(12) (19) (CA) Demande-Application Canadian Intellectual Property Office (21) (A1) **2,226,500** (86) 1997/05/12 (87) 1997/11/20 - (72) FLEEGE, Dennis William, US - (72) FRANCIS, Donald Charles Jr., US - (72) SIEBELS, Randall Luther, US - (71) SQUARE D COMPANY, US - (51) Int.Cl.⁶ H01H 71/08, F16B 39/00 - (30) 1996/05/10 (08/644,508) US - (54) **DISJONCTEUR A DISPOSITIF DE RETENUE D'ECROU DE BORNE** #### (54) CIRCUIT BREAKER WITH TERMINAL NUT RETAINER (57) Disjoncteur doté d'un dispositif de retenue d'écrou de borne, destiné à retenir fermement un écrou de borne en une position fixe adjacente à une borne de disjoncteur et au-dessous de celle-ci. Ce disjoncteur est placé dans un circuit par solidarisation d'un connecteur électrique de source à une borne de source et/ou d'un connecteur électrique de charge à une borne de charge. Une vis est utilisée pour fixer le connecteur électrique à sa borne respective. L'écrou destiné à la vis est maintenu en une position fixe par un dispositif de retenue. Ce dernier comporte une cavité de retenue d'écrou définie par des parois qui retiennent l'écrou et l'empêchent de tourner (57) The present invention provides a circuit breaker having a terminal nut retainer for securely holding a nut in a fixed position adjacent and below a circuit breaker terminal. The circuit breaker is placed in a circuit by securing a source electrical connector to a source terminal and/or a load electrical connector to a load terminal. A screw is used to fasten the electrical connector to its respective terminal. The nut for the screw is held in a fixed position by the terminal nut retainer. The terminal nut retainer has a nut retaining cavity defined by walls which hold the nut and keep it from turning while the screw is tightened to establish a (21) (A1) **2,226,500** (86) 1997/05/12 (87) 1997/11/20 alors que la vis est serrée pour établir une connexion électrique étroite entre le connecteur et la borne. Ce dispositif de retenue d'écrou est maintenu en place par le contact à coulissement et de blocage produit entre des saillies ménagées sur le dispositif et des fentes ménagées dans le boîtier du disjoncteur. tight electrical connection between the connector and the terminal. The terminal nut retainer is held in position by a sliding and locking engagement between projections on the terminal nut retainer and slots in the circuit breaker casing. ## **PCT** # WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau # INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification ⁶: H01H 71/08, H01R 4/30 A1 (11) International Publication Number: WO 97/43778 (43) International Publication Date: 20 November 1997 (20.11.97) (21) International Application Number: PCT/US97/07952 (22) International Filing Date: 12 May 1997 (12.05.97) (30) Priority Data: 08/644,508 10 May 1996 (10.05.96) US - (71) Applicant: SQUARE D COMPANY [US/US]; 1415 South Roselle Road, Palatine, IL 60067 (US). - (72) Inventors: FLEEGE, Dennis, William; 20 26th Street, S.W., Cedar Rapids, IA 52404 (US). FRANCIS, Donald, Charles, Jr.; 2941-18 Sixth Street, S.W., Cedar Rapids, IA 52404 (US). SIEBELS, Randall, Luther; 4219 Dalewood Avenue, S.E., Cedar Rapids, IA 52403 (US). - (74) Agent: GOLDEN, Larry, I.; Square D Company, 1415 South Roselle Road, Palatine, IL 60067 (US). (81) Designated States: CA, JP, MX, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). #### Published With international search report. # (54) Title: CIRCUIT BREAKER WITH TERMINAL NUT RETAINER #### (57) Abstract The present invention provides a circuit breaker having a terminal nut retainer for securely holding a nut in a fixed position adjacent and below a circuit breaker terminal. The circuit breaker is placed in a circuit by securing a source electrical connector to a source terminal and/or a load electrical connector to a load terminal. A screw is used to fasten the electrical connector to its respective terminal. The nut for the screw is held in a fixed position by the terminal nut retainer. The terminal nut retainer has a nut retaining cavity defined by walls which hold the nut and keept it from turning while the screw is tightened to establish a tight electrical connection between the connector and the terminal. The terminal nut retainer is held in position by a sliding and locking engagement between projections on the terminal nut retainer and slots in the circuit breaker casing. WO 97/43778 PCT/US97/07952 CIRCUIT BREAKER WITH TERMINAL NUT RETAINER 15 20 #### **BACKGROUND OF THE INVENTION** #### 1. FIELD OF THE INVENTION This invention relates generally to electric circuit breakers and more particularly to terminal connections. ## 5 2. DESCRIPTION OF THE RELATED ART Electrical circuit breakers are commonly used for temporary interruption of electrical power to electrical devices or loads. Various circuit breaker mechanisms have evolved and have been perfected over time on the basis of application-specific factors such as current capacity, response time, and the type of reset (manual or remote) function desired of the circuit breaker. One type of circuit breaker mechanism employs a thermo-magnetic tripping device to trip a latch in response to a specific range of over-current conditions. In another type of circuit breaker, referred to as a double-break circuit breaker, two sets of current breaking contacts are included to accommodate a higher level of over-current conditions than can be handled by one set of contacts. The electro-mechanical assembly that is typical of those used in circuit breakers of the present invention has been described before. For this reason United States Patent No. 5,430,419 is incorporated herein by reference in its entirety. A circuit breaker typically has two terminals, one for connection to a power source and one for connection to the load. Connection of these 10 15 20 terminals places the circuit breaker within the circuit between the source and the load. These connections may be assembled in a factory or in the field. In either case it is preferable to simplify the assembly. The terminal connecting to a source is typically connected to a bus bar, while the terminal connecting to the load may be connected to a crimp lug or some other type of connector. A circuit breaker terminal can be connected to its source or load by various means including bolts, screws, and friction fits or snap-ons. Generally, a rod-shaped connector, such as a bolt or screw, is inserted through an eyelet or similar opening in a terminal and through an opening in a connector for the source or load. A receiving or tightening device, such as a nut, is attached to the rod-shaped connector for making up and tightening the connection between the terminal and the source or load. Where a screw is used to make the connection, holding a nut for assembly of the connector to the terminal is difficult. Further, there must be a sufficient distance between the nut and a grounded surface to prevent an arc from the nut, when energized, to the grounded surface. A plastic insulating sheet has been used in the past to provide a dielectric between energized parts and a grounded panel. The plastic sheet allows compact construction of a circuit breaker and panelboard assembly. However, a device that holds the nut in place for later assembly of the terminal to a connector would be desirable. It would also be desirable for the device to provide insulation between the screw and/or nut and the grounded surface. 20 ### **SUMMARY OF THE INVENTION** The present invention provides a circuit breaker for interrupting power in a circuit path between a source and a load. The circuit breaker has an electro-mechanical assembly including first and second contacts cooperatively arranged in the circuit path for providing current from the source to the load. At least one of the contacts is movable for interrupting the power provided to the load, and a terminal is connected to the first contact. A casing encloses the electro-mechanical assembly, and a terminal nut retainer engages the casing proximate to the terminal for holding a nut. Preferably, the terminal nut retainer is a molded dielectric having a box-shaped body, and the body has a top, a bottom, and first opposing sides therebetween. In one embodiment, the first opposing sides have a tenon and a mortise adjacent the tenon for sliding engagement with the casing and a projection for locking engagement with the casing. The body preferably has a cavity for receiving the nut. The cavity is defined by walls, which hold the nut, and is open to the top. In another aspect the invention provides an article of manufacture for holding a nut for engagement with a screw. The article of manufacture comprises a body which has a cavity defined by walls. The walls hold the nut in a fixed position so that a screw can be engaged with the nut. The body has a tenon and a mortise adjacent the tenon. In a preferred embodiment, the body also has a projection. In another aspect the invention provides a method for holding a nut close to a terminal. The method comprises: (a) placing the terminal in a 10 15 20 casing having opposing grooves below the terminal, (b) molding a terminal nut retainer comprising a body having a cavity, for holding the nut, and opposing sides, wherein the sides have projections for engaging the grooves, (c) placing a nut in the cavity, and (d) inserting the terminal nut retainer into the casing, wherein the projections engage the grooves. Preferably, the body has a first tenon and a first mortise adjacent the first tenon, and the casing has a second mortise and a second tenon for sliding engagement with the first tenon and the first mortise, respectively. Examples of the more important features of the invention have been summarized rather broadly in order that the detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject of the claims appended hereto. ### BRIEF DESCRIPTION OF THE DRAWINGS For detailed understanding of the present invention, references should be made to the following detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, in which like elements have been given like numerals and wherein: - FIG. 1 shows a perspective view of a terminal nut retainer according to the present invention. - FIG. 2 shows a front elevation of the terminal nut retainer of FIG. 1. 20 - FIG. 3 shows a bottom view of the terminal nut retainer of FIG. 1. - FIG. 4 shows a left side elevation of the terminal nut retainer of FIG. 1. - FIG. 5 shows a top view of the terminal nut retainer of FIG. 1. - FIG. 6 shows a rear elevation of the terminal nut retainer of FIG. 1. - FIG. 7 shows a perspective view of a circuit breaker according to the present invention. - FIG. 8 shows a partial bottom perspective view of the circuit breaker of FIG. 7. - FIG. 9 shows a plan view of a circuit breaker electro-mechanical assembly and base according to the present invention. # DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT With reference to the drawings where like elements are labeled with like numbers, FIG. 1 shows an perspective view of a terminal nut retainer 10. The terminal nut retainer 10 is preferably made using a mold and a nonconductive material, a dielectric, which is typically, but not necessarily, a thermoplastic material. The material is preferably resilient and slightly flexible. The terminal nut retainer 10 has a top surface 12 in which there is a nut retaining cavity 14. Below the nut retaining cavity 14 is a screw receiving opening 16. A ridge 18 projects into the nut retaining cavity 14. Walls 20 and floor 21 define the nut retaining cavity 14 which is open toward the top surface 12. The ridge 18 10 15 20 provides a friction fit for a nut (not shown) which may be placed in the nut retaining cavity 14. The walls 20 and floor 21 hold the nut and prevent the nut from turning and/or from being pushed away as a screw is engaged with the nut. The terminal nut retainer 10 has a front panel 22, a left side panel 24, a right side panel 26, and a rear panel 28. Projections 30x, 30y, and 30z (referred to collectively as projections 30) extend from the left side panel 24, the right side panel 26, and the rear panel 28. Slots 32w, 32x, 32y, and 32z (referred to collectively as slots 32) are formed adjacent the projections 30. The projections 30 are tenons, and the slots 32 are mortises. As described below, these tenons and mortises engage mating mortises and tenons in sliding engagement. With continuing reference to FIG. 1 and with reference now to FIG. 2, which is a front elevation of the terminal nut retainer 10, locking projections 34 are provided on the left side panel 24 and the right side panel 26. As described below, the locking projections 34 hold the terminal nut retainer 10 securely in place. FIG. 3 shows a bottom view of the terminal nut retainer 10. As best seen in FIGS. 1 and 3, the locking projections 34 have a ramp 36, which allows the locking projections 34 to slide into position. To prevent the terminal nut retainer 10 from sliding back out of position, the locking projections 34 have shoulders 38, which hold the terminal nut retainer 10 in a locked position. If desired, shoulders 38 may be angled or inclined toward the front panel 22 to make the terminal nut retainer 10 removable. FIG. 3 illustrates that the screw receiving opening 16 has a bottom enclosure 40. Thus, the screw receiving opening 16 is open toward the top 10 15 20 surface 12, but otherwise enclosed by the bottom enclosure 40. The bottom enclosure 40 is significant because the enclosure 40 provides insulation. The bottom enclosure 40, as well as the entire terminal nut retainer 10, is a dielectric. An energized screw (not shown) can be in the screw receiving opening 16, and yet, the screw is insulated, preventing an arc to a grounded surface. FIG. 4 shows a left side elevation of the terminal nut retainer 10. The bottom enclosure 40 fully encloses a lower portion of the screw receiving opening 16. As best seen in FIG. 1, the nut retaining cavity 14 extends to a depth approximately where the projection 30y is located, and the floor 21 provides a transition into the screw receiving opening 16. FIG. 5 is a top view of the terminal nut retainer 10. The screw receiving opening 16 is defined by inside walls 42 of the bottom enclosure 40. FIG. 6 shows a rear elevation of the terminal nut retainer 10. Comparing the rear elevation in FIG. 6 with the front elevation in FIG. 2, the front panel 22 does not extend as low as the rear panel 28. The rear panel 28 extends as low as the bottom edge of the projection 30z. The front panel 22 extends as low as slightly above the top edge of the projection 30z. The front panel 22 provides a strengthening member between the left side panel 24 and the right side panel 26. However, the front panel 22 does not extend any lower so that the left side panel 24 and the right side panel 26 can be squeezed together to allow insertion of the terminal nut retainer 10 into a receptacle. Referring now to FIG. 7, the terminal nut retainer 10 is shown inserted into its receptacle, and together they comprise a circuit breaker 50. A portion of the circuit breaker 50 of FIG. 7 is shown in FIG. 8, but in a bottom perspective view. The circuit breaker 50 has mortises or dielectric grooves 52x, 52y, and 52z (referred to collectively as grooves 52) for receiving the projections 30x, 30y, and 30z, respectively. The circuit breaker 50 has tenons or protrusions 53x, 53y, and 53z (referred to collectively as protrusions 53). The grooves 52 serve as mortises for the projections 30, which serve as tenons, but for a sliding engagement rather than a fixed joint. Likewise, the protrusions 53 serve as tenons and the slots 32 as mortises. The slots 32 and the grooves 52 provide channels for receiving the projections 30 and the protrusions 53. The projections 30 and the protrusions 53, respectively. 10 5 As best seen in FIG. 8, the circuit breaker 50 also has an engaging slot 54 for receiving and engaging the locking projections 34. The grooves 52x, 52y, and 52z are open at their ends adjacent the end 56 of the circuit breaker 50. However, the engaging slot 54 is not open at its two ends adjacent the corner 58 of the circuit breaker 50. 15 20 The grooves 52x, 52y, and 52z receive and guide the projections 30x, 30y, and 30z, respectively. Pushing the projections 30 into engagement with the grooves 52, the ramps 36 of the locking projections 34 encounter the corners 58 of the circuit breaker 50. By pushing with some force on the front panel 22, the locking projections 34 are squeezed together enough for the ramps 36 to slide into the engaging slot 54. The ramps 36 are shaped like ramps to provide a gradual incline, allowing the left side panel 24 and the right side panel 26 to be pushed toward each other as the terminal nut retainer 10 is pushed into the grooves 52 and the engaging slot 54. 10 15 20 When the terminal nut retainer 10 is fully inserted, the locking projections 34 snap into the depth of the engaging slot 54. The shoulders 38 are squared off to prevent the terminal nut retainer 10 from backing out. The combination of the ramps 36 and the shoulders 38 provide for one-way insertion of the terminal nut retainer 10. The terminal nut retainer 10 cannot be easily removed because the squared-off shoulders 38 engage the engaging slot 54. The front panel 22 allows the left side panel 24 and the right side panel 26 sufficient movement for insertion, but the front panel 22 serves as a strengthening member to prevent the terminal nut retainer 10 from backing out of its inserted position. Thus, the terminal nut retainer 10 is retained in a fixed position. FIG. 9 shows the base 62 without the cover 64 or the terminal nut retainer 10. The grooves 52 and the engaging slot 54 are located below terminals 60x and 60y (referred to collectively as terminal 60). This location positions the terminal nut retainer 10 below the terminal 60. The terminal 60 has a hole 62 for receiving a screw (not shown). The nut retaining cavity 14 is located immediately below the hole 62 in the terminal 60. The grooves 52 and the engaging slot 54 are molded into a base 62 and a cover 64, which together provide a housing or casing for the circuit breaker 50. With reference to FIG. 9, an electro-mechanical assembly 66 is illustrated with the terminal 60x connected to a first contact and the terminal 60y connected to a second contact for making and breaking a circuit between a source of electricity and a consumer of electricity or load. The grooves 52 and the protrusions 53 are illustrated as is the engaging slot 54. 10 15 20 To use the present invention, a nut (not shown), preferably having a lock washer, is placed in the nut retaining cavity 14 with the lock washer toward the top surface 12. The terminal nut retainer 10 is inserted into the grooves 52 and the engaging slot 54 until the locking projections 34 snap into a locked position. The circuit breaker 50 is then ready for an electrical connector (not shown) to be attached to the terminal 60, without having to take the circuit breaker apart. The terminal 60 can be either the electrical source terminal or the electrical load terminal. An electrical connector (not shown) is placed adjacent the terminal 60, and a screw (not shown) or similar device is inserted through both the terminal 60 and the electrical connector. The screw is then inserted into the nut previously retained in the nut retaining cavity 14 and turned to tightly engage the electrical connector against the terminal 60. The terminal nut retainer 10 holds the nut conveniently and securely in place, while providing a dielectric enclosure for the screw and nut. The nut retaining cavity 14 is shaped to matingly receive a nut having a like shape. If the nut has a hexagonal shape, then the nut retaining cavity 14 preferably has a hexagonal shape. The nut retaining cavity 14 is sized to receive the nut in a reasonably snug engagement so that a screw can be tightened in the nut while the nut is held in a fixed position by the walls 20 and the floor 21 of the nut retaining cavity 14. The ridge 18 provides a snug fit, without requiring close tolerances between the walls 20 and the nut. The projections **30** and the protrusions **53** are meshed with the grooves **52** and the slots **32**, respectively, somewhat like the dovetailing of a tenon with a 10 15 20 mortise. The interlocking of the locking projections **34** with the engaging slot **54** prevents the terminal nut retainer **10** from sliding out of its fixed position. The meshing of the projections **30** and the protrusions **53** with the slots **52** and the slots **32**, respectively, allows the terminal nut retainer **10** to withstand a significant amount of force from a direction transverse to the sliding engagement. This arrangement allows the terminal nut retainer **10** to withstand a significant amount of downward force as a screw is pushed down into the retained nut and turned. In summary, the present invention provides a circuit breaker 50 having a terminal nut retainer 10 for securely holding a nut in a fixed position adjacent and below the circuit breaker terminal 60. The circuit breaker is placed in a circuit by securing a source electrical connector to the source terminal 60 and/or a load electrical connector to the load terminal 60. A screw is used to engage the nut and fasten the electrical connector to its respective terminal 60. The walls 20 of the nut retaining cavity 14 prevent the nut from turning while the screw is tightened. The projections 30 mesh with the grooves 52 to place the nut in a proper position and to withstand a transverse force that the terminal nut retainer 10 encounters when the screw is pushed into the nut as it is turned. The bottom enclosure 40 insulates the portion of the screw that protrudes through the nut to prevent an arc to a grounded surface. The foregoing description is directed to a particular embodiment of the present invention for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope PCT/US97/07952 WO 97/43778 and the spirit of the invention. It is intended that the following claims be interpreted to embrace all such modifications and changes. # 1 WHAT IS CLAIMED IS: - A circuit breaker for interrupting power in a circuit path between a source and a load, comprising: - 4 (a) an electro-mechanical assembly including first and second contacts cooperatively arranged in the circuit path for providing current from the source to the load, wherein at least one of the contacts is movable for interrupting the power provided to the load; - 8 (b) a terminal connected to the first contact; - 9 (c) a casing for enclosing the electro-mechanical assembly; and - (d) a terminal nut retainer engaged with the casing proximate to theterminal for holding a nut. - 12 2. The circuit breaker of claim 1, wherein the terminal nut retainer has a body and a cavity in the body for holding the nut. - 14 3. The circuit breaker of claim 2, wherein the body has a first side and a first projection on the first side. - 16 4. The circuit breaker of claim 3, wherein the casing has a first slot for receiving the first projection. - 18 5. The circuit breaker of claim 4, wherein the body has a top and a bottom, and the cavity is open at the top and closed at the bottom. - 1 6. The circuit breaker of claim 5, wherein the terminal nut retainer is a - 2 dielectric. - The circuit breaker of claim 6, wherein the body has a second side. - 4 8. The circuit breaker of claim 7, wherein the body has a panel between - 5 the first side and the second side. - 6 9. The circuit breaker of claim 8, wherein the body has a second - 7 projection on the second side. - 8 10. The circuit breaker of claim 9, wherein the casing has a second slot for - 9 receiving the second projection. - 10 11. The circuit breaker of claim 10, wherein the body has a tenon and the - casing has a mortise for dovetailing with the tenon in sliding engagement. - 12 12. The circuit breaker of claim 10, wherein the body has a mortise and - the casing has a tenon for dovetailing with the mortise in sliding engagement. - 14 13. The circuit breaker of claim 1, wherein the terminal nut retainer is a - 15 molded dielectric, comprising a body having a box shape having a top, a - 16 bottom, and first opposing sides therebetween, the first opposing sides - 17 having a tenon and a mortise adjacent the tenon for sliding engagement with - 18 the casing and a projection for locking engagement with the casing, wherein - 19 the body has a cavity for receiving the nut, the cavity being defined by walls - 20 and open to the top. - 1 14. An article of manufacture for holding a nut for engagement with a - 2 screw, comprising a body having a cavity defined by walls for receiving the - 3 nut, a tenon, and a mortise adjacent the tenon. - 4 15. The article of manufacture of claim 14, wherein the body is shaped like - 5 a box having a top, a bottom, and first opposing sides, the first opposing - 6 sides each having a projection. - 7 16. The article of manufacture of claim 15, wherein the tenon and the - 8 mortise are located on one of the first opposing sides. - 9 17. The article of manufacture of claim 16, further having a screw-end - 10 opening adjacent with and concentric with the cavity for receiving an end of a - 11 screw engaged with the nut. - 12 18. The article of manufacture of claim 17, wherein the cavity is open - towards the top, the screw-end opening is between the cavity and the bottom - and open towards the cavity and closed towards the bottom. - 15 19. A method for holding a nut close to a terminal, comprising: - 16 (a) placing the terminal in a casing having opposing grooves below - 17 the terminal; - (b) molding a terminal nut retainer comprising a body having a cavity, - for holding the nut, and opposing sides, wherein the sides have - 20 projections for engaging the grooves; WO 97/43778 PCT/US97/07952 | 1 (c) | placing | a nut | in the | cavity; | and | |-------|---------|-------|--------|---------|-----| |-------|---------|-------|--------|---------|-----| - 2 (d) inserting the terminal nut retainer into the casing, wherein the projections engage the grooves. - The method of claim 19, wherein the body has a first tenon and a first mortise adjacent the first tenon, and the casing has a second mortise and a second tenon for sliding engagement with the first tenon and the first mortise, respectively.