
(19) United States
US 20110265081A1

(12) Patent Application Publication (10) Pub. No.: US 2011/0265081 A1
LUCOVSKY et al. (43) Pub. Date: Oct. 27, 2011

(54) DROPLET EXECUTION ENGINE FOR
DYNAMIC SERVER APPLICATION
DEPLOYMENT

Mark LUCOVSKY, Carpinteria,
CA (US); Derek COLLISON,
Atherton, CA (US); Vadim
SPIVAK, San Francisco, CA (US);
Gerald C. CHEN, San Francisco,
CA (US)

(75) Inventors:

(73) Assignee: VMWARE, INC., Palo Alto, CA
(US)

(21) Appl. No.: 13/094,538

(22) Filed: Apr. 26, 2011

Related U.S. Application Data

(60) Provisional application No. 61/327.915, filed on Apr.
26, 2010.

Cloud Health
Controller Manager

134 138

Administrator
146

Developer 140

Enterprise 100

Publication Classification

(51) Int. Cl.
G06F 9/445 (2006.01)

(52) U.S. Cl. .. 717/177
(57) ABSTRACT

A cloud computing environment provides the ability to
deploy a web application that has been developed using one of
a plurality of application frameworks and is configured to
execute within one of a plurality of runtime environments.
The cloud computing environment receives the web applica
tion in a package compatible with the runtime environment
(e.g., a WAR file to be launched in an application server, for
example) and dynamically binds available services by appro
priately inserting service provisioning data (e.g., service net
work address, login credentials, etc.) into the package. The
cloud computing environment then packages an instance of
the runtime environment, a start Script and the package into a
web application deployment package, which is then transmit
ted to an application (e.g., container virtual machine, etc.).
The application container unpacks the web application
deployment package, installs the runtime environment, loads
the web application package into the runtime environment
and starts the start Script, thereby deploying the web applica
tion in the application container.

Server 116 Server 116

Custom
Database

Service Provider 102

Patent Application Publication Oct. 27, 2011 Sheet 1 of 7 US 2011/0265081 A1

Enterprise Customer 150 Container
VM 126 Service Provider 102

Custom CRM
------ Cloud Heath Database Service

Policy Engine Controller Manager 104 106
;Interface 148 134 138

Service Provisioner 130

Addressing and Discovery Layer 132

Developer 140

Enterprise 100
Cloud Computing Platform Provider 108

FIGURE 1A

Patent Application Publication Oct. 27, 2011 Sheet 2 of 7 US 2011/0265081 A1

Enterprise Customer 150 Server 116 Sever 116

Policy Engine Cloud a a
Interface 148 Controller Manager Custom

134 138 Database

Administrator
146

Developer 140

Enterprise 100
Service Provider 102

FIGURE 1B

Patent Application Publication Oct. 27, 2011 Sheet 3 of 7 US 2011/0265081 A1

Base Service A Base Service B Custom Service
128a 128, (CRM Service 106)

Base Service B CRM Service
communications communications

protocol protocol

Base Service A
Communications

protocol

Service Provisioning Data Service Provisioning Data Service Provisioning Data

Service Type Service Type Service Type
Service Characteristics Service Characteristics Sewice Characteristics
Login Credentials Login Credentials Login Credentials
Network address Network address Metwork address

Shim 200 Shim 200b Shim 200

Addressing and Discovery Layer Communications Client
205

Service Provisioner 130

Addressing and discovery layer
communications protocol

Addressing and Discovery Layer 132

FIGURE 2A

Patent Application Publication Oct. 27, 2011 Sheet 4 of 7 US 2011/0265081 A1

Base Service A Base Service B Custom Service
128a 128b (CRM Service 106)

Base Service B CRM Service
communications Communications

protocol protocol

Base Service A
communications

protocol

Shim 21 Shim 21 Shim210
Service Provisioning Data Service Provisioning Data Service Provisioning Data

Service Type Service Type Service Type
Service Characteristics Service Characteristics Service Characteristics
Login Credentials Login Credentials Login Credentials
Network address Metwork address Network address

Addressing and Addressing and Addressing and
Discovery Layer Discovery Layer Discovery Layer
Communications Communications Communications

Client Client Client
216x

Addressing and discovery layer Addressing and discovery layer Addressing and discovery layer
communications protocol Communications protocol Communications protocol

Addressing and Discovery Layer 132

FIGURE 23

Patent Application Publication Oct. 27, 2011 Sheet 5 of 7 US 2011/0265081 A1

Plug-in of
DE 142

Determine "set up" characteristics 300
of web application

Cloud Controller 134 Service Provisioner 130

Transmit set up characteristics to
cloud Controller

Submit web application (or
portions thereof) to cloud
controller (e.g., WAR file)

Receive web application or portions thereof
(e.g., WAR file)

Transmit request to identify Shim components provide service
available services in cloud Propagate request for identity of available provisioning data for their
computing environment services via addressing and discovery layer Corresponding available services

318
Provide identity of services to IDE plug-in Shim components provide

320 provisioning credentials Transmit selection of desired Edit web application to bind selected services (username, password), network available services to bind to web
application to web application addressing information and other
op 322 data needed to bind service to

web application
Generate start script to be executed by

326 container VM for web application deployment 324

Create web application deployment package
comprising the start scriptfile, runtime

328 environment and WAR file (e.g., tarball, etc.)

FIGURE3

Patent Application Publication Oct. 27, 2011 Sheet 6 of 7 US 2011/0265081 A1

Server 116a
- W

f Virtual Machine Execution Space 414

Container VM 126

Web Application 124
Deployment Agent Container Container

428 VM 1262 VM 126
Runtime Environment 430

- W

Virtual Machine Monitor (VMM) 434

Hypervisor 412

Storage
Unit
404

Hardware Platform 402

PrOCeSSOr
410

FIGURE 4

Patent Application Publication

Cloud Controller 134

Receive request to launch web
application 124

Broadcast request for available
container WM via addressing and

discovery layer 132

Provide a link to download web
application deployment package
(see step 328) via addressing and

discovery layer 132

Oct. 27, 2011 Sheet 7 of 7

Container VM 126

Deployment agent 428 indicates availability of
container VM 1261 to host web application 124

via addressing and discovery layer 132

Deployment agent 428 obtains link and fetches
web application deployment package

Deployment agent 428 unpacks web
application deployment package, installing

runtime environment 430 and web application
124 (e.g., WAR file).

Deployment agent 428 executes start script,
launching runtime environment and starting

web application 124

Deployment agent 428 broadcasts (via
addressing and discovery layer 132) network
address information of container WM 126 and
bound port number of web application 124
upon successful start of web application 124

Generate stop scriptfile for web application
124

FIGURE 5

US 2011/0265081 A1

Router 136

Receive network address
information and port number via
addressing and discovery layer

132

Update internal routing table to
properly route received URL

requests for web application 124
to container WM 1261

US 2011/0265081 A1

DROPLETEXECUTION ENGINE FOR
DYNAMIC SERVER APPLICATION

DEPLOYMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application claims the benefit of U.S.
provisional patent application 61/327,915 filed on Apr. 26,
2010 and entitled “Droplet Execution Engine for Dynamic
Server Application Deployment,” which is hereby incorpo
rated by reference. The present application is further related
by subject matter to U.S. patent application Ser. No. 12/767,
010 filed on Apr. 26, 2010 and entitled “Cloud Platform
Architecture’ (Attorney Docket No. A437), U.S. patent
application entitled “Policy Engine for Cloud Platform and
filed on even date herewith (Attorney Docket No. A452), and
U.S. patent application entitled “Rapid Updating of Cloud
Applications” and filed on even date herewith (Attorney
Docket No. A467), each of which is hereby incorporated by
reference.

BACKGROUND

0002 “Platform-as-a-Service' (also commonly referred
to as “PaaS) generally describes a suite of technologies
provided by a service provider as an integrated Solution that
enables a web developer (or any other application developer)
to build, deploy and manage the life cycle of a web applica
tion (or any other type of networked application). One pri
mary component of PaaS is a "cloud-computing platform’
which is a network (e.g., Internet, etc.) infrastructure run and
maintained by the service provider upon which developed
web applications may be deployed. By providing the hard
ware resources and Software layers required to robustly run a
web application, the cloud computing platform enables
developers to focus on the development of the web applica
tion, itself, and leave the logistics of scalability and other
computing and storage resource requirements (e.g., data Stor
age, database access, processing power, facilities, power and
bandwidth, etc.) to the cloud computing platform (e.g., at a
cost charged by the service provider). A service provider may
additionally provide a plug-in component to a traditional IDE
(i.e., integrated development environment) that assists a
developer who creates web applications using the IDE to
properly structure, develop and test Such applications in a
manner that is compatible with the service provider's cloud
computing platform. Once the developer completes a web
application using the IDE, the plug-in component assists the
developer in deploying the web application into the cloud
computing platform.
0003. However, due to complexities in providing flexible
and scalable cloud computing platforms, PaaS is offered by
few service providers. Current offerings of cloud computing
platforms provide limited choices in the computer languages,
application frameworks, runtime environments, available ser
vices and other technology options that may be selected to
create a web application that can be launched in the cloud
computing platform. For example, a cloud computing plat
form that only supports Microsoft's .NET runtime environ
ment would not be suitable for an enterprise with a technol
ogy development policy that requires development of web
applications using an open source runtime environment Such
as the Apache Tomcat application server. Furthermore, Soft
ware layers of current cloud computing platforms are inex

Oct. 27, 2011

tricably coupled to the hardware resources (e.g., servers, Stor
age, data centers, etc.) upon which they are built, making any
enterprise requested customization, modification and/orport
ability of functionality prohibitive. Such inflexibility and lim
ited choices make adoption of current PaaS more suitable for
Small start-up companies than for Sophisticated enterprises
that need to address issues such as governance, security, pri
vacy and higher levels of control over web applications (ser
Vice level requirements, Scalability, fault tolerance etc.).

SUMMARY

0004 One or more embodiments of the present invention
provide a cloud computing environment for deployment of
web applications that can be developed utilizing any choice of
application framework (e.g., Ruby on Rails, Spring, etc.), any
choice of runtime environment (e.g., Apache Tomcat appli
cation server, Microsoft .NET, etc.) and any choice of pro
gramming language (e.g., Java, Ruby, Scala, Python, etc.).
The cloud computing environment further decouples the soft
ware-based components of the cloud computing environment
that provide web application deployment functionality from
any hardware-based infrastructure platform upon which the
Software-based components might be built. As such,
instances of the cloud computing environment can be
launched on top of any type of hardware resource, from a
single laptop to an enterprise-wide data center. The flexibility
of such a cloud computing environment can lead to increased
adoption at all levels, from the single developer to the entire
enterprise. At least one embodiment leverages the ability to
easily scale resources for the cloud computing environment
by utilizing virtual machines that can be dynamically instan
tiated to provide additional computing resource capacity.
0005 One method, according to an embodiment, dynami
cally deploys a web application in an application container.
According to the method, the application container indicates
availability of computing resources to host the web applica
tion and then retrieves a web application deployment package
comprising a web application package and a start Script file.
One example of a web application deployment package is a
tarball file and an example of a web application package is the
WAR file. The application container then unpacks the web
application deployment package into the application con
tainer and installs a runtime environment compatible with the
web application into the application container. One example
of a runtime environment is an application server Such as
Apache Tomcat. The application container executes the start
script to start the runtime environment and launch the web
application in the runtime environment and, upon a success
ful launch of the web application, broadcasts network address
information for the application container, thereby enabling
listening routers to route web browser requests for the web
application to the application container.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 FIG. 1A depicts one embodiment of a cloud com
puting architecture for a service provider.
0007 FIG. 1B depicts a second embodiment of a cloud
computing architecture for a service provider.
0008 FIG. 2A depicts a component architecture for a ser
Vice provisioner of a cloud computing environment.
0009 FIG. 2B depicts a service provisioner layer of a
cloud computing environment.

US 2011/0265081 A1

0010 FIG. 3 depicts a flow diagram for preparing a web
application for deployment by a cloud controller.
0011 FIG. 4 depicts container virtual machines for host
ing a web application in a cloud computing architecture.
0012 FIG. 5 depicts a flow diagram for deploying a web
application in a container virtual machine.

DETAILED DESCRIPTION

0013 FIG. 1A depicts one embodiment of a cloud com
puting architecture for a service provider. An enterprise 100
desires to develop a web application to be deployed by service
provider 102. For example, service provider 102 may have
certain services (e.g., accessible, for example, via REST
(Representational State Transfer) APIs (Application Pro
gramming Interface) or any other client-server communica
tion protocol such as custom database 104 or CRM (Cus
tomer Relationship Management) service 106 (or any other
service offered by service provider 102) that enterprise 100
desires to access through its developed web application. Ser
vice provider 102, in turn, utilizes resources provided by
cloud computing platform provider 108 to provide a cloud
computing environment in which enterprise 100 can deploy
its web application.
0014 Cloud computing platform provider 108 provides
service provider 102 an infrastructure platform 110 upon
which a cloud computing environment 112 may be executed.
In the particular embodiment of FIG. 1A, infrastructure plat
form 110 comprises hardware resources 114, such as servers
116 to 116, and one or more storage array networks (SAN),
such as SAN 118, which are configured in a manner to pro
vide a virtualization environment 120 that supports the execu
tion of a plurality of virtual machines across servers 116 to
116. As further detailed below, these virtual machines pro
vide the various services and functions that make up cloud
computing environment 112.
0015. Virtualization environment 120 of FIG. 1A addi
tionally includes an orchestration component 122 (e.g.,
implemented as a process running in a virtual machine in one
embodiment) that monitors the infrastructure resource con
Sumption levels and requirements of cloud computing envi
ronment 112 (e.g., by monitoring communications routed
through addressing and discovery layer 132 as further
detailed below) and provides additional infrastructure
resources to cloud computing environment as needed or
desired. For example, if cloud computing environment 112
requires additional virtual machines to host newly deployed
web applications or to scale currently running web applica
tions to support peak demands, orchestration component 122
can initiate and manage the instantiation of virtual machines
on servers 116 to 116, to Support Such needs. In one example
implementation of an embodiment similar to that of FIG. 1A,
virtualization environment 120 may be implemented by run
ning VMware ESXTM based hypervisor technologies on serv
ers 116 to 116, provided by VMware, Inc. of Palo Alto, Calif.
(although it should be recognized that any other virtualization
technologies, including XenR and Microsoft Hyper-V virtu
alization technologies may be utilized consistent with the
teachings herein).
0016. In the embodiment of FIG. 1A, cloud computing
environment 112 Supports an application execution space 124
that comprises a plurality of virtual machines (referred to as
container VMs 126 to 126) instantiated to host deployed
web applications. For example, the deployment by enterprise
100 of a web application 125 on the cloud computing plat

Oct. 27, 2011

form of service provider 102 results in the hosting of web
application 125 in container VM 126 of application execu
tion space 124 at cloud computing platform provider 108.
0017 Web application 125 can access a set of base ser
vices 128 (e.g., run in one or more virtual machines) provided
by cloud computing environment 112 as well as third-party
services such as those that may be provided directly by ser
vice provider 102 (e.g., custom database 104, CRM service
106, etc.). For example, a relational database service (e.g.,
MySQL, etc.), monitoring service, background task Sched
uler, logging Service, messaging service, memory object
caching service and the like may comprise base services 128
in one embodiment. A service provisioner 130 (e.g., run in
one or more virtual machines) serves as a communications
intermediary between these available services (e.g., base ser
vices 128 and other third party provided services such as
custom database 104 and CRM service 106) and other com
ponents of cloud computing environment 112 (e.g., cloud
controller 134, health manager 138, router 136, container
VMs 126 to 126, etc.) and assists with the task of provi
Sioning orbinding Such available services to web applications
during the web application deployment process. FIG. 2A
depicts a component architecture for service provisioner 130
of cloud computing environment 112, according to one
embodiment. In the embodiment of FIG. 2A, service provi
Sioner 130 maintains a shim or similar stub component
(sometimes also referred to as a “service gateway') for each
service available in cloud computing environment 112 (see,
e.g., shims 200, 200, and 200, respectively, for base ser
vices 128 and 128, and CRM service 106). Each shim com
ponent itself maintains service provisioning data for its cor
responding service. Such as a description of the service type,
service characteristics (e.g., multi-tenancy versus single ten
ancy, etc.), login credentials for the service (e.g., root user
name, password, etc.), network address and port number of
the service, and the like. Each shim component is configured
to communicate with its corresponding service utilizing an
API or other similar communications protocol that is Sup
ported by such service. For example, in order to bind web
application 125 to base service 128 during deployment, ser
vice provisioner 130 may direct shim 200 to log into base
service 128 and generate new credentials (e.g., a new user
name and password) specifically for web application 125 so
that web application 125 can directly log into and access base
service 128, with Such credentials during its execution. In
certain embodiments, service provisioner 130 further com
prises an addressing and discovery layer communications
client 205 that enables service provisioner 130 to communi
cate with other components of cloud computing environment
112 through addressing and discovery layer 132. In an alter
native embodiment, service provisioner 130 may communi
cate with other components of cloud computing environment
112 through HTTP or other network protocols rather than
through addressing and discovery layer 132, for example, to
eliminate any compatibility requirements of third party Ser
vices such as customer database 104 and CRM service 106 to
utilize communication protocols of addressing and discovery
layer 132.
0018. It should be recognized that service provisioner 130
as depicted in FIG. 2A is only one embodiment of a commu
nications intermediary between available services and other
components of cloud computing environment 112 and that
alternative embodiments may be implemented consistent
with the teachings herein. For example, FIG. 2B depicts an

US 2011/0265081 A1

alternative embodiment of service provisioner 130, as an
abstraction layer of independently operating shim compo
nents. Each shim component (e.g., 210 to 210, to 210)
operates, for example, as an independent process and com
prises its own addressing and discovery layer communica
tions client (e.g., 215, 215, and 210, respectively) to interact
with addressing and discovery layer 132 (although, in alter
native embodiments, such shim components may communi
cate with other components of cloud computing environment
112 through HTTP or other network protocols rather than
utilizing Such an address and discovery layer communica
tions client 215). In an embodiment similar to that of FIG. 2B,
shim components may be implemented in different locations,
So long as they are able to effectively communicate with
address and discovery layer 132. For example, shim 210 for
CRM service 106 may be implemented as a process running
on a server at service provider 102 while shim components
210, and 210, for base services 128 and 128, respectively,
may be implemented as processes running within allocated
virtual machines at cloud computing service provider 108.
0019 Returning to FIG. 1A, addressing and discovery
layer 132 provides a common interface through which com
ponents of cloud computing environment 112. Such as service
provisioner 130, cloud controller 134, health manager 138,
router 136 and container VMs 126 to 126 in application
execution space 124, can communicate and receive notifica
tions. For example, in one embodiment, service provisioner
130 may communicate through addressing and discovery
layer 132 to broadcast the availability of services and to
propagate service provisioning data for Such services during
deployment of web applications in cloud computing environ
ment 112 (in other embodiments, service provisioner 130
may communicate with other components of cloud comput
ing environment 112 through HTTP or other network proto
cols rather than address and discovery layer 132). Similarly,
container VM 126 may broadcast a notification through
addressing and discovery layer 132 to indicate the Successful
deployment of web application 125 and to provide routing
information (e.g., hostname and network address informa
tion, bound port number, etc.) for the successfully deployed
web application 125. In one embodiment, addressing and
discovery layer 132 is implemented as a message brokering
service (e.g., running in one or more virtual machines) that
defines a common protocol and message format through
which components of cloud computing environment 112 can
exchange messages and broadcast notifications and other
information. In such an embodiment, the components of
cloud computing environment 112 establish a connection
with the message brokering service (e.g., also sometimes
referred to as “subscribing to the message brokering Ser
vice), for example, through known authentication techniques
(e.g., passwords, etc.) and, once connected to the message
brokering service, can provide, receive and request messages,
notifications and other similar information to and from other
components that have also subscribed to the message broker
ing system. Examples of a message brokering service that
may be used in an embodiment is RabbitMQTM which is
based upon the AMPQ (Advanced Message Queuing Proto
col) open protocol standard or NATS, an open source publish
Subscribe messaging system. It should be recognized, how
ever, that alternative interfaces and communication schemes
may be implemented for addressing and discovery layer 132
other than Such a message brokering service.

Oct. 27, 2011

0020. Cloud controller 134 (e.g., run in one or more virtual
machines) orchestrates the deployment process for web
applications that are Submitted to cloud computing environ
ment 112 for deployment. Cloud controller 134 receives web
applications Submitted to cloud computing environment 112
and, as further detailed below, interacts with other compo
nents of cloud computing environment 112 to bind available
services required by Submitted web applications and package
web applications for transmission to available containerVMs
(e.g., container VMs 126 to 126) for deployment. In the
embodiment depicted in FIG. 1A, web applications, such as
web application 125, received by cloud controller 134 may be
developed by an application developer 140 in enterprise 100
using an integrated development environment (IDE) 142
installed on the developer's laptop or terminal IDE 142
includes an installed plug-in provided by service provider 102
that facilitates the development and submission of web appli
cation 125 to cloud computing environment 112. In order to
provide enterprise 100 the ability to impose enterprise-wide
rules on web applications (e.g., permitted accessible services,
computing resource consumption limitations, etc.), service
provider 102 may also provide to enterprise 100 a policy
engine 144 to be run, for example, as a proxy server within
enterprise 100. As depicted in the embodiment of FIG. 1A,
policy engine 144 is situated in the communications path
between the cloud controller 134 and entities that communi
cate with cloud computing environment 112 through cloud
controller 134), such as application developer 140 or an
administrator 146, as further discussed below. For example,
policy engine 144 intercepts web applications Submitted for
deployment by developer 140 and reviews the requested
requirements of Such submitted web applications, prior to
releasing them to cloud computing environment 112 for
deployment. Administrator 146 in enterprise 100 is able to set
policies for policy engine 144 as well as review analytics for
web applications currently deployed in cloud computing
environment 112 through a policy engine user interface 148
that communicates with policy engine 144 and can be
accessed via a web browser or other client application. In one
embodiment, policy engine 144 is further able to provide the
same or similar functions as cloud controller 134 locally
within enterprise 100. It should be recognized that policy
engine 144 is an optional feature that may be provided by
service provider 102 to enterprise 100 and that alternative
embodiments or implementations may not utilize or include
policy engine 144. For example, as depicted in FIG. 1A,
application developer 140 and administrator 146 may com
municate directly with cloud controller 134, without utilizing
policy engine 144. Furthermore, it should be recognized that
in alternative embodiments, policy engine 144 may be situ
ated at any location within the communications path to cloud
controller 134, for example, within service provider 102 or
cloud platform provider 108 rather than enterprise 100, as is
depicted in FIG. 1A. It should further be recognized that
multiple policy engines 144, enforcing policies for different
organizations, may be situated between in communications
paths to cloud controller 134, for example, both within enter
prise 100 and service provider 102. Cloud computing envi
ronment 134 further comprises a health manager 138 (e.g.,
run in one or more virtual machines) that tracks and maintains
the “health' of cloud computing environment 112 by moni
toring messages broadcast on addressing and discovery layer
132 by other components of cloud computing environment
112. For example, health manager 138 may notice the failure

US 2011/0265081 A1

of an instance of a deployed web application and automati
cally broadcast a request to cloud controller 134 to re-start the
web application. Similarly, health manager 138 may be fur
ther configured to itself initiate the re-starting of failed avail
able services or other components of cloud computing envi
ronment 112 (e.g., cloud controller 134, service provisioner
130, router 136, etc.).
0021. Once cloud controller 134 successfully orchestrates
the deployment of web application 125 in containerVM 126,
an enterprise customer 150 can access web application 125,
for example, through a web browser or any other appropriate
client application residing on a computer laptop or other
computer terminal. Router 136 (e.g., run in one or more
virtual machines) receives the web browser's access request
(e.g., a uniform resource locator or URL) and routes the
request to container VM 126 which hosts web application
125. More generally, router 136 maintains mappings in inter
nal routing tables between URLs and deployed web applica
tions in order to properly route URL requests from customers
to the appropriate container VMs hosting the requested web
applications (as well as maintain load balancing among web
application instances, etc.). These mappings are received by
router 136 through address and discovery layer 132, as
detailed further below, when a container VM successfully
deploys a web application and thus broadcasts routing infor
mation (e.g., hostname, network address information, port
number, etc.) for the web application through addressing and
discovery layer 132.
0022. It should be recognized that the embodiment of FIG.
1A is merely exemplary and that alternative cloud computing
architectures may be implemented consistent with the teach
ings herein. For example, while FIG. 1A implements cloud
computing environment 112 on an infrastructure platform
110 hosted by cloud computing platform provider 108, it
should be recognized that cloud computing environment 112
may be implemented by entities other than cloud computing
platform provider 108, on top of any type of hardware infra
structure. FIG. 1B depicts an alternative embodiment of a
cloud computing architecture in which infrastructure plat
form 110 is provided by service provider 102 itself. Further
more, unlike FIG. 1A, in which infrastructure platform 110
comprises a virtualization environment 120 in which compo
nents of cloud computing environment 112 are implemented
as processes or daemons running in one or more virtual
machines, the components of cloud computing environment
112 in FIG. 1B are run in a non-virtualized infrastructure
platform 110, as processes or daemons directly on hardware
resources 114, such as servers 116 to 116. It should be
recognized that embodiments may configure cloud comput
ing environment 112 and infrastructure platform 110 in a
loosely coupled manner with communication between com
puting environment 112 and infrastructure 110 only occur
ring through orchestration component 122 of infrastructure
platform 110 which monitors hardware resource consump
tion by connecting to addressing and discovery layer 132). In
Such loosely coupled embodiments, it should be recognized
that cloud computing environment 112 may be implemented
on any infrastructure platform, including on a laptop or per
Sonal computer (e.g., in which case, each component of cloud
computer environment 112 runs as a separate process or dae
mon on the laptop or personal computer).
0023 FIG. 3 depicts a flow diagram for preparing a web
application for deployment by cloud controller 134. In step
300, the plug-in of IDE 142 analyzes the web application

Oct. 27, 2011

developed by developer 140 to determine “set-up' character
istics, such as the name of the web application and the appli
cation framework used to develop the web application (e.g.,
Spring, Ruby On Rails, etc.). For example, in one embodi
ment, the plug-in of IDE 142 determines the application
framework used to develop the web application (e.g., Spring,
Ruby on Rails, etc.) by analyzing the organizational structure
of the various files (as well as possibly the contents of the files
themselves) that make up the web application to identify
characteristics that are specific to Such application frame
work. In step 302, the IDE plug-in transmits the set-up char
acteristics to cloud controller 134 and cloud controller 134
receives such set-up characteristics in step 304. In step 306,
the IDE plug-in 134 further submits the web application (or
portions thereof) to cloud controller 134, which, in turn,
receives the submitted web application in step 308. In one
embodiment, the submitted web application takes the form of
a Java web application archive or “WAR file comprising
dynamic (e.g., JavaServer Pages, etc.) web pages, static web
pages, Java servlets, Java classes, and other property, configu
ration and resources files that make up a Java web application.
It should recognized, however, that a web application may be
Submitted by IDE plug-in as any other type of package that is
compatible with the runtime environment (e.g., Apache Tom
cat application server, etc.) in which the web application is to
be deployed. For example, in an alternative embodiment, the
Submitted web application comprise a plurality of files, simi
lar to those in a WAR file, organized into a tape archive file or
a “tar” file (also referred to as a tarball). Furthermore, it
should be recognized that, rather than submitting the web
application itself, alternative embodiments may submit web
application in step 306 by providing a reference to download
or otherwise access the web application, for example, by
providing a uniform resource locator (“URL), Git repository
or other similar reference to web application. In such embodi
ments, the step of receiving the web application in step 308
would thus utilize the provided reference to fetch the web
application. In step 310, the IDE plug-in then transmits a
request to cloud controller 134 to identify the available ser
vices in cloud computing environment 112. For example, if
the web application requires access to a database, the IDE
plug-in may specifically request a list of database services
(e.g., MySQL, Oracle, etc.) that are available in cloud com
puter environment 112. Upon receiving Such request, in step
312, cloud controller 134 propagates its own request for ser
Vice provisioning data relating to available services onto
addressing and discovery layer 132. Upon receipt by service
provisioner 130 of this request in step 314, the shim compo
nents of service provisioner 130 (see, e.g., FIGS. 2A and 2B)
provide service provisioning data for their corresponding Ser
vices via addressing and discovery layer 132 in step 316.
0024. Upon receipt of such service provisioning data, in
step 318, cloud controller 134 is then able to transmit the
identity of available services to IDE 142 as requested in step
310. Upon receipt of the identity of available services, in step
320, the IDE plug-in then determines and transmits a selec
tion of desired available services to bind to the submitted web
application. It should be recognized that such a selection
process may, in certain embodiments, be automated, in accor
dance with pre-configured preferences set in the IDE, or may
involve manual selection by developer 140 in other embodi
ments. Upon receipt of the selection of services, in step 322.
cloud controller 134 begins a 'staging process' to stage, or
otherwise modify the contents of the WAR file (or other

US 2011/0265081 A1

package) of the submitted web application to bind the
selected services to the web application. In one embodiment,
this staging process involves unpacking the WAR file or
extracting its constituent directory structure and files, accord
ingly inserting new files and/or modifying existing files to
bind the selected services, and repacking the WAR file (e.g.,
or otherwise creating a new WAR file that replaces the previ
ous WAR file). For example, in step 324, cloud controller 134
and the shim components of service provisioner 130 for the
selected services may exchange messages through addressing
and discovery layer 132 (or via HTTP or other network pro
tocols in other embodiments) to establish or otherwise obtain
additional service provisioning data Such as service login
credentials (e.g., username?password combinations), host
name, network address and port number to access the service
and any requisite software drivers/libraries that may be
needed to enable the submitted web application to commu
nicate with the services upon deployment. Cloud controller
134 is then able to incorporate such service provisioning data
into the contents of the WAR file as part of the staging pro
cess. In one embodiment, set-up information identifying the
application framework utilized to develop the submitted web
application (i.e., that was received by cloud controller 134 in
step 300) enables cloud controller 134 to properly insert
service provisioning data into the contents of the WAR file to
bind selected services based upon a data organization struc
ture of the WAR file that is imposed by the application frame
work (e.g., inserting additional environmental variables,
entries in configuration files, additional system parameters
and the like reflecting, for example, the hostname, network
address, port number and login credentials for the service,
etc.). For example, if the application framework is the Spring
framework, cloud controller 134 inserts service provisioning
data into the contents of the WAR file inaccordance with how
a Spring framework developed web application organizes its
data within the WAR file. Once the contents of the WAR file
have been modified to bind selected services to the submitted
web application, in step 326, cloud controller 134 generates a
start script file that can be executed by a containerVM to start
a runtime environment and launch the Submitted web appli
cation in the runtime environment. For example, if the WAR
file is intended to be deployed in a runtime environment such
as Apache Tomcat application server, the start Script file may
include commands to start Apache Tomcat and then start the
servlet (or servlets) that comprises web application 125 (e.g.,
via a net start command, etc.). In an alternative embodiment,
such binding as described in steps 322-324 may be deferred
until the Submitted web application is actually deployed, as
further described below (when describing FIG. 5).
0025. In step 328, cloud controller 134 then creates a web
application deployment package that can be unpacked by any
available container VM. In one embodiment, such a web
application deployment package is a “tar file (also referred to
as a tarball) that includes the start script file, an instance of the
runtime environment (e.g., Apache Tomcat, etc.) to be
installed and started in a containerVM, and the WAR file for
web application 125 (e.g., embedded in an appropriate direc
tory within the directory structure of the instance of the runt
ime environment). Alternative embodiments may include fur
ther optimizations to streamline the communication (and
utilized network bandwidth) between the IDE plug-in at
enterprise 100 and cloud controller 134. For example, in one
embodiment, in step 302, IDE plug-in may include as part of
the transmission of set-up characteristics, a "fingerprint” list

Oct. 27, 2011

of hash values (e.g., SHA-1 values, etc.) and file sizes for each
file in the WAR file. Cloud controller 134, in turn, maintains
its own table of fingerprint entries for hash value/file size
pairs, with each entry associated with a stored file. Upon
receipt of the list from the IDE plug-in, cloud controller 134
determines whether it already has any of the files in the WAR
file by reviewing its table. In such manner, cloud controller
134 can specifically request only those files with associated
hash values and file sizes for which cloud controller 134 does
not have an entry in its table. Such an optimization can sig
nificantly reduce the amount of data transmitted by IDE plug
in to cloud controller 134. For example, if only a few lines of
code have been changed in a single library file of an already
uploaded web application, the foregoing fingerprinting pro
cess enables the IDE plug-in to transmit only the library file
itself, rather than the entire WAR file. Similarly, since differ
ent web applications often share common application frame
work files, the foregoing fingerprinting process can further
significantly reduce the uploading times for different web
applications. It should be recognized that although an IDE (or
IDE plug-in) is described in FIG.3, alternative embodiments
may initiate the flow in FIG.3 performed by the IDE plug-in
using other non-IDE environments. For example, developer
140 may interact with cloud controller 134 through a com
mand line interface (“CLI), other applications, or any other
similar process or tool capable of initiating a network request
(e.g., HTTP request) to communicate with cloud controller
134. Furthermore, it should be recognized that embodiments
may include a policy engine 144 that intercepts communica
tion between IDE plug-in (or CLI or other similar tool) and
cloud controller 134, altering communications in order to
adhere to set policies and/or performing steps on behalf of the
IDE plug-in (e.g., selecting services in step 320 according to
pre-defined policies, etc). It should also be recognized that
functionalities described herein as provided in a plug-in IDE
(or CLI or other application or tool) may be alternatively
provided inside the cloud computing environment 112, for
example, in cloud controller 134, in alternative embodiments.
For example, in one alternative embodiment, determination
of the application framework as part of the “set-up' charac
teristics in step 300 may be performed by cloud controller 134
upon its receipt of the web application.
0026 FIG. 4 depicts container virtual machines for host
ing a web application in a cloud computing architecture. Such
container virtual machines are provided to a cloud computing
architecture, for example, by virtualization platform 120, as
previously discussed in the context of FIG.1.A. ContainerVM
126 is hosted on one of servers 116 to 116 (e.g., server 116
as depicted in FIG. 4) comprising a server grade hardware
platform 402 such as an x86 architecture platform. Such a
hardware platform may include a local storage unit 404. Such
as a hard drive, network adapter (NIC 406), system memory
408, processor 410 and other I/O devices such as, for example
and without limitation, a mouse and keyboard (not shown in
FIG. 4).
0027. A virtualization software layer, also referred to
hereinafter as hypervisor 412, is installed on top of hardware
platform 402. Hypervisor 412 supports virtual machine
execution space 414 within which multiple containerVMs for
hosting web applications may be concurrently instantiated
and executed. As shown, virtual execution space 414 Supports
containerVMs 126 to 126. For each of containerVMs 126
to 126, hypervisor 412 manages a corresponding virtual
hardware platform (i.e., virtual hardware platforms 416

US 2011/0265081 A1

416) that includes emulated hardware such as virtual hard
drive 418, virtual NIC 420, virtual CPU 422 and RAM
424 for VM 126. For example, virtual hardware platform
416 may function as an equivalent of a standard x86 hard
ware architecture such that any x86 Supported operating sys
tem, e.g., Microsoft Windows.(R), Linux R, Solaris(R x86, Net
Ware, FreeBSD, etc., may be installed as guest operating
system 426 to execute web application 125 for container VM
126, although it should be recognized that, in alternative,
embodiments, each of containerVMs 126 to 126, may sup
port the execution of multiple web applications rather than a
single web application. Hypervisor 412 is responsible for
transforming I/O requests from guest operating system 426 to
virtual platform 416 into corresponding requests to hardware
platform 402. In the embodiment of FIG. 4, guest operating
system 426 of containerVM 126 supports the execution of a
deployment agent 428, which is a process or daemon that
communicates (e.g., via addressing and discovery layer 132)
with cloud controller 134 to receive and unpack web appli
cation deployment packages, and with router 136 to provide
network routing information for web applications that have
been successfully deployed in container VM 126. Deploy
ment agent 428 is automatically launched upon the instantia
tion of a container VM in certain embodiments. Guest oper
ating system 426 further Supports the installation and
execution of runtime environment 430 within which web
application 125 runs. For example, in one embodiment, runt
ime environment 430 may be a Java application server (e.g.,
Apache Tomcat, etc.) that includes a Java virtual machine and
various API libraries that support the deployment of Java
based web applications. As described in the context of FIG.3,
such a runtime environment 430 may be received by a con
tainer VM as part of a web application deployment package
created by cloud controller 134.
0028. It should be recognized that the various terms, layers
and categorizations used to describe the virtualization com
ponents in FIG. 4 may be referred to differently without
departing from their functionality or the spirit or scope of the
invention. For example, virtual hardware platforms 416
416, may be considered to be part of virtual machine monitors
(VMM) 434-434, which implement the virtual system sup
port needed to coordinate operations between hypervisor 412
and their respective container VMs. Alternatively, virtual
hardware platforms 416-416, may also be considered to be
separate from VMMs 434-434, and VMMs 434-434 may
be considered to be separate from hypervisor 412. One
example of hypervisor 412 that may be used is included as a
component of VMware's ESXTM product, which is commer
cially available from VMware, Inc. It should further be rec
ognized that other virtualized computer system architectures
may be used consistent with the teachings herein, Such as
hosted virtual machine systems, where the hypervisor is
designed to run on top of a host operating system. It should
further be recognized, as previously discussed in the context
of FIG. 1A, that virtualized platform 120 which provides
containerVMs, such as those in FIG.4, may be supported by
hardware resources 114 that comprise any number of physical
computers and data storage systems in one or more data
centers connected by networking, with each of the physical
computers hosting one or more of container VMs 126 to
126, and possibly otherVMs that run one or more processes
carrying out the functions of other components of cloud com
puting environment 112, such as router 136, cloud controller
134, heath manager 138, various base services 128, service

Oct. 27, 2011

provisioner 130, address and discovery layer 132 and the like.
As discussed in the context of FIG. 4 with respect to container
VMs, eachVM supporting such other components is a virtual
computer system that may have a guest operating system and
one or more guest applications that can include any of the
above processes.
0029 FIG. 5 depicts a flow diagram for deploying a web
application in a container virtual machine. The steps set forth
in FIG. 5 take place, for example, after cloud controller 134
has received and prepared web application 125 for deploy
ment in accordance with the steps set forth in FIG. 3. In step
500, cloud controller 134 receives a request from enterprise
100 (e.g., from developer 140) to launch web application 125.
In step 502, cloud controller 134 broadcasts a request (via
addressing and discovery layer 132) for an available container
VM. In one embodiment, such a broadcast request may “fla
vored by cloud controller 134 to request specific character
istics desired in a container VM, such as guest operating
system type (e.g., Windows, Linux, MacOS, etc.), computing
resource requirements (e.g., memory requirements, etc.) and
the like. In step 504, deployment agent 428 of container VM
126 responds (via addressing and discovery layer 132) indi
cating the availability of container VM 126 to host web
application 125. In step 506, cloud controller 134 (via
addressing and discovery layer 132) provides deployment
agent 428 a link (e.g., URL) or otherwise establishes a con
nection with container VM 126 to download a web applica
tion deployment package for web application 125 (e.g., as
created in step 328 of FIG. 3), and in step 508, deployment
agent 428 fetches or otherwise receives the web application
deployment package. In step 510, deployment agent 428
unpacks the web application deployment package and installs
runtime environment 430 (e.g., Apache Tomcat application
server, etc), including loading the WAR file (or other pack
age) associated web application 125 into the appropriate
directory of the runtime environment. In step 512, deploy
ment agent 428 executes the start script file of the web appli
cation deployment package thereby spawning a new process
in containerVM 126 that launches the runtime environment
(e.g., Apache Tomcat) and starts web application 125 within
the runtime environment.

0030. In certain embodiments, base services 128 and/or
third party services (such as custom database 104 and CRM
service 106) are dynamically bound to web application 125
upon its launch in step 512 rather than during steps 322-324 of
the staging process as previously described in the context of
FIG. 3. In one such embodiment, cloud controller 134 may
maintain globally accessible environment variables for avail
able services in cloud computing environment 112. For any
particular service, the values of such environment variables
may provide service provisioning data Such as the hostname,
network address and port number or login credentials for the
service. In one embodiment, such environment variables are
initialized by cloud controller 134 during the staging process,
for example, after step 320 of FIG.3, when a service has been
identified to cloud controller 134 to be used by web applica
tion 125 during its deployment. In such an embodiment, the
staged web application 125 itself includes code (i.e., the web
programmer knows to programmatically check the values of
Such environment variables or Such code is otherwise injected
into web application 125 during the staging process) that the
searches for the names of environment variables for services
that are utilized by web application 125 and binds web appli
cation 125 to those services using the values of such environ

US 2011/0265081 A1

ment variables. As such, launch of web application 125 in step
512 causes such code in web application 125 to be executed,
thereby dynamically binding the services to web application
125 upon its launch by utilizing the service provisioning data
values of the environment variables.

0031. Once deployment agent 428 recognizes that web
application 125 has successfully launched (e.g., by confirm
ing the Successful binding of a port numberto web application
125 in one embodiment), deployment agent 428 broadcasts
the hostname, network address information of container VM
126 and the bound port number of deployed web application
125, in step 514, through addressing and discovery layer 132.
In turn, router 136 retrieves the broadcast hostname, network
address information and bound port number though the
addressing and discovery layer 132 in step 516 and updates its
internal routing table in step 518, thereby enabling router 136
to properly route URL requests received from enterprise cus
tomer 144 for web application 125 to container VM 126. It
should be recognized that the process of dynamically updat
ing routing information in router 136 upon Successful deploy
ment of a web application through steps 514 to 518 provides
cloud computing environment 112 flexibility to more easily
migrate, move or otherwise re-deploy web applications to
different containers VM 126 to 126, for any of a number of
reasons (e.g., during hardware failures, for load balancing
purposes, etc.). For example, in one exemplary scenario,
health manager 138 may recognize that web application 125
has stopped running because server 116 that hosts container
VM 126 in which web application 125 has been deployed
has suffered a hardware failure. Upon Such recognition,
health manager 138 may initiate a request to cloud controller
134 to re-deploy web application 125 in a different container
VM running on a different server. Once web application 125
has been successfully re-deployed by cloud controller 134, as
a result of steps 514 to 518, router 136 will be automatically
updated with new routing information to properly route
requests to web application 125 which is now deployed on a
different container VM on a different server (and therefore is
associated with new network routing information). It should
be recognized that although the foregoing description utilizes
hostnames, network addresses and port numbers to generally
describe network address information for a web application,
any type of network information may be utilized as network
address information in embodiments, depending upon the
structure of the connected network and communications pro
tocols implemented by cloud computing environment 112.
Additionally, in step 520, deployment agent 428 also identi
fies a process identifier for the deployed web application 125
and generates a stop script file, in the event that cloud con
troller 134 receives a command to stop web application 125 in
the future (e.g., by request of administrator 146, etc.).
0032. It should be recognized that various modifications
and changes may be made to the specific embodiments
described herein without departing from the broader spirit
and Scope of the invention as set forth in the appended claims.
For example, while the foregoing description has discussed
embodiments using web applications or Internet applications,
it should be recognized that any network utilizing application
can leverage the techniques disclosed herein, and as such,
“web application” as used herein shall be interpreted to
include any type of client-server based application that
employs network based communications. Furthermore,
although the foregoing embodiments have focused on the use
of containerVMs to host deployed web applications, it should

Oct. 27, 2011

be recognized that any “application container” may be used to
host web applications, including such container VMS, pro
cesses in virtual machines, kernel level containers, processes
in traditional non-virtualized operating systems and any other
execution environment that provides an isolated environment
capable of running application level code. Similarly, while
the various components of cloud computing environment 112
have been generally described as being implemented in one or
more virtual machines (e.g., for load balancing and scalability
purposes), it should be recognized that any type of “applica
tion container” (as previously discussed above) can also
implement such components, including, for example, tradi
tional non-virtualized computing environment background
processes, threads or daemons. Furthermore, any combina
tion of different types of “application containers' to host web
applications and implement other components (e.g., cloud
controller 134, router 136, health manager 138, base services
128, service provisioner 130, addressing and discovery layer
132, etc.) can comprise any particular cloud computing envi
ronment 112 implementation. It should further be recognized
that multiple instances of the various components of cloud
computing environment 112 (e.g., cloud controller 134,
router 136, health monitor 138, service provisioner 130, etc.)
may be implemented in alternative embodiments, for
example, for Scalability purposes.
0033. The various embodiments described herein may
employ various computer-implemented operations involving
data stored in computer systems. For example, these opera
tions may require physical manipulation of physical quanti
ties usually, though not necessarily, these quantities may take
the form of electrical or magnetic signals where they, or
representations of them, are capable of being stored, trans
ferred, combined, compared, or otherwise manipulated. Fur
ther, such manipulations are often referred to interms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the invention may be useful machine opera
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various general
purpose machines may be used with computer programs writ
ten in accordance with the teachings herein, or it may be more
convenient to construct a more specialized apparatus to per
form the required operations.
0034. The various embodiments described herein may be
practiced with other computer system configurations includ
ing hand-held devices, microprocessor systems, micropro
cessor-based or programmable consumer electronics, mini
computers, mainframe computers, and the like.
0035. One or more embodiments of the present invention
may be implemented as one or more computer programs or as
one or more computer program modules embodied in one or
more computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system computer
readable media may be based on any existing or Subsequently
developed technology for embodying computer programs in
a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD

US 2011/0265081 A1

(Compact Discs) CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled com
puter system so that the computer readable code is stored and
executed in a distributed fashion.
0036 Although one or more embodiments of the present
invention have been described in some detail for clarity of
understanding, it will be apparent that certain changes and
modifications may be made within the scope of the claims.
Accordingly, the described embodiments are to be considered
as illustrative and not restrictive, and the scope of the claims
is not to be limited to details given herein, but may be modi
fied within the scope and equivalents of the claims. In the
claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.
0037 Plural instances may be provided for components,
operations or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera
tions are illustrated in the context of specific illustrative con
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the invention(s). In general,
structures and functionality presented as separate compo
nents in exemplary configurations may be implemented as a
combined structure or component. Similarly, structures and
functionality presented as a single component may be imple
mented as separate components. These and other variations,
modifications, additions, and improvements may fall within
the scope of the appended claims(s).

We claim:
1. A method for dynamically deploying a web application

in an application container, the method comprising:
indicating availability of computing resources to host the
web application;

retrieving a web application deployment package compris
ing a web application package and a start Script file;

unpacking the web application deployment package into
the application container;

installing a runtime environment compatible with the web
application into the application container,

executing the start script to start the runtime environment
and launch the web application in the runtime environ
ment; and

broadcasting, upon a Successful launch of the web appli
cation, network address information for the application
container, thereby enabling listening routers to route
web browser requests for the web application to the
application container.

2. The method of claim 1, wherein the web application
deployment package is a tarball file and the web application
package is a WAR file.

3. The method of claim 1, wherein the application con
tainer is a virtual machine instantiated to host web applica
tions.

4. The method of claim 3, performed by a deployment
agent process in the virtual machine, wherein the deployment
agent process is launched upon instantiation of the virtual
machine.

5. The method of claim 1, wherein the web deployment
package further comprises the runtime environment.

6. The method of claim 1, wherein the runtime environ
ment is an application server.

Oct. 27, 2011

7. The method of claim 1, further comprising the step of
generating a stop script to stop the web application upon
receiving a request to step the web application.

8. A computer-readable storage medium including instruc
tions that, when executed on a computer processor, causes the
computer processor to dynamically deploy a web application
in an application container, the method comprising, by per
forming the steps of:

indicating availability of computing resources to host the
web application;

retrieving a web application deployment package compris
ing a web application package and a start Script file;

unpacking the web application deployment package into
the application container;

installing a runtime environment compatible with the web
application into the application container;

executing the start Script to start the runtime environment
and launch the web application in the runtime environ
ment; and

broadcasting, upon a Successful launch of the web appli
cation, network address information for the application
container, thereby enabling listening routers to route
web browser requests for the web application to the
application container.

9. The computer-readable storage medium of claim 8.
wherein the web application deployment package is a tarball
file and the web application package is a WAR file.

10. The computer-readable storage medium of claim 8.
wherein the application container is a virtual machine instan
tiated to host web applications.

11. The computer-readable storage medium of claim 10,
wherein the steps are performed by a deployment agent pro
cess in the virtual machine and the deployment agent process
is launched upon instantiation of the virtual machine.

12. The computer-readable storage medium of claim 8.
wherein the web deployment package further comprises the
runtime environment.

13. The computer-readable storage medium of claim 8.
wherein the runtime environment is an application server.

14. The computer-readable storage medium of claim 8.
further comprising instructions to perform the step of gener
ating a stop script to stop the web application upon receiving
a request to step the web application.

15. A server configured to run an application container to
dynamically to host web applications, the server comprising
a processor configured to perform the steps of

indicating availability of computing resources to host the
web application;

retrieving a web application deployment package compris
ing a web application package and a start Script file;

unpacking the web application deployment package into
the application container;

installing a runtime environment compatible with the web
application into the application container;

executing the start Script to start the runtime environment
and launch the web application in the runtime environ
ment; and

broadcasting, upon a Successful launch of the web appli
cation, network address information for the application
container, thereby enabling listening routers to route
web browser requests for the web application to the
application container.

US 2011/0265081 A1

16. The server of claim 15, wherein the web application
deployment package is a tarball file and the web application
package is a WAR file.

17. The server of claim 15, wherein the application con
tainer is a virtual machine instantiated to host web applica
tions.

18. The server of claim 17, wherein the steps are performed
by a deployment agent process in the virtual machine and the

Oct. 27, 2011

deployment agent process is launched upon instantiation of
the virtual machine.

19. The server of claim 15, wherein the web deployment
package further comprises the runtime environment.

20. The server of claim 15, wherein the runtime environ
ment is an application server.

c c c c c

