(12)

UK Patent Application .. GB 2419987 .. A

(43) Date of A Publication 10.05.2006
(21) Application No: 0601322.1 (51) INTCL:
GOG6F 21/00 (2006.01)
(22) Date of Filing: 20.03.2003
(562) UK CL (Edition X ):

Date Lodged: 23.01.2006 G4A AAP
(30) Priority Data: (56) Documents Cited:

(31) 10112169 (32) 29.03.2002 (33) US WO 2001/075565 A2
(62) Divided from Application No (58) Field of Search:

0422078.6 under Section 15(4) of the Patents Act 1977 INT CL GO6F

Other: EPO-Internal, INSPEC, WPI Data, PAJ

(71) Applicant(s):

Intel Corporation

(Incorporated in USA - Delaware)

SC4-202, 2200 Mission College Boulevard,

Santa Clara, California 95052,

United States of America
(72) Inventor(s):

James Sutton

David Grawrock

(continued on next page)

(54) Abstract Title: Initiating secure operations
(57) A method and apparatus for initiating secure

operations in a microprocessor system is

described. In one embodiment, one initiating =z APPLICATION I5L

logical processor initiates the process by halting v /si

the execution of the other logical processors, and 52

then loading initialisation and secure virtual i

machine monitor software into memory. The OPERATING

initiating processor then loads the initialisation p SYSTEM L~ (150

software into secure memory for authentication
and execution. The initialisation software then
authenticates and registers the secure virtual
machine monitor software prior to secure system
operations.

Preparing for secure operations in response to a

bus message from a processor executing a secured
enter instruction, and storing an acknowledgement

to the bus message.

MICROPR

QCESSOR  SNSTEM

<
100

FIGURE 1

Original Printed on Recycled Paper

V [866lYc 99



GB 2419987 A continuation

(74) Agent and/or Address for Service:
Harrison Goddard Foote
40-43 Chancery Lane, LONDON,
WC2A 1JA, United Kingdom



1/8

|

[

APPLICATION -
/15
/57
OPERATING
SYSTEM L 50

MICROPRICESS OR

SYSTEM

FIGURE 1

<
100




(ILP) (RLP) (RLP)
ZQZ ?,!2/ z;LZ
12,00 PROCESSOR| |PROCESSOR| )4 [PROCESSOR
N 4 A SENTER SENTER P | SENTER
L0k LOGIC LOGIC |eee LOGIC
. 216
196 | BUS MSE&. BUS MGl | |BUS MSG,
LOGLC LOGIC, Z;“’ LOGIL.
108 ANCECURE MEm| | [SEURE memT o JsauRE A
- 230 ;L )
SYSTEM  BUSS J
280
{
- BUS ME§§;AGE.
SECURE Cotic a5
INIT. KEX REGISTEX
CODE
i e | [pevice
CECURE JONeD| - ACE
G LOGIL AGE |
veroal| || 72el | e LT R
MACHINE ="
MONITOR,  |ewrsreResicren
286 270
JoINS  RECISTER
288L] ez >
KEY ToKeN [EE) 78
3 RN\27¢
CHIPSET g0 | ™ 276
240 )
28 , 281

2/8

FIGURE Z




3/8

|
UNTRUSTED | TRUSTED
l
|
-
' TRUSTED
320 (
310 =70
I
OPERATING | TRUSTED /
SYSTEM SECURE
340 KERNEL
L
l 360
SVMMN
)
350
mepwree R
HARDWARE
3
380

FIGURE 3




4/8

RLP ILP RLP RLP

JoINS [010TT0000 1010180

CPUA CPUL B CPU C. CPUL D
HeAac |- Lugo
46441 KEY :
ol 414 45 tee|
/5 | SYSTem BUAS J l 5 l 5
4z0
MEMORY | 433 meitl 436
: U(‘— G.P
EXIS1S /"4'76
fPSé/\/Ka’ JoiNs |~ 4-80
ALL " TOKEN
o AT LPC AT
EREAS  ys0 .':CR 45y
45 TKEY B)
¢7% 470
¢ CHIPSET 442,
EXisTs [0101 10001 10]0F¢474 : Yube USE ,
. EZO.‘ T TSFCI

4¥c FIXED - [REmMovABLE
| MERTA MEDIA
A AC | Isumm
7 — 448
400 .
g6 474

FIGURE 4A



5/8

RLP ILP RLP RLP
1CPUA CPUL B CPUC CPU D
46 211 AC AJ%O
4641 KEY
4o 41 4T 422
ls YSTEM BUS A | ,lfYSTEM Bs B , ‘
: 40z | ¢y
MEMORY|  F3samee ] 436
. — GP
¢7L/vSVMM 432 ﬁg@ﬁé . A
‘ EXISIS /"4‘76
¢5é/\¢KeY JorNs |~ 480
AL LPC TOKEN .
434 Hhe] oo PR 4*;'“? /
- 5
5% ke )
4738 4 470
CHIPSET ¢4z,
<USR
EXIsTs [0j011000110]0F¢74 7Y ¢
423l ® Y PCi
JoINS (91 015'0000'01771%5’0
He ns | [sgee
/I W AC SUMM
) f B -
90
g6 474

FIGURE 4B



- 6/8

RLP ILP | RLP RLP
MEROLY Mmemory MeEm ory MEMORY
B C D
5‘72 A SUAm
556 14
S0 Kol S04 508
Cmf};é":s e yam }2 Zig CH,;!;&? b cmrz';;fy
- FncTIoNg~573 r:afﬁngm 575 ﬁwc.-nom"’57 7 rFUﬂcr:ons
CPL A CPUB 51t fepe ¢ | SP lcpnD
562 4~ Ac 11560
sio| sey~r1KEr —— —
(j l SYSTEM BUS l 5>&0 J g
usg s 2E TN ~570
1 oKe/A
AGP S5 576 4TI~ ,
S5 PEE L o%o | _ssy
-:'%7:5@ =PS Y ]
5B eLAG e 555 550
%] chirseT . 5 ‘F‘é . Pa <
500 =230
. FI1XED meDiA REMovAELE
LY /A MEI A
| ACt jsvem
4 { —A:—“s- 3?
) )
566 574

FIGURE 5



7/8

-~

2 I¥MN9I A4

A2z9

ﬁ A im yﬂz 019
Y . ‘\
Y- bou| +su 202
W E\FQ\J%Q wwps WS LIVIS PP YO @.\P\u_\ﬁ.&.:n g uw_MmH v«\m_nq\b.w H50d.
WML WG | eassT| 2OF 47w TSI T] Tpeeny| dT1L
o5 0593 J S b ) a19
w iol 22 @9 049 es) | 19
M waiprado | i rviop M| 212 0590094
WWNS | gmerg)| | o3 Lr¥m LI1vm %3&..3 a7
I~ 77s
. ﬁouwmmm@ Y
Me Lt \an\O ulopl” ol L@MM X.WN_‘\W\ 222 A0sSH0Ud
. WUWAS [y Ae~ Livm Lym Fofuc) d
C 49 ) R 979
- 4Ny 9 i3, 9 | 1294 809 | osw sng
£ Vud. \zwl:.,\mm.
959 BSW Lwed Co5
W . ~3Iy35H e ,“mm 02 13sdiD
JN ﬂ

T3
91 419



- — =

[P CHIPSET
0/’55&11\)
7104 BEA ) _
7114 Lord INIT-SV
ad SmMm
¥
Execute
7 M- SENTER. Lust:
¥
Tesue SENTER,
7‘6’13as - ]
q, y
1Send SENTER] +
718 : ~——p] O
/j(df/‘ UETN Toms
> 757 Tlagister-
¥
<+ - — Sﬂ:t"b;:[ ]
710 751}’alne . F"{_]

[ ES

Send SENTER
7 23 CONT MSA

o —— — — P

¥
Move Key anl
7 7’%) SN I'F‘A’Z # Giche

T
. Auth ehﬁa'f[, and
7L eene SIM AC |
T y
Awthn oot , EConfigDevi
72,8 Rin Svmj;ls;ﬂ - - A«asoﬂge,‘ﬁU&

*
Send SEMNTER

750

—— — — — ]

739 \goi0 MsGs,

N
sSvmnr] ,
Tl .
7 O poidtions

FIGURE 7

y

Stop axrewtion

y
SenA SENTER

Ak Msy, D

svVvmm
Oparstions  |u




2419987

SYSTEM AND METHOD FOR EXECUTION OF A SECURED
ENVIRONMENT INITIALIZATION INSTRUCTION

FIELD
The present invention relates generally to microprocessor systems, and more
specifically to microprocessor systems that may operate in a trusted or secured

environment.
BACKGROUND

The increasing number of financial and personal transactions being performed

on local or remote microcomputers has given impetus for the establishment of
“trusted” or “secured” microprocessor environments. The problem these
environments try to solve is that of loss of privacy, or data being corrupted or abused.
Users do not want their private data made public. They also do not want their data
altered or used in inappropriate transactions. Examples of these include unintentional
release of medical records or electronic theft of funds from an on-line bank or other
depository. Similarly, content providers seek to protect digital content (for example,
musuc, other audio, video, or other types of data in general) from being copied
without authorisation.

Existing trusted systems may utilise a complete closed set of trusted software.
This method is relatively simple to implement, but has the disadvantage of not
allowing the simultaneous use of common, commercially available operating system
and application software. This disadvantage limits the acceptance of such a trusted
system.

According to the invention there is provided a chipset as claimed in claim 1.

Further features of the invention are as claimed in the dependent claims.
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of

limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

Figure 1 is a diagram of an exemplary software environment executing in a

microprocessor system.



10

15

20

25

30

. Figure 2 is a diagram of certain exemplary trusted or secured
software modules and exemplary system environment, according to one
embodiment of the present invention.

Figure 3 is a diagram of an exemplary trusted or secured
software environment, according to one embodiment of the present
invention.

Figure 4A is a schematic diagram of an exemplary
microproéessor system adapted to support the secured software
environment of Figure 3, according to one embodiment of the present
invention.

: Figure 4B is a schematic diagram of an exemplary
micropri)cessor system adapted to support the secured software
environment of Figure 3, according to an alternate embodiment of the
present invention.

Figure 5 is a schematic diagram of an exemplary microprocessor
system adapted to support the secured software environment, of Figure 3,
according to an alternate embodiment of the present invention.

| Figure 6 is a time line drawing of the execution of software
components, according to one embodiment of the present invention.

:Figure 7 is a flowchart of software and other process blocks,

according to one embodiment of the present invention.

DETAILED DESCRIPTION

The following description describes techniques for initiating a
trusted or secured environment in a microprocessor system. In the
following description, numerous specific details such as logic
implementations, software module allocation, encryption techniques, bus
signaling techniques, and details of operation are set forth in order to
provide a more thorough understanding of the present invention. It will
be appreciated, however, by one skilled in the art that the invention may
be practiced without such specific details. In other instances, control
structures, gate level circuits and full software instruction sequences have
not been shown in detail in order not to obscure the invention. Those of

2



10

15

20

25

30

ordinary skill in the art, with the included descriptions, will be able to
implement appropriate functionality without undue experimentation. The
invention is disclosed in the form of a microprocessor system. However,
the invention may be practiced in other forms of processor such as a
digital signal processor, a minicomputer, or a mainframe computer.

o Referring now to Figure 1, a diagram of an exemplary software
environment executing in a microprocessor system is shown. The
software shown in Figure 1 is not trusted (untrusted). When operating in
a high privilege level, the size and constant updating of the operating
system 150 make it very difficult to perform any trust analysis in a timely
manner. Much of the operating system sits within privilege ring zero (0),
the highest level of privilege. The applications 152, 154, and 156 have
much reduced privilege and typically reside within privilege ring three (3).
The existence of the differing privilege rings and the separation of the
operating system 150 and applications 152, 154 and 156 into these
differing privileged rings would appear to allow operating of the software
of Figure 1 in a trusted mode, based on making a decision to trust the
facilities provided by the operating system 150. However, in practice
making such a trust decision is often impractical. Factors that contribute
to this problem include the size (number of lines of code) of the operating
system 150, the fact that the operating system 150 may be the recipient
of numerous updates (new code modules and patches) and the fact that
the operating system 150 may also contain code modules such as device
drivers supplied by parties other than the operating system developer.
Operating system 150 may be a common one such as Microsoft ®
Windows ®, Linux, or Solaris ®, or may be any other appropriate known
or otherwise available operating system. The particular types or names of
applications or operating systems run or running are not critical.

Referring now to Figure 2, a diagram of certain exemplary
trusted or secured software modules and exemplary system environment
200 is shown, according to one embodiment of the present invention. In
the Figure 2 embodiment, processor 202, processor 212, processor 222,

and optional other processors (not shown) are shown as separate

3



10

15

20

25

30

hardware entities. In other embodiments, the number of processors may
differ, as may the boundary of various components and functional units.
In some embodiments the processors may be replaced by separate
hardware execution threads or “logical processors” running on one or
more physical processors.

Processors 202, 212, 222 may contain certain special circuits or
logic elements to support secure or trusted operations. For example,
processor 202 may contain secure enter (SENTER) logic 204 to support
the execution of special SENTER instructions that may initiate trusted
operations. Processor 202 may also contain bus message logic 206 to
support special bus messages on system bus 230 in support of special
SENTER operations. In alternate embodiments, memory control functions
of chipset 240 may be allocated to circuits within the processors, and for
multiple processors may be included on a single die. In these
embodiments, special bus messages may also be sent on busses internal
to the processors. The use of special bus messages may increase the
security or trustability of the system for several reasons. Circuit elements
such as processors 202, 212, and 222 or chipset 240 may only issue or
respond to such messages if they contain the appropriate logic elements
of embodiments of the present disclosure. Therefore successful exchange
of the special bus messages may help ensure proper system configuration.
Special bus messages may also permit activities that should normally be
prohibited, such as resetting a platform configuration register 278. The
ability of potentially hostile untrusted code to spy on certain bus
transactions may be curtailed by allowing special bus messages to be
issued only in response to special security instructions.

Additionally, processor 202 may contain secure memory 208 to
support secure initialization operations. In one embodiment secure
memory 208 may be an internal cache of processor 202, perhaps
operating in a special mode. In alternate embodiments secure memory
208 may be special memory. Other processors such as processor 212

and processor 222 may also include SENTER logic 214, 224, bus message
logic 216, 226, and secure memory 218, 228.

4



10

15

20

25

30

A “chipset” may be defined as a group of circuifs and logic that
support memory and input/output (I/O) operations for a connected
processor or processors. Individual elements of a chipset may be grouped
together on a single chip, a pair of chips, or dispersed among multiple
chips, including processors. In the Figure 2 embodiment, chipset 240
may include circuitry and logic to support memory and I/O operations to
support processors 202, 212, and 222. In one embodiment, chipset 240
may interface with a number of memory pages 250 through 262 and a
device-access page table 248 containing control information indicating
whether non-processor devices may access the memory pages 250
through 262. Chipset 240 may include device-access logic 247 that may
permit or deny direct memory access (DMA) from I/0 devices to selected
portions of the memory pages 250 through 262. In some embodiment the
device access logic 247 may contain all relevant information required to
permit or deny such accesses. In other embodiments, the device access
logic 247 may access such information held in the device access page
table 248. The actual number of memory pages is not important and will
change depending upon system requirements. In other embodiments the
memory access functions may be external to chipset 240. The functions
of chipset 240 may further be allocated among one or more physical
devices in alternate embodiments.

Chipset 240 may additionally include its own bus message logic
242 to support special bus messages on system bus 230 in support of
special SENTER operations. Some of these special bus messages may
include transferring the contents of a key register 244 to a processor 202,
212, or 222, or permitting a special ALL_JOINED flag 274 to be examined
by a processor 202, 212, or 222. Additional features of the bus message
logic 242 may be to register bus activity by processors in an “EXISTS”
register 272 and store certain special bus message activity by processors
in a “JOINS” register 272. Equality of contents of EXISTS register 272
and JOINS register 272 may be used to set the special ALL_JOINED flag

274 to indicate all processors in the system are participating in the secure

enter process.



10

15

20

25

30

‘Chipset 240 may support standard I/O operations on I/O
busses such as peripheral component interconnect (PCI), accelerated
graphics port (AGP), universal serial bus (USB), low pin count (LPC) bus,
or any other kind of I/O bus (not shown). An interface 290 may be used
to connect chipset 240 with token 276, containing one or more platform
configuration registers (PCR) 278, 279. In one embodiment, interface 290
may be the LPC bus (Low Pin Count (LPC) Interface Specification, Intel
Corporation, rev. 1.0, 29 December 1997) modified with the addition of
certain security enhancements. One example of such a security
enhancement would be a locality confirming message, utilizing a
previously-reserved message header and address information targeting a
platform configuration register (PCR) 278 within token 276. In one
embodiment, token 276 may contain special security features, and in one
embodiment may include the trusted platform module (TPM) 281
disclosed in the Trusted Computing Platform Alliance (TCPA) Main
Specification, version 1.1a, 1 December 2001, issued by the TCPA
(available at the time of filing of the present application at
www.trustedpc.com ).

l Two software components identified in system environment 200
are a Secure Virtual Machine Monitor (SVMM) 282 module and a Secure
Initialization Authenticated Code (SINIT-AC) 280 module. The SVMM 282
module may be stored on a system disk or other mass storage, and moved
or copied to other locations as necessary. In one embodiment, prior to
beginning the secure launch process SVMM 282 may be moved or copied
to one or more memory pages 250 through 262. Following the secure

enter process, a virtual machine environment may be created in which the

SVMM 282 may operate as the most privileged code within the system,
and may be used to permit or deny direct access to certain system
resources by the operating system or applications within the created
virtual machines.

[0022] Some of the actions required by the secure enter process may be
beyond the scope of simple hardware implementations, and may instead
advantageously use a software module whose execution can be implicitly

6



10

15

20

25

30

trusted. In one embodiment, these actions may be performed by Secure
Initialization (SINIT) code. Three exemplary actions are identified here,
but these actions should not be taken to be limiting. One action may
require that various controls representing critical portions of the system
configuration be tested to ensure that the configuration supports the
correct instantiation of the secure environment. In one embodiment, one
required test may be that the memory controller configuration provided by
chipset 240 does not permit two or more different system bus addresses
to touch the same location within memory pages 250 through 262. A
second action may be to configure the device-access page table 248 and
device-access logic 247 to protect those memory pages used by the
memory-resident copy of SVMM 282 from interference by non-processor
devices. A third action may be to calculate and register the SVMM 282
module’s idéntity and transfer system control to it. Here “register” means
placing a trust measurement of SVMM 282 into a register, for example
into PCR 278 or into PCR 279. When this last action is taken, the
trustworthiness of the SVMM 282 may be inspected by a potential system
user.

The SINIT code may be produced by the manufacturer of the
processors or of the chipsets. For this reason, the SINIT code may be
trusted to aid in the secure launch of chipset 240. In order to distribute
the SINIT code, in one embodiment a well-known cryptographic hash is
made of the entire SINIT code, producing a value known as a “digest”.
One embodiment produces a 160-bit value for the digest. The digest may
then be encrypted by a private key, held in one embodiment by the |
manufacturer of the processor, to form a digital signature. When the

SINIT code is bundled with the corresponding digital signature, the
combination may be referred to as SINIT authenticated code (SINIT-AC)

280. Copies of the SINIT-AC 280 may be later validated as discussed
below.

The SINIT-AC 280 may be stored on system disk or other mass
storage or in a fixed media, and moved or copied to other locations as

necessary. In one embodiment, prior to beginning the secure launch

7



10

15

20

25

30

process SINIT-AC 280 may be moved or copied into memory pages 250 -
262 to form a memory-resident copy of SINIT-AC.

Any logical processor may initiate the secure launch process,
and may then be referred to as the initiating logical processor (ILP). In
the present example processor 202 becomes the ILP, although any of the
processors on system bus 230 could become the ILP. Neither memory-
resident copy of SINIT-AC 280 nor memory-resident copy of SVMM 282
may be considered trustworthy at this time since, among other reasons,
the other processors or the DMA devices may overwrite memory pages
250 - 262.

The ILP (processor 202) then executes a special instruction.
This special instruction may be referred to as a secured enter (SENTER)
instruction, and may be supported by SENTER logic 204. Execution of
the SENTER instruction may cause the ILP (processor 202) to issue
special bus messages on system bus 230, and then wait considerable time
intervals for subsequent system actions. After execution of SENTER
begins, one of these special bus messages, SENTER BUS MESSAGE, is
broadcast on system bus 230. Those logical processors other than the
ILP, which may be referred to as responding logical processors (RLPs),
respond to the SENTER BUS MESSAGE with an internal non-maskable
event. In the present example, the RLPs include processor 212 and
processor 222. The RLPs must each terminate current operations, send a
RLP acknowledge (ACK) special bus message on system bus 230, and
then enter a wait state. It should be noted that the ILP also sends its own
ACK message over system bus 230.

The chipset 240 may contain a pair of registers, “EXISTS”
register 270 and “JOINS” register 272. These registers may be used to
verify that the ILP and all of the RLPs are responding properly to the
SENTER BUS MESSAGE. In one embodiment, chipset 240 may keep
track of all operational logical processors in the system by writing a “1”
into the corresponding bit of the EXISTS register 270 on any system bus
transaction made by that logical processor. In this embodiment, each

transaction on system bus 230 must contain an identification field

8



10

15

20

25

30

containing the logical processor identifier. In one embodiment, this
consists of a physical processor identifier and an indentifier for the
hardware execution thread within each physical processor. For example,
if a thread executing on processor 222 caused any bus transactions on
system bus 230, chipset 240 would see this logical processor identifier
within the transaction and write a “1” into the corresponding location 286
within EXISTS register 270. During the secure launch process, when that
same thread on processor 222 sends its ACK message on system bus 230,
the chipset 240 would also see this and could write a “1” into the
corresponding location 288 in the JOINS register 272. (In the Figure 2
example, each physical processor is shown with only a single thread
executing for clarity. In alternate embodiments the physical processors
may support multiple threads, and thereby multiple logical processors.)
When the contents of the JOINS register 272 matches the contents of the
EXISTS register 270, then chipset 240 can set an ALL_JOINED flag 246
indicating that all processors have properly responded to the SENTER
BUS MESSAGE.

In another embodiment, EXISTS register 270 and JOINS register
272 may continue to aid security subsequent to the setting of the
ALL_JOINED flag 246. During the time subsequent to the setting of the
ALL_JOINED flag 246 until the end of trusted or secure operations,
chipset 240 may continue to monitor and compare bus cycles against the
JOINS register 272. During this period, if chipset 240 ever sees a bus
transaction from a logical processor that is not currently identified in
JOINS register 272, then chipset 240 may presume that this logical
processor has somehow “appeared” late. This would imply that such a
logical processor did not participate in the secure launch process, and
therefore could represent an attacker (security threat). In such
circumstances, chipset 240 may respond appropriately to keep this
attacker out of the secured environment. In one embodiment, chipset 240
may force a system reset in such circumstances. In a second
embodiment, similar detection of a “late” processor may be achieved by

each logical processor asserting a special reserved signal on the system

9



10

15

20

25

30

(S

bus on every transaction following the assertion of the ACK bus message.
In this embodiment, following the setting of the ALL_JOINED flag 246 if
the chipset 240 observes a bus transaction initiated by a processor
without the special signal asserted, then chipset 240 may again presume
that this logical processor has somehow appeared “late”, and may
represent an attacker.

After issuing the SENTER BUS MESSAGE, the ILP (processor
202) polls the ALL_JOINED flag 246 to see when and if all processors
have properly responded with their ACKs. If the flag 246 is never set,
several implementations are possible. A watchdog timer in the ILP or
chipset or elsewhere may cause a system reset. Alternatively, the system
may hang requiring operator reset. In either case the assertion of a
secure environment is protected (in that the secure launch process does
not complete unless all processors participate), although the system may
not continue to function. In normal operations, after a short time the
ALL_JOINED flag 246 is set, and the ILP may be assured that all other
logical processors have entered a wait state.

" When the ALL_JOINED flag 246 is set, the ILP (processor 202)
may move both a copy of SINIT-AC 280 and key 284 into secure memory
208 for the purpose of authenticating and subsequently executing the
SINIT code included in SINIT-AC 280. In one embodiment, this secure
memory 208 may be an internal cache of the ILP (processor 202), perhaps
operating in a special mode. Key 284 represents the public key
corresponding to the private key used to encrypt the digital signature
included in the SINIT-AC 280 module, and is used to verify the digital
signature and thereby authenticate the SINIT code. In one embodiment,
key 284 may already be stored in the processor, perhaps as part of the
SENTER logic 204. In another embodiment, key 284 may be stored in a
read-only key register 244 of chipset 240, which is read by the ILP. In yet
another embodiment, either the processor or the chipset’s key register
244 may actually hold a cryptographi;: digest of key 284, where key 284
itself is included in the SINIT-AC 280 module. In this last embodiment,
the ILP reads the digest from key register 244, calculates an equivalent

10

?



10

15

20

25

30

cryptographic hash over the key 284 embedded in SINIT-AC 280, and
compares the two digests to ensure the supplied key 284 is indeed
trusted.

. A copy of SINIT-AC and a copy of a public key may then exist
within secure memory 208. The ILP may now validate the copy of SINIT-
AC by decrypting the digital signature included in the copy of the SINIT-
AC using the copy of a public key. This decryption produces an original
copy of a cryptographic hash’s digest. If a newly-calculated digest
matches this original digest then the copy of SINIT-AC and its included
SINIT code may be considered trustable.

The ILP may now issue another special bus message, SENTER
CONTINUE MESSAGE, via system bus 230 signaling the waiting RLP’s
(processor 212, processor 222) and chipset 240 that secured operations
are going to be initiated. The ILP may now register the unique identity of
the SINIT-AC module by writing the SINIT-AC module’s cryptographic
digest value to a platform configuration register 272 in the security token
276, as outlined below. The ILP’s execution of its SENTER instruction
may now terminate by transferring execution control to the trusted copy
of the SINIT code held within the ILP’s secure memory 208. The trusted
SINIT code may then perform its system test and configuration actions
and may register the memory-resident copy of SVMM, in accordance with
the definition of “register” above,

Registration of the memory-resident copy of SVMM may be
performed in several manners. In one embodiment, the SENTER
instruction running on the ILP writes the calculated digest of SINIT-AC
into PCR 278 within the security token 276. Subsequently, the trusted
SINIT code may write the calculated digest of the memory-resident SVMM
to the same PCR 278 or another PCR 279 within the security token 276.
If the SVMM digest is written to the same PCR 278, the security token
276 hashes the original contents (SINIT digest) with the new value (SVMM
digest) and writes the result back into the PCR 278. In embodiments
where the first (initializing) write to PCR 278 is limited to the SENTER

11



10

15

20

25

30

instruction, the resulting digest may be used as a root of trust for the
system.

Once the trusted SINIT code has completed its execution, and
has registered the identity of the SVMM in a PCR, the SINIT code may
transfer ILP execution control to the SVMM. In a typical embodiment, the
first SVMM instructions executed by the ILP may represent a self-
initialization routine for the SVMM. The ILP may in one embodiment issue
individual RLP JOIN MESSAGE special bus messages to each RLP,
causing each of the RLPs to join in operations under the supervision of
the now-executing copy of SVMM. From this point onwards, the overall
system is operating in trusted mode as outlined in the discussion of
Figure 3 below.

Referring now to Figure 3, a diagram of an exemplary trusted or
secured software environment is shown, according to one embodiment of
the present invention. In the Figure 3 émbodiment, trusted and
untrusted software may be loaded simultaneously and may execute
simultaneously on a single computer system. A SVMM 350 selectively
permits or prevents direct access to hardware resources 380 from one or
more untrusted operating systems 340 and untrusted applications 310
through 330. In this context, “untrusted” does not necessarily mean that
the operating system or applications are deliberately misbehaving, but
that the size and variety of interacting code makes it impractical to
reliably assert that the software is behaving as desired, and that there are
no viruses or other foreign code interfering with its execution. In a typical
embodiment, the untrusted code might consist of the normal operating
system and applications found on today’s personal computers.

SVMM 350 also selectively permits or prevents direct access to
hardware resources 380 from one or more trusted or secure kernels 360
and one or more trusted applications 370. Such a trusted or secure
kernel 360 and trusted applications 370 may be limited in size and
functionality to aid in the ability to perform trust analysis upon it. The
trusted application 370 may be any software code, program, routine, or
set of routines which is executable in a secure environment. Thus, the

12



10

15

20

25

30

trusted application 370 may be a variety of applications, or code
sequences, or may be a relatively small application such as a Java applet.

Instructions or operations normally performed by operating
system 340 or kernel 360 that could alter system resource protections or
privileges may be trapped by SVMM 350, and selectively permitted,
partially permitted, or rejected. As an example, in a typical embodiment,
instructions that change the processor’s page table that would normally
be performed by operating system 340 or kernel 360 would instead be
trapped by SVMM 350, which would ensure that the request was not
attempting to change page privileges outside the domain of its virtual
machine.

Referring now to Figure 4A, one embodiment of a microprocessor
system 400 adapted to support the secured software environment of
Figure 3 is shown. CPU A 410, CPU B 414, CPU C 418, and CPU D 422
may be configured with additional microcode or logic circuitry to support
the execution of special instructions. In one embodiment, this additional
microcode or logic circuitry may be the SENTER logic 204 of Figure 2.
These special instructions may support the issuance of special bus
messages on system bus 420 that may enable the proper synchronization
of the processors while launching the secure environment. In one
embodiment, the issuance of special bus messages may be supported by
circuitry such as the bus message logic 206 of Figure 2. Similarly chipset
430 may be similar to chipset 240 and may support the above-mentioned
special cycles on system bus 420. The number of physical processors
may vary upon the implementation of a particular embodiment. In one
embodiment, the processors may be Intel® Pentium® class
microprocessors. Chipset 430 may interface with mass storage devices
such as fixed media 444 or removable media 448 via PCI bus 446, or,
alternately, via USB 442, an integrated controller electronics (IDE) bus
(not shown), a small computer systems interconnect (SCSI) bus (not
shown), or any other I/O busses. The fixed media 444 or removable

media 448 may be magnetic disks, magnetic tape, magnetic diskettes,

13



10

15

20

25

30

magneto-optical drives, CD-ROM, DVD-ROM, Flash memory cards, or
many other forms of mass storage. )

o In the Figure 4A embodiment, the four processors CPU A 410,
CPU B 414, CPU C 418, and CPU D 422 are shown as four separate
hardware entities. In other embodiments, the number of processors may
differ. Indeed, the physically discrete processors may be replaced by
separate hardware execution threads running on one or more physical
processors. In the latter case these threads possess many of the
attributes of additional physical processors. In order to have a generic
expression to discuss using any mixture of multiple physical processors
and multiple threads upon processors, the expression “logical processor”
may be used to describe either a physical processor or a thread operating
in one or more physical processors. Thus, one single-threaded processor
may be considered a logical processor, and multi-threaded or multi-core
processors may be considered multiple logical processors.

In one embodiment, chipset 430 interfaces with a modified LPC
bus 450. Modified LPC bus 450 may be used to connect chipset 430 with
a security token 454. Token 454 may in one embodiment include the
TPM 471 envisioned by the Trusted Computing Platform Alliance (TCPA).

Referring now to Figure 4B, an alternate embodiment ofa
micr(;processor system 490 adapted to support the secured software
environment of Figure 3 is shown. Differing from the Figure 4A
embodiment, CPU A 410 and CPU B 414 may be connected to chipset 428
with system bus A 402 whereas CPU C 418 and CPU D 422 may be
connected to chipset 428 with system bus B 404. In other embodiments
more than two system busses may be utilized. In another alternative
embodiment, point-to-point busses may be used. Special instructions
may support the issuance of special bus messages on system bus A 402
and system bus B 404 that may enable the proper synchronization of the
processors while launching the secure environment. In one embodiment,

the issuance of special bus messages may be supported by circuitry such

as the bus message logic 206 of Figure 2.

14



10

15

20

25

30

In one embodiment, chipset 428 is responsible for maintaining
consistency and coherency across system bus A 402 and system bus B
404, If a bus message, standard or special, is sent across system bus A
402, chipset 428 reflects that message (when appropriate) onto system
bus B 404, and vice-versa.

In an alternate embodiment, chipset 428 treats system bus A
402 and system bus B 404 as independent subsystems. Any special bus
messages issued on system bus A 402 apply only to processors on that
bus: similarly, special bus messages issued on system bus B 404 apply
only to processors on that bus. Any protected memory that is established
with respect to system bus A 402 is only accessible to processors
connected to system bus A 402, and the processors on system bus B 404
may be treated as untrusted devices. To gain access to any protected
memory established for CPU A 410 and CPU B 414 on system bus A 402,
processors CPU C 418 and CPU D 422 on system bus B 404 must
perform their own SENTER process, creating a registered environment
equal to fchat created for the processors on system bus A 402.

Referring now to Figure 5, a schematic diagram of an exemplary
microprocessor system 500 adapted to support the secured software
environment of Figure 3 is shown, according to an alternate embodiment
of the present invention. Differing from the Figure 4A embodiment, each
processor (for example, CPU A 510) may include certain chipset functions
(for example, chipset functions 593) that, for example, perform memory

. controller functions and device access logic functions. These chipset

functions thereby allow the direct connection of memory (for example,
memory A 502) to the processor. Other chipset functions may remain in a
separate chipset 530. Special bus messages may be issued across system
bus 520.

Each processor may make indirect accesses to memory
connected to other processors: however, these accesses may be
considerably slower when compared to accesses to a processor’s own
memory. Prior to the start of the SENTER process, software may move
copies of SINIT-AC 566 and SVMM 574 from fixed media 544 into local

15



10

15

20

25

30

memory 504, forming copy of SINIT-AC 556 and copy of SVMM 572. In
one embodiment, the memory 504 may be selected because it is directly
accessed by the processor intended to be the ILP, in the Figure 5 example
this is CPU B 514. Alternatively, the SINIT-AC 566 and SVMM 574 copies
may be placed in other memories attached to other (non-ILP) processors,
so long as the ILP 514 has the ability to access those memories. CPU B
ILP 514 begins the secure enter process by issuing the SENTER
instruction, as already described in Figure 2, and with similar
consequences and bus cycles issued. Chipset 530 may utilize EXISTS
register 576, JOINS register 580, and ALL_JOINED flag 584 as described
above in connection with Figure 2 to determine whether all processors
have properly responded to the SENTER BUS MESSAGE and signal this
information to the ILP. The ILP (CPU B 514) may again move the memory-
resident copy of SINIT-AC 556 into secure memory 560, along with. a copy
of a public key 564. Upon verification and registration of SINIT-AC 556,
ILP may then continue to verification and registration of the memory-
resident copy of SVMM 572.

Referring now to Figure 6, a time line drawing of various
operations is shown, according to one embodiment of the present
invention. The timeline of Figure 6 shows the overall schedule of the
operations discussed in connection with the exemplary system discussed
in connection with Figure 2 above. When software decides that secure or
trusted operations are desired, at time 610 any software locates and
makes a copy of SINIT-AC 280 and SVMM 282 available to a subsequent
SENTER instruction. In this example, software loads a copy of SINIT-AC
280 and a copy of SVMM 282 into one or more memory pages 250 - 262.
One processor, in the present example processor 202, is then selected to
be the ILP, which issues the SENTER instruction at time 612. At time
614 the ILP’s SENTER instruction issues the SENTER BUS MESSAGE
616. The ILP then issues its own SENTER ACK 608 at time 618 prior to
entering a wait-for-chipset-flag state at time 628.

Each RLP, such as processor 222, respond to the SENTER BUS
MESSAGE 616 by completing the current instruction during time 620.

16



10

15

20

25

30

The RLP then issues its SENTER ACK 622 and then enters a state 634
where it waits for an SENTER CONTINUE MESSAGE.

The chipset 240 spends time 624 setting the JOINS register 272
responsive to the SENTER ACK messages observed on system bus 230.
When the JOINS register 272 contents matches the EXISTS register 270
contents, chipset 240 sets the ALL_JOINED flag 246 at time 626.

During this time, the ILP may remain in a loop while polling the
ALL JOINED flag 246. When the ALL,_JOINED flag 246 is set, and ILP
determines that the ALL_JOINED flag 246 is set at time 630, the ILP may
then issue the SENTER CONTINUE MESSAGE during time 632. When
the SENTER CONTINUE MESSAGE is broadcast on system bus 230 at
time 636, the RLPs may enter a wait-for-join state. For example, the RLP
of processor 222 enters a wait-for-join state during time period 638.

‘ Upon issuing the SENTER CONTINUE MESSAGE, the ILP may
then (in time period 640) bring the public key of key register 244 of
chipset 240 and a copy of SINIT-AC into its secure memory 208 to form a
copy of the key and a copy of SINIT-AC. In another embodiment, key
register 244 may contain a digest of the public key, and the actual public
key may be included in, or with, the SINIT-AC. Upon authenticating the
copy of SINIT-AC as described above in connection with Figure 2, the ILP
may then actually execute the copy of SINIT-AC within secure memory
208.

After the copy of SINIT-AC within secure memory 208 begins
execution, it then (during time period 640) validates and registers the
memory-resident copy of SVMM. After the copy of SVMM is registered in
the PCR 278 of security token 276, the memory-resident copy of SVMM
itself begins execution. At this time, during ongeing time period 650,
SVMM operations are established in the ILP.

'Among the first things that the ILP SVMM operation does is
issue individual RLP JOIN MESSAGES on the system bus 230. An
example is a processor 222 JOIN MESSAGE 644. This message may
include a location in memory at which the RLP processor 222 may join in

execution of the registered memory-resident copy of SVMM. Alternatively,

17



10

15

20

25

30

the ILP SVMM operations may have registered a memory location in a
predetermined location in the chipset or memory, and upon receiving the
JOIN MESSAGE the RLP retrieves its starting address from this location.
After receiving the processor 222 JOIN MESSAGE, and determining its
starting address, during time period 646 the RLP processor 222 jumps to
this location and joins execution of the registered memory-resident copy
of the SVMM.

After all the RLPs have joined the registered memory-resident
copy of the SVMM, secured operations are established throughout the
microcomputer system 200.

Referring now to Figure 7, a flowchart of software and other
process blocks is shown, according to one embodiment of the present
invention. For the sake of clarity Figure 7 only shows process blocks for a
single representative RLP. In other embodiments there may be several
responding logical processors.

The process 700 begins at block 710 when a logical processor
makes écopy of the SINIT-AC and SVMM modules available for access by
a subsequent SENTER instruction. In this example, in block 712 the ILP
loads the SINIT-AC and SVMM code from mass storage into physical
memory. In alternative embodiments, any logical processor may do so,
not just the ILP. A processor becomes the ILP by executing the SENTER
instruction, as identified in block 714. In block 716, the ILP SENTER
instruction issues an SENTER BUS MESSAGE in block 716. The ILP
then, in block 718, issues its own SENTER ACK message to the chipset.
The ILP then enters a wait state, shown as decision block 720, and waits
for the chipset to set its ALL_JOINED flag.

After each RLP receives the SENTER BUS MESSAGE in block
770, it halts execution with the end of the current instruction, and then
in block 772 issues its own SENTER ACK. Each RLP then enters a wait
state, shown as decision block 774, and waits for a SENTER CONTINUE
MESSAGE to arrive from the ILP.

The chipset sets the corresponding bits in the JOINS register
when SENTER ACK messages are received. When the JOINS register

18



10

15

20

25

30

contents equals the EXISTS register contents, the chipset sets its
ALL,_JOINED flag, signaling the ILP to proceed from decision block 720.

The ILP, upon exiting decision block 720 on the YES path, then
issues a SENTER CONTINUE MESSAGE in block 722. This signals each
RLP to proceed from decision block 774. Each RLP then enters a second
wait state, shown as decision block 776, and waits for a SENTER JOIN
MESSAGE.

Meanwhile the ILP, in block 724, moves the public key of the
chipset and the memory-resident copy of SINIT-AC into its own secure
memory for secure execution. The ILP, in block 726, uses the key to
validate the secure-memory-resident copy of SINIT-AC, and then executes
it. The execution of SINIT-AC may perform tests of the system
configuration and the SVMM copy, then registers the SVMM identity, and
finally begins the execution of SVMM in block 728. As part of actions
performed in block 728, the ILP SINIT code may configure device-access
page table 248 and device-access logic 247 of memory and chipset to
protect those memory pages used by the memory-resident copy of SVMM
282 from interference by non-processor devices, as shown in block 754.

After the ILP begins execution under the control of SVMM, in
block 730 the ILP sends an individual SENTER JOIN MESSAGE to each
RLP. After issuing the SENTER JOIN MESSAGE, the ILP then in block
732 begins SVMM operations.

The receipt of the SENTER JOIN MESSAGE causes each RLP to
leave the wait state represented by decision block 776 along the YES
path, and begin SVMM operations in block 780. The SENTER J OIN
MESSAGE may contain the SVMM entry point the RLP branch to when
joining SVMM operations. Alternatively, the ILP SVMM code may register
the appropriate RLP entry point in a system location (for example, in the
chipset), to be retrieved by the RLP upon receipt of the SENTER JOIN
MESSAGE. ’

While various embodiments disclosed include two or more
processors (either logical or physical processors), it should be understood

that such multi-processor and/or multi-threaded systems are described

19



10

15

in more detail to explain the added complexity associated with securing a
system with multiple logical or physical processors. An embodiment also
likely to be advantageous in less complex system may use only one
processor. In some cases, the one physical processor may be multi-
threading and therefore may include multiple logical processors (and
accordingly have an ILP and an RLP as described). In other cases,
however, a single-processor, single-threaded system may be used, and
still utilize disclosed secure processing techniques. In such cases, there
may be no RLP; however, the secure processing techniques still operate to
reduce the likelihood that data can be stolen or manipulated in an

unauthorized manner.
In the foregoing specification, the invention has been described

with reference to specific exemplary embodiments thereof. It will,
however, be evident that various modifications and changes may be made
thereto without departing from the broader spirit and scope of the
invention as set forth in the appended claims. The specification and
drawings are, accordingly, to be regarded in an illustrative rather than a

restrictive sense.

20



CLAIMS:

1. A chipset, comprising:

a bus messaging logic responsive to a first special bus message from a first
logical processor to prepare for secure operation; and

a register to store an acknowledgement from a second logical processor

responsive to said first special bus message.

2. The chipset of claim 1, wherein said chipset is to compare said register to
logical processor activity to determine when to signal the first logical processor to

proceed with secure operation initialisation.
3. The chipset of claim 2, wherein said signal includes setting a flag.

4. The chipset of claim 1, further comprising a device access logic to lock a

secure virtual machine monitor.

5. The chipset of claim 1, further comprising a key register to send a key to said

first logical processor subsequent to said first special bus message.

6. A chipset as claimed in claim 1 substantially as described herein with
reference to and as shown in Figures 2, 3, 6, 7 and 4a, 4b or 5 of the accompanying

drawings.

21



12

Application No: GB0601322.1 Examiner: Daniel Voisey
Claims searched: 1to6 Date of search: 27 February 2006

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category [Relevant | Identity of document and passage or figure of particular relevance
to claims
A - WO 01/75565 A2
(INTEL) sce the abstract.
Categories:
X  Document mdicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step 1f P Document published on or after the declared priority date
combined with one or more other documents of but before the filing date of this invention.
same category.
& Member of the same patent famuly E  Patent document published on or after, but with priority date
carlier than, the filing date of this application.
Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC® :

Worldwide search of patent documents classified in the following areas of the IPC

| GOGF |

The following online and other databases have been used in the preparation of this search report

| EPO-Internal, INSPEC, WPI Data, PAJ |

[t aonseavce |



	Abstract
	Bibliographic
	Drawings
	Description
	Claims
	Search_Report

