PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 98/04971
GOGF 9/40 Al _ o

(43) International Publication Date: S February 1998 (05.02.98)

(21) International Application Number: PCT/US97/12214 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,

(22) International Filing Date: 25 July 1997 (25.07.97) HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,

LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, S], SK, TJ, TM, TR, TT, UA, UG,
(30) Priority Data: UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG,

08/686,312 25 July 1996 (25.07.96) Us ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
(71) Applicant: TRADEWAVE CORPORATION [US/US]; Suite BJ, CF, CG, C1, CM, GA, GN, ML, MR, NE, SN, TD, TG).

100, 3636 Executive Center Drive, Austin, TX 78731 (US).

(72) Inventors: PAINTER, Paul, B.; 8812 Grape Cove, Austin, TX | Published

78717 (US). HARDIN, John, W.; 8702 Pepper Rock Drive, With international search report.
Austin, TX 78717 (US). Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(74) Agents: SHOWALTER, Donald, S. et al.; Holland & Knight amendments.

LLP, One East Broward Boulevard (33301), P.O. Box
14070, Fort Lauderdale, FL. 33302-4070 (US).

(54) Title: METHOD AND SYSTEM FOR GENERALIZED PROTOCOL IMPLEMENTATION ON CLIENT/SERVER COMMUNICA-
TIONS CONNECTIONS

2 6 4
34 A ~ - ;
Connection ~
Client Manager Server
(CM)

(57) Abstract

A client (3) and server (5) interposed by a connection manager (6) for implementing communications protocols between a client (3)
and server (5) in a transparent, application-independent, non-invasive fashion. The connection manager (6) comprises a client component (3)
typically resident on the client machine (2) and a server component (5) typically resident on the server machine (4). The client component
(3) accepts connection requests from client applications and sets up those connections in cooperation with the server component (5) of the
connection manager. The connection manager (6) identifies the type of connection requested (e.g., ftp, http, gss-http) based on such things
as the content of the request and invokes methods specific to the type of connection requested. In this manner, the connection manager
carries out the higher-level protocols, such as security protocols, for the connection in a way that is transparent to both the client (3) and

server (5).

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
[
FR

1L
18
IT

KE
KG
KP

KR
KZ

LI
LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

S
SK
SN
Sz
™
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
w

Slovenia

Slovakia

Sencgal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/04971 PCT/US97/12214

METHOD AND SYSTEM FOR
GENERALIZED PROTOCOL IMPLEMENTATION
ON CLIENT/SERVER COMMUNICATIONS CONNECTIONS

10

WO 98/04971 PCT/US97/12214

FIELD OF THE INVENTION

The present invention relates to computer networks having enhanced and/or
extended client/server communications. More particularly, the present invention is
characterized by an application-independent, object-oriented connection manager for
processing client/server connections (communications sessions) between client

computers and server computers.

BACKGROUND OF THE INVENTION

Client/server communications between client computers and server computers
are commonly established by the interaction of an application program running on the
client and a corresponding application program running on the server. The client/server
model is the conventional model governing the transfer of data between application
programs on a computer network. According to this model, the high-level protocols for
reading and writing data between a first computer (the client) and a second computer
(the server) are embedded in the application software running on the client and server,
respectively. Prior to the transfer of data, a communications session must be
established over the network between the client and the server.

Such a communication session is established according to a number of “layers”
of protocols. Among the lowest level protocols, physical connectivity between the client
machine and the server machine is established and maintained. For example, the

Ethernet CSMA/CD protocol is a common data link layer protocol governing the orderly

10

15

WO 98/04971 : PCT/US97/12214

transmission of packets of data between a client and server. Higher-level protocols,
such as the TCP/IP and XNS transport layer protocols, govern the assembly of data
into messages and the uniform addressing of various computers on the network. Due
to the established nature of protocols at these levels, much client software has these
protocols “built-in” so that these protocols are automatically employed when the client
software is run on a client or server machine on the network.

Still higher level protocols govern the interoperability of particular client/server
applications such as file transfer, remote file access, electronic mail, etc. Examples of
such applications include Internet-based applications, where use of a file transfer
protocol permits the transfer of files from ftp server sites (ftp://xxx.xxx); a different
protocol permits a client to browse documents in hypertext mark-up language (html)
format at http server sites (http://xxx.xxx); and yet another protocol governs the
establishment and maintenance of secure communications sessions between a client
and server at gss-http sites (http://xxx.xxx:488). For these higher-level protocols, each
client/server application is typically specially adapted at the source code level to
implement these protocols. In other words, the task of setting up a client/server
communications session employing the desired protocol is typically accomplished by
application-specific code developed by the application vendor for permitting the
application program to be run on a client and communicate with a server on the network

using higher-level protocols such as ftp, http, or gss-http.

10

WO 98/04971 PCT/US97/12214

Protocols for establishing secure client/server connections have conventionally
been handled in the foregoing manner. For example, Internet Web-based client
applications often employ software security packages to establish secure client/server
communications, but only after the application software has been invasively modified at
the source code level to interoperate with the security program. Thus, the application
program at the server must “know” that a security protocol is being employed, and the
application program must be specially adapted to work with the security protocol.

The need for transparent and application-independent client/server
communications management for implementing a variety of higher-level
communications protocols has been recognized. For example, Gradient's
WebCrusader software allows users to securely access distributed applications using
standard, off-the-shelf Web browsers instalied on desktop client systems. This product
Is purported to establish a secure session between an off-the-shelf Web client
application and a Web server using the DCE (Distributed Computing Environment) RPC

(Remote Procedure Calls) protocol. WebCrusader comprises an application-
independent “Connect Client” function resident on the client machine which interacts
with the client application, usually a Web browser. The Connect Client, in conjunction
with a corresponding “Connect Server” function resident on the server, uses the DCE
RPCs to forward requests from the Web browser to the server. The Connect Server
function receives these requests, performs security checks, fetches the requested

document, and uses DCE RPCs to send the document securely back to the Connect

WO 98/04971 ‘ PCT/US97/12214

Client for forwarding on to the Web browser. The Connect Client acts as a “proxy,”
intercepting document requests from the Web browser and determining whether a
secure document is sought. If the URL of the requested document contains a DCE
name, the Connect Client uses DCE RPCs to forward the request to the Connect
Server resident on the secure server. If the URL contains a non-secure address, the
Connect Client forwards the request to the appropriate standard Web server using http.
In this way, the WebCrusader transparently performs the security functions of
authentication, authorization and encryption between a client application and a server
using DCE. The software is strictly limited to the RPC protocol between client and
server, however, and is not stream-based.

What is needed is an application-independent client/server connection manager
suitable for use with any higher-level protocol, such as ftp, http, DCE and gss-http
without having to convert to RPC call sequences. It is desired that such a connection
manager tansparently set up and manage both secure and non-secure client/server
byte-stream sessions, yet inter-operate with each application only at the object code

level.

SUMMARY OF THE INVENTION

According to a first aspect of the invention, there is provided a client machine
and a server machine in a computer system, wherein the client and server include a

connection manager for establishing communications sessions using higher-level

WO 98/04971 - PCT/US97/12214

protocols such as http, ftp, or gss-http. The client machine may be any computer
capable of running a client application, and will typically include a memory device such
as a hard disk drive for storing the client application: a processor for executing the client
application; and means for handling input/output (1/0).

The connection manager typically comprises a client component running on the
client machine, and a server component running on the server machine. These dual
components of the connection manager together manage a series of connections
between a client application and a server application. The client component receives
requests from the client application and uses the request to set up and manage a
communications session with the server application wherein responses from the server
are received by the server component of the connection manager. The client aspect
and the server aspect are thus in part mirror images of each other, and they function
jointly as an “agent” of the communications between the client and the server.

It will be understood that the connection manager, including its client and server
components, can be run on a machine other than the client machine (on which the
client application runs) or the server machine (on which the server application runs).
For example, in a networked office environment, a client machine running a client
application may be interoperable with a separate machine running the connection
manager, which may then apply the appropriate protocols and enhancements to the

connection between the client application and a distant server application.

15

WO 98/04971 : PCT/US97/12214

The connection manager handles requests from a client application using an
object-oriented approach to process (set up and manage) the communications session
between the client application and the server application. The connection manager is
“‘object-oriented” in that it uses various discriminators determinable from the client or
server communication content (e.g., protocol, client or server address, data type, etc.)
to evaluate which type of communications connection, or class, is called for. By
observing these discriminators, the connection manager can “type” the object and call
on the communications methods corresponding to that class of connection when setting
up the communications session and carrying out the communications protocols
between the client and the server.

According to a second aspect of the invention, the connection manager is
application-independent. A variety of client/server applications may be used with the
connection manager, and these applications need not be adapted for use with the
connection manager. The connection manager receives ordinary requests originated
by either the client or the server and uses the content of those requests to set up and
manage a communications session between the client and the server. Requests from a
wide variety of applications and for a wide variety of classes of connections can be
accommodated by the connection manager in this manner.

According to a third aspect of the invention, the connection manager maintains
one or more active “listener” objects that await requests for connections of particular

types. When a connection is accepted on a particular listener, the connection manager

WO 98/04971 : PCT/US97/12214

associates with that connection the group of communications methods for connections
of that class.

According to a fourth aspect of the invention, there is provided a client/server
connection manager which is non-invasive with respect to the various applications with
which it may operate. The connection manager receives high-level, connection-specific
requests from the client. The connection manager uses these requests to determine
the lower-level protocols required for creating the desired type of connection, such as a
secure communications session. The connection manager employs client-resident
portions and server-resident portions to manage the communications and supply the
lower-level protocols without any modifications to the client application or the server

application at the source code level.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a simple block diagram representation of a client/server connection
manager according to the present invention.

FIG. 1B is a block diagram of a client/server connection manager separated into
its client and server components in a distributed computing environment.

FIG. 2A is a functional design diagram of the client component of a connection
manager with active listener objects which determine when connections of various

types are requested by a client application.

15

WO 98/04971 - PCT/US97/12214

FIG. 2B is a functional design diagram showing a single listener object
associated with a single class of methods for an http connection.

FIG. 3A is a flow chart of the functioning of a client/server connection manager in
the computer system according to the present invention.

FIG. 3B is a more detailed textual outline of the flow chart shown in FIG. 3A.

FIG. 4A is a communications activity flow diagram showing the establishment of
a communications session between a client and a server using only the client
component of a connection manager.

FIG. 4B is a textual outline of the communications activity shown in FIG. 4A.

FIG. 5A is a communications activity flow diagram showing the establishment of
a secure communications session between a client and a server using both the client
component and a server component of a connection manager.

FIG. 5B is a textual outline of the secure communications activity shown in FIG.

SA.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to the Figures, the invention in its simplest form is illustrated in
FIG. 1A, wherein a client machine 2 and a server machine 4 are interposed by
connection manager 6. Client machine 2 may have resident thereon one or more client
applications 3, and these applications will typically interact with one or more server

applications § to obtain data, files, graphics, etc. from the various servers. For

10

WO 98/04971 PCT/US97/12214

example, server machine 4 may be a server for one or more of ftp, http, or gopher
programs on the Internet, or it may be an electronic mail server or other server on a
private network. The invention encompasses any type of client/server combination
where such is interposed by a connection manager of the type described.

Connection manager 6 in its simplest form resides on client machine 2 and
manages the connections between the various client applications 3 and their target
server applications 5. Connection manager 6 sets up and manages these client/server
connections using an object-oriented approach to determine, based on the type of
connection sought by the client application 3 or the server application 5, the appropriate
class of communications methods to apply to the connection so that input/output (I/0)
between the client and server is processed seamlessly and transparently. The object-
oriented approach of connection manager 6 is described more fully below with
reference to FIGS. 2A and 2B.

Referring to FIG. 1B, connection manager 6 is shown to comprise client and
server components where the client machine 2 and server machine 4 communicate at
the application level over a network 8. Those components are designated connection
manager/client (CM/C) 10 and connection manager/server (CM/S) 12, respectively.
CM/C 10 typically receives from the various client applications 3 certain connection
requests destined for server applications 5. CM/C 10 types the object, or connection
sought, according to the content of the request from client application 3. CM/C 10 and

CM/S 12 then cooperate to establish the requested type of connection, applying the

10

10

WO 98/04971 PCT/US97/12214

appropriate higher level protocols through the collection of methods specific to the
requested type of connection. For example, if client application 3 requests a secure
(gss-http) Web connection, CM/C 10 and CM/S 12 invoke the communications methods
associated with the gss-http class of connection; neither the client application 3 nor the
server application § may be aware that the gss-http protocols are being implemented by
CM/C 10 and CM/S 12.

Once a connection is established by the components of connection manager 6,
I/O between client application 3 and server machine 4 is dispatched by CM/C 10 and
CM/S 12 in a way that is transparent to the client and server. CM/C 10 invokes the
communications methods associated with the particular type of connection established
(e.g., Init, connect, read and write methods for an http-class connection), thereby to
carry out the necessary protocol and giving the appearance that client application 3 is
receiving 1/0 from the server application unaided by any other application or utility.
Thus, it can be seen that CM/C 10 interacts with client application 3 as if CM/C 10 were
in fact a server application. Likewise, server application 5 interacts with CM/S 12 in the
same way that server application 5 would ordinarily interact with a client application.
The connection is thus transparent to client application 3 and server application 5,
which require no special knowledge that the components of connection manager 6 are
interposed between the client and the server.

Referring now to FIG. 2A, the establishment of client/server connections by

CM/C 10 is described. FIG. 2A representationally shows a plurality of logical

11

15

WO 98/04971 ' PCT/US97/12214

connections established between various client applications 3' and 3" and their target
server applications via a computer network. CM/C 10 is preferably provided with an
intializer 30 for setting up a plurality of listener objects 16. Listener objects 16 are
tailored, through their association with connection classes 31, to detect a request for a
particular type of connection from client applications 3' and 3", wherein each
connection class 31 defines a collection of communications methods that implement
protocols specific to a connection type. When CM/C 10 accepts a connection from a
client application 3' or 3", CM/C 10 associates with that connection the communications
methods corresponding to that type of connection.

When CM/C 10 accepts a connection request from client application 3' or 3",
CM/C 10 creates a connection object 24 for http connection 18, a connection object 26
for http connection 20, or connection object 28 for gss-http connection 22. Connection
objects 24, 26 and 28 are specialized by their respective connection classes 31 to
handie connections of particular types. The connection objects have pointers to the
actual client and server connections, pointers to specific methods of connection classes
31, and other information allowing them to be managed by CM/C 10. For example, the
http connection class’s Init method (http_Init) sets connection object 24’s read, write,
exception, and deinit methods to http_Read, http_Write, http_ Exception, and
http_Deinit, respectively. Event manager 14 calls the connection class methods for
each connection object in order to process I/O events and apply enhancements to the

protocols for each connection, e.g., adding security to http.

12

10

WO 98/04971 : PCT/US97/12214

CM/S 12 is preferably designed to mirror the operation of CM/C 10 and may be
designed similarly to accept communications requests on behalf of server application §
and receive communications from the server. For simple connections such as http
connection 18, where data is written to and from CM/C 10 without the need for
enhanced protocols such as security protocols, CM/S 12 may not be active on the
server side, and connection manager 6 may then be considered to comprise only CM/C
10, which connects directly to server application 5.

FIG. 2A shows the establishment of three different types of connections by CM/C
10, although any type of connection can be accommodated by the present invention.
There is shown representationally a logical, non-secure http connection 18 between a
client application 3' and a server application 5§ (not shown). This connection typifies the
non-secure Internet communications between a client and server. Also shown are http
connection 20 and secure gss-http connection 22, which empioys the gss-http protocol.
CM/C 10 cooperates with CM/S 12 (not shown) to set up each connection on
appropriate ports of server machine 4. For example, http connection 18 and http
connection 20 are typically set up on non-secure ports 80, while secure gss-http
connection 22 is set up on secure server port 488 according to current standards.

After the connections are established by CM/C 10 and CM/S 12, I/0 between
client application 3 and server application 5 is processed according to a collection of
methods which are specific to the type of connection established. In FIG. 2A are shown

connection objects 24, 26, and 28 which are associated with the methods for the http

13

10

WO 98/04971 : PCT/US97/12214

class, http class, and gss-http class of connection, respectively. Typical methods
include read, write, init and connect, although numerous methods may be invoked
depending on the connection type and the methods which are suitable for the particular
connection type. The functioning of current methods is well known. For example, the
http read method is invoked any time input data from either the client application 3 or
the server application § is available on an associated connection. The http init method
is invoked as soon as a client connection is accepted by CM/C 10. And the http
connect method is invoked as soon as a server connection is established by either
CM/C 10 or CM/S 12.

The methods of FIG. 2A may be implemented in any of a variety of ways,
including subroutines (both statically and dynamically linked), executing local
applications, remote procedure calls, Active-X and Java. Statically and dynamically
linked subroutines have proven to be an acceptable means for implementing these
methods.

Referring now to FIG. 2B, there is shown a functional design diagram of CM/C
10 for a single http-class connection. Connection class 31' defines the class of http
methods specific to the http connection class. Listener object 16 receives a connection
request on http connection 18. In response, CM/C 10 accepts the connection request
and creates connection object 24, which has pointers to the http read method 60, write
method 66°, connect method 64' and exception method 65. CM/C 10 also associates

connection object 24 with the http methods of connection class 31'. Event manager 14

14

IS

WO 98/04971 PCT/US97/12214

makes calls to these methods to process the I/O on http connection 18. /O events
(e.g., reads, writes, and exceptions) may originate from either the client or the server.
Processing of these read and write events is handled by event manager 14 via process
read routine 48 and process write routine 50, which make the appropriate calls to the
methods associated with the connection object.

Referring now to FIG. 3A, there is shown a flow chart of the functioning of
connection manager 6, which preferably has basic functions provided by an initialization
routine 30, an event processing routine 32, and a quit routine 34. Initialization routine
30 is executed once upon startup, and includes steps preliminary to establishing
client/server connections. In step 36, initializations specific to the platform on which
connection manager 6 is installed are carried out. The various program modules of
connection manager 6 are initialized in step 38. The connection class definitions
(reference numeral 31 in FIG. 2A) for connections to be managed by connection
manager 6 are loaded in step 40. The appropriate methods for use with each
connection class are initialized in step 42 and the listener objects 16 (FIG. 2A) are
created in this step.

Event processing routine 32 processes I/O events, and these are preferably
processed according to a process read step 48, a process write step 50, and a process
exception step 52 for handling error conditions on the connection. In step 54, a read
request is examined to determine whether it originated from the client or the server. If

the read request originated from the client, step 56 determines whether it is a request to

15

10

WO 98/04971 : PCT/US97/12214

read data from the client or instead a request to accept a connection from the client.
Requests to accept a connection invoke Init method 58 to specialize the connection
object 24 created by connection manager 6. In contrast, requests to read data invoke
read method 60. Read requests originating from the server likewise invoke read
method 60, which occurs when data is to be read from the server and written to the
client.

Write requests are handled by process write step 50, which first determines (step
60) whether the request is destined for the client or the server. If the write request is
destined for the server, step 63 determines whether it is a request to write data to the
server or instead a signal that a server connection request previously issued has
completed. Requests to write data invoke write method 66. Write requests destined for
the client likewise invoke write method 66, which occurs when data is to be written to
the client.

Event processing routine 32 may handle events other than I/O events. These
include user events, such as an indication from the user that he wants connection
manager 6 to exit. They may also include programmatic events (e.g., another program
wants connection manager 6 to exit), and so on.

In the typical http connection, the read, write, Init and connect methods are
sufficient to establish the communications session and handle all I/O between a client
application 3 and a server machine 4. If communication is over a network, components

CM/C 10 and CM/S 12 typically run respectively on client machine 2 and server

16

10

15

WO 98/04971 ‘ PCT/US97/12214

machine 4, with each component handling both read and write requests from the client
and the server according to the steps above.

When all connections are to be terminated, quit routine 34 carries out step 68 to
delete any active connection objects (which closes all open connections) and step 70 to
deinitialize the classes of connections previously initialized in step 40. FIG. 3B shows
in outline form the various steps of FIG. 3A.

Example A: Unsecure Web Connection (http)

Referring to FIG. 4A, there is shown an activity flow diagram for a simple, non-
secure client/server connection which is set up and managed by connection manager 6.
In the example, an http class connection is established on the Internet: client
application 3 is therefore presumed to be a Web browser and server machine 4 is
presumed to be a Web server. Because no higher-level network protocols (such as
security protocols) are required, connection manager 6 resides only on the client
machine 2. Prior to the initiation of the activities shown in FIG. 4A, it is presumed that
connection manager 6 has been initialized and that at least one listener object 16 (FIG.
2) of the http class is active.

The operation of connection manager 6 for http-class connections is now
described. Typically, a user of client application 3 (Web browser) enters the Universal
Resource Locator (URL), such as:

http://server.com

which identifies a Web site to be browsed (step 101). In response to the user entry of a

17

10

WO 98/04971 PCT/US97/12214

URL, client application 3 in step 102 attempts to open a connection to CM/C 10, which
client application 3 treats as a server application 5. Connection manager 6, which has
at least one active hitp listener object 16' (FIG. 2A), accepts the connection and
invokes the Init method associated with the accepting connection object (in this case,
http_init). At this point and throughout the example, client application 3 interacts with
connection manager 6 as if it were the server; thus client application 3 now treats the
connection as having been established with server application 5. In step 104, client
application 3 writes an http request, such as:

GET http://server.com/HTTP/1.0[CR.LF]
[CR/LF]

to connection manager 6. In step 105, connection manager 6 reads this request using
the read method for http. After successfully reading the request line, the http class
parses the specified URL to determine if it is valid. If the URL is not valid, then
connection manager 6 signals an error. After successfully parsing the specified URL,
the http class read method next reads the http header lines.

After the header lines are read, connection manager 6 cooperates with the
server to establish a connection using the connect methods (steps 106-108), and
subsequently invokes the http write methods to write the client request to server
machine 4 (step 109). Once the server reads this client request (step 110), it writes a
response (step 111). According to the http protocol, this response consists of a status

line, a header, and the body of the response, e.g.:

18

10

20

WO 98/64971 PCT/US97/12214

HTTP/1.0 200 OK[CR/LF]

[CRILF)

Hello World!
This response is then read by connection manager 6 (step 112). Like the client
application, the server's communication through connection manager 6 is transparent,
and the server cannot discern that connection manager 6 is anything other than an http
client.

Once connection manager 6 has received the response from the server, it writes
the response to the client application 3 (step 113). Client application 3 then reads the
response and displays it to the user (step 114). Thereafter, connection manager 6
closes the server connection in step 115, and subsequently client application 3 closes
the connection with connection manager 6 in step 116. The steps associated with all of
the activities in this http exampie of FIG. 4A are shown in outline form in FIG. 4B.

The particular methods implementing the http class connection in Example A are
outlined generally as follows:
|. http_Classlnit

A. Createlistener CO

B. ConnObj_SetlnitMethod(http_Init)

C. CreatAdmin?

1. CreatelListener
2. ConnObj_SetinitMethod(http_Init)
ll. http_Init

A. ConnObj_SetReadMethod(http_Read)

B. ConnObj_SetWriteMethod(http_Write)

C. [ConnectionManager/Server]

1. CallMethod(gss_Init)

il http_Deinit
IV. http_Connect

19

10

30

WO 98/04971 PCT/US97/12214

V. http_Read
A. ReadRequestOrReadResponse?
1. http_Read_Client_Request
a) http_Read_Clientinit
b) http_Read_Request
c) http_Read_ClientHeaderAndBody
(1) LocalOrRemote?
(a) http_ProcessLocalURL
(b) http_ProcessRemoteURL
i) SecureOrUnsecure?
(1) SetConnectMethod(gss_Connect)
(2) SetConnectMethod(http_Connect)
i) OpenRemoteConnection
iii) Buffer/FlushRequest
d) http_Read_ClientDone
2. http_Read_Server_Response
a) http_Read_Serverlnit
b) http_Read_Status
c) http_Read_ServerHeaderAndBody
d) http_Read_ServerDone
VL. http_Write
A. WriteRequestOrWriteResponse?
1. http_Write_ClientRequest
a) WriteComplete?
(1) SwitchToRead/MWriteResponse
2. http_Write_ServerResponse
a) WriteComplete?
(1) ConnObj_MarkForDeletion
VIi. http_Exception

Example B: Secure Web Connection (gss-http)

Referring to FIG. 5A, there is shown an activity flow diagram for a secure gss-

http client/server connection which is set up and managed by client and server

components of connection manager 6, namely CM/C 10 and CM/S 12. As in Example

A, client application 3 is presumed to be a Web browser and server machine 4 is

presumed to be a Web server. Prior to the initiation of the activities shown in FIG. 5A, it

20

10

15

WO 98/04971 - PCT/US97/12214

is presumed that CM/C 10 and CM/S 12 have been initialized and that at least one
listener object 16 (FIG. 2A) of the http class is active on each of CM/C 10 and CM/S 12.

The operation of CM/C 10 and CM/S 12 for secure gss-http connections is now
described. At the outset, the user of client application 3 (Web browser) gives an
indication in step 201 that he desires secure communications with a server. In
response, client application 3 attempts to open a connection with CM/C 10 (step 202)
and CM/C 10 accepts the connection (step 203). The client may then write a request to
CM/C 10, such as:

POST http://server.com;488/cgl-bin/foo HTTP/10[CR/LF]
Content-length: 17
Content-type: application/x-www-form-unencoded[CR/LF]
[CRI/LF)
name=John%20Smith
which includes a request line, header lines, and a user ID. CM/C 10 invokes the read
method to read this request in step 205.

The http read method observes the content of the request and determines that a
gss-http secure connection is desired. Thus, the gss connect method will be set as the
connect method associated with connection object 24 in FIG. 2B. Next, the http read
method opens a connection to the server (steps 206-208). CM/C 10 then cooperates
with CM/S 12 to establish a connection by invoking the connection object's connect

method (in this case, gss_Connect), which performs security context negotiation prior to

the transfer of any secure data (steps 209-216). The server application 5 (Web server)

21

WO 98/04971 PCT/US97/12214

receives no requests and takes no part in the connection set-up until after CM/C 10 and
CM/S 12 have successfully negotiated the seéure connection.
Upon completion of the security context negotiation between CM/C 10 and CM/S

12, http write methods including security protocols are invoked by CM/C 10 to send the
client request securely to CM/S 12. Operating in mirror image fashion, CM/S 12 reads
the client request in step 218. Thereafter, in steps 219 through 225, CM/S 12 interacts
with server application 5 to open a connection to the server, send the client request to
the server, and read the server response in a manner analogous to the interaction
between connection manager and server application 5 in steps 106-112 in Example A
above. The sample response written to CM/S 12 in FIG. 5A is

HTTP/1.0 200 OK [CRI/LF]

[CRILF)

Hello John Smith!
Now that the read and write methods invoked by CM/C 10 and CM/S 12 provide for a
secure connection, the server response may be securely written to and read by CM/C
10 (steps 226 and 227) before CM/S 12 closes the server connection (step 228). After
writing the response to the client (step 229) for display to the user (step 230), the
remainder of the connections are then closed, first by CM/C 10 (step 231), then by
client application 3 (step 232). Thus, it can be seen from the example that the client
and server components of connection manager 6 established a secure gss-http
connection between the client and server by interacting with client and server in a way

that transparently mimics direct interaction between client and server.

22

10

15

20

35

40

WO 98/04971 . PCT/US97/12214

The particular methods implementing the gss class connection in Example B are

outlined generally as follows:

. gss_Classinit
. gss_linit
A. ConnObj_SaveCurrentMethods
B. ConnObj_SetReadMethod(gss_Read)

M. gss_Delnit

IV. gss_Connect
A. gss_Init

IV. gss_Read

A. [ConnectionManager/Client]
1. gss_Read_Init
a) gss_AcquireAndFlushToken
2. gss_Read_Token
a) gss_Read_TokenHeader
b) gss_Read_TokenBytes
c) gss_AcquireAndFlushToken
d) NegotiationComplete?
(1) SetSocketParametersForTransparentEncrypt/Decrypt
3. gss_Read_FirstEncrypted
4. gss_Read_Done
a) ConnObj_RestoreCurrentMethods
B. [ConnectionManager/Server]
1. gss_Read_Init
2. gss_Read_Token
a) gss_Read_TokenHeader
b) gss_Read_TokenBytes
c) gss_AcquireAndFlushToken
d) NegotiationComplete?
(1) SetSocketParametersForTransparentEncrypt/Decrypt
(2) ConnObj_SetWriteMethod(gss_Write)
3. gss_Read_Done
VI. gss_Write
A. [ConnectionManager/Client]
B. [ConnectionManager/Server]
1. BufferAcknowledgement
2. WriteComplete?
a) ConnObj_RestoreCurrentMethods
VII. gss_Exception

23

WO 98/04971 PCT/US97/12214

While a particular embodiment of the invention has been illustrated and
described, it will be obvious to those skilled in the art that various changes and
modifications may be made without sacrificing the advantages provided by the

principles of construction and operation disclosed herein.

24

WO 98/04971 : PCT/US97/12214

CLAIMS
We claim;

1. A computer system providing enhanced communications between a client
application and a server application, comprising:
5 a client machine running said client application;
a connection manager interoperable with said client application to:
(@) receive from said client application a connection request for a
specific type of connection;
(b) identify the type of connection requested from a
10 plurality of connection types; and
(c) invoke methods for the type of connection requested, thereby
establishing a connection between said client application and said
server application.
2. A method of enhancing communications between a client application and a
15 server application in a client/server computing environment, comprising the steps of:
receiving from said client application a connection request for a
specific type of connection, said connection request including a body;
identifying the type of connection requested from a piurality of connection types:
invoking methods for the type of connection requested; and

20 writing said body of the connection request to said server application.

25

L~ (N

WO 98/04971

2

~

N

@

1/14

6

-

Connection

10
P

Manager

(CM)

PCT/US97/12214

FIG. 1A

/

!
Connection
Manager:

Client (CM/$)

Networ;}

4
Connection
Manager

Server (CM/S)

SUBSTITUTE SHEET (RULE 26)

FIG. 1B

(92 37n4) L33HS 3LNL11SENS

Connection Init
Manager

Client” (CM/C)

was accepted via

Initializer

nection
lass

9&

fvent | 18
||||||| Manager \\mo
http 4 fort 80
http | port 80
2% “
Mt omecia) 9ss—http|port 488,
Object Nl| ’
Method calls

(R,W,X,C)

Network

FIG. 2A

vi/e

1L6¥0/86 OM

PITTN/L6SN/LOd

WO 98/04971

Init method call

t
r—

16’
/J
j

Lt
|
!

&iste er
abonnectio

J

0

PCT/US97/12214

FIG. 2B

L —

~

3/14

(" Htt
Conn ction

Class '<Hﬁp Mﬁd0§>>

ted vig
nit Method Call

s accep

_Wa
|
a

Event
Manager

48

Process

/0

Fvents

Nt

P

rocess
Read

f

i

Ve
>0 52" Process

Exception

Process
Write

i 1

Process

Read from

Server

Read

Process

Process Process
from

Client

I

|
Write to| [Write to] |
Client $erver :
|

-

18

/

hit

(Connection
Object (CO)

P

Client
Connectio

Server
Connection/

I.I‘

Method Calls (R,W,CX)~~Li |

Function
Call

Legend

Function

Iotc or

Method
Call

SUBSTITUTE SHEET (RULE 26)

WO 98/04971 PCT/US97/12214

4/14
Initialize 38 ~
35\ * £ Load Classes
Initialize] | Load Parse

Platform Confiqurat Program l |
SpelelC »Modulesm on Igur(] 10N = g)
Initializations Info Arquments !

Load class
L T T /N
) [
Process Events 47 40 -
|
No/{yent Yes
PROCESS vailable?
JORVENS ™~ |
48{ f — N |
] Process 2 | Process Process |,
No '|__Read Exception Write |,
‘Lo | |
QU> | >4 Exception> :?32
s | \Method
| |
| |
| |
| !
! |
| |
| |
| |
| |
- - - - - - - _J
Quit /zo \ 7
%8 I[Delete all | [Deinitialize | [Deinitialize || >34
onnection Modules Classes
Objects '
=/
FIG. 3A

SUBSTITUTE SHEET (RULE 26)

WO 98/04971 : PCT/US97/12214
. main{arge,argv) 5/14
A. Initiolize(argc,argv)
1. PlatformSpecificInitializations()
2. LoadConfigurationinfo()
3. Modulelnitializations()
4. ParseCommandLineArguments{argc,argv)
5. LoadClassDefinitions()
a)LoadClass
b)InitClass
(1) GeneratehitArgs
(2) Method_Classinit
B. Processtvents()
1. ProcessUserEvents()
2. ProcessProgrammaticEvents()
3. ProcesslOEvents()
0) ProcessRead(sid)
8 SIDToConnectionObject(sid) ==> ConnObj,SIDType
2) ClientOrServerRead?
(a) Conn_ObjProcessReadFromClient(connob;)
i) AcceptOrRead?
(1) ConnObj_ProcessAccept
(a) GeneratelnitArgs
(b) Wethod_nit
(2) ConnObj_ProcessRead
(a) GenerateReadArgs

(b) Method_Read
(b) ConnObj_ProcessReadFromServer(connobj)

1) Connobj_ProcessRead
(1) GenerateReadArgs
(2) Method_read

FIG. 3B

TO FIG. 3C |
SUBSTITUTE SHEET (RULE 26)

WO 98/04971 : PCT/US97/12214

6/14 FROM FIG. 3C |

(3) ConnObj_DeletelfMarked
b) ProcessWrite(sid)
E1;SIDToConnectionObject(sid) ==> ConnObj, SIDType
2) ClientOrServerWrite?
(a) ConnObj_ProcessWriteToClient(connabj)
i) ConnObj_ProcessWrite
(1) GenerateWriteArgs
(7) Method_Write
(b) ConnObj_ProcesshriteToServer(connobj)
i) ConnectOrWrite?
(1) ConnObj_ProcessConnect
(a) GenerateConnectArgs
(b) Method_Connect
(2) ConnObj_ProcessWrite
(a) GenerateWriteArgs
(b) Method_Write
(3) ConnObj_DeletelfMarked
¢) ProcessException(sid)
8 SIDToConnectionObject(sid) ==> ConnOjb, SIDType
2) Conn0bj_ProcessException(connob))

(3) ConnObj_Delete
C. Quit()

FIG. 3C

SUBSTITUTE SHEET (RULE 26)

WO 98/04971

PCT/US97/12214

5\/-<

Server
(Web Server)

7/14
11 Client R CM/
(Web Browser) Client
User types URL
http://server.com
Client opens
connection to T —=103
CM/C
Client writes :
HITP request Client Request 105
GET http://server.com/ HTTP/1.0[CR/LF]
[GRALF]
CM/C opens
coréectign o 106~ _
Server.com
CM/C connection _—
o /server 108
is established
CM/C writes
client request to {109

114

116
FIG. 4A

Server

CM/C reads

Server response;
a. status fine
b. header lines
. body

Server Response

Client closes
CM/C connection

CM/C accepts
connection

CM/C reads client
request
0. request line
b. header lines

[%2 /Ui]mp/i.o[m/u]

112

113

Server Response

Server
accepts
connection

Server
reads
request

Server
writes
response

|CR/LF]
Hello World!

HTIP/1.0 200 OK[CR/LF]

CM/C writes
server response to
client

CM/C closes
server connection

SUBSTITUTE SHEET (RULE 26)

WO 98/04971 PCT/US97/12214

8/14
|. User types URL: http://server.com
I Client: Open Connection to Server (in this case, CM/Client)
A. CM/C: Accept Client Connection
Il Client: Write Request to Server (CM/C)
A. CM/C: Read Client Request
1. CM/C: Read Request Line
GET http://server.com/ HTTP/1.0[CR/LF]
2. CM/C: Read Request Headers
[CR/LF]
3. CM/C: Open Connection to server.com
4. CM/C: Server Connection is Fstablished
B. CM/C: Write Client Request to Server
V. Client: Read Response from Server (CM/C)
A. CM/C: Read Server Response
1. CM/C: Read Server Status Line
HTTP/1.0 200 OK[CR/LF]
2. CM/C: Read Server Headers and Body
Content~type: text/plain[CR/LF]
[CR/LF]
Hello World!
B. CM/C: Write Server Response to Client
C. CM/C: Close Server Connection
V. Client: Read and Display Server Response
VI. Client: Close Connection to Server (CM/C)

FIG. 4B

SUBSTITUTE SHEET (RULE 26)

Client

Web Browser

User clicks

on "Submit”
button

Client opens @
«2 connection to

CM/C

5 Client wites
S TP request

Client Request

CM/ ~10 12
Client

CM/
Server

~~~~~~~~~~~~~~ 203) CM/C accepts

connection

205) CM/C reads client
request
0. request line
b. header lines

POST ht
Content- Fe

(9Z 371NY) L33HS 3

[CR/L

./ /senver.com:488/cgi-bin foo HTTP/1.0[CR/LF]

ngth: 17

name 30hn7208m|

Content-type: application/x-ww—form—urlencoded[CR/LF]

FIG. 5A

TO FIG. 5B ‘

Server
(Web Server)

v1/6

1L6¥0/86 O

YITTI/L6SN/LDd



(92 31N4) 133HS 3LNLI1SANS

FROM FIG. 5A |

CH/C opens

connection 10 @ ——

server.com:488 ST T —— CM/S accepts
-7 connection

CM/C connection -
to server is @ ——
established

foe F Securify Context Negofiafion

CM/C writes first f g

209 First Tok CM/S reads
token irst Token 210 ﬁrs{ S
CM/C reads CH/S writes
reséonse token \212 Response Token 211 response token
CM/C writes fingl .
tokén 213 Final Token 214 gﬁg reads final
gryc/r)gpt;egds st 713 il el 015 gyc/r;ptggtes first

CM/C writes
client request to
Server

CM/S reads client

request ,
0. request line

b. header fines

Client Request

J

FIG. 5B TO FIG. 5C

vi/01

1L6¥0/86 OM

PIZTL/L6S/ LD



(92 31N4) L33HS 3LNLILSENS

FROM FIG. 5B
o IR

A0S /c?i—t;in/foo TP/ [CR/IE

Content-length: 17

fgﬁt/e{\}—type: opplication/x-www~form-urlencodedCR/LF]

name=John%205mith
CM/S opens
connection to
Server
CM/S connection
to server is
established

CM/S writes client
request to server

CM/S reads
Server response:
CM/C reads 0. status fine
Server response; b. header fines
0. status fine C. body
b. header lines
. body

@/ Server Response
FIG. 5C 70 FG. 50|

2198 _

~ .
~
~
~
e
’/
// @
221~

222} Tlent Request @
295 Server Response @

Server
accepts

connection

Server
reqds
request

Seyver
writes
response

HITP/1.0 200 OK[CR/LF]

CR/LF
Lellg Jg)hn Smith!

228)001/5 wrtes

Server response to
client

14721

1L6¥0/86 OM

PITTI/L6SN/LOd



Client reads
and displays

SEIVer response

(92 37nY) LIIHS 3LNLILSaNS

Server Response

Client closes |
server connection

CM/C writes
Server response to
client

CM/C closes
server connection

FIG. 5D

FROM FIG. 5C |

CM/S closes
server connection \228

vi/21

1L6V0/86 OM

PITTI/L6S/LDd



WO 98/04971 ' PCT/US97/12214

13/14

. User clicks on "Submit” button to submit an HTML Form.
I Client: Open Connection to Server (in this case, CM/Client)

A. CM/C: Accept Client Connection
Il Client: Write request to Server (CM/C)

A. CM/C: Read Client Request

1. CM/C: Read Request Line
POST http://server.com:488/cgi-bin/foo HTTP/1.0[CR/LF]
2. CM/C: Read Request Headers and Body
Accept: image/gif, image/jpeg, */*[CR/LF]

Content-length: 17[CR/LF
Content-type: application/x-www~form-urlencoded[CR/LF]
[CR/LF]
John%20Smith
CM/C: Open Connection to server.com488(in this case, CM/S)
CM/S: Accept Client(in this case, CM/C) Connection
. CM/C: Server (CM/S) Connection is Established
egotiate Security Context
CM/C: Write First Token
CM/S: Read First Token
CM/C: Write Response Token
CM/C: Read Response Token
CM/C: Write Final Token
CM/S: Read Final Token
CM/S: Write First Encrypted
CM/C: Read First Encrypted
/C: Write Client Request to Server (CM/S)
/S: Read Client (CM/C) Request
1. CM/S: Read Request Line
2. CM/S: Read Request Headers and Body
3. CM/S: Open Connection to Server
4. CM/S: Server Connection is Established
FIG. 5 TR.5 |

SUBSTITUTE SHEET (RULE 2R

B.

=

o .

O O




WO 98/04971

14/14  FROM FIG. 5E |

E. CM/S: Write Client Request to Server
V. Client: Read Response from Server (CM/C)
A. CM/S: Read Server Response
1. CM/S: Read Server Response Line
HTTP/1.0 200 OK[CR/LF]
2. CM/S: Read Server Headers and Body
Content~type: text/plain[CR/LF]
[CR/LF]
Hello, John Smith!
B. CM/S: Write Server Response to Client
C. CM/S: Close Server Connection
D. CM/C: Read Server Response
1. CM/C: Read Server Response Line
2. CM/C: Read Server Headers and Data
E. CM/C: Write Server Response to Client
F. CM/C: Close Server Connection
V. Client: Read and Display Server Response
VI. Client: Close Connection to Server (CM/C)

FIG. 5F

SUBSTITUTE SHEET (RULE 26)

PCT/US97/12214



INTERNATIONAL SEARCH REPORT Intcmational application No.
PCTMUS97/12214

A.  CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 9/40

US CL :395/680
According 1o Intemational Patent Classification (IPC) or to both national classification and 1PC

B. FIELDS SEARCHED

Minimum documentation scarched (classification system followed by classification symbols)

U.S. : 395/680; 683, 187.01, 186, 188.01, 200.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Eiectronic data base consulted during the intemational scarch (name of data base and, where practicable, search terms used)

APS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 5,506,961 A (CARLSON et al) 09 APRIL 1996, col. 7, line 12, | 1-2
col. 8, fig. 3.

Y US 5,509,121 A (NAKATA et al) 16 APRIL 1996, col. I, lines 30-| 1-2
35, col. 2, lines 38-40, col. 3, lines 55-63.

D Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: ‘T later document published after the international filing date or priority
. L . date and not in conflict with the appiication but cited to understand
“A* document defining the goneral state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
apre . . . . °X* document of particular relevance; the claimed tnvention cannot be
E earlier document published on or sfter the international filing date idered novel or ‘ 1 be idered to invoive an inventive step
*L* document which may throw doubts on priority clsim(s) or which is when the document is taken alone
cited to establish the publication date of h itaton or other . .
special reason (ss specified) Yy docu:menl of particular relevnm:e;‘ the claimed wvenuon cannot be
considered to involve an inventive step when the document is
0" document referring to an oral discl , use, exhibiu or other combined with one or more other such documenta, such combination
means being obvious to a person skilled in the art
"P* document published prior to the intematonal filing date but later than  « g+ document member of the same patent family
the priority date claimed
Date of the actual completion of the intemational search Date of mailing of the intemational search report
08 OCTOBER 1997 J.. 2 DEC 1997
4 ol /4
Name and mailing address of the ISA/US Autho ofﬁ.c/{ g
Commissioner of Patents and Trademarks -
Box PCT 'KEVIN KREISS
Washington, D.C. 20231 " EVINK
Facsimile No.  (703) 305-3230 Telephone No. (703) 305-9600

Form PCT/ISA/210 (sccond sheet)(July 1992)«



	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

