
(19) United States
US 20080209119A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0209119 A1
Chen (43) Pub. Date: Aug. 28, 2008

(54) METHODS AND SYSTEMS FOR
GENERATINGERROR CORRECTION
CODES

(76) Inventor: Hong-Ching Chen, Kao-Hsiung
Hsien (TW)

Correspondence Address:
NORTH AMERICA INTELLECTUAL PROP
ERTY CORPORATION
P.O. BOX SO6
MERRIFIELD, VA 22116 (US)

(21) Appl. No.: 12/116,220

(22) Filed: May 7, 2008

Related U.S. Application Data

(62) Division of application No. 1 1/160,263, filed on Jun.
16, 2005.

Source

Data buffer

DRAM

EnCOdcd PO data

1 O2

Publication Classification

(51) Int. Cl.
H03M, 3/05 (2006.01)
G06F 12/00 (2006.01)
G06F II/It (2006.01)

(52) U.S. Cl. 711/105: 714/752; 711/E12.001;
714/E11032

(57) ABSTRACT

Methods and systems for generating ECC encode a data block
to generate corresponding error correction codes. A first
buffer sequentially stores a first section and a second section
of the data block, wherein each of the first and second sections
is composed of X data rows and Y data columns of the data
block, and Y is greater than or equal to 2. A second buffer
stores Ypartial-parity columns. An encoder is used for encod
ing the first section read from the first buffer to generate the
partial-parity columns, and then storing the partial-parity col
umns in the second buffer. The second section read from the
first buffer and the partial-parity columns read from the sec
ond buffer are encoded to generate updated partial-parity
columns. Next, the partial-parity columns in the second
buffer are updated by storing the updated partial-parity col

S.

? 100

PO encoder 106

105

Partial PO
parily dala

Parity buffer

108

US 2008/0209119 A1 Aug. 28, 2008 Sheet 1 of 22 Patent Application Publication

JL}{W CITH LWTTH}} ["{)[H

ZI

| |

SAAO. 9
ODO Od

SA\O. 6

US 2008/0209119 A1 Aug. 28, 2008 Sheet 2 of 22 Patent Application Publication

| | |· · · · ·| 606· · · · -

SS0Jppe UULImIOO
SS3.Ippe AAO}}

L}{W CITHALVTITH}| 9 ° C)|H.

US 2008/0209119 A1 Patent Application Publication

US 2008/0209119 A1 Aug. 28, 2008 Sheet 4 of 22 Patent Application Publication

J0pOOUI0 OCH

#7 (OIH

0pOULI SS0.lppV

enep 00.InOS

US 2008/0209119 A1 Aug. 28, 2008 Sheet 5 of 22 Patent Application Publication

ULIOJ UOIQO3SULIOJ UOIQO0S Blep pJçBlep pUIZ

US 2008/0209119 A1 Aug. 28, 2008 Sheet 6 of 22 Patent Application Publication

SpJOAA #7

SAOI (SI

Patent Application Publication Aug. 28, 2008 Sheet 7 of 22 US 2008/0209119 A1

s
|- a - AO. 6

US 2008/0209119 A1 Aug. 28, 2008 Sheet 8 of 22 Patent Application Publication

SAO. 6

US 2008/0209119 A1 Aug. 28, 2008 Sheet 9 of 22 Patent Application Publication

N

SWOI (6

US 2008/0209119 A1 Aug. 28, 2008 Sheet 10 of 22 Patent Application Publication

S.W.O. 26

US 2008/0209119 A1 Aug. 28, 2008 Sheet 11 of 22 Patent Application Publication

O’I 6 I NA

8I6 I NA

|Sp.IOw º|
|

| | ? i | |

SAO. 9 SA\O. 6

US 2008/0209119 A1 Aug. 28, 2008 Sheet 12 of 22 Patent Application Publication

SAO. S7

SAO. 9 SAOJ 6.

US 2008/0209119 A1 Aug. 28, 2008 Sheet 13 of 22 Patent Application Publication

09

9

J0pOOU0 OCH
Z9

9 |
e?ep 00.InOS

Z

AAS

0pOULI SS3.lppV

US 2008/0209119 A1

0pOULI SSO.IppV

enep 00.InOS

Aug. 28, 2008 Sheet 14 of 22

enep 00.InOS

Patent Application Publication

Z J.

US 2008/0209119 A1 Aug. 28, 2008 Sheet 15 of 22 Patent Application Publication

957 | ~ ~ ||

enep 00.InOS

Z1

US 2008/0209119 A1 Aug. 28, 2008 Sheet 16 of 22 Patent Application Publication

00 ||

enep K?Jed
90 ||

Od [B]].IBd.

enep 00.InOS
ZO I

Patent Application Publication Aug. 28, 2008 Sheet 17 of 22 US 2008/0209119 A1

s
s

2.

CH
CH

C
CS
H9
CVS
CN

&

US 2008/0209119 A1 Aug. 28, 2008 Sheet 18 of 22 Patent Application Publication

T - - - -TTISTIQg

enep Á?Jed
J0pOOU3

elep 90.InOS

_/8 || ||9||Z | |ZO I

0 || ||

US 2008/0209119 A1 Aug. 28, 2008 Sheet 19 of 22 Patent Application Publication

[-· ()] |
| Holois|?pOOUÐ·0pOOLIO

| =

0pOOLIO JOJX!,ºpos
IOJOx), H ino peoH

|JOJ
(X

(X), a elep ÐJJng
), a no peo,

US 2008/0209119 A1 Aug. 28, 2008 Sheet 20 of 22 Patent Application Publication

0pOULI SS3.lppV

US 2008/0209119 A1

Z()|

enep K?Ied

Aug. 28, 2008 Sheet 21 of 22

enep 00.InOS
enep

Patent Application Publication

US 2008/0209119 A1 Aug. 28, 2008 Sheet 22 of 22 Patent Application Publication

enep 90||90.InOS

US 2008/02091. 19 A1

METHODS AND SYSTEMIS FOR
GENERATINGERROR CORRECTION

CODES

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a division of U.S. application Ser.
No. 1 1/160,263 filed Jun. 16, 2005, the entirety of which is
incorporated by reference.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention relates to methods and sys
tems for generating error correction codes (ECCs), more par
ticularly to methods and apparatuses for an optical disc drive,
which efficiently reduces data accessing time during ECC
encoding.
0004 2. Description of the Prior Art
0005 Conventional processes for generating error correc
tion codes during encoding involves pre-storing source data
in a dynamic random access memory (DRAM). Data stored in
the DRAM are usually addressed by the row address and
column address, and the DRAM is an array of memory cells
accessing according to the row and column addresses.
0006. In order to reduce number of pins on the package,
the row and column addresses are multiplexed to share the
same address pins. The DRAM is composed of capacitors,
and each capacitor stores logic 1 or logic 0 for each data bit by
storing the electric charge or not. The row address is sampled
from the address pins and latched into the row address
decoder when the RAS (Row Address Strobe) signal falls.
After the row address is latched, the address on the address
pins is Switched to the column address and is sampled and
latched into the column address decoder when the CAS (Col
umn Address Strobe) signal falls. The data stored in the
DRAM corresponding to the latched addresses is output once
the CAS signal is stabilized. A technique called “page-mode'
allows faster sequential accessing of DRAM, in which a row
of DRAM is accessed by only latching the row address once.
In the page-mode access, the RAS signal is kept while a new
column address is supplied at each falling period of the CAS
signal for accessing data from a corresponding memory cell
of the DRAM. This technique reduces the column access time
and lowers power consumption. The operation of accessing
data in the same row is much faster than the operation of
accessing data in different rows. For example, in the case of
operating a 32Kb DRAM with 7 bits of row address and 7 bits
of column address, the access time required for address
change from row to row belonging to the same column is
around 5 times the access time for address change from col
umn to column belonging to the same row.
0007 Methods for generating error correction codes, such
as generating the parity outer codes (PO codes) of Reed
Solomon product code (RSPC) on a digital versatile disc
(DVD), which requires accessing data stored in memory cells
with different row addresses. As a result, extensive time is
consumed in Switching a current row address to a Subsequent
one for the error correction code generation.
0008 FIG. 1 is a schematic diagram of an ECC block 10
for DVDs. The ECC block 10 includes three regions, which
are composed of multiple one-byte elements B, (i=0-207,
j=0-181). Region 11, composed of elements B, withi=0-191
and j=0-171, stores the scrambled source data, Region 12

Aug. 28, 2008

composed of elements B, withi–192-207 andj=0-171 stores
the PO codes, and region 13 composed of elements B, with
i=0-207 and j=172-181 stores the parity inner codes (PI
codes). The generation of PO code B, with i=192-207 is
described by the following remainder polynomial RCX) for
each column j with j=0-171, in which G(x) is the POgen
eration polynomial:

Equation (1) 207 19

R;(x) = X. B207 = S. B.a" ("moco i=192 i=0

0009 FIG. 2 is a schematic diagram illustrating an
arrangement of the ECC block data stored in a DRAM.
Before encoding, a sequence of Source data received from a
host is scrambled and buffered into the DRAM according to a
mapping between the row/column address of memory words
and the byte index B, of the ECC block as shown in FIG. 2.
0010. The storage unit of the DRAM is a word containing
two bytes, and the storing sequence of the scrambled source
data is Boo Boi. . . . Boi 71, B.o.
0011. According to the storing sequence, the row
addresses of the Scrambled source data are frequently
switched to generate the PO codes, as each PO column for PO
encoding is non-continuous in the direction of memory row
address. The encoding process in the PO encoding direction
has a low efficiency since large bandwidth and long time are
required.
0012 FIG.3 is a block diagram of an error correction code
generator 30 including a first memory (DRAM) 31, a multi
plexer 32, and an encoder 33. Source data are provided from
the host and stored in the first memory 31 of the ECC gen
erator 30. Each column of the source data (B, for i=0-191) is
sequentially read out from the first memory 31 for generating
the corresponding PO codes (B, for i=192-207), in which
only one byte of each word read from the first memory 31 is
used. The multiplexer 32 selects one of the two bytes in each
word and passes it to the encoder 33 for encoding.
(0013 For reading one PO column from the DRAM as
shown in FIG. 2, it takes 147 times of row-crossing access
(reading an element by jumping from one row to another) and
45 times of non-row-crossing access (reading an element in
the same row as the previous one), adding up to the total of
192 rows of source data. Based on the previous example,
row-crossing access requires five clock cycles, and non-row
crossing access only requires one clock cycle. Therefore, the
total number of clock cycles for reading one PO column is
147x5+45–780 clock cycles. The ECC block has a total of
172 PO columns (i-0-171), hence the total amount of time for
reading the scrambled source data in order to generate the PO
codes is 172x780=134,160 clock cycles. The ratio of page
mode data access to total data access is only 45/(45+147)=23.
4%, which is very inefficient.

SUMMARY OF THE INVENTION

0014 Methods and systems for generating error correc
tion codes are provided to reduce the accessing time required
for error correction code encoding. In some embodiments, the
system encodes a data block to generate corresponding error
correction codes, wherein the data block includes a plurality
of rows and columns for generating error correction code
(ECC) parity columns. A first buffer in the system sequen
tially stores a first section and a second section of the data

US 2008/02091. 19 A1

block, wherein each of the first and second sections is com
posed of X data rows and Y data columns of the data block,
where Y is greater than or equal to 2. A second buffer stores Y
partial-parity columns. An encoder is used for encoding the
first section read from the first buffer to generate the partial
parity columns, and then storing the partial-parity columns in
the second buffer. The combination of the second section read
from the first buffer and the partial-parity columns read from
the second buffer are encoded to generate updated partial
parity columns. Next, the partial-parity columns in the second
buffer are updated by storing the updated partial-parity col

S.

00.15 Moreover, to reach the objectives above, the present
invention provides another system for generating error cor
rection codes. The system comprises a buffer for sequentially
storing a first section and a second section of the data block.
An encoder reads the first section from the buffer for encod
ing the first section, and reads the second section from the
buffer for encoding the second section. An address mode
switching circuit controls the first section to be stored in the
buffer according to a first accessing strategy, controls the
second section to be stored in the buffer according to a second
accessing strategy, controls the encoder to read the first sec
tion from the buffer according to the second accessing strat
egy, and controls the encoder to read the second section from
the buffer according to the first accessing strategy. The first
and second accessing strategies are different from one
another and are selected from column-by-column and row
by-row accessing strategies.
0016 For reaching the objectives above, some embodi
ments of the method for encoding a data block to generate
corresponding error correction codes allow generating error
correction code (ECC) parity columns in a more efficient
manner. The method includes sequentially storing a first sec
tion and a second section of the data block in a first buffer,
wherein each of the first and second sections is composed of
X data rows and Y data columns of the data block, where Y is
greater than or equal to 2. A group of Y partial-parity columns
are stored in a second buffer. The first section read from the
first buffer is encoded to generate the partial-parity columns,
and the partial-parity columns are stored in the second buffer.
Next, the combination of the second section read from the
first buffer and the partial-parity columns read from the sec
ond buffer are encoded to generate updated partial-parity
columns. The partial-parity columns are then updated in the
second buffer.

0017. Furthermore, some embodiments of the method for
encoding a data block to generate corresponding error cor
rection codes allow generating error correction code (ECC)
parity columns in a more efficient manner. The method
includes sequentially storing a first section and a second
section of the data block in a buffer according to a first
accessing strategy and a second accessing strategy, respec
tively. Next the first section read from the buffer according to
the second accessing strategy and the second section read
from the buffer according to the first accessing strategy are
encoded. The first and second accessing strategies are differ
ent from one another and are selected from column-by-col
umn and row-by-row accessing strategies.
0018. In some embodiments, the system for encoding a
data block to generate corresponding error correction codes
comprises a parity buffer and an encoder. The encoder
encodes a first section of the data block to generate partial
parity columns, stores the partial-parity columns in the parity

Aug. 28, 2008

buffer, and encodes a second section of the data block with the
partial-parity columns read from the parity buffer to generate
new partial-parity columns. Each of the first and second sec
tions is composed of X data rows and Y data columns, where
Y is greater than or equal to 2, and X is Smaller than the total
number of rows in the data column.
These and other objectives of the present invention will no
doubt become obvious to those of ordinary skill in the art after
reading the following detailed description of the preferred
embodiment that is illustrated in the various figures and draw
1ngS.

BRIEF DESCRIPTION OF THE DRAWINGS

0019 FIG. 1 shows a schematic diagram of an ECC block.
0020 FIG. 2 shows a schematic diagram illustrating the
arrangement of the scrambled source data in a DRAM.
0021 FIG. 3 shows a block diagram of a conventional
error correction code generator.
0022 FIG. 4 is a block diagram of an error correction code
generators in accordance with an embodiment of the present
invention.
0023 FIG. 5 shows a diagram illustrating the schedule of
data writing and data reading operation inaccordance with an
embodiment of the present invention.
0024 FIGS. 6-10 are diagrams illustrating a data reading
sequence in accordance with an embodiment of the present
invention.
0025 FIG. 11 illustrates an exemplary method of gener
ating PO parity data for each word column of memory when
reading the memory column-by-column.
0026 FIG. 12 illustrates an exemplary method of gener
ating PO parity data for each group of rows of memory when
reading the memory row-by-row.
(0027 FIGS. 13-15 are block diagrams of error correction
code generators in accordance with Some embodiments of the
present invention.
0028 FIGS. 16(a)-(b) are block diagram of an error cor
rection code generator in accordance with another embodi
ment of the present invention.
0029 FIG. 17 illustrates a block diagram of an error cor
rection code generator in accordance with another embodi
ment of the present invention.
0030 FIG. 18 is a timing diagram showing steps executed
during the operation of the error correction code generator
shown in FIG. 17.
0031 FIGS. 19-21 illustrate block diagrams of error cor
rection code generators in accordance with some embodi
ments of the present invention.

DETAILED DESCRIPTION

0032 FIG. 4 is a block diagram of an error correction code
generator 40 in accordance with an embodiment of the
present invention. A data buffer 44 sequentially stores a plu
rality of sections of source data from the data block 11 shown
in FIG. 1. The data buffer 44 is preferably a static random
access memory (SRAM) due to its fast access times, but other
memory types can also be used. An address mode Switching
control circuit 42 controls the way that the source data is
stored in the data buffer 44. APO encoder 46 then encodes the
source data stored in the data buffer 44 for producing the PO
parity data. As will be explained below, the address mode
Switching control circuit 42 toggles the methods of accessing
the data buffer 44 for increasing memory access speeds dur

US 2008/02091. 19 A1

ing the PO encoding process. The address mode Switching
control circuit 42 Switches the memory access mode to read
and write row-by-row or column-by-column.
0033 FIG. 5 shows a diagram 50 illustrating the schedule
of data writing and data reading operation in accordance with
an embodiment of the present invention. The data block 11 of
FIG. 1 is divided into a plurality of data sections including 1st,
2nd, 3rd, 4th data sections, etc. Each data section is composed
of a plurality of rows and a plurality of word columns, such as
192 rows and 4 word columns (8 bytes). First, the 1st data
section is written into the data buffer 44 row-by-row in step 51
starting at time To. After the whole 1st complete data section
is written into the data buffer 44, the stored data are read from
the data buffer 44 column by column for generating PO parity
data in step 52 starting at time T. After the first (leftmost)
column of the 1st data section is all read, the first column of
the 2nd data section can be overwritten in step 53 to the same
memory space of the data buffer 44 where the first column of
the 1st data section was stored. The remaining columns of the
2nd data section are written to the data buffer 44 in the same
fashion. Thus, the 2nd data section is effectively written to the
data buffer 44 at the same time as the 1st data section is being
read from the data buffer 44, while avoiding any previous data
from being overwritten before it is read. After the whole 2nd
data section is written to the data buffer 44, it is again read out
from the data buffer 44 row-by-row in step 54 for generating
PO parity data. Similarly, in step 55, each row of the 3rd data
section can be overwritten to the same memory space of the
data buffer 44 where corresponding rows of the 2nd data
section is completely read from the data buffer 44. The col
umns of the stored 3rd data section are not read from the data
buffer 44 in step 56 until the whole 3rd data section is written
into the data buffer 44 row-by-row. This process repeats, and
in step 57, the 4th data section is written to the data buffer 44
column-by-column while the 3rd data section is read from the
data buffer 44 column-by-column. Please note that in the
above process, an N' data section is read whilean (N+1)"
data section is being written. Moreover, the simultaneous
read and write processes are performed in the same direction,
whether it be row-by-row or column-by-column. The writing
operations for PO buffering and the reading operations for PO
encoding act simultaneously without any additional PO
encoder or extra memory size by accessing the data buffer 44
in the same direction. Accessing the data buffer 44 in the same
direction also allows the reading and writing to take place
simultaneously without adversely affecting the memory
access speed.
0034 FIGS. 6-10 show diagrams illustrating data reading
sequences in accordance with an embodiment of the present
invention. FIGS. 6-10 correspond to steps 51-55, respec
tively. Two horizontally adjacent bytes act as a word W.a'.
where i is the designed number of the data section, X is a row
number ranging from 0 to 191, and y is a column number
ranging from 0 to 3. In this example, each data section is
comprised of 192 rows and 4 word columns. First, the 1st data
section is written into the data buffer 44 row-by-row as shown
in FIG. 6. The data writing sequence in the data buffer 44 is
shown by the arrows, and starts from the topmost row. The
data reading sequence in the data buffer 44 is also shown by
the arrows in FIG. 7, and starts from the leftmost column.
After the first (leftmost) column of the 1st data section is
completely read from the data buffer 44, the first to 48th rows
of the 2nd data section can be overwritten to the same memory
space of the data buffer 44 where the first column of the 1st

Aug. 28, 2008

data section was recorded. As shown in FIG. 8, words W
Ware sequentially stored as the serial directions of theses
arrows indicate, with sequential words in a row of the 2nd data
section being stored in sequential 48-rows groups of the data
buffer 44. The remaining rows of the 2nd data section are
written to the data buffer 44 according to the same accessing
strategy. The first column of the 2nd data section is stored in
the upper 48 rows of the data buffer 44, the second column of
the 2nd data is stored in the next 48 rows of the data buffer 44,
and so forth.

0035. As shown in FIG.9, after the entire 2nd data section
is written to the data buffer 44, the stored data are read from
the data buffer 44 for generating PO parity data in a sequence
as the serial directions of these arrows indicate. The consecu
tive 48 data rows of the data buffer 44 are accessed column
by-column since each group of 48 rows of the data buffer 44
contains the stored data for one word column of the 2nd data
section. After reading each of the 48-rows groups, the 3rd data
section is written into the data buffer 44 row-by-row, as
shown in FIG. 10.

0036. After reading each data section stored in the data
buffer 44, the corresponding PO parity data is calculated and
written to a PO parity buffer with a size of at least 16 rows and
4 word columns. For instance, FIG. 11 illustrates how PO
parity data is generated for each word column of memory
when reading the data buffer 44 column-by-column. After
each word column of data is read, corresponding PO parity
data is written into one word column of the PO parity buffer.
After the last word column has been read and encoded, and
the corresponding PO parity data has been stored in the PO
parity buffer, the PO parity is read out row-by-row and stored
in a memory, Such as a DRAM, which can be used for gen
erating PI codes. By reading the PO parity out of the PO parity
buffer row-by-row, page-mode data access can be efficiently
used for enabling quick memory access.
0037 FIG. 12 illustrates how PO parity data is generated
for each group of rows of memory when reading the memory
row-by-row. After each group of 48 rows of data is read,
corresponding PO parity data is stored into the PO parity
buffer. After the last group of rows of data is read, and the
corresponding PO parity data is stored in the PO parity buffer,
the PO parity data is read out row-by-row and stored in the
DRAM.

0038 FIGS. 13-15 are block diagrams of error correction
code generators in accordance with Some embodiments of the
present invention. Differing from the error correction code
generator 40 of FIG. 4, the error correction code generator 60
shown in FIG. 13 contains a DRAM 62 for supplying source
data to the data buffer 44. Alternatively, as shown in the error
correction code generator 70 of FIG. 14, a host 72 can also be
used to supply the source data to the DRAM 62. The DRAM
62 stores the source data for the data buffer 44 to read for
encoding the PO parity data. However, instead of the host 72
supplying the source data to the DRAM 62 and the DRAM 62
supplying the source data to the data buffer 44, the host 72 can
also supply the source data to the data buffer 44 directly, as
shown in the error correction code generator 80 of FIG. 15. A
copy of the source data can also be stored in the DRAM 62 for
use in encoding PI codes later. Since the encoding process
performed by the PO encoder 46 is usually faster than the
transmission speed of the host 72, the host 72 can supply the
source data to the data buffer 44 directly without the problem
of buffer overflow.

US 2008/02091. 19 A1

0039 FIG.16(a) is a block diagram of an error correction
code generator 100 in accordance with another embodiment
of the present invention. Source data belonging to the same
16-word column have been used to encode the corresponding
PO parity data. As shown in FIG. 1, 12 iterations of this
process would be required to encode the corresponding PO
parity data if 16 rows of the 192 rows of source data are
encoded at a time. The PO parity data that have been encoded
are then stored in the DRAM for use in calculating the PI
codes. An example of the recursive PO encoding calculation
is that the size of a group of source data is 16 wordsx16 rows,
and the calculation can be described by the following recur
sive remainder polynomial R’,(X) for each column j with
j=0-171, in which G(x) is the PO generation polynomial:

5 5 Equation (2)

R;(x) X. Ras- R;(x) -- X. B16, -ija'

16kk+15

x'modC(x) - X. it "macao i=0

5

(). (R' + Bugti,a "moto i=0

where R.'(x) = 0 and R'(x)
9.

S. By 19- k"mucts = R (x)

0040 FIG.16(b) is the same as FIG.16(a) while labeling
the related symbols of Equation (2) to show how Equation (2)
is realized in the block diagram of FIG. 16(a). By using the
error correction code generator 100 implementing the recur
sive PO encoding process, two small buffers can be used. In
this example, both the data buffer 104 and the parity buffer
108 only require a size of 256 words (512 bytes), which
greatly reduces the amount of SRAM needed for the buffers.
In addition, the partial PO parity data can be read out of the
parity buffer 108 at the same time as The error correction code
generator 100 uses recursive PO encoding calculation to
reduce the size of buffers needed to calculate the PO parity
data. A DRAM 102 supplies source data to a data buffer 104.
The data buffer 104 can have a relative small size such as 16
wordsx 16 rows in comparison with the memory size of the
DRAM 102. After a first group of source data is stored in the
data buffer 104, the data buffer 104 outputs the source data to
a PO encoder 106, where the first group of source data is the
first 16 rows of a 16-word column. Note that the source data
is divided into groups having 16 words and 16 rows in this
embodiment; however, various group sizes may be used to
generate the PO parity data by such recursive PO encoding
calculation. The PO encoder 106 generates partial PO parity
databased of the first group and stores in a parity buffer 108.
Meanwhile, the data buffer 104 reads in a second group of
source data, which in this embodiment, is the next 16 rows of
the 16-word column. The second group of Source data is
output from the data buffer 104 to a summing circuit 105 and
the partial PO parity data stored in the parity buffer 108 is
simultaneously output to the summing circuit 105. The
summed result is sent to the PO encoder 106, where the PO
encoder 106 generates updated partial PO parity data to be
stored in the parity buffer 108. Meanwhile, a third group of
source data is stored in the data buffer 104. The summing

Aug. 28, 2008

circuit 105 sums the third group of source data with the
updated partial PO parity data stored in the parity buffer 108
and sends the result to the PO encoder 106 for generating the
new updated partial PO parity data. This recursive PO encod
ing operation continues until all groups of the source data is
read out of the data buffer 104, so no extra time is needed to
wait for the partial PO parity data to be read. Since the data
buffer 104 stores many words from the same row of the source
data at a time, these adjacent words can be read with the
advantage of page-mode data access. In addition, when the
encoded PO data is written back to the DRAM 102, page
mode data access can be utilized for writing adjacent PO data
words in the same row of memory. In addition, instead of
Summing up the partial PO parity data and source data to be
encoded concurrently, it can reload the partial PO parity data
to the PO encoder 106 before encoding the next group of
Source data.

0041. Please refer to FIG. 2 along with FIG. 16. Reading
one group of 32 columns of source data (corresponding to 16
words of Source data) requires 147 times of row-crossing
access and (192x16-147) times of non-row-crossing access.
From the above DRAM specification showing the number of
clock cycles needed to read data, the required number of
cycles required for reading one group of 32 columns of source
data is 147x5+(192x16-147)=3660 cycles. Since a whole
ECC block has (172/32) groups of 32 PO columns, the total
required cycles are (172/32)x3660–19,672 cycles, which is
only 14.7% of the 134,160 cycles required in the error cor
rection code generator 30 shown in FIG. 3. In addition, the
ratio of page-mode data access to total data access is (192x
16-147)/(192x16)=95%, which is a significant improvement
over that of the error correction code generator 30 shown in
FIG. 3. Therefore, executing the PO parity data encoding
process recursively enables smaller buffers to be used, and
accessing more than 1 word Such as 16 words in the same row
of the Source data at a time enables more frequently utilizing
page-mode access to significantly reduce the overall DRAM
access time.

0042 FIG. 17 illustrates a block diagram of an error cor
rection code generator 110 in accordance with another
embodiment of the present invention. The error correction
code generator 110 is a variation of the error correction code
generator 100 shown in FIG. 16, and utilizes two data buffers
114, 116 and two parity buffers 122, 124 for allowing data to
be written to the buffers and read from the buffers simulta
neously, thereby further increasing the PO encoding process
ing speed. A first de-multiplexer 112 is used for directing
source data from the DRAM 102 to either a first data buffer
114 or a second data buffer 116, in turns. A first multiplexer
118 reads the source data stored in the appropriate data buffer
114, 116 and feeds it to the summing circuit 105, where the
source data is combined with partial PO parity data and then
send to the PO encoder 106. A second de-multiplexer 120
sends the partial PO parity data to either a first parity buffer
122 or a second parity buffer 124 for storage. When encoding
another group of source data, a second multiplexer 126 reads
out partial PO parity data stored in one of the parity buffers
122, 124 and sends it to the summing circuit 105.
0043. Like the error correction code generator 100 of FIG.
16, the error correction code generator 110 uses a recursive
algorithm for calculating encoded PO parity data. Once the
PO parity data has been fully encoded, the encoded PO parity
data is output from the second parity buffer 124 to the DRAM
102. The first de-multiplexer 112 and the second de-multi

US 2008/02091. 19 A1

plexer 120 as well as the first multiplexer 118 and the second
multiplexer 126 are setup with opposite logic configurations.
A buffer select signal BUF SEL is used to activate one of the
first de-multiplexer 112 and the second de-multiplexer 120 at
a time and to activate one of the first multiplexer 118 and the
second multiplexer 126. Because the recursive calculating of
the encoded PO parity data can make use of smaller buffers,
the error correction code generator 110 takes advantage of
this fact to use four buffers instead of two. Each of the four
buffers 114, 116, 122, 124 can store 16 wordsx16 rows of
data. To make the speed of PO encoding as fast as possible,
source data can now be written to the first data buffer 114
while source data is being read from the second data buffer
116, and vice versa.
0044 FIG. 18 is a timing diagram showing steps executed
during the operation of the error correction code generator
110 shown in FIG. 17. The timing diagram illustrates the 12
stages needed to fully encode one set of PO parity data, with
the variable kindicating the stage number. In stage k=0, a first
group of buffer data B',(x) is stored in the first data buffer 114
in step 140. Then the first group of buffer data B',(x) is read
out from the first data buffer 114 in step 142 while a second
group of buffer data B' (x) is stored in the second data buffer
116 in step 144. The first group of buffer data B',(x) is
encoded by the PO encoder 106, and in step 146 is stored in
the first parity buffer 122 as a first group of partial PO parity
data R",(x).
0045. In stage k=1, a third group of buffer data B',(x) is
stored in the first data buffer 114 in stage 150. Simulta
neously, the second group of buffer data B' (x) is read out
from the second data buffer 116 for encoding in step 154 and
the first group of partial PO parity data R",(x) is read out from
the first parity buffer 122 for encoding in step 152. A second
group of partial PO parity data R'(x) is produced by the PO
encoder 106, and is stored in the second parity buffer 124 in
step 156.
I0046) In stage k=2, a fourth group of buffer data B,0x) is
stored in the second data buffer 116 in stage 162. Simulta
neously, the third group of buffer data B(x) is read out from
the first data buffer 114 for encoding in step 160 and the
second group of partial PO parity data R' (x) is read out from
the second parity buffer 124 for encoding in step 164. A third
group of partial PO parity data R,(x) is produced by the PO
encoder 106, and is stored in the first parity buffer 122 in step
166.

0047 Finally, in stage k=11, a twelfth group of buffer data
Bll (x) is read out from the second data buffer 116 for encod
ing in step 172 and an eleventh group of partial PO parity data
R'(x) is read out from the first parity buffer 122 for encoding
in step 170. A twelfth group of partial PO parity data R',(x)
is produced by the PO encoder 106, and is stored in the second
parity buffer 124 in step 174. Since the twelfth group of
partial PO parity data R',(x) represents the encoded PO
parity data, the PO parity data is read out of the second parity
buffer 124 and stored in the DRAM 102 in step 176. The
above process illustrates how one group of 16 wordsx 16 rows
of encoded PO parity data is calculated. Additional groups of
PO parity data are also calculated in the same way.
0048 FIG. 19 illustrates a block diagram of an error cor
rection code generator 180 in accordance with another
embodiment of the present invention. Differing from the error
correction code generator 100 shown in FIG. 16, the error
correction code generator 180 also contains an address mode
switching circuit 182 for controlling the way that the source

Aug. 28, 2008

data is stored in and read from the data buffer 104. The error
correction code generator 180 combines the ideas of the
recursive calculation algorithm used in the error correction
code generator 100 of FIG.16 and the alternating row-by-row
and column-by-column memory accessed used in the error
correction code generator 40 of FIG. 4. The combination of
both of these strategies allows the PO parity data to be
encoded even more efficiently.
0049 FIG. 20 is a block diagram of an error correction
code generator 190 in accordance with another embodiment
of the present invention. Differing from the error correction
code generator 100 shown in FIG. 16, the error correction
code generator 190 utilizes a host 192 to supply source data to
the DRAM 102. The DRAM 102 Stores the Source data for the
data buffer 104 to read for encoding the PO parity data.
0050. However, instead of the host 192 supplying the
source data to the DRAM 102 and the DRAM 102 supplying
the source data to the data buffer 104, the host 192 can also
supply the source data to the data buffer 104 directly, as
shown in the error correction code generator 200 of FIG. 21.
A copy of the source data can also be stored in the DRAM 102
for use in encoding PI codes later. Since the encoding process
performed by the PO encoder 106 is usually faster than the
transmission speed of the host 192, the host 192 can supply
the source data to the data buffer 104 directly without the
problem of buffer overflow.
0051. In summary, the present invention provides various
circuits and methods for calculating error correction codes
using a smaller memory buffer, by controlling the memory
accesses to take advantage of the more efficient page-mode
data access, or by simultaneously reading source data from a
data buffer and writing source data to the data buffer.
0.052 Certain terms are used throughout the following
description and claims to refer to particular system compo
nents. As one skilled in the art will appreciate, consumer
electronic equipment manufacturers may refer to a compo
nent by different names. This document does not intend to
distinguish between components that differ in name but not
function. In the following discussion and in the claims, the
terms “including and “comprising are used in an open
ended fashion, and thus should be interpreted to mean
“including, but not limited to...”. Also, the term “couple' or
“couples’ is intended to mean either an indirect or direct
electrical connection. Thus, if a first device couples to a
second device, that connection may be through a direct elec
trical connection, or through an indirect electrical connection
via other devices and connections.
Those skilled in the art will readily observe that numerous
modifications and alterations of the device and method may
be made while retaining the teachings of the invention.
Accordingly, the above disclosure should be construed as
limited only by the metes and bounds of the appended claims.
What is claimed is:
1. A system for encoding a data block to generate corre

sponding error correction codes, wherein the data block
includes a plurality of rows and columns for generating error
correction code (ECC) parity data, the system comprising:

a buffer for sequentially storing a first section and a second
section of the data block;

an encoder reading the first section from the buffer for
encoding the first section, reading the second section
from the buffer for encoding the second section, and
generating the ECC parity data by encoding sections of
the data block; and

US 2008/02091. 19 A1

an address mode Switching circuit for controlling the first
section to be stored in the buffer according to a first
accessing strategy, controlling the second section to be
stored in the buffer according to a second accessing
strategy, wherein the first and second accessing strate
gies are different from one another.

2. The system of claim 1, wherein the buffer is a static
random access memory (SRAM).

3. The system of claim 1, wherein the ECC parity data are
parity outer (PO) codes of Reed-Solomon product codes
(RSPCs).

4. The system of claim 1, wherein Successive sections of
the data block are stored in the buffer in an alternating manner
by toggling the first and second accessing strategies.

5. The system of claim 1, wherein the second section of the
data block is stored in the buffer while the first section of the
data block is being read from the buffer by the encoder.

6. The system of claim 1, further comprising a dynamic
random access memory (DRAM) for storing the data block,
wherein the buffer accesses the data block from the DRAM.

7. The system of claim 1, further comprising:
a DRAM; and
a host writing the data block in a data row direction in the
DRAM, wherein the buffer reads sections of the data
block from the DRAM.

8. The system of claim 1, further comprising:
a DRAM; and
a host simultaneously writing the data block in a data row

direction in both the DRAM and the buffer.
9. The system of claim 1, further comprising:
a parity buffer, for storing partial parity data;
wherein the encoder encodes the first section to generate

partial parity data, stores partial parity data in the parity
buffer, encodes the second section and the partial parity
data to generate new partial parity data, and stores the
new partial parity data in the parity buffer.

10. A method for encoding a data block to generate corre
sponding error correction codes, wherein the data block
includes a plurality of rows and columns for generating error
correction code (ECC) parity data, the method comprising:

sequentially storing a first section and a second section of
the data block in a buffer according to a first accessing
strategy and a second accessing strategy, respectively;
and

encoding the first section read from the buffer, and encod
ing the second section read from the buffer,

wherein the first and second accessing strategies are dif
ferent from one another.

11. The method of claim 10, wherein the buffer is a static
random access memory (SRAM).

12. The method of claim 10, wherein the ECC parity data
are parity outer (PO) codes of Reed-Solomon product codes
(RSPCs).

13. The method of claim 10, wherein successive sections of
the data block are stored in the buffer in an alternating manner
by toggling the first and second accessing strategies.

14. The method of claim 10, wherein the second section of
the data block is stored in the buffer while the first section of
the data block is being read from the buffer for encoding.

15. The method of claim 10, further comprising storing the
data block in a dynamic random access memory (DRAM),
wherein the buffer accesses the data block from the DRAM.

Aug. 28, 2008

16. The method of claim 10, further comprising storing the
data block read from a host in a data row direction in a
DRAM, wherein the buffer reads sections of the data block
from the DRAM.

17. The method of claim 10, further comprising storing the
data block read from a hostina data row direction in a DRAM
and in the buffer simultaneously.

18. A method for encoding a data block to generate corre
sponding error correction codes, wherein the data block
includes a plurality of rows and columns for generating error
correction code (ECC) parity data, the method comprising:

sequentially storing a first section and a second section of
the data block in a first buffer, wherein each of the first
and second sections is composed of X data rows and Y
data columns of the data block, where Y is an integer
greater than or equal to 2 and X is an integer greater than
or equal to 1, wherein first section is stored in the first
buffer according to a first accessing strategy, and the
second section is stored in the first buffer according to a
second accessing strategy, the first and second accessing
strategies being different from one another and being
Selected from a group consisting of row-by-row access
and column-by-column access;

encoding the first section read from the first buffer togen
erate partial-parity data;

storing the partial-parity data in a second buffer;
encoding the second section read from the first buffer and

the partial-parity data read from the second buffer to
generate new partial-parity data; and

storing the new partial-parity data in the second buffer.
19. The method of claim 18, wherein the ECC parity col

umns are parity outer (PO) codes of Reed-Solomon product
codes (RSPCs).

20. The method of claim 18, wherein each of the un
encoded sections of the Y data columns of the data block
stored in the first buffer is accessed and encoded together with
the partial-parity data of previous encoded sections read from
the second buffer to generate new partial-parity data, and the
new partial-parity data are stored in the second buffer for
encoding the Subsequent un-encoded section.

21. The method of claim 20, wherein the second buffer
outputs the new partial-parity data as the ECC parity data
corresponding to the Y data columns when all sections of the
Y data columns have been encoded.

22. The method of claim 20, wherein the new partial-parity
data is stored in the second buffer to update and overwrite the
partial-parity data of previous encoded sections stored in the
second buffer.

23. The method of claim 18, wherein successive sections of
the data block are stored in the first buffer in an alternating
manner by toggling the first and second accessing strategies.

24. The method of claim 18, wherein the first section is read
from the first buffer for encoding according to the second
accessing strategy and the second section is read from the first
buffer for encoding according to the first accessing strategy.

25. The method of claim 24, wherein the second section of
the data block is stored in the first buffer while the first section
of the data block is being read from the first buffer for encod
1ng.

26. The method of claim 18, further comprising storing the
data block read from a host in a data row direction in a
DRAM, wherein the first buffer reads sections of the data
block from the DRAM.

US 2008/02091. 19 A1

27. The method of claim 18, further comprising storing the
data block read from a hostina data row direction in a DRAM
and in the first buffer simultaneously.

28. The method of claim 18, further comprising:
storing the first section of the Y data columns of the data

block in a first memory of the first buffer;
storing the second section of the Y data columns of the data

block in a second memory of the first buffer; and
controlling access to the first and second memories such

that the first section is read from the first memory for
encoding while the second memory receives and stores
the second section.

29. A system for encoding a data block to generate corre
sponding error correction codes, wherein the data block
includes a plurality of rows and columns for generating error
correction code (ECC) parity data, the system comprising:

a parity buffer for storing partial-parity data;
an encoder for encoding a first section of the data block to

generate the partial-parity data, storing the partial-parity

Aug. 28, 2008

data in the parity buffer, and encoding a second section
of the data block and the partial-parity data read from the
parity buffer to generate new partial-parity data; and

an address mode Switching circuit for controlling the par
tial-parity data to be alternatively stored according to a
first accessing strategy and a second accessing strategy,
wherein the first and second accessing strategies are
different from one another and are selected from a group
consisting of row-by-row access and column-by-col
umn acceSS,

wherein each of the first and second sections is composed
of X data rows and Y data columns of the data block,
where Y is an integer greater than or equal to 2 and X is
an integer greater than or equal to 1.

30. The system of claim 29, wherein the ECC parity col
umns are parity outer (PO) codes of Reed-Solomon product
codes (RSPCs).

