wo 2017/168216 A1 || I} NN TP O 0O AR A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

S October 2017 (05.10.2017)

(10) International Publication Number

WO 2017/168216 Al

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
HO4L 12/751 (2013.01) HO4L 12/741 (2013.01)
HO4L 12/715 (2013.01)

International Application Number:
PCT/IB2016/053149

International Filing Date:
27 May 2016 (27.05.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/314,284 28 March 2016 (28.03.2016) US
62/314,293 28 March 2016 (28.03.2016) US

Applicant: TELEFONAKTIEBOLAGET LM ERIC-
SSON (PUBL) [SE/SE]; SE-164 83 Stockholm (SE).

Inventors: AMMIREDDY, Amarnath; 3279 Woodmere
Dr., San Jose, California 95136 (US). CHUNDURI, Uma
S.; 41055 Corriea Ct., Fremont, California 94539 (US).
PATIL, Vasant S.; 6155 Snell Ave, San Jose, California
95123 (US).

(8D

(84)

(74) Agent: DE VOS, Daniel M.; Nicholson De Vos Webster

& Elliott LLP, 217 High Street, Palo Alto, California
94301 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: EFFICIENT METHOD TO AGGREGATE CHANGES AND TO PRODUCE BORDER GATEWAY PROTOCOL
LINK-STATE (BGP-LS) CONTENT FROM INTERMEDIATE SYSTEM TO INTERMEDIATE SYSTEM (IS-IS) LINK-STATE
DATABASE

SDN Controller
(Peer BGP Speaker) 130

‘Network 150

ND (BGP Speaker) 100A

Link-State Module
110

(57) Abstract: A method is implemented by a network
device functioning as a Border Gateway Protocol (BGP)
speaker to transmit aggregated link-state information pertain-
ing to a network in which the network device operates to a
peer BGP speaker. The method includes storing, in a link-
state database, node entries representing nodes in the net-
work, fragment entries representing fragments received from
nodes in the network, and link/prefix entries representing
links/prefixes in the network. Each link/prefix entry is as-
signed a state from a possible set of states, where the possible
set of states include a new entry state, a modified entry state,
a deleted entry state, and an unmodified entry state. The
method further includes determining link-state information to
transmit to the peer BGP speaker based on a state assigned to
a link/prefix entry, and transmitting the determined link-state
information to the peer BGP speaker.

WO 2017/168216 A1 AT 00T A0 A O

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW, KM, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

WO 2017/168216 PCT/IB2016/053149

EFFICIENT METHOD TO AGGREGATE CHANGES AND TO PRODUCE BORDER
GATEWAY PROTOCOL LINK-STATE (BGP-LS) CONTENT FROM
INTERMEDIATE SYSTEM TO INTERMEDIATE SYSTEM (IS-1IS) LINK-STATE
DATABASE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 62/314,284,
filed March 28, 2016, and U.S. Provisional Application No. 62/314,293, filed March 28, 2016,

which are hereby incorporated by reference.

TECHNICAL FIELD

[0002] Embodiments of the invention relate to the field of computer networks; and more
specifically, to maintaining link-state information in a link-state database to efficiently provide

aggregated link-state information via Border Gateway Protocol Link-State (BGP-LS).

BACKGROUND

[0003] Border Gateway Protocol (BGP) is a protocol for exchanging routing and reachability
information between autonomous systems (ASes). An AS is a set of routers under a single
technical administration. An AS typically employs an interior gateway protocol (IGP) to
exchange network topology information among routers within the AS. Examples of IGPs
include link-state routing protocols such as Intermediate System to Intermediate System (IS-IS)
and Open Shortest Path First (OSPF).

[0004] Border Gateway Protocol Link-State (BGP-LS) uses BGP as a carrier for network
topology and reachability information collected by an IGP. BGP-LS allows a BGP speaker to
share network topology and reachability information collected by the BGP speaker (e.g., link-
state information collected using IS-IS or OSPF) with a peer BGP speaker (e.g., another BGP
speaker located in another AS) via BGP. For this purpose, BGP-LS defines a link-state network
layer reachability information (NLRI) encoding format that is used to provide network topology
and reachability information to external components. Each link-state NLRI may describe either
a node, a link, or a prefix.

[0005] Support for BGP-LS adds non-trivial overhead to IGP operation in terms of processing
and identifying changes in the link-state database. This is made worse in situations where the
IGP continuously receives updated link-state information, for example, due to frequently

changing traffic engineering (TE) data. The continuous updates may cause the IGP to relay

1

WO 2017/168216 PCT/IB2016/053149
excessive amounts of link-state information to the peer BGP speaker, which can lead to further

churn and potentially impact the entire network.

SUMMARY

[0006] A method is implemented by a network device functioning as a Border Gateway
Protocol (BGP) speaker to transmit aggregated link-state information pertaining to a network in
which the network device operates to a peer BGP speaker. The method includes storing, in a
link-state database, node entries representing nodes in the network, fragment entries representing
fragments received from nodes in the network, and link/prefix entries representing links/prefixes
in the network. Each node entry is associated with a set of fragment entries and each fragment
entry is associated with a set of link/prefix entries. Each fragment entry and link/prefix entry is
assigned a version number and each link/prefix entry is assigned a state from a possible set of
states, where the possible set of states include a new entry state, a modified entry state, a deleted
entry state, and an unmodified entry state. The method further includes determining link-state
information to transmit to the peer BGP speaker based on a state assigned to a link/prefix entry
and transmitting the determined link-state information to the peer BGP speaker.

[0007] A network device is configured to function as a Border Gateway Protocol (BGP). The
network device is to transmit aggregated link-state information pertaining to a network in which
the network device operates to a peer BGP speaker. The network device includes a link-state
database to store link-state information pertaining to a network in which the network device
operates. The network device further includes a set of one or more processors and a non-
transitory machine-readable storage medium having stored therein a link-state module. The
link-state module, when executed by the set of one or more processors, causes the network
device to store, in a link-state database, node entries representing nodes in the network, fragment
entries representing {ragments received from nodes in the network, and link/prefix entries
representing links/prefixes in the network, where each node entry is associated with a set of
fragment entries and each fragment entry is associated with a set of link/prefix entries, and
where each fragment entry and link/prefix entry is assigned a version number and each
link/prefix entry is assigned a state from a possible set of states, where the possible set of states
include a new entry state, a modified entry state, a deleted entry state, and an unmodified entry
state. The link-state module, when executed by the set of one or more processors, further causes
the network device to determine link-state information to transmit to the peer BGP speaker
based on a state assigned to a link/prefix entry and transmit the determined link-state

information to the peer BGP speaker.

WO 2017/168216 PCT/IB2016/053149
[0008] A non-transitory machine-readable storage medium has computer code stored therein

that is to be executed by a set of one or more processors of a network device functioning as a
Border Gateway Protocol (BGP) speaker. The computer code, when executed by the network
device, causes the network device to perform operations for transmitting aggregated link-state
information pertaining to a network in which the network device operates to a peer BGP
speaker. The operations include storing, in a link-state database, node entries representing nodes
in the network, fragment entries representing fragments received from nodes in the network, and
link/prefix entries representing links/prefixes in the network. Each node entry is associated with
a set of fragment entries and each fragment entry is associated with a set of link/prefix entries.
Each fragment entry and link/prefix entry is assigned a version number and each link/prefix
entry is assigned a state from a possible set of states, where the possible set of states include a
new entry state, a modified entry state, a deleted entry state, and an unmodified entry state. The
operations further include determining link-state information to transmit to the peer BGP
speaker based on a state assigned to a link/prefix entry and transmitting the determined link-state

information to the peer BGP speaker.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The invention may best be understood by referring to the following description and
accompanying drawings that are used to illustrate embodiments of the invention. In the
drawings:

[0010] Fig. 1is a diagram illustrating a system in which aggregated link-state information can
be maintained and provided, according to some embodiments.

[0011] Fig. 2A is a diagram illustrating an exemplary network, according to some
embodiments.

[0012] Fig. 2B is a diagram illustrating a graphical representation of the link-state information
pertaining to the exemplary network as stored in a link-state database, according to some
embodiments.

[0013] Fig. 3A is a diagram illustrating a graphical representation of link-state information
stored in a link-state database after processing a fragment for the first time, according to some
embodiments.

[0014] Fig. 3B is a diagram illustrating a graphical representation of link-state information
stored in a link-state database after processing a further fragment, according to some
embodiments.

[0015] Fig. 4A is a diagram illustrating a graphical representation of link-state information

stored in a link-state database at time t1, according to some embodiments.

WO 2017/168216 PCT/IB2016/053149
[0016] Fig. 4B is a diagram illustrating a graphical representation of link-state information

stored in a link-state database at time t2, according to some embodiments.

[0017] Fig. 5A is a diagram illustrating a graphical representation of link-state information and
a global prefix data structure stored in a link-state database at time t1, according to some
embodiments.

[0018] Fig. 5B is a diagram illustrating a representation of link-state information and a global
prefix data structure stored in a link-state database at time t2, according to some embodiments.
[0019] Fig. 61s a flow diagram of a process for transmitting aggregated link-state information
updates to a peer BGP speaker, according to some embodiments.

[0020] Fig. 7 is a flow diagram of a process for maintaining link-state information in a link-
state database, according to some embodiments.

[0021] Fig. 8A illustrates connectivity between network devices (NDs) within an exemplary
network, as well as three exemplary implementations of the NDs, according to some
embodiments.

[0022] Fig. 8B illustrates an exemplary way to implement a special-purpose network device,
according to some embodiments.

[0023] Fig. 8C illustrates various exemplary ways in which virtual network elements (VNEs)
may be coupled, according to some embodiments.

[0024] Fig. 8D illustrates a network with a single network element (NE) on each of the NDs,
and within this straight forward approach contrasts a traditional distributed approach (commonly
used by traditional routers) with a centralized approach for maintaining reachability and
forwarding information (also called network control), according to some embodiments.

[0025] Fig. 8E illustrates the simple case of where each of the NDs implements a single NE,
but a centralized control plane has abstracted multiple of the NEs in different NDs into (to
represent) a single NE in one of the virtual network(s), according to some embodiments.

[0026] Fig. 8F illustrates a case where multiple VNEs are implemented on different NDs and
are coupled to each other, and where a centralized control plane has abstracted these multiple
VNEs such that they appear as a single VNE within one of the virtual networks, according to
some embodiments.

[0027] Fig. 9 illustrates a general purpose control plane device with centralized control plane

(CCP) software, according to some embodiments.

DETAILED DESCRIPTION

[0028] The following description describes methods and apparatus for maintaining link-state

information in a link-state database in a way that allows for efficiently providing aggregated

WO 2017/168216 PCT/IB2016/053149
link-sate information via Border Gateway Protocol Link-State (BGP-LS). In the following

description, numerous specific details such as logic implementations, opcodes, means to specify
operands, resource partitioning/sharing/duplication implementations, types and
interrelationships of system components, and logic partitioning/integration choices are set forth
in order to provide a more thorough understanding of the present invention. It will be
appreciated, however, by one skilled in the art that the invention may be practiced without such
specific details. In other instances, control structures, gate level circuits and full software
instruction sequences have not been shown in detail in order not to obscure the invention. Those
of ordinary skill in the art, with the included descriptions, will be able to implement appropriate

functionality without undue experimentation.

EEINT3 b3

[0029] References in the specification to “one embodiment,” “an embodiment,” “an example
embodiment,” etc., indicate that the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the
same embodiment. Further, when a particular feature, structure, or characteristic is described in
connection with an embodiment, it is submitted that it is within the knowledge of one skilled in
the art to affect such feature, structure, or characteristic in connection with other embodiments
whether or not explicitly described.

[0030] Bracketed text and blocks with dashed borders (e.g., large dashes, small dashes, dot-
dash, and dots) may be used herein to illustrate optional operations that add additional features
to embodiments of the invention. However, such notation should not be taken to mean that these
are the only options or optional operations, and/or that blocks with solid borders are not optional
in certain embodiments of the invention.

[0031] In the following description and claims, the terms “coupled” and “connected,” along
with their derivatives, may be used. It should be understood that these terms are not intended as
synonyms for each other. “Coupled” is used to indicate that two or more elements, which may
or may not be in direct physical or electrical contact with each other, co-operate or interact with
each other. “Connected” is used to indicate the establishment of communication between two or
more elements that are coupled with each other.

[0032] An electronic device stores and transmits (internally and/or with other electronic
devices over a network) code (which is composed of software instructions and which is
sometimes referred to as computer program code or a computer program) and/or data using
machine-readable media (also called computer-readable media), such as machine-readable

storage media (e.g., magnetic disks, optical disks, read only memory (ROM), flash memory

devices, phase change memory) and machine-readable transmission media (also called a carrier)

WO 2017/168216 PCT/IB2016/053149
(e.g., electrical, optical, radio, acoustical or other form of propagated signals — such as carrier

waves, infrared signals). Thus, an electronic device (e.g., a computer) includes hardware and
software, such as a set of one or more processors coupled to one or more machine-readable
storage media to store code for execution on the set of processors and/or to store data. For
instance, an electronic device may include non-volatile memory containing the code since the
non-volatile memory can persist code/data even when the electronic device is turned off (when
power is removed), and while the electronic device is turned on that part of the code that is to be
executed by the processor(s) of that electronic device is typically copied from the slower non-
volatile memory into volatile memory (e.g., dynamic random access memory (DRAM), static
random access memory (SRAM)) of that electronic device. Typical electronic devices also
include a set or one or more physical network interface(s) to establish network connections (to
transmit and/or receive code and/or data using propagating signals) with other electronic
devices. One or more parts of an embodiment of the invention may be implemented using
different combinations of software, firmware, and/or hardware.

[0033] A network device (ND) is an electronic device that communicatively interconnects
other electronic devices on the network (e.g., other network devices, end-user devices). Some
network devices are “multiple services network devices” that provide support for multiple
networking functions (e.g., routing, bridging, switching, Layer 2 aggregation, session border
control, Quality of Service, and/or subscriber management), and/or provide support for multiple
application services (e.g., data, voice, and video).

[0034] BGP-LS is a protocol that allows a Border Gateway Protocol (BGP) speaker to provide
link-state information collected by the BGP speaker to a peer BGP speaker. The BGP speaker
may execute a link-state module (e.g., Intermediate System to Intermediate System (IS-IS)
daemon) to collect link-state information pertaining to a network in which the BGP speaker
operates. The link-state module may collect link-state information by executing IS-1S protocol
within the network or through other means. The link-state module may store the collected link-
state information in a link-state database (e.g., an IS-IS link-state database). Any time the link-
state information in the link-state database changes (e.g., due to updates received via IS-IS), the
link-state module may provide updated link-state information reflecting those changes to a BGP
module executed by the BGP speaker. The BGP speaker may execute the BGP module (e.g.,
BGP daemon) to initiate transmission of the updated link-state information provided by the link-
state module to the peer BGP speaker via BGP-LS. This serves to keep the peer BGP speaker
up-to-date with the latest changes to the network topology and reachability information.
However, in situations where the network topology or reachability fluctuates rapidly (e.g., due to

a flapping link), the link-state module may end up having to provide an overwhelming number

WO 2017/168216 PCT/IB2016/053149
of updates to the BGP module in a short amount of time. In these situations, the BGP module or

the peer BGP speaker may not be able to process the updates fast enough (e.g., if they are busy
performing other tasks). Due to the time-sensitive nature of network changes, providing updates
regarding all of the transient changes that occur while the BGP module or peer BGP speaker was
busy may not be that relevant or useful for the peer BGP speaker, especially if those updates
arrive at the peer BGP speaker after excessive delay.

[0035] Embodiments described herein overcome the disadvantages of existing techniques by
maintaining link-state information in a link-state database in a way that allows for efficiently
aggregating changes to the link-state information. According to some embodiments, a network
device functioning as a BGP speaker stores entries representing nodes, fragments, links, and
prefixes in a link-state database. Each node entry is associated with a set of fragment entries and
each fragment entry is associated with a set of link/prefix entries. Each fragment entry and
link/prefix entry is assigned a version number and each link/prefix entry is assigned a state from
a possible set of states. The possible set of states include a new entry state, a modified entry
state, a deleted entry state, and an unmodified entry state. According to some embodiments, the
network device receives link-state information from other nodes in the network and updates the
content of the entries, the version numbers assigned to the entries, and the states assigned to the
entries based on the link-state information received from other nodes in the network. The
network device determines link-state information to transmit to a peer BGP speaker based on a
state assigned to an entry in the link-state database. For example, the network device may
determine that link-state information for a link/prefix should be transmitted to the peer BGP
speaker if the link/prefix entry representing that link/prefix is assigned the new entry state or the
modified entry state. As a further example, the network device may determine that link-state
information for deletion of a link/prefix should be transmitted to the peer BGP speaker if the
link/prefix entry representing that link/prefix is assigned the deleted entry state. As a further
example, the network device may determine that link-state information for a link/prefix should
not be transmitted to the peer BGP speaker if the link/prefix entry representing that link/prefix is
assigned the unmodified entry state. The network device then transmits the link-state
information to the peer BGP speaker (e.g., via BGP-LS). Storing and maintaining link-state
information in the link-state database in this way allows the network device to efficiently
provide aggregated link-state information (e.g., that reflects the most recent state of the link-
state information stored in the link-state database) to a slow consumer (e.g., the peer BGP
speaker). Other embodiments are also described and claimed.

[0036] Fig. 1is a diagram illustrating a system in which aggregated link-state information can

be maintained and provided, according to some embodiments. The system includes a

WO 2017/168216 PCT/IB2016/053149
network 150 and a Software Defined Networking (SDN) controller 130 communicatively

coupled to a network device 100A in the network 150. The network 150 includes network
devices 100A-G that are communicatively coupled over one or more links. In one embodiment,
the network devices 100 are routers. The network devices 100 in network 150 may execute IS-
IS protocol to exchange network topology and reachability information with each other.

[0037] Network device 100A is communicatively coupled to the SDN controller 130 and
includes a link-state module 110 and a BGP module 120. The link-state module 110 is operable
to collect and store network topology and reachability information pertaining to the network 150
in a link-state database (LSDB) 115 (e.g., an IS-IS link-state database). The link-state

module 110 may collect network topology and reachability information (including traffic
engineering (TE) information) pertaining to the network 150 by executing an IS-IS protocol
within the network 150 or through other means (e.g., through static configurations or through a
Resource Reservation Protocol (RSVP)). The network topology and reachability information
pertaining to the network 150 may be referred to herein as link-state information of the

network 150. The link-state information may include information regarding nodes, links, and/or
prefixes, or any combination thereof. The link-state information stored in the link-state
database 115 may be updated as the network topology and/or reachability of the network
changes. The link-state module 110 is operable to communicate with the BGP module 120. In
one embodiment, the link-state module 110 may communicate with the BGP module 120 using
an inter-process communication (IPC) technique. The BGP module 120 is operable to allow the
network device 100A to communicate with a peer BGP speaker (e.g., the SDN controller 130)
via BGP and/or BGP-LS.

[0038] The link-state module 110 is operable to provide updated link-state information
pertaining to the network 150 to the BGP module 120. The updated link-state information may
indicate, for example, that an attribute of a particular link in the network 150 has changed or that
a particular link has been added/removed in the network 150. The BGP module 120 is operable
to initiate transmission of the updated link-state information provided by the link-state

module 110 to the SDN controller 130 via BGP-LS or similar protocol. In this way the BGP
module 120 is operable to relay the updated link-state information provided by the link-state
module 110 to a peer BGP speaker (e.g., the SDN controller 130) via BGP-LS or similar
protocol. For this purpose, the network device 100A may be regarded as the BGP speaker and
the SDN controller 130 may be regarded as a peer BGP speaker of network device 100A. In one
embodiment, the network device 100A functions as a BGP route reflector for the network 150.
[0039] In one embodiment, the link-state module 110 stores, in a link-state database 115, node

entries representing nodes in the network 150, fragment entries representing fragments received

WO 2017/168216 PCT/IB2016/053149
from nodes in the network 150, and link/prefix entries representing links/prefixes in the

network 150. Each node entry is associated with a set of fragment entries and each fragment
entry is associated with a set of link/prefix entries. Each fragment entry and link/prefix entry is
assigned a version number and each link/prefix entry is assigned a state from a possible set of
states. The possible set of states include a new entry state, a modified entry state, a deleted entry
state, and an unmodified entry state. According to some embodiments, the network device 100A
receives link-state information from other nodes (e.g., network devices 100B-G) in the

network 150 and the link-state module 110 updates the content of the entries, the version
numbers assigned to the entries, and the states assigned to the entries based on the link-state
information received from other nodes in the network 150. The network device 100A
determines link-state information to transmit to the SDN controller 130 based on a state assigned
to an entry in the link-state database 115. For example, the link-state module 110 may
determine that link-state information for a link/prefix should be transmitted to the SDN
controller 130 if the link/prefix entry representing that link/prefix is assigned the new entry state
or the modified entry state. As a further example, the link-state module 110 may determine that
link-state information for deletion of a link/prefix should be transmitted to the SDN

controller 130 if the link/prefix entry representing that link/prefix is assigned the deleted entry
state. As a further example, the link-state module 110 may determine that link-state information
for a link/prefix should not be transmitted to the SDN controller 130 if the link/prefix entry
representing that link/prefix is assigned the unmodified entry state. The link-state module 110
then provides the determined link-state information to the BGP module 120. The BGP

module 120 may then initiate a BGP-LS transmission of the link-state information to the SDN
controller 130. In this way, the network device 100A is able to provide the SDN controller 130
with updated link-state information pertaining to the network 150 via BGP-LS.

[0040] As will be further evident from the descriptions provided herein, an advantage of the
technique described above is that it allows the link-state module 110 to efficiently aggregate
changes to the link-state information. For example, the link-state module 110 may aggregate
changes to the link-state information while the BGP module 120 or SDN controller 130 is busy.
When the BGP module 120 and/or the SDN controller 130 subsequently becomes available, the
link-state module 110 may provide aggregated link-state information to the BGP module 120
(and in turn, to the SDN controller 130) that reflects the most recent state of the link-state
information stored in the link-state database 115, instead of providing link-state information for
all of the transient changes (which is stale anyways).

[0041] It should be noted that the system described with reference to Fig. 1 is provided by way

of example and not limitation. It should be understood that in other embodiments, the

WO 2017/168216 PCT/IB2016/053149
network 150 can include a different number of network devices 100 and that the network

devices 100 can be connected in a different topology than shown in the diagram. Also, it should
be understood that network device 100A can perform adaptive flow control of link-state
information with a peer BGP speaker other than the SDN controller 130.

[0042] Fig. 2A is a diagram illustrating an exemplary network and Fig. 2B is a diagram
illustrating a graphical representation of the link-state information pertaining to the exemplary
network as stored in a link-state database, according to some embodiments. The exemplary
network includes node R1, node N1, and node N2. Each node may be a network device in the
exemplary network such as a router. Node R1 has 4 links, node N1 has 3 links, and node N3
has 3 links connected thereto. A simple network topology with only 3 nodes is illustrated here
for purpose of clarity and ease of understanding. It should be understood, however, that the
techniques described herein are applicable to networks having a different number of nodes and
different network topologies.

[0043] A link-state database may store link-state information pertaining to the exemplary
network. In one embodiment, the link-state database stores link-state information pertaining to
the exemplary network as represented in the drawing. Nodes, fragments, links, and prefixes are
represented as entries in the link-state database 115. An entry representing a node may be
referred to herein as a node entry. An entry representing a fragment may be referred to herein as
a fragment entry. An entry representing a link may be referred to herein as a link entry. An
entry representing a prefix may be referred to herein as a prefix entry. Link entries and prefix
entries may be referred to herein together as link/prefix entries. As shown in the diagram, the
link-state database 115 includes node entries representing node R1, node N1, and node N2,
respectively. As shown, the node entries are stored as a tree data structure (e.g., a Priority R-
Tree) with the node entry representing node R1 as the root of the tree data structure. Each node
entry is associated with a set of fragment entries. In this example, the node entry representing
node R1 is associated with 3 fragment entries, the node entry representing node N1 is associated
with two fragment entries, and the node entry representing node N2 is associated with 5
fragment entries. In one embodiment, the association between a node entry and a set of
fragment entries can be established with a pointer from the node entry to the set of fragment
entries. Each fragment entry is associated with a set of link entries and/or a set of prefix entries.
For example, as shown, the fragment entry representing fragment O (associated with the node
entry representing node R1) is associated with a set of 4 link entries. The fragment entry
representing fragment O (associated with the node entry representing node N1) is associated with
a set of 3 link entries and a set of 3 prefix entries. The fragment entry representing fragment O

(associated with the node entry representing node N2) is associated with a set of 3 link entries

10

WO 2017/168216 PCT/IB2016/053149
and a set of 3 prefix entries. The other fragment entries may also be associated with a set of link

entries and/or a set of prefix entries, but are not shown here to avoid obfuscating the drawing. In
one embodiment, the association between a fragment entry and a set of link entries or prefix
entries can be established with a pointer from the fragment entry to the respective set of link
entries or prefix entries. In one embodiment, a set of entries (e.g., set of fragment data entries, a
set of link entries, or a set of prefix entries) can be stored in a linked list, a radix trie, or in any
other suitable data structure.

[0044] In one embodiment, each fragment entry and link/prefix entry is assigned a version
number. When a fragment is received from a node in the network for the first time, a new
fragment entry representing the received fragment is created in the link-state database 115. The
new fragment entry is assigned an initial version number (e.g., 0). Also, link/prefix entries
representing the respective links/prefixes advertised in the received fragment are created and
associated with the new fragment entry. Each of these link/prefix entries are assigned the initial
version number. When the same fragment (e.g., having the same fragment ID) is subsequently
received from the node, the fragment entry representing that fragment is assigned an updated
version number (e.g., by incrementing the previous version number). Also, each link/prefix
entry representing a link/prefix advertised in the received fragment is assigned the updated
version number. It should be noted, however, that a version number assigned to a link/prefix
entry representing a link/prefix that is no longer advertised in the received fragment is not
updated.

[0045] In one embodiment, each link/prefix entry is assigned a state from a set of possible
states. In one embodiment, the set of possible states include a new entry state, a modified entry
state, a deleted entry state, and an unmodified entry state. When a new entry is inserted in the
link-state database 115, it is assigned the new entry state. When the content of an existing entry
(e.g., an attribute of a link/prefix/node) that is assigned the unmodified entry state is modified, it
is assigned the modified entry state. If an entry is assigned the new entry state or updated entry
state, any further modifications to the content of the entry are made without assigning a new
state to the entry. If the content of an entry that is assigned the deleted entry state is modified, it
is assigned the modified entry state. Otherwise, if the content of an entry that is assigned the
deleted entry state matches the newly received content, then that entry is assigned the
unmodified entry state. In one embodiment, an entry can be inferred to be assigned the
unmodified entry state if that entry has not been assigned a state.

[0046] In one embodiment, if the version number assigned to a link/prefix entry matches the
version number assigned to a fragment entry associated with that link/prefix entry and the

link/prefix entry is assigned the unmodified entry state, then this indicates that there is no

11

WO 2017/168216 PCT/IB2016/053149
change to the content of that link/prefix entry, and thus the content of that link/prefix entry is

still valid. On the other hand, if the version number assigned to a link/prefix entry lags behind
the version number assigned to a fragment entry associated with that link/prefix entry, then this
indicates that the most recent fragment did not advertise link-state information for the link/prefix
(implying that the link/prefix should be deleted), and thus the link/prefix entry is assigned the
deleted entry state.

[0047] Fig. 3A is a diagram illustrating a graphical representation of link-state information
stored in a link-state database after processing a fragment for the first time, according to some
embodiments. In this example, assume a processing node receives a fragment from a node for
the first time. The received fragment advertises link-state information for prefixes P1, P2,

and P3, as well as links L1 and L2. In one embodiment, the fragment is a link-state protocol
data unit (LSP) fragment. In one embodiment, link-state information for prefixes may be
included in Type Length Value (TLV) 135/235/236/237 of an LSP fragment. In one
embodiment, link-state information for links may be included in TLV 22/222/223 of an LSP
fragment.

[0048] The processing node may store link-state information in its link-state database 115 as
represented in the drawing. Since this is the first time receiving a fragment from the node, the
fragment entry representing the received fragment and all of the link/prefix entries associated
with the fragment entry are assigned a version number of 1. Also, since the node entry
representing the node and all of the link/prefix entries have been created for the first time, they
are all assigned the new entry state. When the link-state module 110 of the processing node
traverses the link-state database 115, it will determine that link-state information for the node
and all of the links/prefixes should be provided to the BGP module 120 of the processing node
for eventual transmission to a peer BGP speaker based on seeing the new entry state. After
providing this link-state information to the BGP module 120, the states assigned to all of the
entries are reset (e.g., to the unmodified entry state).

[0049] Fig. 3B is a diagram illustrating a graphical representation of link-state information
stored in a link-state database after processing a further fragment, according to some
embodiments. In this example, assume that the processing node subsequently receives another
fragment (having the same fragment ID as the previous fragment) from the same node. The
received fragment advertises link-state information for prefixes P1, P2, and P4, as well as
links L1 and L2, where an attribute of link L2 has changed.

[0050] As aresult, a new prefix entry representing prefix P4 is created in the link-state
database. This prefix entry is assigned the new entry state since it has been created for the first

time. Also, the content of the link entry representing link L2 is updated with the updated

12

WO 2017/168216 PCT/IB2016/053149
attribute of link L2 received in the fragment. This link entry is assigned the modified entry state

since its content has been modified. The fragment entry representing the received fragment is
assigned an updated version number (version number 2 in this example). The entries
representing link L1, link L2, prefix P1, prefix P2, and prefix P4 are also assigned the updated
version number (version number 2 in this example) since the received fragment advertises link-
state information for these links/prefixes. However, it should be noted that the version number
assigned to the prefix entry representing prefix P3 is not updated (but remains at version
number 1) since link-state information for prefix P3 was not included in the received fragment.
Since the version number assigned to the prefix entry representing prefix P3 lags behind the
version number of the fragment entry associated with that prefix entry, the prefix entry is
assigned the deleted entry state.

[0051] When the link-state module 110 of the processing node traverses the link-state
database 115, it will determine that link-state information for prefix P4 and link L2 should be
provided to the BGP module 120 of the processing node for eventual transmission to a peer BGP
speaker based on seeing the new entry state and the modified entry state, respectively. Also, the
link-state module 110 will determine that link-state information for the deletion of prefix P3
should be provided to the BGP module 120 based on seeing the deleted entry state. Link-state
information for the node and the other links and prefixes will not be provided to the BGP
module 120 since the entries representing these links/prefixes are assigned the unmodified entry
state. After providing the link-state information to the BGP module 120, the states assigned to
all of the entries are reset (e.g., to the unmodified entry state).

[0052] An embodiment of the conditions for assigning the various possible states are
summarized below.

New entry state is assigned to an entry when the entry is created for the first time.

Modified entry state is assigned to an entry when a content of the entry changes and the version
number assigned to the entry matches the version number assigned to the parent entry (e.g., a
fragment entry associated with a link/prefix entry is a parent entry of the link/prefix entry).
Deleted entry state is assigned to an entry when a version number assigned to the entry lags
behind the version number of the parent entry (e.g., a fragment entry associated with a
link/prefix entry is a parent entry of the link/prefix entry).

Unmodified entry state is assigned to an entry when the version number assigned to the entry
matches the version number assigned to the parent entry (e.g., a fragment entry associated with a
link/prefix entry is a parent entry of the link/prefix entry) and no other states have been assigned

to the entry.

13

WO 2017/168216 PCT/IB2016/053149
[0053] In some situations, link-state information for a particular prefix/link advertised by a

given node can move from one fragment to another. This can cause problems where an entry
representing a link/prefix is deleted because that link/prefix is no longer advertised in the same
fragment, even though that link/prefix is advertised in another fragment. An exemplary scenario
where this problem occurs is described with reference to Fig. 4A and Fig. 4B.

[0054] Fig. 4A is a diagram illustrating a graphical representation of link-state information
stored in a link-state database at time t1, according to some embodiments. Assume that at

time t1, a node advertises two fragments, namely fragment-0 and fragment-1. Fragment-0
advertises prefixes P1, P2, and P3. Fragment-1 advertises prefixes P4 and P5. The link-state
information stored in the link-state database at time t1 can be represented by the diagram shown
in Fig. 4A.

[0055] Fig. 4B is a diagram illustrating a graphical representation of link-state information
stored in a link-state database at time t2, according to some embodiments. Assume that at

time t2, the same node advertises prefix P3 in fragment-1 instead of fragment-0. The link-state
information stored in the link-state database at time t2 can be represented by the diagram shown
in Fig. 4B. If the processing node processes fragment-0 before fragment-1, then the processing
node would first delete prefix P3 and then add prefix P3 when transmitting link-state
information (e.g., to a peer BGP speaker). This sequence does not introduce any problems.
[0056] However, if the processing node processes fragment-1 before fragment-0 (e.g., because
it received fragment-1 before fragment-0), then the processing node would first add prefix P3
and then delete prefix P3 when transmitting link-state information to a peer BGP speaker, which
results in prefix P3 being deleted. In this scenario, prefix P3 is (incorrectly) deleted even though
prefix P3 is valid in fragment-1.

[0057] In one embodiment, this problem can be solved by maintaining a global link data
structure and a global prefix data structure per node, where the global link data structure keeps
track of all of the links advertised by a node and the global prefix data structure keeps track of
all of the prefixes advertised by a node. These data structures keep track of links/prefixes that
span across multiple fragments received from a node. These data structures are maintained in
addition to the data structure that stores link-state information for links and prefixes specific to
fragments described above. Maintenance of a global prefix data structure and associated
operations related to the global prefix data structure will be described below to illustrate how
movement of prefixes from one fragment to another fragment can be handled. It should be
understood, however, that the descriptions provided below are also applicable in the context of
links and the global link data structure to handle movement of links from one fragment to

another fragment.

14

WO 2017/168216 PCT/IB2016/053149
[0058] Whenever a fragment with fragment number 7 is being processed for the first time, the

prefixes advertised in that fragment are added to the global prefix data structure. The prefixes
are represented as global prefix entries in the global prefix data structure. A global prefix entry
representing a prefix is assigned the fragment number of the fragment in which that prefix was
advertised (e.g., fragment number #). If a global prefix entry representing a prefix is already
present in the global prefix data structure, then the fragment number assigned to that global
prefix entry is updated with the fragment number of the fragment in which that prefix was
advertised. A global prefix entry can only be deleted from the global prefix data structure if and
only if the fragment number being processed matches the fragment number assigned to that
global prefix entry in the global prefix data structure. Link-state information for the deletion of
the prefix is only provided to the BGP module 120 if the global prefix entry is deleted from the
global prefix data structure. Exemplary operations are described below with reference to

Fig. 5A and Fig. 5B.

[0059] Fig. 5A is a diagram illustrating a graphical representation of link-state information and
a global prefix data structure stored in a link-state database at time t1, according to some
embodiments. Re-using the (problematic) example that was described above with reference to
Fig. 4A and Fig. 4B, when a processing node processes fragment-0, prefix entries representing
prefixes P1, P2, and P3, respectively are created in the link-state database (and associated with
fragment-0). Also, global prefix entries representing these prefixes are added to the global
prefix data structure 510. Each of these global prefix entries is assigned a fragment number of 0
in the global prefix data structure 510. Similarly, when the processing node processes

fragment 1, prefix entries representing prefixes P4 and PS5, respectively, are create in the link-
state database (and associated with fragment-1). Also, global prefix entries representing these
prefixes are added to the global prefix data structure 510. Each of these prefixes is assigned a
fragment number of 1 in the global prefix data structure.

[0060] Fig. 5B is a diagram illustrating a graphical representation of link-state information and
a global prefix data structure stored in a link-state database at time t2, according to some
embodiments. Re-using the example that was described above with reference to Fig. 4A and
Fig. 4B, if a processing node processes fragment-0 before fragment-1, then when processing
fragment-0, the processing node would delete the prefix entry representing prefix P3 from the
link-state database, as well as remove the global prefix entry representing prefix P3 from the
global prefix data structure 510 (since the fragment number of the fragment being processed
(fragment 0) matches the fragment number of the global prefix entry representing prefix P3 in
the global prefix data structure 510 (fragment 0). As a result, link-state information for the

deletion of prefix P3 will be provided to the BGP module 120. When the processing node

15

WO 2017/168216 PCT/IB2016/053149
processes fragment-1, the processing node will create a prefix entry representing prefix P3 in the

link-state database (and associate it with fragment-1), as well as add a global prefix entry
representing prefix P3 to the global prefix data structure 510. As a result, the processing node
will provide link-state information for prefix P3 to the BGP module 120. It should be noted that
this sequence of events (processing fragment-0 before fragment-1) did not pose a problem
before (in embodiments that did not utilize the global prefix data structure 510). The operations
are described here to explain how this scenario would work in an embodiment that utilizes the
global prefix data structure 510.

[0061] If the processing node processes fragment-1 before fragment-0, then when processing
fragment-1, the processing node would create a prefix entry representing prefix P3 in the link-
state database (and associate it with fragment-1), as well as update the fragment number
assigned to the global prefix entry representing prefix P3 in the global prefix data structure 510
to 1, as shown in the diagram. If there are any changes to the attributes of prefix P3, link-state
information for prefix P3 is provided to the BGP module 120. Otherwise, link-state information
for prefix P3 is not provided to the BGP module 120 at this time. When the processing node
processes fragment-0, the processing node will delete the prefix entry representing prefix P3
(associated with fragment-0) from the link-state database, as shown in the diagram, but will not
remove the global prefix entry representing prefix P3 from the global prefix data structure 510.
This is because the fragment number of the fragment being processed (fragment number 0) does
not match the fragment number assigned to the global prefix entry representing prefix P3 in the
global prefix data structure 510 (fragment number 1). As a result link-state information for the
deletion of prefix P3 will not be provided to the BGP module 120, and thus prefix P3 will not be
deleted. This solves the problem where an entry representing a prefix is deleted because that
prefix is no longer advertised in the same fragment, even though that prefix is advertised in
another fragment. A similar technique can be used for handling links that move between
fragments.

[0062] Fig. 61s a flow diagram of a process for transmitting aggregated link-state information
updates to a peer BGP speaker, according to some embodiments. In one embodiment, the
process may be implemented by a network device 100 (e.g., a router). The process may be
implemented using hardware, firmware, software, or any combination thereof. The network
device 100 may function as a BGP speaker that is connected to a peer BGP speaker. The
operations in this flow diagram will be described with reference to the exemplary embodiments
of the other figures. However, it should be understood that the operations of the flow diagram

can be performed by embodiments of the invention other than those discussed with reference to

16

WO 2017/168216 PCT/IB2016/053149
the other figures, and the embodiments of the invention discussed with reference to these other

figures can perform operations different than those discussed with reference to the flow diagram.
[0063] The network device 100 stores node entries, fragment entries, and link/prefix entries in
a link-state database (block 610). The node entries represent nodes in the network 150, the
fragment entries represent fragments received from nodes (e.g., other network devices 100) in
the network 150, and the link/prefix entries represent links/prefixes in the network 150. Each
node entry is associated with a set of fragment entries and each fragment entry is associated with
a set of link/prefix entries. Each fragment entry and link/prefix entry is assigned a version
number and each link/prefix entry is assigned a state from a possible set of states. In one
embodiment, the possible set of states include a new entry state, a modified entry state, a deleted
entry state, and an unmodified entry state.

[0064] The network device 100 determines link-state information to transmit to a peer BGP
speaker based on a state assigned to a link/prefix entry (block 620). In one embodiment, the
network device 100 determines that link-state information for a link/prefix should be transmitted
to the peer BGP speaker in response to a determination that a link/prefix entry representing that
link/prefix is assigned the new entry state or the modified entry state. In one embodiment, the
network device 100 determines that link-state information for deletion of a link/prefix should be
transmitted to the peer BGP speaker in response to a determination that a link/prefix entry
representing that link/prefix is assigned the deleted entry state. In one embodiment, the network
device 100 determines that link-state information for a link/prefix should not be transmitted to
the peer BGP speaker in response to a determination that a link/prefix entry representing that
link/prefix is assigned the unmodified entry state.

[0065] The network device 100 then transmits the determined link-state information to the
peer BGP speaker (block 620). In one embodiment, the determined link-state information is
transmitted to the peer BGP speaker via BGP-LS.

[0066] Fig. 7 is a flow diagram of a process for maintaining link-state information in a link-
state database, according to some embodiments. In one embodiment, the process may be
implemented by a network device 100 (e.g., a router). The process may be implemented using
hardware, firmware, software, or any combination thereof.

[0067] In one embodiment, the process is initiated when the network device 100 receives a
fragment, where the fragment advertises link-state information for a link/prefix (block 705). In
one embodiment, the fragment is an LSP.

[0068] If a fragment entry representing the received fragment already exists in the link-state
database 115, then the network device 100 assigns an updated version number to the fragment

entry representing the received fragment (block 710). If a fragment entry representing the

17

WO 2017/168216 PCT/IB2016/053149
received fragment does not already exist in the link-state database 115, then a new fragment

entry is created in the link-state database 115 and the network device 100 assigns an initial
version number to the new fragment entry (not illustrated).

[0069] The network device 100 determines whether an entry (e.g., link/prefix entry)
representing the link/prefix exists in the link-state database (decision block 715). If not, the
network device 100 creates a new entry representing the link/prefix in the link-state database
(block 720). The network device 100 associates the new entry with the fragment entry
representing the received fragment (block 725). The network device 100 assigns the updated
version number (the version number assigned to the fragment entry representing the received
fragment in block 710) to the new entry (block 730). The network device 100 then assigns the
new entry state to the new entry (block 735).

[0070] Returning to decision block 715, if an entry (e.g., link/prefix entry) representing the
link/prefix exists in the link-state database 115, then the network device 100 assigns the updated
version number (the updated version number assigned to the fragment entry representing the
received fragment in block 710) to the existing entry (block 737).

[0071] The network device 100, then determines whether the state assigned to the existing
entry is the unmodified entry state (decision block 740). If so, the network device 100
determines whether the content of the existing entry representing the link/prefix is different from
the content of the link-state information for the link/prefix included in the received fragment
(decision block 745). If so, then the network device 100 updates the content of the existing
entry with the content of the link-state information for the link/prefix included in the received
fragment (block 750) and assigns the modified entry state to the existing entry (block 755).
Returning to decision block 745, if the content of the existing entry representing the link/prefix
is not different from the content of the link-state information for the link/prefix included in the
received fragment, then the network device 100 assigns the unmodified entry state to the
existing entry (block 795).

[0072] Returning to decision block 740, if the state assigned to the existing entry is not the
unmodified entry state, then the network device 100 determines whether the state assigned to the
existing entry is the new entry state or the modified entry state (decision block 760). If so, then
the network device 100 updates the content of the existing entry with the content of the link-
state information for the link/prefix included in the received fragment (block 770). There is no
need to assign a new state to the existing entry in this case (e.g., to flag that the existing entry
has been created or modified) since the existing entry is already assigned the new entry state or

the modified entry state.

18

WO 2017/168216 PCT/IB2016/053149
[0073] Returning to decision block 760, if the state assigned to the existing entry is not the

new entry state or the unmodified entry state, then this indicates that the state assigned to the
existing entry is the deleted entry state. The network device 100 determines whether the content
of the existing entry representing the link/prefix is different from the content of the link-state
information for the link/prefix included in the received fragment (decision block 780). If so,
then the network device 100 updates the content of the existing entry with the content of the
link-state information for the link/prefix included in the received fragment (block 785) and
assigns the modified entry state to the existing entry (block 790). Returning to decision block
780, if the content of the existing entry representing the link/prefix is not different from the
content of the link-state information for the link/prefix included in the received fragment, then
the network device 100 assigns the unmodified entry state to the existing entry (block 795).
[0074] In one embodiment, the network device 100 maintains a global link/prefix data
structure in the link-state database 115. The global link/prefix data structure may be utilized to
handle the movement of link-state information between fragments (e.g., as described above with
reference to Fig. SA and Fig. 5B). The network device 100 may store global link/prefix entries
representing links/prefixes advertised in the network in the link-state database 115, where each
global link/prefix entry is assigned a fragment number.

[0075] In one embodiment, the network device 100 may receive a fragment from a node in the
network 150, where the fragment advertises link-state information for a link/prefix. In response
to receiving the fragment, the network device 100 may determine whether a global link/prefix
entry representing the link/prefix exists in the link-state database 115. If not, the network
device 100 may create a new global link/prefix entry representing the link/prefix in the link-state
database 115 and assign the fragment number of the received fragment to that new global
link/prefix entry.

[0076] If a global link/prefix entry representing the link/prefix already exists in the link-state
database 115, then the network device 100 assigns the fragment number of the received
fragment to the existing global link/prefix entry.

[0077] In one embodiment, the network device 100 may receive a fragment from a node in the
network 150, where the fragment advertises link-state information that indicates that a
link/prefix should be deleted. In response to receiving the fragment, the network device 100
may determine whether the fragment number of the received fragment matches the fragment
number assigned to the global link/prefix entry representing the link/prefix. If so, the network
device 100 may delete the global link/prefix entry representing the link/prefix from the link-state
database 115. On the other hand, if the fragment number of the received fragment does not

match the fragment number assigned to the global link/prefix entry representing the link/prefix,

19

WO 2017/168216 PCT/IB2016/053149
then the network device 100 does not delete that global link/prefix from the link-state

database 115.

[0078] Maintaining the link-state information stored in the link-state database 115 in this way
allows the network device 100 to keep track of the incremental changes to the link-state
information and allows the network device 100 to efficiently provide aggregated link-state
information to the peer BGP speaker. For example, when the network device 100 determines
that the peer BGP speaker is busy/slow, the network device 100 may hold off on transmitting
link-state information to the peer BGP speaker. When the network device 100 determines that
the peer BGP speaker is available to process link-state information, then the network device 100
may use the techniques described herein to transmit aggregated link-state information to the
consumer that reflects the most recent state of the link-state information stored in its link-state
database 115, without transmitting link-state information for all of the transient changes that
occurred while the peer BGP speaker was deemed to be busy.

[0079] Embodiments have been primarily described in a context where IS-IS is employed as
the IGP. However, it should be understood that similar techniques to those described herein can
also be applied in a context where Open Shortest Path First (OSPF) or other type of IGP is
employed as the IGP. Unlike IS-IS, OSPF typically uses explicit deletes and does not have the
concept of fragments. As such, in a context where OSPF is employed as the IGP, the
implementation may be simpler since there would be no fragments and no need for the global
link/prefix data structure.

[0080] Fig. 8A illustrates connectivity between network devices (NDs) within an exemplary
network, as well as three exemplary implementations of the NDs, according to some
embodiments of the invention. Fig. 8A shows NDs 800A-H, and their connectivity by way of
lines between 800A-800B, 800B-800C, 800C-800D, 800D-800E, 800E-800F, 800F-800G,

and 800A-800G, as well as between 800H and each of 800A, 800C, 800D, and 800G. These
NDs are physical devices, and the connectivity between these NDs can be wireless or wired
(often referred to as a link). An additional line extending from NDs 800A, 800E, and 800F
illustrates that these NDs act as ingress and egress points for the network (and thus, these NDs
are sometimes referred to as edge NDs; while the other NDs may be called core NDs).

[0081] Two of the exemplary ND implementations in Fig. 8A are: 1) a special-purpose
network device 802 that uses custom application—specific integrated—circuits (ASICs) and a
special-purpose operating system (OS); and 2) a general purpose network device 804 that uses
common off-the-shelf (COTS) processors and a standard OS.

[0082] The special-purpose network device 802 includes networking hardware 810 comprising

compute resource(s) 812 (which typically include a set of one or more processors), forwarding

20

WO 2017/168216 PCT/IB2016/053149
resource(s) 814 (which typically include one or more ASICs and/or network processors), and

physical network interfaces (NIs) 816 (sometimes called physical ports), as well as non-
transitory machine readable storage media 818 having stored therein networking software 820.
A physical NI is hardware in a ND through which a network connection (e.g., wirelessly through
a wireless network interface controller (WNIC) or through plugging in a cable to a physical port
connected to a network interface controller (NIC)) is made, such as those shown by the
connectivity between NDs 800A-H. During operation, the networking software 820 may be
executed by the networking hardware 810 to instantiate a set of one or more networking
software instance(s) 822. Each of the networking software instance(s) 822, and that part of the
networking hardware 810 that executes that network software instance (be it hardware dedicated
to that networking software instance and/or time slices of hardware temporally shared by that
networking software instance with others of the networking software instance(s) 822), form a
separate virtual network element 830A-R. Each of the virtual network element(s)

(VNEs) 830A-R includes a control communication and configuration module 832A-R
(sometimes referred to as a local control module or control communication module) and
forwarding table(s) 834A-R, such that a given virtual network element (e.g., 830A) includes the
control communication and configuration module (e.g., 832A), a set of one or more forwarding
table(s) (e.g., 834A), and that portion of the networking hardware 810 that executes the virtual
network element (e.g., 830A).

[0083] Software 820 can include code such as link-state module 821 and BGP module 823,
which when executed by networking hardware 810, causes the special-purpose network

device 802 to perform operations of one or more embodiments of the present invention as part
networking software instances 822. For example, the link-state module 821 and the BGP
module 823, when executed by network hardware 810, may cause the special-purpose network
device 802 to perform operations described above with respect to the link-state module 110 and
BGP module 120, respectively.

[0084] The special-purpose network device 802 is often physically and/or logically considered
to include: 1) a ND control plane 824 (sometimes referred to as a control plane) comprising the
compute resource(s) 812 that execute the control communication and configuration

module(s) 832A-R; and 2) a ND forwarding plane 826 (sometimes referred to as a forwarding
plane, a data plane, or a media plane) comprising the forwarding resource(s) 814 that utilize the
forwarding table(s) 834A-R and the physical NIs 816. By way of example, where the ND is a
router (or is implementing routing functionality), the ND control plane 824 (the compute
resource(s) 812 executing the control communication and configuration module(s) 832A-R) is

typically responsible for participating in controlling how data (e.g., packets) is to be routed (e.g.,

21

WO 2017/168216 PCT/IB2016/053149
the next hop for the data and the outgoing physical NI for that data) and storing that routing

information in the forwarding table(s) 834A-R, and the ND forwarding plane 826 is responsible
for receiving that data on the physical NIs 816 and forwarding that data out the appropriate ones
of the physical NIs 816 based on the forwarding table(s) 834A-R.

[0085] Fig. 8B illustrates an exemplary way to implement the special-purpose network

device 802 according to some embodiments of the invention. Fig. 8B shows a special-purpose
network device including cards 838 (typically hot pluggable). While in some embodiments the
cards 838 are of two types (one or more that operate as the ND forwarding plane 826
(sometimes called line cards), and one or more that operate to implement the ND control

plane 824 (sometimes called control cards)), alternative embodiments may combine
functionality onto a single card and/or include additional card types (e.g., one additional type of
card is called a service card, resource card, or multi-application card). A service card can
provide specialized processing (e.g., Layer 4 to Layer 7 services (e.g., firewall, Internet Protocol
Security (IPsec), Secure Sockets Layer (SSL) / Transport Layer Security (TLS), Intrusion
Detection System (IDS), peer-to-peer (P2P), Voice over IP (VoIP) Session Border Controller,
Mobile Wireless Gateways (Gateway General Packet Radio Service (GPRS) Support Node
(GGSN), Evolved Packet Core (EPC) Gateway)). By way of example, a service card may be
used to terminate IPsec tunnels and execute the attendant authentication and encryption
algorithms. These cards are coupled together through one or more interconnect mechanisms
illustrated as backplane 836 (e.g., a first full mesh coupling the line cards and a second full mesh
coupling all of the cards).

[0086] Returning to Fig. 8A, the general purpose network device 804 includes hardware 840
comprising a set of one or more processor(s) 842 (which are often COTS processors) and
network interface controller(s) 844 (NICs; also known as network interface cards) (which
include physical NIs 846), as well as non-transitory machine readable storage media 848 having
stored therein software 850. During operation, the processor(s) 842 execute the software 850 to
instantiate one or more sets of one or more applications 864A-R. While one embodiment does
not implement virtualization, alternative embodiments may use different forms of virtualization.
For example, in one such alternative embodiment the virtualization layer 854 represents the
kernel of an operating system (or a shim executing on a base operating system) that allows for
the creation of multiple instances 862A-R called software containers that may each be used to
execute one (or more) of the sets of applications 864A-R; where the multiple software
containers (also called virtualization engines, virtual private servers, or jails) are user spaces
(typically a virtual memory space) that are separate from each other and separate from the kernel

space in which the operating system is run; and where the set of applications running in a given

22

WO 2017/168216 PCT/IB2016/053149
user space, unless explicitly allowed, cannot access the memory of the other processes. In

another such alternative embodiment the virtualization layer 854 represents a hypervisor
(sometimes referred to as a virtual machine monitor (VMM)) or a hypervisor executing on top of
a host operating system, and each of the sets of applications 864A-R is run on top of a guest
operating system within an instance 862A-R called a virtual machine (which may in some cases
be considered a tightly isolated form of software container) that is run on top of the hypervisor -
the guest operating system and application may not know they are running on a virtual machine
as opposed to running on a “bare metal” host electronic device, or through para-virtualization
the operating system and/or application may be aware of the presence of virtualization for
optimization purposes. In yet other alternative embodiments, one, some or all of the
applications are implemented as unikernel(s), which can be generated by compiling directly with
an application only a limited set of libraries {e.g., from a hibrary operating system (LibOS})
including drivers/libraries of OS services) that provide the particular O8 services needed by the
application. As a unikernel can be implemented to run directly on hardware 840, directly on a
hypervisor (in which case the unikernel is sometimes described as running within a LibOS
virtual machine), or in a software container, embodiments can be implemented fully with
unikernels running directly on a hypervisor represented by virtualization layer 854, unikernels
running within software containers represented by instances 862A-R, or as a combination of
unikernels and the above-described techniques (e.g., unikernels and virtual machines both run
directly on a hypervisor, unikernels and sets of applications that are run in different software
containers).

[0087] The instantiation of the one or more sets of one or more applications 864A-R, as well
as virtualization if implemented, are collectively referred to as software instance(s) 852. Each
set of applications 864A-R, corresponding virtualization construct (e.g., instance 862A-R) if
implemented, and that part of the hardware 840 that executes them (be it hardware dedicated to
that execution and/or time slices of hardware temporally shared), forms a separate virtual
network element(s) 860A-R.

[0088] The virtual network element(s) 860A-R perform similar functionality to the virtual
network element(s) 830A-R - e.g., similar to the control communication and configuration
module(s) 832A and forwarding table(s) 834 A (this virtualization of the hardware 840 is
sometimes referred to as network function virtualization (NFV)). Thus, NFV may be used to
consolidate many network equipment types onto industry standard high volume server hardware,
physical switches, and physical storage, which could be located in Data centers, NDs, and
customer premise equipment (CPE). While embodiments of the invention are illustrated with

each instance 862A-R corresponding to one VNE 860A-R, alternative embodiments may

23

WO 2017/168216 PCT/IB2016/053149
implement this correspondence at a finer level granularity (e.g., line card virtual machines

virtualize line cards, control card virtual machine virtualize control cards, etc.); it should be
understood that the techniques described herein with reference to a correspondence of

instances 862A-R to VNEs also apply to embodiments where such a finer level of granularity
and/or unikernels are used.

[0089] In certain embodiments, the virtualization layer 854 includes a virtual switch that
provides similar forwarding services as a physical Ethernet switch. Specifically, this virtual
switch forwards traffic between instances 862A-R and the NIC(s) 844, as well as optionally
between the instances 862A-R; in addition, this virtual switch may enforce network isolation
between the VNEs 860A-R that by policy are not permitted to communicate with each other
(e.g., by honoring virtual local area networks (VLANS)).

[0090] Software 850 can include code such as link-state module 851 and BGP module 853,
which when executed by processor(s) 842, cause the general purpose network device 804 to
perform operations of one or more embodiments of the present invention as part software
instances 862A-R. For example, the link-state module 851 and the BGP module 853, when
executed by processor(s) 842, may cause the general purpose network device 804 to perform
operations described above with respect to the link-state module 110 and BGP module 120,
respectively.

[0091] The third exemplary ND implementation in Fig. 8A is a hybrid network device 806,
which includes both custom ASICs/special-purpose OS and COTS processors/standard OS in a
single ND or a single card within an ND. In certain embodiments of such a hybrid network
device, a platform VM (i.e., a VM that that implements the functionality of the special-purpose
network device 802) could provide for para-virtualization to the networking hardware present in
the hybrid network device 806.

[0092] Regardless of the above exemplary implementations of an ND, when a single one of
multiple VNEs implemented by an ND is being considered (e.g., only one of the VNEs is part of
a given virtual network) or where only a single VNE is currently being implemented by an ND,
the shortened term network element (NE) is sometimes used to refer to that VNE. Also in all of
the above exemplary implementations, each of the VNEs (e.g., VNE(s) 830A-R, VNEs 860A-R,
and those in the hybrid network device 806) receives data on the physical NIs (e.g., 816, 8§46)
and forwards that data out the appropriate ones of the physical NIs (e.g., 816, 846). For
example, a VNE implementing IP router functionality forwards IP packets on the basis of some
of the IP header information in the IP packet; where IP header information includes source IP
address, destination IP address, source port, destination port (where “source port” and

“destination port” refer herein to protocol ports, as opposed to physical ports of a ND), transport

24

WO 2017/168216 PCT/IB2016/053149
protocol (e.g., user datagram protocol (UDP), Transmission Control Protocol (TCP), and

differentiated services code point (DSCP) values.

[0093] Fig. 8C illustrates various exemplary ways in which VNEs may be coupled according
to some embodiments of the invention. Fig. 8C shows VNEs 870A.1-870A.P (and optionally
VNEs 870A.Q-870A.R) implemented in ND 800A and VNE 870H.1 in ND 800H. In Fig. 8C,
VNESs 870A.1-P are separate from each other in the sense that they can receive packets from
outside ND 800A and forward packets outside of ND 800A; VNE 870A.1 is coupled with

VNE 870H.1, and thus they communicate packets between their respective NDs; VNE 870A.2-
870A.3 may optionally forward packets between themselves without forwarding them outside of
the ND 800A; and VNE 870A.P may optionally be the first in a chain of VNEs that includes
VNE 870A.Q followed by VNE 870A.R (this is sometimes referred to as dynamic service
chaining, where each of the VNEs in the series of VNEs provides a different service — e.g., one
or more layer 4-7 network services). While Fig. 8C illustrates various exemplary relationships
between the VNEs, alternative embodiments may support other relationships (e.g., more/fewer
VNEs, more/fewer dynamic service chains, multiple different dynamic service chains with some
common VNEs and some different VNESs).

[0094] The NDs of Fig. 8A, for example, may form part of the Internet or a private network;
and other electronic devices (not shown; such as end user devices including workstations,
laptops, netbooks, tablets, palm tops, mobile phones, smartphones, phablets, multimedia phones,
Voice Over Internet Protocol (VOIP) phones, terminals, portable media players, GPS units,
wearable devices, gaming systems, set-top boxes, Internet enabled household appliances) may
be coupled to the network (directly or through other networks such as access networks) to
communicate over the network (e.g., the Internet or virtual private networks (VPNs) overlaid on
(e.g., tunneled through) the Internet) with each other (directly or through servers) and/or access
content and/or services. Such content and/or services are typically provided by one or more
servers (not shown) belonging to a service/content provider or one or more end user devices (not
shown) participating in a peer-to-peer (P2P) service, and may include, for example, public
webpages (e.g., free content, store fronts, search services), private webpages (e.g.,
username/password accessed webpages providing email services), and/or corporate networks
over VPNs. For instance, end user devices may be coupled (e.g., through customer premise
equipment coupled to an access network (wired or wirelessly)) to edge NDs, which are coupled
(e.g., through one or more core NDs) to other edge NDs, which are coupled to electronic devices
acting as servers. However, through compute and storage virtualization, one or more of the
electronic devices operating as the NDs in Fig. 8 A may also host one or more such servers (e.g.,

in the case of the general purpose network device 804, one or more of the software instances

25

WO 2017/168216 PCT/IB2016/053149
862A-R may operate as servers; the same would be true for the hybrid network device 806; in

the case of the special-purpose network device 802, one or more such servers could also be run
on a virtualization layer executed by the compute resource(s) 812); in which case the servers are
said to be co-located with the VNEs of that ND.

[0095] A virtual network is a logical abstraction of a physical network (such as that in Fig. 8A)
that provides network services (e.g., L2 and/or L3 services). A virtual network can be
implemented as an overlay network (sometimes referred to as a network virtualization overlay)
that provides network services (e.g., layer 2 (L2, data link layer) and/or layer 3 (L3, network
layer) services) over an underlay network (e.g., an L3 network, such as an Internet Protocol (IP)
network that uses tunnels (e.g., generic routing encapsulation (GRE), layer 2 tunneling protocol
(L2TP), IPSec) to create the overlay network).

[0096] A network virtualization edge (NVE) sits at the edge of the underlay network and
participates in implementing the network virtualization; the network-facing side of the NVE
uses the underlay network to tunnel frames to and from other NVEs; the outward-facing side of
the NVE sends and receives data to and from systems outside the network. A virtual network
instance (VNI) is a specific instance of a virtual network on a NVE (e.g., a NE/VNE on an ND,
a part of a NE/VNE on a ND where that NE/VNE is divided into multiple VNEs through
emulation); one or more VNIs can be instantiated on an NVE (e.g., as different VNEs on an
ND). A virtual access point (VAP) is a logical connection point on the NVE for connecting
external systems to a virtual network; a VAP can be physical or virtual ports identified through
logical interface identifiers (e.g., a VLAN ID).

[0097] Examples of network services include: 1) an Ethernet LAN emulation service (an
Ethernet-based multipoint service similar to an Internet Engineering Task Force (IETF)
Multiprotocol Label Switching (MPLS) or Ethernet VPN (EVPN) service) in which external
systems are interconnected across the network by a LAN environment over the underlay
network (e.g., an NVE provides separate L2 VNIs (virtual switching instances) for different
such virtual networks, and L3 (e.g., IP/MPLS) tunneling encapsulation across the underlay
network); and 2) a virtualized IP forwarding service (similar to IETF IP VPN (e.g., Border
Gateway Protocol (BGP)/MPLS IPVPN) from a service definition perspective) in which
external systems are interconnected across the network by an L3 environment over the underlay
network (e.g., an NVE provides separate L3 VNIs (forwarding and routing instances) for
different such virtual networks, and L3 (e.g., IP/MPLS) tunneling encapsulation across the
underlay network)). Network services may also include quality of service capabilities (e.g.,

traffic classification marking, traffic conditioning and scheduling), security capabilities (e.g.,

26

WO 2017/168216 PCT/IB2016/053149
filters to protect customer premises from network — originated attacks, to avoid malformed route

announcements), and management capabilities (e.g., full detection and processing).

[0098] Fig. 8D illustrates a network with a single network element on each of the NDs of

Fig. 8A, and within this straight forward approach contrasts a traditional distributed approach
(commonly used by traditional routers) with a centralized approach for maintaining reachability
and forwarding information (also called network control), according to some embodiments of
the invention. Specifically, Fig. 8D illustrates network elements (NEs) 870A-H with the same
connectivity as the NDs 800A-H of Fig. 8A.

[0099] Fig. 8D illustrates that the distributed approach 872 distributes responsibility for
generating the reachability and forwarding information across the NEs §70A-H; in other words,
the process of neighbor discovery and topology discovery is distributed.

[00100] For example, where the special-purpose network device 802 is used, the control
communication and configuration module(s) 832A-R of the ND control plane 824 typically
include a reachability and forwarding information module to implement one or more routing
protocols (e.g., an exterior gateway protocol such as Border Gateway Protocol (BGP), Interior
Gateway Protocol(s) (IGP) (e.g., Open Shortest Path First (OSPF), Intermediate System to
Intermediate System (IS-1S), Routing Information Protocol (RIP), Label Distribution Protocol
(LDP), Resource Reservation Protocol (RSVP) (including RSVP-Traffic Engineering (TE):
Extensions to RSVP for LSP Tunnels and Generalized Multi-Protocol Label Switching
(GMPLS) Signaling RSVP-TE)) that communicate with other NEs to exchange routes, and then
selects those routes based on one or more routing metrics. Thus, the NEs 870A-H (e.g., the
compute resource(s) 812 executing the control communication and configuration module(s)
832A-R) perform their responsibility for participating in controlling how data (e.g., packets) is
to be routed (e.g., the next hop for the data and the outgoing physical NI for that data) by
distributively determining the reachability within the network and calculating their respective
forwarding information. Routes and adjacencies are stored in one or more routing structures
(e.g., Routing Information Base (RIB), Label Information Base (LIB), one or more adjacency
structures) on the ND control plane 824. The ND control plane 824 programs the ND
forwarding plane 826 with information (e.g., adjacency and route information) based on the
routing structure(s). For example, the ND control plane 824 programs the adjacency and route
information into one or more forwarding table(s) 834A-R (e.g., Forwarding Information Base
(FIB), Label Forwarding Information Base (LFIB), and one or more adjacency structures) on the
ND forwarding plane 826. For layer 2 forwarding, the ND can store one or more bridging tables

that are used to forward data based on the layer 2 information in that data. While the above

27

WO 2017/168216 PCT/IB2016/053149
example uses the special-purpose network device 802, the same distributed approach 872 can be

implemented on the general purpose network device 804 and the hybrid network device 806.
[00101] Fig. 8D illustrates that a centralized approach 874 (also known as software defined
networking (SDN)) that decouples the system that makes decisions about where traffic is sent
from the underlying systems that forwards traffic to the selected destination. The illustrated
centralized approach 874 has the responsibility for the generation of reachability and forwarding
information in a centralized control plane 876 (sometimes referred to as a SDN control module,
controller, network controller, OpenFlow controller, SDN controller, control plane node,
network virtualization authority, or management control entity), and thus the process of
neighbor discovery and topology discovery is centralized. The centralized control plane 876 has
a south bound interface 882 with a data plane 880 (sometime referred to the infrastructure layer,
network forwarding plane, or forwarding plane (which should not be confused with a ND
forwarding plane)) that includes the NEs 870A-H (sometimes referred to as switches,
forwarding elements, data plane elements, or nodes). The centralized control plane 876 includes
a network controller 878, which includes a centralized reachability and forwarding information
module 879 that determines the reachability within the network and distributes the forwarding
information to the NEs 870A-H of the data plane 880 over the south bound interface 882 (which
may use the OpenFlow protocol). Thus, the network intelligence is centralized in the centralized
control plane 876 executing on electronic devices that are typically separate from the NDs. In
one embodiment, the network controller 878 may include a BGP module 881 that when
executed by the network controller 878, causes the network controller 878 to perform operations
of one or more embodiments described herein above. For example, the BGP module 881, when
executed by the network controller 878, may cause the network controller 878 to perform
operations for communicating with one or more NE§70 via BGP-LS.

[00102] For example, where the special-purpose network device 802 is used in the data

plane 880, each of the control communication and configuration module(s) 832A-R of the ND
control plane 824 typically include a control agent that provides the VNE side of the south
bound interface 882. In this case, the ND control plane 824 (the compute resource(s) 812
executing the control communication and configuration module(s) 832A-R) performs its
responsibility for participating in controlling how data (e.g., packets) is to be routed (e.g., the
next hop for the data and the outgoing physical NI for that data) through the control agent
communicating with the centralized control plane 876 to receive the forwarding information
(and in some cases, the reachability information) from the centralized reachability and
forwarding information module 879 (it should be understood that in some embodiments of the

invention, the control communication and configuration module(s) 832A-R, in addition to

28

WO 2017/168216 PCT/IB2016/053149
communicating with the centralized control plane 876, may also play some role in determining

reachability and/or calculating forwarding information — albeit less so than in the case of a
distributed approach; such embodiments are generally considered to fall under the centralized
approach 874, but may also be considered a hybrid approach).

[00103] While the above example uses the special-purpose network device 802, the same
centralized approach 874 can be implemented with the general purpose network device 804
(e.g., each of the VNE 860A-R performs its responsibility for controlling how data (e.g.,
packets) is to be routed (e.g., the next hop for the data and the outgoing physical NI for that
data) by communicating with the centralized control plane 876 to receive the forwarding
information (and in some cases, the reachability information) from the centralized reachability
and forwarding information module 879; it should be understood that in some embodiments of
the invention, the VNEs 860A-R, in addition to communicating with the centralized control
plane 876, may also play some role in determining reachability and/or calculating forwarding
information — albeit less so than in the case of a distributed approach) and the hybrid network
device 806. In fact, the use of SDN techniques can enhance the NFV techniques typically used
in the general purpose network device 804 or hybrid network device 806 implementations as
NFV is able to support SDN by providing an infrastructure upon which the SDN software can be
run, and NFV and SDN both aim to make use of commodity server hardware and physical
switches.

[00104] Fig. 8D also shows that the centralized control plane 876 has a north bound

interface 884 to an application layer 886, in which resides application(s) 888. The centralized
control plane 876 has the ability to form virtual networks 892 (sometimes referred to as a logical
forwarding plane, network services, or overlay networks (with the NEs 870A-H of the data
plane 880 being the underlay network)) for the application(s) 888. Thus, the centralized control
plane 876 maintains a global view of all NDs and configured NEs/VNEs, and it maps the virtual
networks to the underlying NDs efficiently (including maintaining these mappings as the
physical network changes either through hardware (ND, link, or ND component) failure,
addition, or removal).

[00105] While Fig. 8D shows the distributed approach 872 separate from the centralized
approach 874, the effort of network control may be distributed differently or the two combined
in certain embodiments of the invention. For example: 1) embodiments may generally use the
centralized approach (SDN) 874, but have certain functions delegated to the NEs (e.g., the
distributed approach may be used to implement one or more of fault monitoring, performance
monitoring, protection switching, and primitives for neighbor and/or topology discovery); or 2)

embodiments of the invention may perform neighbor discovery and topology discovery via both

29

WO 2017/168216 PCT/IB2016/053149
the centralized control plane and the distributed protocols, and the results compared to raise

exceptions where they do not agree. Such embodiments are generally considered to fall under
the centralized approach 874, but may also be considered a hybrid approach.

[00106] While Fig. 8D illustrates the simple case where each of the NDs 800A-H implements
a single NE 870A-H, it should be understood that the network control approaches described with
reference to Fig. 8D also work for networks where one or more of the NDs 800A-H implement
multiple VNEs (e.g., VNEs 830A-R, VNEs 860A-R, those in the hybrid network device 806).
Alternatively or in addition, the network controller 878 may also emulate the implementation of
multiple VNE:s in a single ND. Specifically, instead of (or in addition to) implementing multiple
VNE:s in a single ND, the network controller 878 may present the implementation of a VNE/NE
in a single ND as multiple VNEs in the virtual networks 892 (all in the same one of the virtual
network(s) 892, each in different ones of the virtual network(s) 892, or some combination). For
example, the network controller 878 may cause an ND to implement a single VNE (a NE) in the
underlay network, and then logically divide up the resources of that NE within the centralized
control plane 876 to present different VNEs in the virtual network(s) 892 (where these different
VNE:s in the overlay networks are sharing the resources of the single VNE/NE implementation
on the ND in the underlay network).

[00107] On the other hand, Figs. 8E and 8F respectively illustrate exemplary abstractions of
NEs and VNE:s that the network controller 878 may present as part of different ones of the
virtual networks 892. Fig. 8E illustrates the simple case of where each of the NDs 800A-H
implements a single NE 870A-H (see Fig. 8D), but the centralized control plane 876 has
abstracted multiple of the NEs in different NDs (the NEs 870A-C and G-H) into (to represent) a
single NE 8701 in one of the virtual network(s) 892 of Fig. 8D, according to some embodiments
of the invention. Fig. 8E shows that in this virtual network, the NE 8701 is coupled to NE 870D
and 870F, which are both still coupled to NE §70E.

[00108] Fig. 8F illustrates a case where multiple VNEs (VNE 870A.1 and VNE 870H.1) are
implemented on different NDs (ND 800A and ND 800H) and are coupled to each other, and
where the centralized control plane 876 has abstracted these multiple VNEs such that they
appear as a single VNE 870T within one of the virtual networks 892 of Fig. 8D, according to
some embodiments of the invention. Thus, the abstraction of a NE or VNE can span multiple
NDs.

[00109] While some embodiments of the invention implement the centralized control

plane 876 as a single entity (e.g., a single instance of software running on a single electronic

device), alternative embodiments may spread the functionality across multiple entities for

30

WO 2017/168216 PCT/IB2016/053149
redundancy and/or scalability purposes (e.g., multiple instances of software running on different

electronic devices).

[00110] Similar to the network device implementations, the electronic device(s) running the
centralized control plane 876, and thus the network controller 878 including the centralized
reachability and forwarding information module 879, may be implemented a variety of ways
(e.g., a special purpose device, a general-purpose (e.g., COTS) device, or hybrid device). These
electronic device(s) would similarly include compute resource(s), a set or one or more physical
NICs, and a non-transitory machine-readable storage medium having stored thereon the
centralized control plane software. For instance, Fig. 9 illustrates, a general purpose control
plane device 904 including hardware 940 comprising a set of one or more processor(s) 942
(which are often COTS processors) and network interface controller(s) 944 (NICs; also known
as network interface cards) (which include physical NIs 946), as well as non-transitory machine
readable storage media 948 having stored therein centralized control plane (CCP) software 950
and a BGP module 951.

[00111] In embodiments that use compute virtualization, the processor(s) 942 typically
execute software to instantiate a virtualization layer 954 (e.g., in one embodiment the
virtualization layer 954 represents the kernel of an operating system (or a shim executing on a
base operating system) that allows for the creation of multiple instances 962A-R called software
containers (representing separate user spaces and also called virtualization engines, virtual
private servers, or jails) that may each be used to execute a set of one or more applications; in
another embodiment the virtualization layer 954 represents a hypervisor (sometimes referred to
as a virtual machine monitor (VMM)) or a hypervisor executing on top of a host operating
system, and an application is run on top of a guest operating system within an instance 962A-R
called a virtual machine (which in some cases may be considered a tightly isolated form of
software container) that is run by the hypervisor ; in another embodiment, an application is
implemented as a unikernel, which can be generated by corapiling directly with an application
only a himited set of libraries (e.g., from a library operating system (Lib0OS) including
drivers/itbraries of OS5 services) that provide the particular OS5 services needed by the
application, and the unikernel can run directly on hardware 940, directly on a hypervisor
represented by virtualization layer 954 (in which case the unikernel is sometimes described as
running within a LibOS virtual machine), or in a software container represented by one of
instances 962A-R). Again, in embodiments where compute virtualization is used, during
operation an instance of the CCP software 950 (illustrated as CCP instance 976A) is executed
(e.g., within the instance 962A) on the virtualization layer 954. In embodiments where compute

virtualization is not used, the CCP instance 976A is executed, as a unikernel or on top of a host

31

WO 2017/168216 PCT/IB2016/053149
operating system, on the “bare metal” general purpose control plane device 904. The

instantiation of the CCP instance 976A, as well as the virtualization layer 954 and

instances 962A-R if implemented, are collectively referred to as software instance(s) 952.
[00112] In some embodiments, the CCP instance 976A includes a network controller
instance 978. The network controller instance 978 includes a centralized reachability and
forwarding information module instance 979 (which is a middleware layer providing the context
of the network controller 878 to the operating system and communicating with the various NEs),
and an CCP application layer 980 (sometimes referred to as an application layer) over the
middleware layer (providing the intelligence required for various network operations such as
protocols, network situational awareness, and user — interfaces). At a more abstract level, this
CCP application layer 980 within the centralized control plane 876 works with virtual network
view(s) (logical view(s) of the network) and the middleware layer provides the conversion from
the virtual networks to the physical view.

[00113] The BGP module 951 can be executed by hardware 940 to perform operations of one
or more embodiments of the present invention as part of software instances 952. For example,
the BGP module 951 can be executed by hardware 940 to perform operations for
communicating with one or more NEs (e.g., NEs 870A-H) via BGP-LS.

[00114] The centralized control plane 876 transmits relevant messages to the data plane 880
based on CCP application layer 980 calculations and middleware layer mapping for each flow.
A flow may be defined as a set of packets whose headers match a given pattern of bits; in this
sense, traditional IP forwarding is also flow—based forwarding where the flows are defined by
the destination IP address for example; however, in other implementations, the given pattern of
bits used for a flow definition may include more fields (e.g., 10 or more) in the packet headers.
Different NDs/NEs/VNEs of the data plane 880 may receive different messages, and thus
different forwarding information. The data plane 880 processes these messages and programs
the appropriate flow information and corresponding actions in the forwarding tables (sometime
referred to as flow tables) of the appropriate NE/VNESs, and then the NEs/VNEs map incoming
packets to flows represented in the forwarding tables and forward packets based on the matches
in the forwarding tables.

[00115] Standards such as OpenFlow define the protocols used for the messages, as well as a
model for processing the packets. The model for processing packets includes header parsing,
packet classification, and making forwarding decisions. Header parsing describes how to
interpret a packet based upon a well-known set of protocols. Some protocol fields are used to

build a match structure (or key) that will be used in packet classification (e.g., a first key field

32

WO 2017/168216 PCT/IB2016/053149
could be a source media access control (MAC) address, and a second key field could be a

destination MAC address).

[00116] Packet classification involves executing a lookup in memory to classify the packet by
determining which entry (also referred to as a forwarding table entry or flow entry) in the
forwarding tables best matches the packet based upon the match structure, or key, of the
forwarding table entries. It is possible that many flows represented in the forwarding table
entries can correspond/match to a packet; in this case the system is typically configured to
determine one forwarding table entry from the many according to a defined scheme (e.g.,
selecting a first forwarding table entry that is matched). Forwarding table entries include both a
specific set of match criteria (a set of values or wildcards, or an indication of what portions of a
packet should be compared to a particular value/values/wildcards, as defined by the matching
capabilities — for specific fields in the packet header, or for some other packet content), and a set
of one or more actions for the data plane to take on receiving a matching packet. For example,
an action may be to push a header onto the packet, for the packet using a particular port, flood
the packet, or simply drop the packet. Thus, a forwarding table entry for IPv4/IPv6 packets with
a particular transmission control protocol (TCP) destination port could contain an action
specifying that these packets should be dropped.

[00117] Making forwarding decisions and performing actions occurs, based upon the
forwarding table entry identified during packet classification, by executing the set of actions
identified in the matched forwarding table entry on the packet.

[00118] However, when an unknown packet (for example, a “missed packet” or a “match-
miss” as used in OpenFlow parlance) arrives at the data plane 880, the packet (or a subset of the
packet header and content) is typically forwarded to the centralized control plane 876. The
centralized control plane 876 will then program forwarding table entries into the data plane 880
to accommodate packets belonging to the flow of the unknown packet. Once a specific
forwarding table entry has been programmed into the data plane 880 by the centralized control
plane 876, the next packet with matching credentials will match that forwarding table entry and
take the set of actions associated with that matched entry.

[00119] A network interface (NI) may be physical or virtual; and in the context of IP, an
interface address is an IP address assigned to a NI, be it a physical NI or virtual NI. A virtual NI
may be associated with a physical NI, with another virtual interface, or stand on its own (e.g., a
loopback interface, a point-to-point protocol interface). A NI (physical or virtual) may be
numbered (a NI with an IP address) or unnumbered (a NI without an IP address). A loopback
interface (and its loopback address) is a specific type of virtual NI (and IP address) of a

NE/VNE (physical or virtual) often used for management purposes; where such an IP address is

33

WO 2017/168216 PCT/IB2016/053149
referred to as the nodal loopback address. The IP address(es) assigned to the NI(s) of a ND are

referred to as IP addresses of that ND; at a more granular level, the IP address(es) assigned to
NI(s) assigned to a NE/VNE implemented on a ND can be referred to as IP addresses of that
NE/VNE.

[00120] Some portions of the preceding detailed descriptions have been presented in terms of
algorithms and symbolic representations of transactions on data bits within a computer memory.
These algorithmic descriptions and representations are the ways used by those skilled in the data
processing arts to most effectively convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-consistent sequence of transactions
leading to a desired result. The transactions are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these quantities take the form of electrical
or magnetic signals capable of being stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally for reasons of common usage, to
refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
[00121] It should be borne in mind, however, that all of these and similar terms are to be
associated with the appropriate physical quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is
appreciated that throughout the description, discussions utilizing terms such as "processing" or
"computing” or "calculating” or "determining" or "displaying" or the like, refer to the action and
processes of a computer system, or similar electronic computing device, that manipulates and
transforms data represented as physical (electronic) quantities within the computer system's
registers and memories into other data similarly represented as physical quantities within the
computer system memories or registers or other such information storage, transmission or
display devices.

[00122] The algorithms and displays presented herein are not inherently related to any
particular computer or other apparatus. Various general-purpose systems may be used with
programs in accordance with the teachings herein, or it may prove convenient to construct more
specialized apparatus to perform the required method transactions. The required structure for a
variety of these systems will appear from the description above. In addition, embodiments of the
present invention are not described with reference to any particular programming language. It
will be appreciated that a variety of programming languages may be used to implement the
teachings of embodiments of the invention as described herein.

[00123] An embodiment of the invention may be an article of manufacture in which a non-
transitory machine-readable medium (such as microelectronic memory) has stored thereon

instructions which program one or more data processing components (generically referred to

34

WO 2017/168216 PCT/IB2016/053149
here as a “processor”) to perform the operations described above. In other embodiments, some

of these operations might be performed by specific hardware components that contain hardwired
logic (e.g., dedicated digital filter blocks and state machines). Those operations might
alternatively be performed by any combination of programmed data processing components and
fixed hardwired circuit components.

[00124] In the foregoing specification, embodiments of the invention have been described
with reference to specific exemplary embodiments thereof. It will be evident that various
modifications may be made thereto without departing from the broader spirit and scope of the
invention as set forth in the following claims. The specification and drawings are, accordingly,
to be regarded in an illustrative sense rather than a restrictive sense.

[00125] Throughout the description, embodiments of the present invention have been
presented through flow diagrams. It will be appreciated that the order of transactions and
transactions described in these flow diagrams are only intended for illustrative purposes and not
intended as a limitation of the present invention. One having ordinary skill in the art would
recognize that variations can be made to the flow diagrams without departing from the broader

spirit and scope of the invention as set forth in the following claims.

35

WO 2017/168216 PCT/IB2016/053149
CLAIMS

What is claimed is:

1. A method implemented by a network device (100) functioning as a Border Gateway Protocol
(BGP) speaker to transmit aggregated link-state information pertaining to a network in
which the network device operates to a peer BGP speaker, the method comprising:

storing (610), in a link-state database, node entries representing nodes in the network,
fragment entries representing fragments received from nodes in the network, and
link/prefix entries representing links/prefixes in the network, wherein each node
entry is associated with a set of fragment entries and each fragment entry is
associated with a set of link/prefix entries, and wherein each fragment entry and
link/prefix entry is assigned a version number and each link/prefix entry is
assigned a state from a possible set of states, wherein the possible set of states
include a new entry state, a modified entry state, a deleted entry state, and an
unmodified entry state;

determining (620) link-state information to transmit to the peer BGP speaker based on a
state assigned to a link/prefix entry; and

transmitting (630) the determined link-state information to the peer BGP speaker.

2. The method of claim 1, wherein determining link-state information to transmit to the peer
BGP speaker includes determining that link-state information for a link/prefix should be
transmitted to the peer BGP speaker in response to a determination that a link/prefix entry

representing that link/prefix is assigned the new entry state or the modified entry state.

3. The method of claim 1, wherein determining link-state information to transmit to the peer
BGP speaker includes determining that link-state information for deletion of a link/prefix
should be transmitted to the peer BGP speaker in response to a determination that a

link/prefix entry representing that link/prefix is assigned the deleted entry state.

4. The method of claim 1, wherein determining link-state information to transmit to the peer
BGP speaker includes determining that link-state information for a link/prefix should not be
transmitted to the peer BGP speaker in response to a determination that a link/prefix entry

representing that link/prefix is assigned the unmodified entry state.

36

WO 2017/168216 PCT/IB2016/053149
5. The method of claim 1, further comprising:

receiving (705) a fragment from a node in the network, wherein the fragment advertises
link-state information for a link/prefix;

creating (720), in the link-state database, a new link/prefix entry representing the
link/prefix in response to a determination that a link/prefix entry representing that
link/prefix does not exist in the link-state database;

associating (725) the new link/prefix entry representing the link/prefix with a fragment
entry representing the received fragment;

assigning (710) an updated version number to the fragment entry representing the
received fragment;

assigning (730) the updated version number to the new link/prefix entry representing the
link/prefix; and

assigning (735) the new entry state to the new link/prefix entry representing the

link/prefix.

6. The method of claim 1, further comprising:

receiving (705) a fragment from a node in the network, wherein the fragment advertises
link-state information for a link/prefix;

assigning (710) an updated version number to a fragment entry representing the received
fragment;

assigning (737) the updated version number to a link/prefix entry representing the
link/prefix;

updating (750) a content of the link/prefix entry representing the link/prefix with a
content of the link-state information for the link/prefix included in the received
fragment in response to a determination that the content of the link/prefix entry
representing the link/prefix is different from the content of the link-state
information for the link/prefix included in the received fragment and that the
link/prefix entry representing the link/prefix is assigned the unmodified entry
state; and

assigning (755) the modified entry state to the link/prefix entry representing the
link/prefix.

7. The method of claim 1, further comprising:
receiving (705) a fragment from a node in the network, wherein the fragment advertises

link-state information for a link/prefix;

37

WO 2017/168216 PCT/IB2016/053149
assigning (710) an updated version number to a fragment entry representing the received

fragment;

assigning (737) the updated version number to a link/prefix entry representing the
link/prefix; and

updating (770) a content of the link/prefix entry representing the link/prefix with a
content of the link-state information for the link/prefix included in the received
fragment without assigning a new state to the link/prefix entry representing the
link/prefix in response to a determination that the link/prefix entry representing

the link/prefix is assigned the new entry state or the modified entry state.

8. The method of claim 1, further comprising:
assigning the deleted entry state to a link/prefix entry representing a link/prefix in
response to a determination that a version number assigned to the link/prefix
entry representing the link/prefix lags behind a version number assigned to a

fragment entry associated with the link/prefix entry representing the link/prefix.

9. The method of claim 8, further comprising:

receiving (705) a fragment from a node in the network, wherein the fragment advertises
link-state information for the link/prefix;

assigning (710) an updated version number to a fragment entry representing the received
fragment;

assigning (737) the updated version number to the link/prefix entry representing the
link/prefix; and

assigning (795) the unmodified entry state to the link/prefix entry representing the
link/prefix in response to a determination that a content of the link/prefix entry
representing the link/prefix matches a content of the link-state information for the
link/prefix included in the received fragment and that the link/prefix entry

representing the link/prefix is assigned the deleted entry state.

10. The method of claim 8, further comprising:
receiving (705) a fragment from a node in the network, wherein the fragment advertises
link-state information for the link/prefix;
assigning (710) an updated version number to a fragment entry representing the received

fragment;

38

WO 2017/168216 PCT/IB2016/053149
assigning (737) the updated version number to the link/prefix entry representing the

link/prefix;

updating (785) a content of the link/prefix entry representing the link/prefix with a
content of the link-state information for the link/prefix included in the received
fragment in response to a determination that a content of the link/prefix entry
representing the link/prefix is different from a content of the link-state
information for the link/prefix included in the received fragment and that the
link/prefix entry representing the link/prefix is assigned the deleted entry state;
and

assigning (790) the modified entry state to the link/prefix entry representing the
link/prefix.

11. The method of claim 1, wherein the determined link-state information is transmitted to the

peer BGP speaker via Border Gateway Protocol Link-State (BGP-LS).

12. The method of claim 1, further comprising:
storing global link/prefix entries representing links/prefixes advertised in the network in
the link-state database, wherein each global link/prefix entry is assigned a

fragment number.

13. The method of claim 12, further comprising:
receiving a fragment from a node in the network, wherein the fragment advertises link-
state information for a link/prefix;
creating, in the link-state database, a new global link/prefix entry representing the
link/prefix in response to a determination that a global link/prefix entry
representing that link/prefix does not exist in the link-state database; and
assigning a fragment number of the received fragment to the new global link/prefix entry

representing the link/prefix.

14. The method of claim 12, further comprising:
receiving a fragment from a node in the network, wherein the fragment advertises link-
state information for a link/prefix; and
assigning a fragment number of the received fragment to a global link/prefix entry

representing the link/prefix.

39

WO 2017/168216 PCT/IB2016/053149
15. The method of claim 12, further comprising:

receiving a fragment from a node in the network, wherein the fragment advertises link-
state information that indicates that a link/prefix should be deleted; and

deleting a global link/prefix entry representing the link/prefix from the link-state
database in response to a determination that a fragment number of the received
fragment matches a fragment number assigned to the global link/prefix entry

representing the link/prefix.

16. The method of claim 12, wherein link-state information for a link/prefix is transmitted to the
peer BGP speaker if a global link/prefix entry representing that link/prefix exists in the link-

state database.

17. A network device (804) configured to act as a Border Gateway Protocol (BGP) speaker, the
network device to transmit aggregated link-state information pertaining to a network in
which the network device operates to a peer BGP speaker, the network device comprising:

a link-state database to store link-state information pertaining to a network in which the
network device operates;

a set of one or more processors (842); and

a non-transitory machine-readable storage medium (848) having stored therein a link-
state module (851), which when executed by the set of one or more processors,
causes the network device to store, in the link-state database, node entries
representing nodes in the network, fragment entries representing fragments
received from nodes in the network, and link/prefix entries representing
links/prefixes in the network, wherein each node entry is associated with a set of
fragment entries and each fragment entry is associated with a set of link/prefix
entries, and wherein each fragment entry and link/prefix entry is assigned a
version number and each link/prefix entry is assigned a state from a possible set
of states, wherein the possible set of states include a new entry state, a modified
entry state, a deleted entry state, and an unmodified entry state, wherein the link-
state module, when executed by the set of one or more processors, further causes
the network device to determine link-state information to transmit to the peer
BGP speaker based on a state assigned to a link/prefix entry and transmit the

determined link-state information to the peer BGP speaker.

40

WO 2017/168216 PCT/IB2016/053149
18. The network device of claim 17, wherein the link-state module, when executed by the set of

one or more processors, further causes the network device to receive a fragment from a node
in the network, wherein the fragment advertises link-state information for a link/prefix,
create, in the link-state database, a new link/prefix entry representing the link/prefix in
response to a determination that a link/prefix entry representing that link/prefix does not
exist in the link-state database, associate the new link/prefix entry representing the
link/prefix with a fragment entry representing the received fragment, assign an updated
version number to the fragment entry representing the received fragment, assign the updated
version number to the new link/prefix entry representing the link/prefix, and assign the new

entry state to the new link/prefix entry representing the link/prefix.

19. A non-transitory machine-readable medium having computer code stored therein, which
when executed by a set of one or more processors of a network device (100) acting as a
Border Gateway Protocol (BGP) speaker, causes the network device to perform operations
for transmitting aggregated link-state information pertaining to a network in which the
network device operates to a peer BGP speaker, the operations comprising:

storing (610), in a link-state database, node entries representing nodes in the network,
fragment entries representing fragments received from nodes in the network, and
link/prefix entries representing links/prefixes in the network, wherein each node
entry is associated with a set of fragment entries and each fragment entry is
associated with a set of link/prefix entries, and wherein each fragment entry and
link/prefix entry is assigned a version number and each link/prefix entry is
assigned a state from a possible set of states, wherein the possible set of states
include a new entry state, a modified entry state, a deleted entry state, and an
unmodified entry state;

determining (620) link-state information to transmit to the peer BGP speaker based on a
state assigned to a link/prefix entry; and

transmitting (630) the determined link-state information to the peer BGP speaker.

20. The non-transitory machine-readable medium of claim 19, wherein the computer code, when
executed by the set of one or more processors of the network device, causes the network
device to perform further operations comprising:

receiving (705) a fragment from a node in the network, wherein the fragment advertises

link-state information for a link/prefix;

41

WO 2017/168216 PCT/IB2016/053149
creating (720), in the link-state database, a new link/prefix entry representing the

link/prefix in response to a determination that a link/prefix entry representing that
link/prefix does not exist in the link-state database;

associating (725) the new link/prefix entry representing the link/prefix with a fragment
entry representing the received fragment;

assigning (710) an updated version number to the fragment entry representing the
received fragment;

assigning (730) the updated version number to the new link/prefix entry representing the
link/prefix; and

assigning (735) the new entry state to the new link/prefix entry representing the

link/prefix.

21. The non-transitory machine-readable medium of claim 19, wherein the computer code, when
executed by the set of one or more processors of the network device, causes the network
device to perform further operations comprising:

receiving (705) a fragment from a node in the network, wherein the fragment advertises
link-state information for a link/prefix;

assigning (710) an updated version number to a fragment entry representing the received
fragment;

assigning (737) the updated version number to a link/prefix entry representing the
link/prefix;

updating (750) a content of the link/prefix entry representing the link/prefix with a
content of the link-state information for the link/prefix included in the received
fragment in response to a determination that the content of the link/prefix entry
representing the link/prefix is different from the content of the link-state
information for the link/prefix included in the received fragment and that the
link/prefix entry representing the link/prefix is assigned the unmodified entry
state; and

assigning (755) the modified entry state to the link/prefix entry representing the
link/prefix.

42

WO 2017/168216 PCT/IB2016/053149
22. The non-transitory machine-readable medium of claim 19, wherein the computer code, when

executed by the set of one or more processors of the network device, causes the network
device to perform further operations comprising:
receiving (705) a fragment from a node in the network, wherein the fragment advertises
link-state information for a link/prefix;
assigning (710) an updated version number to a fragment entry representing the received
fragment;
assigning (737) the updated version number to a link/prefix entry representing the
link/prefix; and
updating (770) a content of the link/prefix entry representing the link/prefix with a
content of the link-state information for the link/prefix included in the received
fragment without assigning a new state to the link/prefix entry representing the
link/prefix in response to a determination that the link/prefix entry representing

the link/prefix is assigned the new entry state or the modified entry state.

23. The non-transitory machine-readable medium of claim 19, wherein the computer code, when
executed by the set of one or more processors of the network device, causes the network
device to perform further operations comprising:

assigning the deleted entry state to a link/prefix entry representing a link/prefix in
response to a determination that a version number assigned to the link/prefix
entry representing the link/prefix lags behind a version number assigned to a

fragment entry associated with the link/prefix entry representing the link/prefix.

24. The non-transitory machine-readable medium of claim 23, wherein the computer code, when
executed by the set of one or more processors of the network device, causes the network
device to perform further operations comprising:

receiving (705) a fragment from a node in the network, wherein the fragment advertises
link-state information for the link/prefix;

assigning (710) an updated version number to a fragment entry representing the received
fragment;

assigning (737) the updated version number to the link/prefix entry representing the
link/prefix; and

assigning (795) the unmodified entry state to the link/prefix entry representing the
link/prefix in response to a determination that a content of the link/prefix entry

representing the link/prefix matches a content of the link-state information for the

43

WO 2017/168216 PCT/IB2016/053149
link/prefix included in the received fragment and that the link/prefix entry

representing the link/prefix is assigned the deleted entry state.

25. The non-transitory machine-readable medium of claim 23, wherein the computer code, when
executed by the set of one or more processors of the network device, causes the network
device to perform further operations comprising:

receiving (705) a fragment from a node in the network, wherein the fragment advertises
link-state information for the link/prefix;

assigning (710) an updated version number to a fragment entry representing the received
fragment;

assigning (737) the updated version number to the link/prefix entry representing the
link/prefix;

updating (785) a content of the link/prefix entry representing the link/prefix with a
content of the link-state information for the link/prefix included in the received
fragment in response to a determination that a content of the link/prefix entry
representing the link/prefix is different from a content of the link-state
information for the link/prefix included in the received fragment and that the
link/prefix entry representing the link/prefix is assigned the deleted entry state;
and

assigning (790) the modified entry state to the link/prefix entry representing the
link/prefix.

44

WO 2017/168216 PCT/IB2016/053149
1/11

SDN Controller
(Peer BGP Speaker) 130

Network 150

(ND (BGP Speaker) 100A A
Link-State Module
LSDB Module
115 120
_ D,

PCT/IB2016/053149

WO 2017/168216

2111

¥ Juawbelq

0 Juawbelq

¢N SPON

soxyald

0 Juawbei4

LN 3pPON

Lo 3PON

saxyald

V¢ b

¢N 9PON

LN 3PON

LY 3PON

WO 2017/168216 PCT/IB2016/053149

3/11
NEW ENTRY
Node
Version: 1 Version: 1
Version: 1 Fragment
NEW ENTRY NEW ENTRY
Version: 1
NEW ENTRY
Version: 1 Version: 1
NEW ENTRY NEW ENTRY
Fig. 3A
Node
Version: 2 Version: 2
Version: 2 Fragment
MODIFIED ENTRY

Version: 2

Version: 2 Version: 1
DELETED ENTRY

Version: 2
NEW ENTRY

Fig. 3B

WO 2017/168216

Node

4/11

PCT/IB2016/053149

Fragment-0

Fragment-1

Node

Fragment-0

Fragment-1

WO 2017/168216 PCT/IB2016/053149
5/11

Global Prefix Data
Structure 510

Frag_Num: 0
Node

Fragment-0 Fragment-1

Fig. 5A

WO 2017/168216

Node

6/11

PCT/IB2016/053149

Global Prefix Data
Structure 510

Frag_Num: 0

Frag_Num: 0 Frag_Num: 1

Frag_Num: 1

Fragment-0

Fragment-1

WO 2017/168216 PCT/IB2016/053149
7M1

Store node entries, fragment entries, and link/prefix entries in link-state
database, where each node entry is associated with a set of fragment
entries and each fragment entry is associated with a set of link/prefix

entries, and where each fragment entry and link/prefix entry is
assigned a version number and each link/prefix entry is assigned a
state from a possible set of states, where the possible set of states
include a new entry state, a modified entry state, a deleted entry state,
and an unmodified entry state (610)

Determine link-state information to transmit to peer BGP speaker
based on state assigned to a link/prefix entry (620)

Transmit determined link-state information to peer BGP speaker (630)

PCT/IB2016/053149

WO 2017/168216

8/11

(062) Anua Bunsixe o0}
alels Anua palpow ubissy

(g82) Anus
Bunsixe Jo juauo9 alepdn

(0L Anus
Bunsixe 4o ua1u09 a1epdn

(g52) Aua Bunsixe o0}
alels Aujua pallpow ubissy

(052) Anus
Bunsixe jo jusuod aepdn

(gel)
Anus mau 01 aiels Ajus mau ubissy

$

(G62) Anus
Bunsixe 0}
alels Alue
payipowiun
ubissy

SOA

(082) ¢aleyip

A

N S| Jusjuod

SOA

(Y1) éwalayip

(0gL) Anua mau
0] Jaquinu uolsiaA palepdn ubissy

$

ON S| JUaIU0D
SOA SOA 4
(092) :
alels Aua
¢o1els Anus payipow < Mm_w_%owc“:ﬁm_ aﬂcm
ON 10 91e]s AJlus mau Sl ON m.c.:m_xm 10 m.:Sw

Aue Buiisixe Jo a1e1S

(5¢.) wawbey
paAlgoal Bunuasaidal Ajua

Wwawbely yum AIUs Mau 31eI00SSY

%

[
(££2) Aus Bunsixs
0} Jaquinu uoissan pajepdn ubissy

SOA a
(S12)
4 9SEeqelep a1e]s-Hyul| Ul SISIXa
xyyasdpun Bunuasasdas Anug

+

ON

(01 2) wawbely panigoal
Bunuesaidal Aus wawbely
0] Jaquinu uoistaA palepdn ubissy

+

$

(02Z2) eseqelep ajeis-yull ul xyaid
AUl Bunuasaidal Aujue mau a1eal)

(502) xyaud

AUl| B J0J UONBULIOIUI 91B1S-)UI| S3SILISAPE JuaWwbel) ay) alaym ‘Juswbel) e sAlgoay

WO 2017/168216 PCT/1IB2016/053149
9/11
ND
ND 800c ND Physical Devices And
) 800R | 800D Physical Connectivity
Fig. 8A — ND | =—— D
800H —
ND 5 800E
800A
——1 | ND 800F
800G
Special Purpose // \\\:::\\: T Network Function
Hardware a \\\\\\:\\\\\\\\/\irtulization (NFV)
» T Tl
Special Purpose Network Device 802 General Purpose (COTS) Network Hybrid
ND Device 804 Network
Virtual Network Element(s) Control Virtual Network Element(s) Device
830A ** 830R Plane 860A *++ 860R 806
““““ 824 - —
; ot | [
Networking | Control Communication | | 832R | = |_ — 7
Software || and Config. Mod. 832A | | | | 862A | &R
[[
Instance(s) : : SR Software | || App(s) | “ App(s)]|
822 I I Instance(s)| | 864A || 864R ||
| | 852 |) ||
; ! } — _| ==
Forwarding Table(s) 834A| | 834R :_ - — = — — — =
L | Veualaton Loyer g5 |
Compute Resource(s) 812 A Processor(s) 842
Forwarding Resource(s) 814 NIC(s) 844
Networking Physical Nls 846
Hardware | | Physical Nis 816 : :
810 Non-Transitory Machine
: : ND . Readable Storage Media
Non-Transﬂory Machine Readable Forwarding| | i raware | 848
Storage Media 818 Plane 826 840
Networking Software 820 Sellwaro 20
CTWoTHING SoTWere 8= Link-State Module
Link-State BGP 851
Module Module BGP Module
821 823 853
Flg. 8B Car.d.s.838

Backplane 836

WO 2017/168216

PCT/IB2016/053149
10/11

Network Device 800 ND 800H
VNE VNE
870A.1 870H.1
Fig. 8C VNE -
870A2 |
VNE | -
870A.3
WNE | WNE .. WNE |
B0AP |1 §70AQ | | GIOAR |
Distributed Approach Centralized Approach
872 (SDN) 874
. ; M ppiicato
pplication
Fig. 8D i | | Application(s) 888 | Layer
.- - I e
/ i _‘_L_Nort_h Bound Interface 884
______________ -
/ i ||— —_— e — — — Centralized Control
I | Virtual Network(s) 892 | Plane 876'
Il —— e VL
/ i || Network Controller 878 ||
.] ;
[Fr—r———_ . - —————
/ i || : Centralized Reachability and : BGP Module 881 | |
L 1L Forwerding Info. od. 879 | I
I’J i || /T\ Il
Lo L 1]
o == — e — — — =
;o ey South Bound Interface 882
I —_—_———————— = __V ———————————— -
rr | I \ Data
i } NE / \\
| 8700 / : Plane 880
| | [eNE T NE o |
| || 88 870D \ |
/ NE | — NE o |
| NE
8104 | NE 870F |
R e |
Fig. 8E Fig. 8F Single
9 8 g VNE 870T
NE
870D
ND 800A ND 800H
— NE NE [
8701 8/0E VNE VNE
— NE 870A1 870H.1
870F = -

WO 2017/168216 PCT/IB2016/053149
11/11
Fig. 9
General Purpose (COTS) Control Plane Device 904
| 9624] ©R |
CCP Instance 976A		
Network Controller Instance 978		
CCP Application Layer 980		
Centralized Reachability and Forwarding Info. Mod. Instance		
979		
Software		
Instance(s)		
952		
Vitalzatontaperost |
Processor(s) 942
NIC(s) 944 Physical Nis 946
Non-Transitory Machine Readable Storage Media 948
Hardware
040 BGP Module 951
CCP Software 950

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2016/053149

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L12/751 HO4L12/715 HO4L12/741
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A PREVIDI S ET AL: "BGP Link-State
extensions for Segment Routing;
draft-gredler-idr-bgp-1s-segment-routing-e
xt-01.txt",

BGP LINK-STATE EXTENSIONS FOR SEGMENT
ROUTING;
DRAFT-GREDLER-IDR-BGP-LS-SEGMENT-ROUTING-E
XT-01.TXT, INTERNET ENGINEERING TASK
FORCE, IETF; STANDARDWORKINGDRAFT,
INTERNET SOCIETY (ISOC) 4, RUE DES
FALAISES CH- 1205 GENEVA, SWITZERLAND,

14 December 2015 (2015-12-14), pages 1-31,
XP015110236,

[retrieved on 2015-12-14]

page 34, line 1 - page 35, line 6

_/__

1-25

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"T" later document published after the international filing date or priority

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, .
Fax: (+31-70) 340-3016 Perrier, Samuel

"A" document defining the general state of the art which is not considered ;ﬂhaete ﬁzgi nlzt g:, fhoen;l,'ctuwnzg;h?naﬁﬁgﬁ?ﬁ(;ﬂt?:; cited to understand
to be of particular relevance P P 4 ying

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y* document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

7 December 2016 04/01/2017
Name and mailing address of the ISA/ Authorized officer

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

AL: "A Border Gateway Protocol 4 (BGP-4);
rfcl771.txt",

INTERNET X.509 PUBLIC KEY INFRASTRUCTURE
CERTIFICATE AND CERTIFICATE REVOCATION
LIST (CRL) PROFILE; RFC5280.TXT, INTERNET
SOCIETY (ISOC) 4, RUE DES FALAISES CH-
1205 GENEVA, SWITZERLAND, CH,

31 March 1995 (1995-03-31), XP015007558,
ISSN: 0000-0003

the whole document

PCT/1B2016/053149
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5 128 926 A (PERLMAN RADIA J [US] ET 1-25
AL) 7 July 1992 (1992-07-07)
the whole document
A REKHTER T J WATSON RESEARCH CENTER Y ET 1-25

Form PCT/ISA/210 (col

ntinuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/1B2016/053149
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5128926 A 07-07-1992 AU 619701 B2 30-01-1992
AU 6924891 A 03-10-1991
CA 2035231 Al 22-09-1991
DE 69032466 D1 13-08-1998
DE 69032466 T2 07-01-1999
EP 0447725 A2 25-09-1991
JP HO4223632 A 13-08-1992
us 5128926 A 07-07-1992

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - wo-search-report
	Page 59 - wo-search-report
	Page 60 - wo-search-report

