 
Engine 190 which blends a selected first application image 
192 with a translucent image 194 to create a blended image 
196. 
The operating system 172, as part of its functioning, will 

make periodic calls to various system task processes. The 
system task 198 performs such functions as execute “Device 
Driver Code' and “Desk Accessory Code.”The process of 
the present invention opportunistically takes advantage of 
these periodic system task calls by modifying a pointer table 
200 to turn over process control to an Overlay System Task 
Patch 202. This Overlay System Task Patch, with the Over 
lay Shield Cursor Patch 186, the Overlay Show Cursor Patch 
188, and Blending Engine 190 comprise the overlay utility 
133 of FIGS. 6a and 6b in this second preferred embodi 
ment. 

FIG. 10 is used to illustrate the operation of the Blending 
Engine 190 of FIG. 9 in greater detail. The process 138 of 
FIG. 6b remaps certain pages of VRAM to the RAM screen 
buffer when a translucent image contains objects that over 
lap these pages. The RAM overlay screen buffer 194 is then 
merged with changes 192 in the RAM screen buffer 192 in 
the Blending Engine 190 by a process similar to that previ 
ously described and inserts the blended image into a “hole' 
196 of VRAM screen buffer 196. Accordingly, only the 
overlapped portions of RAM screen buffer 192 and RAM 
overlay screen buffer 194 need to be blended to accomplish 
changes in VRAM screen buffer 196. VRAM screen buffer 
196 is much faster memory for video purposes than the 
RAM screen buffer 192. These factors substantially increase 
the blending speed of the VRAM screen buffer and therefore 
of the display on screen 60. 

FIG. 11 illustrates the Overlay Shield Cursor Patch pro 
cess 186 of FIG. 9 in greater detail. Process 186 of FIG. 9 
begins at step 210 of FIG. 12a and then, according to step 
212, process 186 intercepts a call to the Shield Cursor Rou 
tine 182. This interception is preferably accomplished in a 
manner analogous to that previously described with refer 
ence to FIG. 5b. The coordinates of the shield rectangle are 
then stored in a step 214 of FIG. 11 for future blending 
operations. This is similar to the step 133 of FIG. 6a. Next, in 
step 216, it is determined whether there is a drawing to the 
overlay image of the present invention. If there is, a step 218 
determines whether this is the first time that there has been a 
drawing to the overlay image. If it is, a step 220 creates the 
overlay buffer 194 of FIG. 10. If not, a step 222 determines 
which pages of VRAM screen buffer 196 are “touched” by 
the overlay drawing operation. Next, in a step 224, data is 
copied from VRAM 196 to the RAM screen buffer 192 for 



US RE41,922 E 
17 

each “touched page. Next, in a step 228, the buffer overflow 
error (if any) is recorded. Next, a step 230 passes the original 
Frame Rect routine call to the Shield Cursor Routine 182. 
This step 230 is also performed directly after step 216 if 
there was no drawing to the overlay image. The process 186 
is then completed at step 232. 

FIG. 12a illustrates a prior art memory management 
(MMU) data structure for a Macintosh computer system 
from Apple Computer, Inc. of Cupertino, Calif. The Macin 
tosh computer system uses a tree-type MMU data structure 
in which in turn root pointer 234 points to a stack 236 of 32 
megabyte (MB) pointers, each of which points to a stack 238 
of 256 kilobyte (KB) pointers, each of which then points to a 
stack 240 of 4 KB pointers, each of which point to 4 KB 
physical memory pages 242. Some of these 4 KB physical 
memory pages reside in general system RAM, and some of 
these 4 KB physical memory pages reside in VRAM. This 
MMU data structure is well known to those skilled in the art 
of programming Macintosh computer systems. 

FIG. 12b illustrates modifications that the present inven 
tion has made to the MMU data structures to accomplish 
step 226 of FIG. 11. Essentially, step 226 selectively modi 
fies some of the pointers in the 4 KB pointer stacks 240 to 
“trick’ the system into writing images that are intended for 
VRAM into RAM and vice versa. For example, process 226 
can redirect a pointer from the 4 KB physical memory page 
242a of the VRAM to the 4 KB physical memory page 242b 
of the RAM as indicated by arrow 244a. Also, a 4 KB pointer 
of a stack 240 can be modified as indicated by the arrow 
244b such that data which was to be written into 4 KB physi 
cal memory page 242b is, instead redirected to the 4 KB 
physical memory page 242a of the VRAM. This modifica 
tion of the MMU data structure, therefore, effectively 
'Swaps’ pages 242a and 242b, thus causing a portion of the 
screen (as stored in the VRAM memory page 242a) to be 
drawn “offscreen” in RAM memory page 242b. 
The MMU modification of FIG. 12b takes advantage of 

the fact that the Macintosh operating system Supports mul 
tiple monitors. These monitors exist in the aforementioned 
single coordinate plane, in which the upper-left corner of the 
main screen is the origin (the point with coordinate value 
(0,0)). The overlay screen exists in the same coordinate 
space, but it is offin an area not normally occupied by moni 
tors. The upper-left hand corner of the overlay screen, for 
example, can be at coordinate (-10,000, -10,000). It is very 
unlikely that using this remote area of coordinate space will 
affect existing monitor set ups. In consequence, a “pseudo' 
screen is recognized by the operating system where the over 
lay image 194 resides. The blending operation, then, blends 
the images of the actual screen 60 and this “pseudo’ screen 
which includes the overlay image. 

FIG. 13 illustrates the process 190 of FIG. 9 in greater 
detail. The “Blending Engine' process 190 begins at 246 
and, in a step 248, the shield rectangle is divided into com 
ponent rectangles that intersect redirected pages of the dis 
play memory. The redirected page concept was explained 
with reference to FIG. 12b. Next, in a step 250, the compo 
nent rectangles are blended. This is accomplished as previ 
ously described with reference to FIG. 8 and FIGS. 8a–8f. 
Next, in a step 252, it is determined whether all component 
rectangles have been completed. If not, steps 250 and 252 
are continued in a loop until all component rectangles are 
done at which time the process is completed as indicated at 
254. 

In FIG. 14, the Overlay System Task Patch process 202 of 
FIG. 9 is described in greater detail. As mentioned 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
previously, process 202 is an additional portion of the over 
lay utility of this second embodiment of the present inven 
tion. The process 202 needs to be implemented periodically 
and, since the system periodically makes calls to various 
system tasks, the process 202 uses these periodic system task 
calls to activate its processes. Alternatively, other activation 
methods could be used to periodically start the process 202. 
The process 202, starts at 256 and, in a step 258, process 202 
intercepts a system task call made by system 172. Next, in a 
step 260, redirected pages are moved back to VRAM when 
the overlay image for those pages is clear, i.e., when all 
pixels of the overlay contain a value of Zero for a given 
screen page. In a decision step 262, it is determined whether 
a buffer overflow error flag has been set. If it has, a step 264 
uses the newly cleared RAM pages to reconcile the error. 
Then, in a step 266, it is determined whether there is suffi 
cient memory available to complete the task. If not, addi 
tional memory is allocated in a step 268. Next, a step 270 
determines whether there was an allocation error made dur 
ing the allocation step of 268. If not, the newly allocated 
pages are used to reconcile the error in a step 272 and the 
error is cleared in step 274. This step 274 is also executed if 
there was determined to be sufficient memory in step 266. 
Next, the process 202 calls the system task 198 in a step 276 
and the process is completed as indicated at 278. The call 
system task step 276 is also executed if step 270 indicates 
that there is an allocation error in the additional memory. 
The system 172 is unaware of the modification of the pointer 
table 200 and of the process of the Overlay System Task 
Patch 202 and, simply believes that the system task 198 has 
been called directly as indicated by arrow 199 on FIG. 9. 

In FIGS. 15a and 15b, the preferred RAM memory pool 
format for the present invention is disclosed. Referring to 
FIG. 15b, the RAM memory pool 280 comprises a number 
of blocks 282a, 282b, 282c, etc. Each block preferably con 
tains 16 pages of memory which are used to remap portions 
of the display monitor memory using the MMU as previ 
ously described. The blocks are chained together by pointers 
as represented by arrows 284. With additional reference to 
FIGS. 15a and 15b, each block 282 includes a header portion 
286, a data portion 288, and a trailer portion 290. The header 
portion 286 includes two pointer portions 292 and 294 and 
an allocation portion 296. The header portion 286 also 
includes a padding portion 298. The pointer portion 292 
points to the first page in the current block 282, and is pref 
erably 32 bits in length. The pointer 294 is also preferably 32 
bits in length, and points to the next block in the RAM 
memory pool. In this example, the pointer 294 of block 282a 
points to the pointer 292 of the block 282b as indicated by 
the arrow 284a. Similarly, the pointer 294 of block 282b 
points to the pointer 292 of block 282c as indicated by the 
arrow 284b. 
The blocks are chained together as indicated in FIG. 15b. 

When a free page is needed, the page allocator traverses the 
chain searching for a block which contains a free page. 
When it finds one, it sets the corresponding allocation flag 
296 to indicate that the page is now in use. If no free pages 
are found, a new block 282 is allocated, and is connected to 
the end of the chain. A page is then allocated from the new 
block. 
The purpose of the header "padding is for page align 

ment. The pages 288 are aligned in memory so that the 
MMU can properly map onto them. The number of bytes in 
the header padding 298 depends on where the header hap 
pens to be allocated in memory. If it is only a few bytes from 
a page boundary, then the header padding is only a few bytes 
in length. In some cases, the header padding may approach a 



US RE41,922 E 
19 

full page in size (4K in this instance). Trailer "padding 290 
contains the remaining bytes in the block, which is allocated 
at a fixed size. Again, this fixed size in the preferred embodi 
ment is 4K. 

FIG. 16 is a flow diagram illustrating the process of mov 
ing images from overlay Screen 82 and system screen 81 for 
processing, as well as the use of VRAM memory after blend 
ing operation to produce a blended image on the display 
screen 20. In particular, the process begins with a start step 
401. According to step 402, images are moved from overlay 
or translucent screen 82 and the system screen 81. Next, 
blending is accomplished between the system screen and the 
overlay or translucent screen, with the results being stored in 
VRAM 85, according to step 404. Finally, the contents of the 
VRAM 85 are displayed on the display monitor 20, as per 
step 406. The operation is completed at step 410. 

FIG. 17 is a flow diagram showing the process of handling 
cursor setting between system and overlay modes of opera 
tion. The process starts with step 420. Next, a determination 
is made as to whether to enter the reactive mode, according 
to step 422. If not, the operation is considered completed, 
according to step 430. If the reactive mode is in fact 
indicated, as per step 422, a determination is made as to 
whether the cursor 39 is within the bounds of an overlay or 
translucent image, as indicated with process step 424. If the 
cursor is within the bounds of an overlay image or a translu 
cent image, the cursor 39 is set to be on the overlay or trans 
lucent image. If the cursor is not within the bounds of a 
translucent image, the cursor 39 is set to be on the system 
monitor, according to process step 426. Once the correct 
situs of the cursor 39 has been established, the process is 
considered to be complete. 

In FIG. 18, a screen 1040 of a Macintosh computer sys 
ten made by Apple Computer, Inc., of Cupertino. Calif., 
includes a desktop image 1042 produced by a Macintosh 
operating system, a window 1044 produced by a "Apple 
Share' application program made by Apple Computer, Inc., 
and a palette 1046 produced by a small application program 
or 'utility' known as "Pen Board' made by Apple 
Computer, Inc. The desktop 1042, which includes a menu 
bar 1048 and a desk area 1050, often displays a number of 
icons 1052, 1054 and 1056, which represent different objects 
or functions. For example, the icon 1052 represents a hard 
disk drive, icon 1054 represents the "trash can' in which 
files can be deleted and icon 1056 represents a folder which 
can contain applications and documents of various types. 
The menu bar 1048 preferably includes a number of labels 
1058, 1060, and 1062 for pull-down menus, as is well known 
to Macintosh users. 

As mentioned previously, the desktop 1042 is created by 
the operating system (sometimes referred to as the 
"Finder'). The Finder can be considered to be a specialized 
form of application program which displays an image on the 
entirety of the screen 1040. In other words, the "window' 
size of the desktop 1042 is the same size as the screen 1040. 
The application program AppleShare which creates the win 
dow 1044 typically does not take over the entire screen 1040. 
Similarly, the palette 1046 (which is just a specialized form 
of window) is produced by the PenBoard application, and 
does not occupy the entire space of the screen 1040. 
As is apparent by studying FIG. 18, the screen 1040 can 

quickly become occupied with icons, windows and palettes. 
This is not a major problem in traditional computer systems 
wherein the primary forms of input comprise keyboards and 
pointer devices, such a mice. However, in the pen computer 
systems where these more traditional forms of input devices 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
are not always available, the limitations of screen size 
becomes readily apparent. 

In FIG. 19, a keyboard image 1064 has been provided on 
screen 1040 to aid in the input of data to the AppleShare 
application program described previously. Preferably, this 
keyboard image 1064 is provided by dragging a keyboard 
icon 1066 off of the PenBoard palette 1046 in a fashion more 
fiully described in Copending U.S. patent application Ser: No. 
08/060,458, filed May 10, 1993, on behalf of Gough et al., 
entitled "Method and Apparatus for Interfacing With a Com 
puter System', and assigned to the assignee of the present 
application, the disclosure of which is hereby incorporated 
herein by reference in its entirety. As can be seen in this FIG. 
19, the keyboard image 1064 completely obscures the icons 
1052, 1054 and 1056 of FIG. 18, and almost totally obscures 
the window 1044 of the AppleShare application program. 
Information can be entered into the window 1044 of the 
application program from the keyboard image 1064 by "tap 
ping' on a "key' with the stylus 38. For example, arrow 
1068 on the keyboard image 1064 represents the "tapping' 
on the key 'R' with the stylus 38. This tapping action will 
send a 'R' to be displayed in the window 1044 of the Apple 
Share application just as if a 'R' had been typed on a physi 
cal keyboard. Again, the functioning of the keyboard image 
1064 is discussed in the aforementioned Copending U.S. 
patent application of Gough et al. 

While the keyboard image 1064 can be used to input data 
into a currently active application program (such as 
AppleShare), the keyboard image prevents any user feedback 
of the information being entered into application windows 
obscured by the keyboard image. Therefore, it is difficult for 
the user to determine whether data has been properly 
entered into the application program. This, in turn, slows 
down the data entry process, and greatly increases the 
chances for errors. 

The present invention solves this problem, as illustrated in 
FIG. 20. A user taps on a "transparency' icon 1069 on the 
Keyboard image 1064 of FIG. 19 with the stylus 38 to cause 
the keyboard 1064 to become partially transparent or 
"translucent.' By "translucent' it is meant herein that the 
overlay image can be seen, but it can also be seen through. 
Tapping on the transparency icon 1069 of the keyboard 
image 1064 of FIG. 20 would cause the "solid' keyboard 
image 1064 of FIG. 19 to reappear. 
As can be seen, the translucent keyboard image 1064 

allows the window 1044 and icons 1052, 1054, and 1056, to 
be seen through the translucent keyboard image 1064. In 
Other words, portions of base images which are overlapped 
by the keyboard image 1064, can still be seen (with some 
loss in resolution) through the translucent keyboard image 
1064. 

The functioning of the keyboard image 1064' will be 
explained in greater detail with reference to FIGS. 21a–21c. 
In FIG. 21a, the stylus 38 is used to "tap' on the "r' key as 
indicated by the arrow 1068 and the shading of the "r' key. 
The keyboard image 1064 "intercepts' the tap 1068 which 
would otherwise fall on the window 1044, and, instead 
causes a "r' to be sent to the AppleShare program and be 
displayed in a passwordfield of the window 1044. (Actually, 
AppleShare would display a "bullet' instead of the "r' to 
maintain the security of the password, but it will be assumed 
in this example that the typed password will remain visible). 
The "r' within the password field of window 1044 can be 
seen through the translucent window 1064' in this figure. In 
FIG. 21 b, second tap 1068 on the 'i' key will cause the 
Keyboard image 1064 to "intercept' the tap which would 



US RE41,922 E 
21 

otherwise fall on the window 1044, and to send a 'i' char 
acter to the AppleShare application program which then dis 
plays an 'i' after the "r' in the password field of window 
1044. Next, as seen in FIG. 21 c, the "p' key is tapped at 
1068, causing the keyboard 1064 to intercept the tap which 
would otherwise fall on the window 1044 and to send the 
"p' character to the AppleShare program which displays the 
character in the password field after the character "r' and 
'i.' Other characters and control characters (such as the 
"return' button 1070) can be sent to the application pro 
gram controlling window 1044 in a similar fashion. 

It will be apparent with a study of FIGS. 20 and 21 a-2 Ic 
that the translucent keyboard image 1064' is a distinctly 
superior user interface for situations in which screen area is 
at a premium. Since images "beneath' the translucent key 
board image 1064' can be seen through the keyboard image, 
the user has immediate feedback as to the accuracy of his or 
her input to the active application program. For example, if 
a key were "tapped' in error, the backspace key 1072 can be 
tapped on the translucent keyboard 1064' so that the correct 
character can be reentered. The translucent keyboard 1064 
therefore effectively expands the useful area of screen 1040 
by providing multiple, usable, overlapped images. 
A preferred method in accordance with the present inven 

tion for implementing the process 133 on a Macintosh com 
puter system is illustrated with reference to FIG. 22. The 
illustrated method of FIG. 22 is fairly specific to the Macin 
tosh computer system. It will therefore be apparent to those 
skilled in the art that when the process 133 is implemented 
On other computer systems, such as MS-DOS compatible 
computer systems and UNIX computer systems, that the 
methodology of FIG. 22 will have to be modified. However, 
such modifications will become readily apparent to those 
skilled in the art after studying the following descriptions of 
how the process 133 is implemented on the Macintosh com 
puter system. 

In FIG. 22, the operating system, application program, 
overlay utility, system routines, etc., are shown in a some 
what hierarchical fashion. At the highest level is the operat 
ing system 1096 of the computer system 10 of FIG. I. Run 
ning under the operating system 1096 is an application 
program 1098, such as the aforementioned AppleShare 
application program. Application program 1098, when it 
wants to open a window such as window 1044 of FIG. 18, 
calls a set of routines 1100 provided by the operating system 
1096. More specifically, in the Macintosh operating system, 
application program 1098 calls a "New Window' routine 
1 102 which, in turn, calls a "Frame Rect' routine I 104. The 
Frame Rect routine uses a pointer table 1 106 to call a 
"Shield Cursor' routine 1107 and a "Show Cursor' routine 
1 108. If the application program 1098 were running on sys 
tem 1096 without the process 133 of the present invention, 
this would be the entirety of the calls to open up the window 
1044 of FIG. 18. This process is extensively documented in 
the multi-volume reference set, Inside Macintosh, by C. Rose 
et al., Addison-Wesley Publishing Company, Inc., July 1988 
and are well known to those skilled in the art of program 
ming on the Macintosh operating system. 

The implementation of computer implemented process 
133 modifies this normal flow of routine calls in the follow 
ing way. When the application program 1098 calls the New 
Window routine 1102 which calls the Frame Rect routine 
I 104, which attempts to call the Shield Cursor Routine, the 
Frame Rect routine I 104 instead calls a portion of the pro 
cess of step 138 of FIG. 6B known as the Overlay Shield 
Cursor Patch I I I0. This is accomplished by having the pro 
cess 138 modifi the pointer table 1 106 such that when the 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

22 
Frame Rect routine I 104 is trying to call the Shield Cursor 
Routine I 107 it, instead, calls the Overlay Shield Cursor 
Patch II 10. After the Overlay Shield Cursor Patch I I 10 
completes its process, the Shield Cursor Routine I 107 is 
then called. As far as the Frame Rect routine I 104 is 
concerned, it does not know of the diversion of process con 
trol to the Overlay Shield Cursor Patch process II 10, and 
instead believes that it directly called the Shield Cursor Rou 
time 1 107. 

The process step 138 of FIG. 6B similarly "tricks' the 
Frame Rect routine I 104 when it attempts to call the Show 
Cursor Routine 1108. In that instance, when the Frame Rect 
routine I 104 goes to the pointer table 1 106 in an attempt to 
call the Show Cursor Routine I 108, process control is 
instead diverted to a process I 112 known as "Overlay Show 
Cursor Patch'. The Overlay Show Cursor Patch process 
1 112 interacts with a Blending Engine process I 114 to blend 
a first screen image 1 1 16 generated by the Macintosh Oper 
ating system and the application program, with a second 
image 1 118 (in this case, the keyboard image) to form the 
blended image 1 120. The operation of the Blending Engine 
will be discussed in greater detail subsequently. After the 
completion of the blending process of 1 I 14, the Overlay 
Show Cursor Patch process II 12 turns over process control 
to the "Show Cursor Routine' process I 108. Again, as far 
as the Frame Rect routine I 104 is concerned, it made a 
direct call to the "Show Cursor Routine' 1108 and was 
ignorant of the diversion of the process control to the Over 
lay Show Cursor Patch I I I2 and the Blending Engine II 14. 

FIG. 23 illustrates an alternate embodiment of the present 
invention which has been optimized for screen-writing 
speed. While the process of FIG. 22 works very well, it 
requires that the entirety of the base screen 11 16 be rewrit 
ten whenever the blended image 1 120 is to be refreshed. The 
alternative process of FIG. 23 only refreshes the portions of 
the blended image that needs to be refreshed, thereby greatly 
increasing the writing speed to the screen 1040. 
Much of the operation of the process illustrated in FIG. 23 

is similar to that described in FIG. 22. An operating system 
1172 supports an application program 1174 which, when it 
wants to open a window, calls a set of routines 1176 includ 
ing a "New Window routine' I 178 and Frame Rect routine 
I 180. The Frame Rect routine I 180 then, as before, attempts 
to first call the Shield Cursor Routine 1 182 first and then the 
Show Cursor Routine 1184. Again, as before, the pointer 
table is modified such that when the Frame Rect routine tries 
to call the Shield Cursor Routine 1182, it instead calls the 
Overlay Shield Cursor Patch 1186 of the present invention, 
and when the Frame Rect routine I 180 attempts to call the 
Show Cursor Routine 1 184 it instead calls the Overlay Show 
Cursor Patch 1188. The Overlay Show Cursor Patch calls a 
Blending Engine 1 190 which blends a partial base image 
| 192 with an overlay image 1 194 to create a blended image 
II96. 
The system 1 172, as part of its functioning, will make 

periodic calls to various system task processes 1198. The 
system task 1198 performs such functions as execute 
"Device Driver Code' and "Desk Accessory Code.' The 
process of the present invention opportunistically takes 
advantage of these periodic system task calls by modifying a 
pointer table 1200 to turn over process control to an Overlay 
System Task Patch 1202. This Overlay System Task Patch, 
along with the Overlay Shield Cursor Patch 1186, the Over 
lay Show Cursor Patch 1188, and the Blending Engine I 190 
comprise the overlay utility 133 of FIGS. 6A and 6B in this 
second preferred embodiment. 

FIG. 24 is used to illustrate the operation of the Blending 
Engine I 190 of FIG. 23 in greater detail. The process 138 of 



US RE41,922 E 
23 

FIG. 6B remaps certain pages of VRAM to the RAM screen 
buffer when an overlay image contains objects that overlap 
these pages. The RAM overlay screen buffer I 194 is then 
merged with the RAM screen buffer I 192 in the Blending 
Engine 1 190 by a process similar to that previously 
described and inserts the blended image into a "hole' 1204 
of the VRAM screen buffer 1196. The portions 1206 and 
1208 of the VRAM screen buffer remain the VRAM since the 
overlay image of the present invention does not overlap 
pages comprising these portions of the screen. 

Since portions 1206 and 1208 are pages of VRAM screen 
buffer memory which are not overlapped, at least in part, by 
an overlay image of the present invention, these portions 
1206 and 1208 can remain in VRAM screen buffer. VRAM 
screen buffer is much faster memory for video purposes than 
the RAM screen buffer I 192. Also, changes made to the RAM 
screen buffer I 192 or to the RAM overlay screen buffer I 194 
that do not cause a change in portions 1206 and 1208 do not 
require that the system blend the portions 1206 and 1208. 
The combination of these factors substantially increase the 
blending speed of the VRAM screen buffer and therefore of 
the display on screen 1040. 

FIGS. 25 and 26 are used to illustrate an alternate 
embodiment of the present invention wherein the blending of 
the base image and the overlay image are performed in the 
video driver hardware rather than within a computer imple 
mented process on the CPU. In FIG. 25, a prior art video 
driver system of a Macintosh computer system is illustrated. 
In this prior art example, the video driver circuit 1302 is 
coupled to an address bus 1304 and a data bus 1306 Con 
nected to a Motorola 68030 microprocessor. The video 
driver circuit 1302 includes a color screen controller CSC 
1307, and two banks of VRAM 1308 and 1310. The CSC 
1307 produces LCD control and data on a bus 1312 which 
control a black and white or color liquid crystal display 
(LCD). For example, the video driver circuit 1302 can drive 
an Esher LCD circuit for a 640 by 400 bit display, with eight 
bits of information per pixel. 

In FIG. 26, a modified video driver circuit 1302' is 
coupled to the same Motorola 68030 address bus 1304 and 
data bus 1306, and includes the same CSC 1307, VRAM 
1308, and VRAM 1310. However, the data and address Con 
nections have been modified as indicated. In this 
implementation, data from the screen buffer and the Overlay 
screen buffer are input into the VRAM of modified video 
driver circuit 1302, and combined therein to provide LCD 
control and blended data on the bus 1312. Again, the video 
driver circuit 1302" can control a black and white or color 
LCD, except this time instead of having eight bits per pixel, 
there are four bits allocated to the base image and four bits 
allocated to the overlay image. A color look-up table 
(CLUT)—not shown—of CSC 1307 is loaded with 256 
entries which detail each possible combination of bits from 
the 4 bit screen and the 4 bit overlay, and what the resultant 
blended value is. The color capability of the CSC 1307 is 
therefore no longer used for color look-up, and is instead 
used for the blending values. This technique makes it pos 
sible to use off-the-shelf integrated circuits, such as the CSC 
1307 which is available from Chips & Technologies, Inc. of 
San Jose, Calif., to perform an entirely new operation. 

In Summary, the method of the invention includes estab 
lishing translucent images on a display Screen including dis 
playing a translucent images and conducting image opera 
tions enabled by the translucent image. Image operations 
can be any kind of operation conducted on an image or win 
dow. Drawing an image, placing an image, or for that matter 
modifying, moving, expanding, or changing an image or a 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

24 
window, are considered to be image operations. A reference 
image could be provided by a selected first application pro 
gram. The translucent image could be produced by a 
selected second application program. The user is thus 
enabled to make sketches on the translucent image or win 
dow based upon what he or she sees on the base image 
produced by the first application program. This is made pos 
sible without any direct intervention in the operations of the 
first application program. In short, the features of the first 
application program are advantageously employed, without 
any modification of the first application program itself. The 
technical enablement of this cooperative screen is found in a 
feature of the invention according to which the second appli 
cation program intercepts certain screen inputs of the first 
application program and uses them to Supply the screen 
input needed as to the second application program. 
The image operations enabled by the concurrent interop 

erability of the two applications can be implemented by user 
selected intervention at any of a number of screen opera 
tional levels. The base image or window is considered to 
operate at a lower level, or below the level of the translucent 
image or window. Thus, the translucent image or window is 
known as the “overlay' image or window. Typically, the 
cursor is active at the particular level at which the user can 
operate. In any case, according to the invention, it may be 
useful to operate at either the base level, i.e., the level of the 
base image or window, or at the translucent overlay level. In 
other words, user input is permitted at either the base image 
or the translucent image. By a particular user input with 
respect to an image, the user implements a selected com 
puter implemented process and the process receives Screen 
inputs which contact or are otherwise associated with a par 
ticular window as the computer implemented process is 
effective for processing the screen inputs. These various 
inputs are controllable selectively by the user, in that users 
can take specific actions to determine which of the levels 
will be active for them. This can, for example, be accom 
plished by action of clicking or activating a pen or stylus or 
by another well known action users are considered capable 
of actuating. A particular window just opened is automati 
cally active, as the newest window created or activated. 
Another window or image can be activated merely by user 
selection in positioning the cursor over the window or image 
and clicking on the mouse, trackball or another applicable 
interface device. 

While this invention has been described in terms of sev 
eral preferred embodiments, it is contemplated that many 
alterations, permutations, and equivalents will be apparent to 
those skilled in the art. It is therefore intended that the fol 
lowing appended claims be interpreted as including all Such 
alterations, permutations, and equivalents as fall within the 
true spirit and scope of the present invention. 
What is claimed is: 
1. A method for establishing a translucent window hav 

ing a translucent window background and a translucent win 
dow frame on a display screen of a computer system, com 
prising the steps of: 

displaying a translucent window on a display screen Such 
that a base window can be seen through said translucent 
window, and 

conducting image operations on at least one of said trans 
lucent window and said base window. 

2. A method as recited in claim 1 wherein said base win 
dow is produced on said display Screen by a first computer 
implemented process running on said computer system, and 
said translucent window is produced by a second computer 
implemented process running on said computer system. 



US RE41,922 E 
25 

3. A method as recited in claim 2 wherein said second 
computer implemented process receives screen inputs which 
are associated with said translucent window and processes 
said screen inputs. 

4. A method as recited in claim 2, wherein said second 
computer implemented process receives screen inputs which 
are physically applied in connection with said translucent 
window and processes said screen inputs. 

5. A method as recited in claim 2, wherein said second 
computer implemented process receives screen inputs which 
make image contact with said translucent window and pro 
cesses said screen inputs. 

6. A method as recited in claim 1 wherein image opera 
tions are conducted with respect to said translucent window. 

7. A method as recited in claim 1 wherein image opera 
tions are conducted below said translucent window. 

8. A method as recited in claim 1 wherein image opera 
tions are conducted in connection with windows referenced 
by a cursor indication. 

9. A method for displaying images on a display screen of 
a computer system, comprising the steps of 

displaying a base image on a display Screen of a computer 
system; and 

displaying a translucent image on said screen Such that 
portions of said base image which are covered by said 
translucent image are at least partially visible through 
said translucent image. 

10. A method as recited in claim 9 wherein said base 
image and said translucent image are produced by indepen 
dent computer implemented processes. 

11. A method as recited in claim 9 wherein said base 
image is active to receive user inputs. 

12. A method as recited in claim 9 wherein said translu 
cent image is active to receive user inputs. 

13. A method as recited in claim 12 wherein said translu 
cent image is made active by user action. 

14. A method as recited in claim 12 wherein said translu 
cent image is made active by positioning the cursor at a 
portion of the translucent image and conducting a select 
action. 

15. A method as recited in claim 12 wherein said translu 
cent image is made active by clicking a mouse when the 
cursor is over a portion of the translucent image. 

16. A method as recited in claim 9 wherein said translu 
cent image and said base image are selectably active to 
receive user inputs. 

17. A method for displaying images on a display screen 
of a computer system comprising the steps of: 

running an application program on the central processing 
unit (CPU) of a computer system to produce a base 
image on a display Screen coupled to said CPU; and 

running an overlay program on said CPU to produce a 
translucent image on said display screen such that por 
tions of said base image are overlapped by said translu 
cent image and are at least partially visible through said 
translucent image. 

18. A method as recited in claim 17 wherein said step of 
running an overlay program comprises the steps of: 

displaying a translucent image on said display screen; 
intercepting screen inputs which contact the translucent 

image; 
processing said intercepted Screen inputs in said CPU; and 
updating said application program based upon said pro 

cess screen inputs. 
19. A method as recited in claim 18 wherein said step of 

displaying a translucent image comprises the step of blend 
ing a translucent image with said base image. 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

26 
20. A method as recited in claim 19 wherein said step of 

blending is accomplished in said CPU 
21. A method as recited in claim 19 wherein said step of 

blending is accomplished externally to said CPU. 
22. A method as recited in claim 18 wherein said step of 

processing said intercepted screen inputs includes redirect 
ing at least one page of memory within the memory manage 
ment means of said computer system. 

23. A method of performing image operations in a com 
puter system having a display Screen, including the steps of 

presenting a first selected image with respect to which 
image operations are desired, and 

producing a translucent image effective for overlapping at 
least a portion of said first selected image. 

24. A method according to claim 23 wherein said first 
selected image contains features of interest, and image 
operations are conducted on said translucent image with 
respect to said features of interest. 

25. A method according to claim 23 wherein said translu 
cent image contains features of interest, and image opera 
tions are conducted with respect to said first selected image 
based upon said features of interest. 

26. A computer system comprising: 
a central processing unit (CPU); 
screen means for displaying images, said screen means 

being coupled to said CPU: 
display means coupled to said Screen means for display 

ing a translucent image on said Screen means; and 
means for conducting image operations on a region 

including the level of a translucent image produced by 
said display means and the level beneath the translucent 
image. 

27. A computer system according to claim 26 wherein 
said means for conducting image operations performs image 
operations with reference to a translucent image on said 
screen means. 

28. A computer system according to claim 26 wherein 
said means for conducting image operations performs image 
operations selectably with reference to a translucent image 
on said screen means and below the level of a translucent 
image on said screen means. 

29. A method for displaying images on a display screen of 
an electronic device, comprising the steps of 

displaying a base image on a display screen of the elec 
tronic device, and 

displaying a translucent image on said screen such that 
portions of said base image which are covered by said 
translucent image are at least partially visible through 
said translucent image, wherein said translucent image 
and said base image are selectably active to receive 
user input and the base image remains at least partially 
covered by said translucent image even when selected. 

30. A method as recited in claim 29, wherein the elec 
tronic device is a handheld device. 

31. A method of performing image operations in an elec 
tronic device, including the steps of 

presenting a first selected image with respect to which 
image operations are desired, 

producing a translucent image effective for overlapping at 
least a portion of said first selected image, wherein said 
translucent image contains at least one feature of 
interest, and 

conducting an image operation on said first selected 
image using said feature of interest while the translu 
cent image overlaps at least a portion of the first 
selected image. 



US RE41,922 E 
27 28 

32. A method as recited in claim 31, wherein the elec- receiving input in said displayed base image while said 
tronic device is a handheld device. base image remains at least partially covered by said 

33. A method for displaying images on a display screen of translucent image. 
an electronic device, comprising the steps of 

displaying a base image on a display screen of said elec- 5 
tronic device, image is active to receive user inputs. 

displaying a translucent image on said screen such that 35. A method as recited in claim 33, wherein the elec 
portions of said base image which are covered by said tronic device is a handheld device. 
translucent image are at least partially visible through 
said translucent image, and 

34. A method as recited in claim 33, wherein said base 



USOORE41922C1 

(12) EX PARTE REEXAMINATION CERTIFICATE (10034th) 
United States Patent 
Gough et al. 

US RE41,922 C1 
Feb. 12, 2014 

(10) Number: 
(45) Certificate Issued: 

(54) METHOD AND APPARATUS FOR 
PROVIDING TRANSLUCENT IMAGES ON A 
COMPUTER DISPLAY 

(75) Inventors: Michael L. Gough, Ben Lomond, CA 
(US); Joseph J. MacDougald, Saint 
Petersburg, FL (US); Gina D. Venolia, 
Bellevue, WA (US); Thomas S. Gilley, 
New York, NY (US); Greg M. Robbins, 
Issaquah, WA (US); Daniel J. Hansen, 
Jr., Georgetown, TX (US); Abhay 
Oswal, Rancho Santa Fe, CA (US) 

(73) Assignee: Apple Inc., Cupertino, CA (US) 

Reexamination Request: 
No. 90/012,744, Dec. 18, 2012 

Reexamination Certificate for: 
Patent No.: Re. 41,922 
Issued: Nov. 9, 2010 
Appl. No.: 10/163,748 
Filed: Jun. 5, 2002 

Related U.S. Patent Documents 
Reissue of: 
(64) Patent No.: 6,072,489 

Issued: Jun. 6, 2000 
Appl. No.: 08/130,079 
Filed: Sep. 30, 1993 

Related U.S. Application Data 
(63) Continuation-in-part of application No. 08/060,572, 

filed on May 10, 1993, now Pat. No. 5,638,501. 

(51) Int. Cl. 
G06T I5/00 (2011.01) 

(52) U.S. Cl. 
USPC ............ 715/803; 715/762; 715/781; 34.5/629 

(58) Field of Classification Search 
None 
See application file for complete search history. 

(56) References Cited 

To view the complete listing of prior art documents cited 
during the proceeding for Reexamination Control Number 
90/012,744, please refer to the USPTO's public Patent 
Application Information Retrieval (PAIR) system under the 
Display References tab. 

Primary Examiner — Mary Steelman 

(57) ABSTRACT 

A method and apparatus is described for producing a trans 
lucent image over a base image created on the display Screen 
of a computer system by a selected first application program, 
and conducting image operations either on the base image 
created by the selected application program with reference to 
the translucent image produced, or conducting image opera 
tions on the translucent image with reference to the base 
image of the first application program. The first application 
program runs on a central processing unit (CPU) of a com 
puter system to produce a base image, and another application 
program referred to as the overlay program is run to produce 
the translucent image Such that portions of the base image 
which are overlapped by the overlay image are at least par 
tially visible through the translucent image. There is also a 
mechanism for blending the first video data and the second 
Video data to produce a blended image on the screen assem 
bly. 

1044 
1040 traarsaw sessss 

Tht 4:58:26 ev. 3) Swi 

1064 

(New) 

  



US RE41,922 C1 
1. 

EX PARTE 
REEXAMINATION CERTIFICATE 
ISSUED UNDER 35 U.S.C. 307 

THE PATENT IS HEREBY AMENDED AS 
INDICATED BELOW. 

Matter enclosed in heavy brackets appeared in the 
patent, but was deleted by the reissue patent; matter 
printed in italics was added by the reissue patent. Matter 
enclosed in heavy double brackets II appeared in the 
reissue patent but is deleted by this reexamination cer 
tificate; matter printed in boldface is added by this reex 
amination certificate. 

AS A RESULT OF REEXAMINATION, IT HAS BEEN 
DETERMINED THAT: 

The patentability of claims 29 and 30 is confirmed. 
Claims 1-28 were previously cancelled. 
Claim 33 is determined to be patentable as amended. 
Claims 34 and 35, dependent on an amended claim, are 

determined to be patentable. 

5 

10 

15 

2 
New claims 36 and 37 are added and determined to be 

patentable. 
Claims 31 and 32 were not reexamined. 

33. A method for displaying images on a display screen of 
an electronic device, comprising the steps of: 

displaying a base image on a display Screen of said elec 
tronic device; 

displaying a translucent image on said screen Such that 
portions of said base image which are covered by said 
translucent image are at least partially visible through 
said translucent image, wherein said translucent 
image and said base image are selectably active to 
receive user input and the base image remains at 
least partially covered by said translucent image 
even when selected; and 

receiving input in said displayed base image while said 
base image remains at least partially covered by said 
translucent image. 

36. The method of claim 33, wherein the input is a user 
input. 

37. The method of claim 33, further comprising activat 
ing the base image to be able to receive input. 

k k k k k 


