ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ

(21)(22) Заявка: 2013114413/04, 31.08.2011

Приоритет(ы):

(30) Конвенционный приоритет: **02.09.2010 DE 102010040187.0**

- (43) Дата публикации заявки: 10.10.2014 Бюл. № 28
- (85) Дата начала рассмотрения заявки РСТ на национальной фазе: 02.04.2013
- (86) Заявка РСТ: EP 2011/065000 (31.08.2011)
- (87) Публикация заявки РСТ: WO 2012/028644 (08.03.2012)

Адрес для переписки:

105082, Москва, Спартаковский пер., д. 2, стр. 1, секция 1, этаж 3, "ЕВРОМАРКПАТ"

(71) Заявитель(и):

БАЙЕР ИНТЕЛЛЕКТЧУАЛ ПРОПЕРТИ ГМБХ (DE)

Z

(72) Автор(ы):

ФЮРСТНЕР Шанталь (DE), КЕЛЬДЕНИХ Йёрг (DE), ДЕЛЬБЕК Мартина (DE), КОЛЬКХОФ Петер (DE), КРЕЧМЕР Аксель (DE), ПОК Элизабет (DE), ШМЕК Карстен (DE), ТРЮБЕЛЬ Хуберт (DE)

(54) ЗАМЕЩЕННЫЕ N-ФЕНЭТИЛТРИАЗОЛОНАЦЕТАМИДЫ И ИХ ПРИМЕНЕНИЕ

(57) Формула изобретения

1. Соединение формулы (I)

в которой R^1 представляет собой (C_1 - C_6)-алкил, (C_2 - C_6)-алкенил или (C_2 - C_6)-алкинил, каждый из которых может быть моно- или дизамещен посредством одинаковых или разных радикалов, выбранных из группы, которая состоит из фтора, хлора, циано, дифторметила, трифторметила, оксо, гидрокси, дифторметокси, трифторметокси, (C_1 - C_4)-алкокси, (C_3 - C_6)-циклоалкила и фенила,

где (C_3 - C_6)-циклоалкил может быть замещен до двух раз посредством одинаковых или разных радикалов, выбранных из группы, которая состоит из фтора, трифторметила, (C_1 - C_4)-алкила, оксо, гидрокси, трифторметокси и (C_1 - C_4)-алкокси и

где фенил может быть замещен до трех раз посредством одинаковых или разных радикалов, выбранных из группы, которая состоит из галогена, циано, дифторметила,

2

⋖

U 2013114413

D

Z

трифторметила, (C_1-C_4) -алкила, гидрокси, гидроксиметила, дифторметокси, трифторметокси, (C_1-C_4) -алкокси, (C_1-C_4) -алкоксиметила, гидроксикарбонила, (C_1-C_4) -алкоксикарбонила, аминокарбонила, моно- (C_1-C_4) -алкиламинокарбонила и ди- (C_1-C_4) -алкиламинокарбонила, или

представляет собой (C_3 - C_6)-циклоалкил, который может быть моно- или дизамещен посредством одинаковых или разных радикалов, выбранных из группы, которая состоит из фтора, трифторметила, (C_1 - C_4)-алкила, оксо, гидрокси, трифторметокси и (C_1 - C_4)-алкокси,

 R^2 представляет собой фенил или тиенил, который может быть моно- или дизамещен посредством одинаковых или разных радикалов, выбранных из группы, которая состоит из галогена, циано, дифторметила, трифторметила, (C_1-C_4) -алкила, гидрокси, трифторметокси и (C_1-C_4) -алкокси,

 $R^{3A}\,R^{3B}$ и R^{3C} независимо друг от друга представляют собой водород, фтор, хлор, дифторметил, трифторметил, (C_1 - C_4)-алкил, дифторметокси, трифторметокси или (C_1 - C_4)-алкокси,

но где, по меньшей мере, один из радикалов R^{3A} , R^{3B} , R^{3C} является отличным от водорода, и

L представляет собой группу формулы

$$^{R^5}$$
 $^{(CH_2)}_n$ n UJIM $^{CH_2}_{-CH_2-x}$ $^{+\star}$ $^{-CH_2-CH_2-x}$ $^{+\star}$ $^{-CH_2-CH_2-x}$

в которой

<

3

4

3

0

2

2

* представляет собой место присоединения к смежному атому азота и

** представляет собой место присоединения к фенильному кольцу,

п представляет собой номер 0,1 или 2,

R⁴ представляет собой водород или метил,

 R^5 представляет собой группу формулы -O-C(=O)-NR 7A R 7B , -NR 8 -C(=O)-NR 7A R 7B , -NR 8 -SO₂-NR 7A R 7B , -NR 8 -C(=O)-R 9 , -NR 8 -SO₂-R 10 или -NR 8 -C(=O)-OR 10 в которой

 R^{7A} и R^{7B} независимо друг от друга представляют собой водород, (C_1 - C_6)-алкил или (C_3 - C_6)-циклоалкил, или вместе с атомом азота, к которому оба присоединены, образуют 4-6-членный гетероцикл, который может содержать дополнительный кольцевой гетероатом из группы, которая состоит из N, O и S и который может быть моно- или дизамещен посредством одинаковых или разных радикалов, выбранных из группы, которая состоит из фтора, трифторметила, (C_1 - C_4)-алкила, гидрокси и оксо,

 ${R}^{8}$ представляет собой водород или (${C}_{1}\text{-}{C}_{4}$)-алкил,

 R^9 представляет собой водород, (C₁-C₆)-алкил или (C₃-C₆)-циклоалкил, и

 ${\sf R}^{10}$ представляет собой (C1-C6)-алкил или (C3-C6)-циклоалкил, и

 R^6 имеет значение R_5 , указанное выше или представляет собой гидрокси, и его соли, сольваты и сольваты солей.

U 2013114413

Z

2. Соединение формулы (I) по п.1, в которой

 R_1 представляет собой (C_1 - C_4)-алкил или (C_2 - C_4)-алкенил, каждый из которых может быть моно- или дизамещен посредством одинаковых или разных радикалов, выбранных из группы, которая состоит из фтора, трифторметила, гидрокси, метокси и этокси, или

представляет собой бензил, который может быть замещен в фенильном кольце посредством радикала, выбранного из группы, которая состоит из фтора, хлора, метила, трифторметила и метокси, или

представляет собой циклопропил,

 R^2 представляет собой фенил или тиенил, который является замещенным посредством радикала, выбранного из группы, которая состоит из фтора и хлора,

 R^{3A} и R^{3B} независимо друг от друга представляют собой водород, фтор, хлор, метил, трифторметил, метокси или трифторметокси,

но где, по меньшей мере, один из радикалов R^{3A} и R^{3B} является отличным от водорода,

R^{3C} представляет собой водород, и

L представляет собой группу формулы

$$\begin{array}{c} {\rm R^5} \\ {\rm (CH_2)_n} \\ {\star \star - \rm CH - \rm CH_2 - \star} \end{array},$$

в которой

<

3

က

0

2

2

* представляет собой место присоединения к смежному атому азота, и

** представляет собой место присоединения к фенильному кольцу,

п представляет собой номер 0 или 1, и

 R^5 представляет собой группу формулы -O-C(=O)-NHR 7B , -NH-C(=O)-NHR 7B , -NH-C(=O)-R 9 , -NH-SO $_2$ -R 10 или -NH-C(=O)-OR 10 , в которой

 R^{7B} представляет собой водород или (C_1 - C_4)-алкил,

 R^9 представляет собой водород или (C_1 - C_4)-алкил, и

 R^{10} представляет собой (C_1 - C_4)-алкил,

и его соли, сольваты и сольваты солей.

3. Соединение формулы (I) по п.1 или 2, в которой

 R^1 представляет собой 3,3,3-трифтор-2-гидроксипропил, 3,3,3-трифторпропил или 3,3,3-трифторпроп-1-ен-1-ил,

 R^2 представляет собой н-хлорфенил,

 ${
m R}^{3A}$ и ${
m R}^{3B}$ независимо друг от друга представляют собой водород, хлор или трифторметил,

но где, по меньшей мере, один из радикалов R^{3A} и R^{3B} является отличным от водорода,

 R^{3C} представляет собой водород,

И

L представляет собой группу формулы

D

$$\begin{array}{c}
R^{5} \\
(CH_{2})_{n} \\
\star \star -CH-CH_{2} \\
\star \star
\end{array}$$

в которой

* представляет собой место присоединения к смежному атому азота,

И

<

3

3

0

2

2

** представляет собой место присоединения к фенильному кольцу,

п представляет собой номер 0 или 1, и

 ${
m R}^5$ представляет собой группу формулы -O-C(=O)-NH $_2$, -NH-C(=O)-NH $_2$ или -NH-

 SO_2 - R^{10} , в которой

 R^{10} представляет собой метил или этил, и его соли, сольваты и сольваты солей.

4. Способ получения соединений формулы (I), как указано в пп.1-3, который отличается тем, что соединение формулы (II)

HO
$$N = \begin{pmatrix} R^1 \\ R^2 \end{pmatrix}$$
 (II),

в которой R^1 и R^2 имеют значения, указанные в пп.1-3,

сочетается в инертном растворителе с активацией функции карбоновой кислоты с соединением формулы (III)

$$R^{3C}$$
 $L-NH_2$
 R^{3B}
 R^{3A} (III),

в которой L, R^{3A} , R^{3B} и R^{3C} имеют значения, указанные в пп.1-3,

и полученные соединения формулы (I) необязательно разделяют на их энантиомеры и/или диастереоизомеры, и/или превращают с помощью пригодных (i) растворителей и/или (ii) кислот, или оснований в их сольваты, соли и/или сольваты солей.

- 5. Соединение формулы (I), как указано в любом из пп.1 и 2, для лечения и/или профилактики заболеваний.
- 6. Соединение формулы (I), как указано в любом из пп.1 и 2, для применения в способе лечения и/или профилактики острой и хронической сердечной недостаточности, гиперволемической и нормоволемической гипонатриемии, цирроза печени, асцита, отеков и синдрома недостаточной секреции АДГ (СНАДГ).
- 7. Способ применения соединений формулы (I), как указано в любом из пп.1-3, для изготовления лекарственного препарата для лечения и/или профилактики острой и хронической сердечной недостаточности, гиперволемической и нормоволемической гипонатриемии, цирроза печени, асцита, отеков и синдрома недостаточной секреции АДГ (СНАДГ).
- 8. Лекарственный препарат, который содержит соединение формулы (I), как указано в любом из пп.1-3, в комбинации с одним или более инертным нетоксическим

фармацевтически пригодным вспомогательным средством.

4

က

4

က

2 0

2

9. Лекарственный препарат, который содержит соединение формулы (I), как указано в любом из пп.1-3, в комбинации с одним или более дополнительным активным веществом, выбранным из группы, которая состоит из диуретиков, антагонистов АІІ-рецепторов ангиотензина, ингибиторов АПФ, блокаторов бета-рецепторов, антагонистов минералокортикоидных рецепторов, органических нитратов, доноров NO и положительно инотропных активных веществ.

10. Лекарственный препарат по п.8 или 9 для лечения и/или профилактики острой и хронической сердечной недостаточности, гиперволемической и нормоволемической гипонатриемии, цирроза печени, асцита, отеков и синдрома недостаточной секреции АДГ (СНАДГ).

U 2013114413