(19) 国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 112916768 B (45) 授权公告日 2023. 08. 18

(21)申请号 202110310118.4

(22)申请日 2021.03.24

(65) 同一申请的已公布的文献号 申请公布号 CN 112916768 A

(43) 申请公布日 2021.06.08

(73) 专利权人 南京南华航空产业有限公司 地址 210000 江苏省南京市浦口区卓溪路 12号

(72) 发明人 刘文升

(74) 专利代理机构 泉州市兴博知识产权代理事务所(普通合伙) 35238

专利代理师 易敏

(51) Int.CI.

B21F 11/00 (2006.01)

(56) 对比文件

CN 112122509 A, 2020.12.25

CN 107813015 A, 2018.03.20

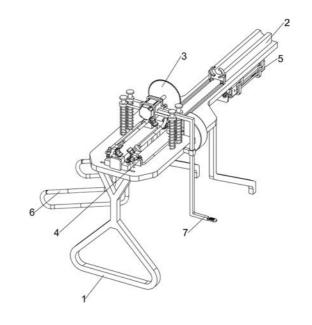
CN 207076910 U,2018.03.09

CN 104785593 A,2015.07.22

CN 112345350 A,2021.02.09

JP H10128484 A,1998.05.19

审查员 段飞虎


权利要求书2页 说明书5页 附图10页

(54) 发明名称

一种高端设备制造用钢筋等长切割设备

(57) 摘要

本发明涉及一种切割设备,尤其涉及一种高端设备制造用钢筋等长切割设备。要解决的技术问题为提供一种轻松省力等长钢筋,自动夹紧固定钢筋,自动夹紧传送钢筋,方便收集和取出钢筋的高端设备制造用钢筋等长切割设备,包括有:工作台,工作台上部设有放置机构;切割机构,工作台上部一侧设有切割机构。本发明通过启动气缸,推动第三滑杆先向左内侧再向左移动,在第四弹簧的作用下,推动第二夹块向内侧移动,夹紧钢筋后,带动钢筋一起向左移动,第三滑杆带动第三楔形块向左移动,与第四楔形块配合,带动第三楔形块向左移动,长开钢筋,复达到自动夹紧并宽传送钢筋的效果,提高钢筋切割效率。

1.一种高端设备制造用钢筋等长切割设备,其特征在于:包括有:

工作台(1),工作台(1)上部设有放置机构(2);

切割机构(3),工作台(1)上部一侧设有切割机构(3);

放置机构(2)包括有:

放置台(21),工作台(1)上部一侧连接有放置台(21);

第一支撑杆(24),工作台(1)上部内侧面中部两侧均对称连接有第一支撑杆(24);

连接杆(25),两侧第一支撑杆(24)外侧上部之间均连接有连接杆(25),连接杆(25)与工作台(1)之间均设有第一滑槽(23):

挡块(26),工作台(1)上部一侧中间连接有挡块(26);

切割机构(3)包括有:

第二支撑杆(33),工作台(1)上部两侧均对称连接有第二支撑杆(33);连接架(38),第二支撑杆(33)之间滑动式连接有连接架(38);

第一弹簧(34),连接架(38)与工作台(1)之间两侧均对称连接有第一弹簧(34),第一弹簧(34)套件第二支撑杆(33)上:

高速电机(32),连接架(38)中部安装有高速电机(32);

切割片(31),高速电机(32)输出轴一侧连接有切割片(31);

伸缩杆(35),一侧连接架(38)中部两侧均连接有伸缩杆(35);

第一楔形块(37),伸缩杆(35)下部一侧均滑动式连接有第一楔形块(37);

第二弹簧(36),第一楔形块(37)一侧与伸缩杆(35)之间均连接有第二弹簧(36);

还包括有夹紧组件(4),夹紧组件(4)包括有:

第二滑杆(44),工作台(1)上部一侧内部对称滑动式连接有第二滑杆(44);

第二楔形块(43),第二滑杆(44)上侧均连接有第二楔形块(43);

第一连杆(46),第二楔形块(43)上部外侧均连接有第一连杆(46);

第一滑杆(42),工作台(1)上部一侧内部两侧均对称滑动式连接有第一滑杆(42);

第一夹块(41),第一滑杆(42)上侧均连接有第一夹块(41);

第三连杆(48),两侧第一夹块(41)外侧之间均连接有第三连杆(48);

第二连杆(47),一侧第一夹块(41)上部外侧均连接有第二连杆(47);

转动槽(45),工作台(1)上部一侧对称转动式连接有转动槽(45),转动槽(45)一侧与同侧第一连杆(46)滑动式连接,转动槽(45)一侧与同侧第二连杆(47)滑动式连接;

楔形杆(49),一侧第一夹块(41)一侧均连接有楔形杆(49),楔形杆(49)与第一楔形块(37)相互配合:

还包括有驱动组件(5),驱动组件(5)包括有:

气缸(51),工作台(1)上部内侧面安装有气缸(51);

连接板(511),气缸(51)活塞杆一侧连接有连接板(511),连接板(511)上部两侧均开有 第二滑槽(510);

第三滑杆(55),第二滑槽(510)内均滑动式连接有第三滑杆(55);

第四弹簧(56),第三滑杆(55)一侧下部与连接板(511)之间均连接有第四弹簧(56);

固定块(57),第三滑杆(55)一侧上部均连接有固定块(57);

第五楔形块(58),固定块(57)上部两侧均滑动式配合有第五楔形块(58),第五楔形块

(58) 与第一支撑杆(24) 相互配合;

支撑块(512),两侧第五楔形块(58)上侧之间滑动式连接有支撑块(512);

第五弹簧(59),第五楔形块(58)上侧与支撑块(512)之间均连接第五弹簧(59);

第四连杆(513),支撑块(512)上部中间均连接有第四连杆(513),第四连杆(513)与第一滑槽(23)滑动式连接;

第三楔形块(53),第四连杆(513)中部内侧均连接有第三楔形块(53);

第二夹块(52),第四连杆(513)上侧均连接有第二夹块(52);

第四楔形块(54),工作台(1)上部一侧中间对称连接有第四楔形块(54),第四楔形块(54)与第三楔形块(53)相互配合。

2.如权利要求1所述的一种高端设备制造用钢筋等长切割设备,其特征在于:还包括有收集组件(6),收集组件(6)包括有:

收集架(61),工作台(1)上部一侧对称连接有收集架(61);

旋转轴(62),收集架(61)一侧上部转动式连接有旋转轴(62);

转杆(63),旋转轴(62)上连接有转杆(63),转杆(63)与收集架(61)相互配合。

- 3.如权利要求2所述的一种高端设备制造用钢筋等长切割设备,其特征在于:还包括有踩踏组件(7),踩踏组件(7)设置在工作台(1)上部一侧与连接架(38)之间。
- 4.如权利要求3所述的一种高端设备制造用钢筋等长切割设备,其特征在于:踩踏组件(7)包括有:

支撑座(72),工作台(1)上部一侧连接有支撑座(72);

异形杆(71),支撑座(72)内部滑动式连接有异形杆(71),异形杆(71)上部一侧与连接架(38)相连接;

踏板(73),异形杆(71)下部一侧连接有踏板(73)。

一种高端设备制造用钢筋等长切割设备

技术领域

[0001] 本发明涉及一种切割设备,尤其涉及一种高端设备制造用钢筋等长切割设备。

背景技术

[0002] 高端设备在制造过程中需要使用到各种各样的制造材料,而钢筋作为基础材料之一,在高端设备制造过程中运用广泛,过长的钢筋通常需要切割常等长的短钢筋投入使用。 [0003] 现有的钢筋等长切割技术,主要是通过使用者将钢筋移动至工作台上,在确定长度上,按压高速转动的切割片,使其切断钢筋,此种技术,首先在切割过程中,没有固定钢筋,钢筋如若发生偏移,可能影响切割,其次手动握住钢筋带动其移动,耗费人力,效率低下,而手动下压切割片则不仅麻烦费力,并且容易受伤,切割后的钢筋掉落在地难以收集。 [0004] 因此,需要设计一种轻松省力等长钢筋,自动夹紧固定钢筋,自动夹紧传送钢筋,方便收集和取出钢筋的高端设备制造用钢筋等长切割设备。

发明内容

[0005] 为了克服现有技术中钢筋不固定,手动传送和下压切割片切割钢筋,难以收集钢筋的缺点,要解决的技术问题:提供一种轻松省力等长钢筋,自动夹紧固定钢筋,自动夹紧传送钢筋,方便收集和取出钢筋的高端设备制造用钢筋等长切割设备。

[0006] 本发明的技术方案为:一种高端设备制造用钢筋等长切割设备,包括有:工作台,工作台上部设有放置机构;切割机构,工作台上部一侧设有切割机构。

[0007] 进一步地,放置机构包括有:放置台,工作台上部一侧连接有放置台;第一支撑杆,工作台上部内侧面中部两侧均对称连接有第一支撑杆;连接杆,两侧第一支撑杆外侧上部之间均连接有连接杆,连接杆与工作台之间均设有第一滑槽;挡块,工作台上部一侧中间连接有挡块。

[0008] 进一步地,切割机构包括有:第二支撑杆,工作台上部两侧均对称连接有第二支撑杆;连接架,第二支撑杆之间滑动式连接有连接架;第一弹簧,连接架与工作台之间两侧均对称连接有第一弹簧,第一弹簧套住第二支撑杆上;高速电机,连接架中部安装有高速电机;切割片,高速电机输出轴一侧连接有切割片;伸缩杆,一侧连接架中部两侧均连接有伸缩杆;第一楔形块,伸缩杆下部一侧均滑动式连接有第一楔形块;第二弹簧,第一楔形块一侧与伸缩杆之间均连接有第二弹簧。

[0009] 进一步地,还包括有夹紧组件,夹紧组件包括有:第二滑杆,工作台上部一侧内部对称滑动式连接有第二滑杆;第二楔形块,第二滑杆上侧均连接有第二楔形块;第一连杆,第二楔形块上部外侧均连接有第一连杆;第一滑杆,工作台上部两侧均对称滑动式连接有第一滑杆;第一夹块,第一滑杆上侧均连接有第一夹块;第三连杆,两侧第一夹块外侧之间均连接有第三连杆;第二连杆,一侧第一夹块上部外侧均连接有第二连杆;转动槽,工作台上部一侧对称转动式连接有转动槽,转动槽一侧与同侧第一连杆滑动式连接,转动槽一侧与同侧第二连杆滑动式连接;楔形杆,一侧第一夹块均连接有楔形杆,楔形杆与第一楔形块

相互配合。

[0010] 进一步地,还包括有驱动组件,驱动组件包括有:气缸,工作台上部内侧面一侧安装有气缸;连接板,气缸活塞杆一侧连接有连接板,连接板上部两侧均开有第二滑槽;第三滑杆,第二滑槽内均滑动式连接有第三滑杆;第四弹簧,第三滑杆一侧下部与连接板之间均连接有第四弹簧;固定块,第三滑杆一侧上部均连接有固定块;第五楔形块,固定块上部两侧均滑动式配合有第五楔形块,第五楔形块与第一支撑杆相互配合;支撑块,两侧第五楔形块上侧之间滑动式连接有支撑块;第五弹簧,第五楔形块上侧与支撑块之间均连接第五弹簧;第四连杆,支撑块上部中间均连接有第四连杆,第四连杆与第一滑槽滑动式连接;第三楔形块,第四连杆中部内侧均连接有第三楔形块;第二夹块,第四连杆上侧均连接有第二夹块;第四楔形块,工作台上部一侧中间对称连接有第四楔形块,第四楔形块与第三楔形块相互配合。

[0011] 进一步地,还包括有收集组件,收集组件包括有:收集架,工作台上部一侧内侧面对称连接有收集架;旋转轴,收集架一侧上部转动式连接有旋转轴;转杆,旋转轴上连接有转杆,转杆与收集架相互配合。

[0012] 进一步地,还包括有踩踏组件,踩踏组件设置在工作台上部一侧与连接架之间。

[0013] 进一步地,踩踏组件包括有:支撑座,工作台上部一侧连接有支撑座;异形杆,支撑座内部滑动式连接有异形杆,异形杆上部一侧与连接架相连接;踏板,异形杆下部一侧连接有踏板。

[0014] 本发明的有益效果:1、本发明通过启动电机带动切割片转动,推动连接架向下移动,带动切割片向下移动,切割钢筋,达到轻松等长切割钢筋的效果。

[0015] 2、本发明通过推动钢筋向左移动,推动第二楔形块向外侧移动,通过转动槽带动第二夹块向内侧移动,夹紧固定住钢筋,达到自动夹紧固定和松开钢筋的效果,保证钢筋的精准切割。

[0016] 3、本发明通过启动气缸,推动第三滑杆先向左内侧再向左移动,在第四弹簧的作用下,推动第二夹块向内侧移动,夹紧钢筋后,带动钢筋一起向左移动,第三滑杆带动第三楔形块向左移动,与第四楔形块配合,带动第二夹块外侧移动,松开钢筋,复达到自动夹紧并传送钢筋的效果,提高钢筋切割效率。

[0017] 4、本发明通过切割后的钢筋掉落至收集架之间,随后顺时针转动转杆,打开收集架,取出钢筋,达到方便统一收集和取出钢筋的效果。

[0018] 5、本发明通过踩压踏板,带动异形杆和连接架向下移动,最终成功切割钢筋,达到更加轻松驱动切割片向下移动切割钢筋的效果。

附图说明

[0019] 图1为本发明的立体结构示意图。

[0020] 图2为本发明的放置机构第一角度立体结构示意图。

[0021] 图3为本发明的放置机构第二角度立体结构示意图。

[0022] 图4为本发明的A部分放大图。

[0023] 图5为本发明的切割机构立体结构示意图。

[0024] 图6为本发明的夹紧组件立体结构示意图。

[0025] 图7为本发明的驱动组件立体结构示意图。

[0026] 图8为本发明B部分放大图。

[0027] 图9为本发明的收集组件立体结构示意图。

[0028] 图10为本发明的踩踏组件立体结构示意图。

[0029] 附图标号:1、工作台,2、放置机构,21、放置台,22、挡板,23、第一滑槽,24、第一支撑杆,25、连接杆,26、挡块,3、切割机构,31、切割片,32、高速电机,33、第二支撑杆,34、第一弹簧,35、伸缩杆,36、第二弹簧,37、第一楔形块,38、连接架,4、夹紧组件,41、第一夹块,42、第一滑杆,43、第二楔形块,44、第二滑杆,45、转动槽,46、第一连杆,47、第二连杆,48、第三连杆,49、楔形杆,5、驱动组件,51、气缸,52、第二夹块,53、第三楔形块,54、第四楔形块,55、第三滑杆,56、第四弹簧,57、固定块,58、第五楔形块,59、第五弹簧,510、第二滑槽,511、连接板,512、支撑块,513、第四连杆,6、收集组件,61、收集架,62、旋转轴,63、转杆,7、踩踏组件,71、异形杆,72、支撑座,73、踏板。

具体实施方式

[0030] 下面结合附图和实施例对本发明进一步地进行说明。

[0031] 实施例1

[0032] 一种高端设备制造用钢筋等长切割设备,如图1、图2、图3、图4和图5所示,包括有工作台1、放置机构2和切割机构3,工作台1上部设有放置机构2,工作台1上部左侧设有切割机构3。

[0033] 放置机构2包括有放置台21、第一支撑杆24、连接杆25和挡块26,工作台1上部右侧连接有放置台21,工作台1上部内侧面中部左右两侧均前后对称连接有第一支撑杆24,前后两侧第一支撑杆24外侧上部之间均连接有连接杆25,连接杆25与工作台1之间均设有第一滑槽23,工作台1上部左侧中间连接有挡块26。

[0034] 切割机构3包括有切割片31、高速电机32、第二支撑杆33、第一弹簧34、伸缩杆35、第二弹簧36、第一楔形块37和连接架38,工作台1上部左侧前后两侧均左右对称连接有第二支撑杆33,第二支撑杆33之间滑动式连接有连接架38,连接架38与工作台1之间前后两侧均前后对称连接有第一弹簧34,第一弹簧34套住第二支撑杆33上,连接架38中部安装有高速电机32,高速电机32输出轴右侧连接有切割片31,右侧连接架38中部前后两侧均连接有伸缩杆35,伸缩杆35下部左侧均滑动式连接有第一楔形块37,第一楔形块37右侧与伸缩杆35之间均连接有第二弹簧36。

[0035] 当使用者需要等长切割高端设备制造用钢筋时,首先将钢筋放置在放置台21上,启动高速电机32,带动切割片31高速转动,推动钢筋向左移动,钢筋左端移动至顶住挡块26后停止推动钢筋,随后推动连接架38向下移动,第一弹簧34被压缩,带动高速电机32和切割片31向下移动,切割片31将钢筋切断后,钢筋从工作台1左侧的开口掉下,即可将其统一收集起来,松开连接架38,在第一弹簧34的作用下,推动连接架38、高速电机32和切割片31向上移动,恢复至原状态,如此往复,达到轻松等长切割钢筋的效果。

[0036] 实施例2

[0037] 在实施例1的基础之上,如图1、图6、图7、图8、图9和图10所示,还包括有夹紧组件4,夹紧组件4包括有第一夹块41、第一滑杆42、第二楔形块43、第二滑杆44、转动槽45、第一

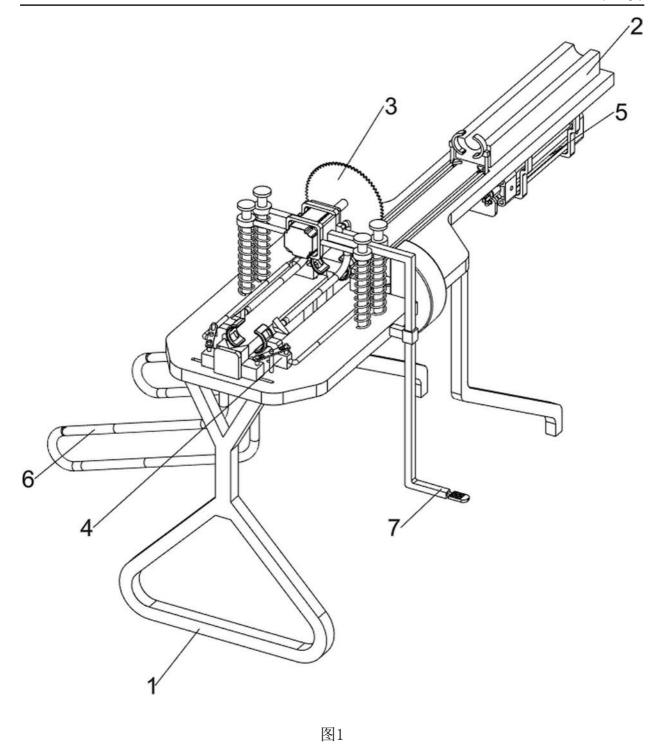
连杆46、第二连杆47、第三连杆48和楔形杆49,工作台1上部左侧内部前后对称滑动式连接有第二滑杆44,第二滑杆44上侧均连接有第二楔形块43,第二楔形块43上部外侧均连接有第一连杆46,工作台1上部左侧内部左右两侧均前后对称滑动式连接有第一滑杆42,第二滑杆44位于第一滑杆42左侧,第一滑杆42上侧均连接有第一夹块41,前后两侧第一夹块41外侧之间均连接有第三连杆48,左侧第一夹块41上部外侧均连接有第二连杆47,工作台1上部左侧前后对称转动式连接有转动槽45,转动槽45左侧与同侧第一连杆46滑动式连接,转动槽45右侧与同侧第二连杆47滑动式连接,左侧第一夹块41右侧均连接有楔形杆49,楔形杆49与第一楔形块37相互配合。

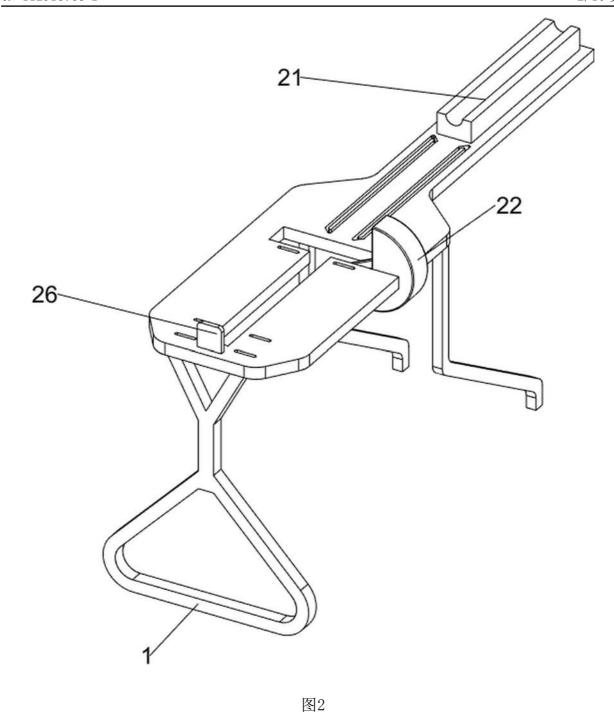
[0038] 钢筋左端移动至接触到第二楔形块43后,将推动第二楔形块43向外侧移动,带动第一连杆46向外侧移动,从而带动转动槽45右侧向内侧转动,从而带动第二连杆47和左侧第一夹块41向内侧移动,通过第三连杆48带动右侧第一夹块41向内侧移动,将钢筋夹紧,随后再推动连接架38向下移动,切割钢筋,带动伸缩杆35和第一楔形块37向下移动,第一楔形块37接触到楔形杆49后,将被推动向右侧移动,第二弹簧36被压缩,随后第一楔形块37顺利通过楔形杆49,在第二弹簧36的作用下,推动第一楔形块37向左移动,恢复原状态,钢筋切割完毕后,连接架38向上移动,带动伸缩杆35和第一楔形块37向上移动,第一楔形块37接触到楔形杆49后,将推动楔形杆49向外侧移动,带动左侧第一夹块41向外侧移动,通过第三连杆48带动右侧第一夹块41向外侧移动,松开钢筋,使得切断的钢筋从工作台1左侧开口掉下收集起来,同时左侧第一夹块41也将带动第二连杆47向外侧移动,从而带动转动槽45左侧向内侧转动,进而带动第二楔形块43向内侧移动,恢复至原状态,如此往复,达到自动夹紧固定和松开钢筋的效果,保证钢筋的精准切割。

[0039] 还包括有驱动组件5,驱动组件5包括有气缸51、第二夹块52、第三楔形块53、第四楔形块54、第三滑杆55、第四弹簧56、固定块57、第五楔形块58、第五弹簧59、连接板511、支撑块512和第四连杆513,工作台1上部内侧面右侧安装有气缸51,气缸51活塞杆左侧连接有连接板511,连接板511上部前后两侧均开有第二滑槽510,第二滑槽510内均滑动式连接有第三滑杆55,第三滑杆55右侧下部与连接板511之间均连接有第四弹簧56,第三滑杆55左侧上部均连接有固定块57,固定块57上部左右两侧均滑动式配合有第五楔形块58,第五楔形块58与第一支撑杆24相互配合,前后两侧第五楔形块58上侧之间滑动式连接有支撑块512,第五楔形块58上侧与支撑块512之间均连接第五弹簧59,支撑块512上部中间均连接有第四连杆513,第四连杆513与第一滑槽23滑动式连接,第四连杆513中部内侧均连接有第三楔形块53,第四连杆513上侧均连接有第二夹块52,工作台1上部左侧中间前后对称连接有第四楔形块54,第四楔形块54与第三楔形块53相互配合。

[0040] 开始状态下,第四弹簧56处于拉伸状态,将钢筋放置在放置台21上,第二夹块52之间后,启动气缸51,气缸51的活塞杆向左移动,带动连接板511和第三滑杆55向左移动,带动固定块57、第五楔形块58、支撑块512和第四连杆513向左移动,第四连杆513沿着第一滑槽23先向左内侧移动再向左移动,使得第三滑杆55先向左内侧移动再向左移动,第四弹簧56回缩,同时带动第二夹块52向左内侧移动,将钢筋夹紧,随后向左移动,带动钢筋一起向左移动,左侧第五楔形块58移动至接触到第一支撑杆24后,被推动向上移动,左侧第五弹簧59被压缩,左侧第五楔形块58通过第一支撑杆24后,在左侧第五弹簧59的作用下,推动左侧第五楔形块58向下移动,恢复原状态,随后右侧第五楔形块58移动至接触到第一支撑杆24后,

重复上述过程,两侧第五楔形块58均顺利通过第一支撑杆24,第四连杆513向左移动时也将带动第三楔形块53向左移动,当钢筋被带动向左移动至接触到第二楔形块43后,第一夹块41将钢筋夹紧固定住,与此同时,第三楔形块53也移动至接触到第四楔形块54,第三楔形块53被推动向外侧移动,带动第四连杆513和第二夹块52向外侧移动,松开钢筋,同时带动第三滑杆55向外侧移动,第四弹簧56被拉伸,随后活塞杆向右移动,带动第三滑杆55、固定块57、第五楔形块58、支撑座72、第四连杆513和夹块向右移动,第五楔形块58同样顺利通过第一支撑杆24,最终恢复至原状态,如此往复达到自动夹紧并传送钢筋的效果,提高钢筋切割效率。


[0041] 还包括有收集组件6,收集组件6包括有收集架61、旋转轴62和转杆63,工作台1上部左侧内侧面左右对称连接有收集架61,收集架61后侧上部转动式连接有旋转轴62,旋转轴62上连接有转杆63,转杆63与收集架61相互配合。


[0042] 切断的钢筋从工作台1左侧开口掉下至两侧收集架61之间,当收集的钢筋达到一定量后,顺时针转动转杆63,打开收集架61,将切割好的钢筋取出,随后再逆时针转动转杆63,关闭收集架61,达到方便统一收集和取出钢筋的效果。

[0043] 还包括有踩踏组件7,踩踏组件7包括有异形杆71、支撑座72和踏板73,工作台1上 部左前侧连接有支撑座72,支撑座72内部滑动式连接有异形杆71,异形杆71上部后侧与连接架38相连接,异形杆71下部前侧连接有踏板73。

[0044] 踩压踏板73,带动异形杆71向下移动,从而带动连接架38向下移动,最终带动切割片31向下移动,切割钢筋,钢筋切割完毕后,松开踏板73,在第一弹簧34的复位作用下,推动连接架38向上移动,带动异形杆71和踏板73向上移动,恢复至原状态,如此往复,达到更加轻松驱动切割片31向下移动切割钢筋的效果。

[0045] 应理解,该实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

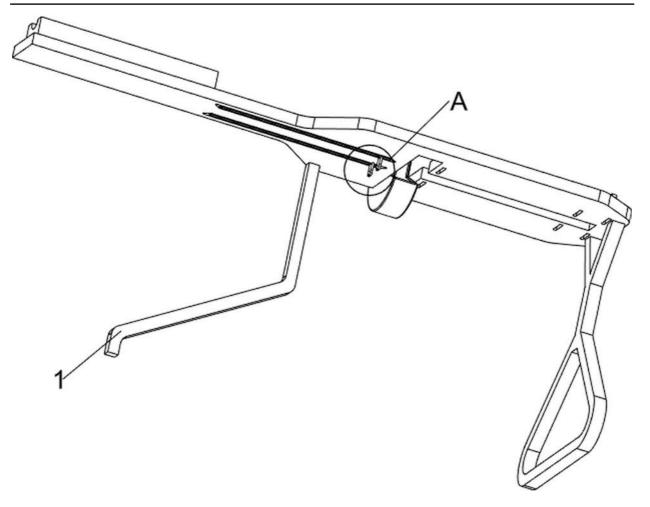


图3

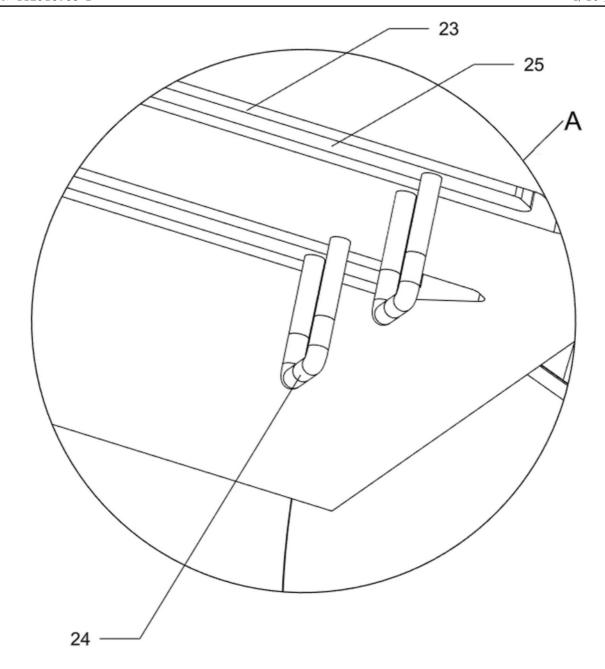


图4

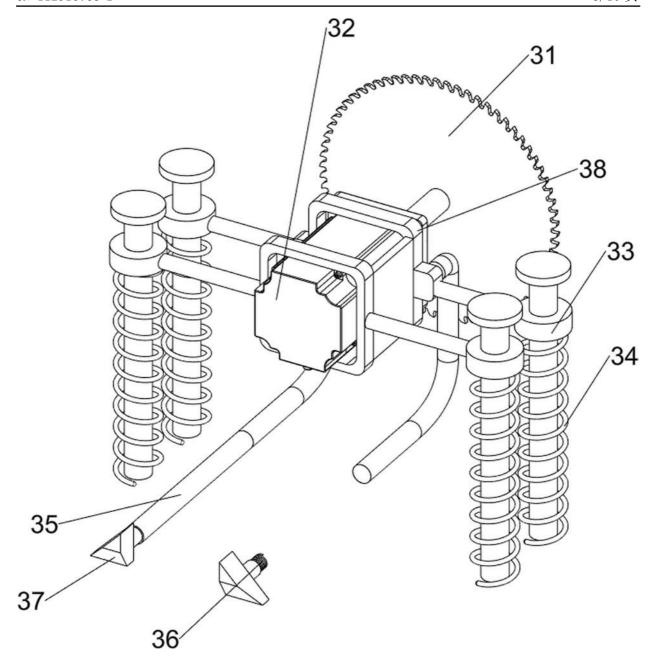
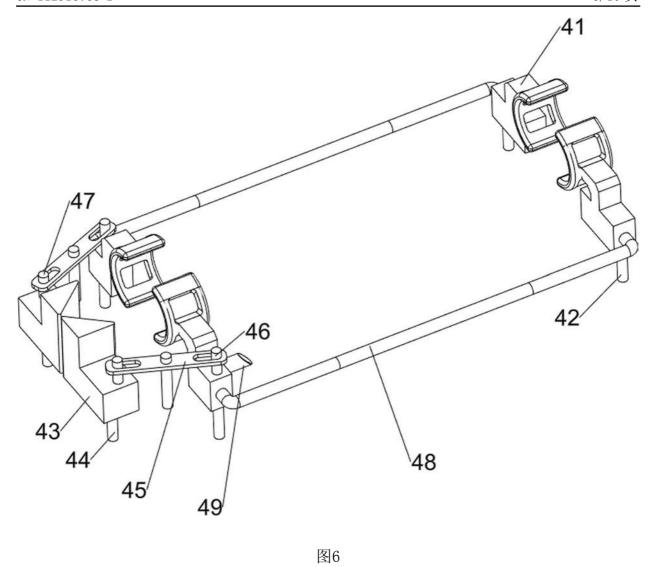



图5

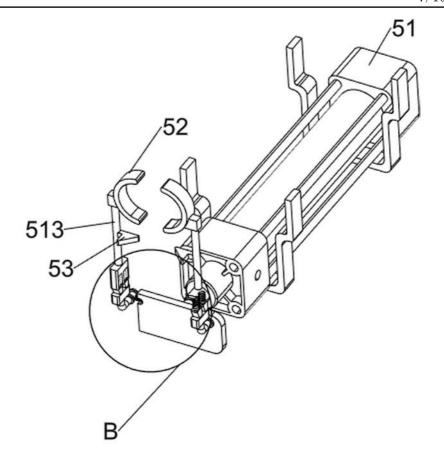


图7

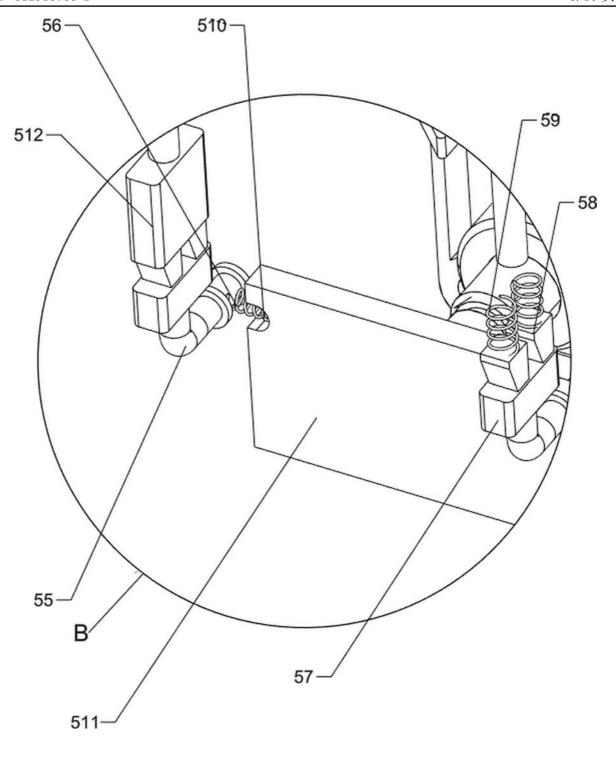
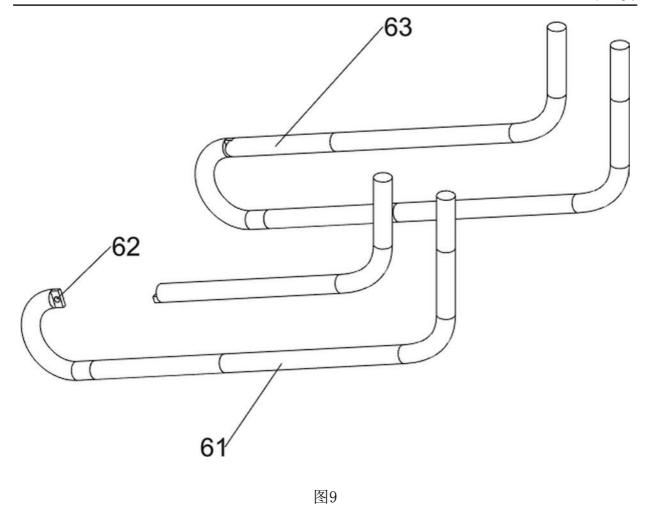



图8

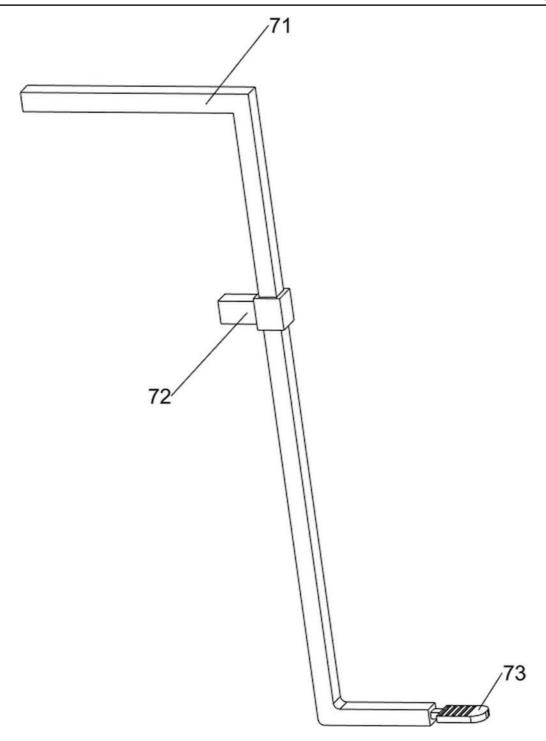


图10