@ N° de publication : LU101632

4

oo
D

N

el)

N A
4
R

’\\\.\'\\\}\‘\‘e
Y N

N
"\

%

® BREVET D’INVENTION

@ N° de dépét: LU101632 @ Int. CL.:
GO6F 11/30, G0O6Q 10/00

@ Date de dépdt: 07/02/2020

B1

. Priorité: @ Inventeur(s):

ZHOU Minxiao — Etats-Unis, LI Yanglei — Etats-Unis,
ALCANTARA Travis — Etats-Unis

Mandataire(s):
Date de délivrance: 09/08/2021 CMS Luxembourg 2.0 —

1637 Luxembourg (Luxembourg)
@ Titulaire(s):

Microsoft Technology Licensing LLC — Redmond, WA
98052-6399 (Etats-Unis)

Date de mise & disposition du public: 09/08/2021

COMPUTER PERFORMANCE DEFECT DETECTION BASED ON ENERGY CONSUMPTION TELEMETRY.

@ Detecting a performance defect at an electronic

computing platform resulting from a configuration change
within the computing platform. A first distribution of first
telemetry data is obtained from a first plurality of
instances of the computing platform, and a second
distribution of second telemetry data is obtained from a
second plurality of instances of the computing platform.
The first telemetry data corresponds to a pre-change
configuration, and the second telemetry data corresponds
to a post-change configuration. The telemetry data
includes indicates energy consumption by component(s) at
corresponding instances of the computing platform.
Result(s) are computed using the first and second
telemetry data as input. The result(s) characterize
differences between the first and second distributions. The
result(s) are input to a trained machine learning model to
obtain a prediction of whether the differences between
the first and second distributions indicate that a
performance defect was introduced by the configuration
change.

4

[ta [
7
H Z//

Wode! Storage

.
110

158

Dats Obtaining 106
Chamsterzalion 107

Labeling

Teaining Dataset Generstion

-
§
i

9

<
o

1

88 Trainin

Learning System 184

—

Loy

P

132

103b

T

!

.

16250
162b-n

1022

162

Population 1l1a
Population 101b

FIG. 1

10

15

20

25

30

13768.3863 / 407978-LU-NP

COMPUTER PERFORMANCE DEFECT DETECTION BASED ON ENERGY CONSUMPTION TELEMETRY

TECHNICAL FIELD

[001] The present disclosure relates to systems, methods, and devices for identifying performance
defects at computer systems based on telemetry data indicating energy consumption at those computer
systems.
BACKGROUND

[002] A computer system rarely runs the software and firmware originally installed thereon throughout
its entire lifecycle. Instead, in today's connected world, most computer systems frequently receive
software and firmware updates. For example, it is common for a computer system's operating system and
application software to receive software updates (e.g., with updated software code that includes security
and/or feature updates, configuration changes, etc.). Additionally, is also common for a computer
system's hardware to receive firmware updates (e.g., with updated firmware code that addresses
performance and/or security issues, configuration changes, etc.). Each of these updates represents a
change in the configuration of the computer system that has the potential to cause unwanted
performance defects at the computer system. Conventionally, these performance defects have been
identified using techniques such as manual detection, rule-based detection, or lab testing. Manual
detection involves a human user observing that a performance defect has occurred after an update. Rule-
based detection identifies a performance defect based on determining that some metric observed at the
computer system has exceeded some pre-defined threshold for the metric. Lab testing involves running
one or more pre-defined test scenarios at the computer system, and determining if each test scenario
succeeds or fails.

[003] Each of these performance defect detection techniques relies at least somewhat on chance (e.g.,
that a user both perceives and then recognizes the defect, that a defect actually manifests when running
a testing scenario, etc.) and/or requires a priori definition of thresholds and/or testing scenarios that are
actually able to detect the performance defect. As such, conventional performance defect detection
techniques are often resource-intensive (e.g., in terms of human time, and/or in terms of computer
resources used to monitor thresholds and run test scenarios), and imprecise (e.g., due to human failings,
and/or due to the difficulty in anticipating proper thresholds/test scenarios for surfacing performance

defects).

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

BRIEF SUMMARY

[004] At least some embodiments described herein detect performance defects in a computing
platform based on analyzing power consumption data obtained from a population of a plurality of
instances of the computing platform. In particular, after a configuration change—such as a software or
firmware update—in the computing platform, the embodiments described herein obtain a post-change
distribution of power consumption telemetry data from the population of instances of the computing
platform. The embodiments herein then compare this post-change distribution of power consumption
telemetry data with a pre-change distribution data of power consumption telemetry data generated by
that population (or from a similar population) prior to the configuration change. The comparison
computes one or more characterizations of differences {e.g., shifts) in the distribution of power
consumption telemetry data found in the pre-change distribution as compared to the distribution of
power consumption telemetry data found in the post-change distribution. Embodiments provide these
computed characterization(s) to a trained machine learning (ML) model, which has been trained by
training dataset(s) comprising previously-computed characterizations of differences in prior distributions
of power consumption telemetry data obtained by the population (or from a similar population). Based
on providing the new computed characterization(s) to the trained ML model, embodiments obtain a
prediction as to whether or not the differences between the post-change distribution and the pre-change
distribution are indicative that the configuration change introduced a performance defect in the
computing platform.

[005] Insome embodiments, methods, systems, and computer program products detect a performance
defect at an electronic computing platform resulting from a configuration change within the computing
platform. A first distribution of first telemetry data is obtained from a first plurality of instances of the
computing platform. The first telemetry data corresponds to a pre-change configuration, and includes
data corresponding to each of the first plurality of instances of the computing platform and indicating
energy consumption by at least one component at the corresponding instance of the computing platform.
A second distribution of second telemetry data is also obtained from a second plurality of instances of the
computing platform. The second telemetry data corresponds to a post-change configuration, and includes
data corresponding to each of the second plurality of instances of the computing platform and indicating
energy consumption by the at least one component at the corresponding instance of the computing
platform. One or more results are computed using at least a portion of the first telemetry data and at
least a portion of the second telemetry data as input. The one or more results characterize one or more

differences between the first distribution and the second distribution. The one or more results are input

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

to a trained ML model to obtain a prediction of whether the one or more differences between the first
distribution and the second distribution indicate that a performance defect was introduced by the
configuration change.

[006] As will be appreciated in view of the disclosure herein, the performance defect detection
techniques described herein provide distinct technical advantages over prior techniques. For example,
these techniques consume fewer computing resources than prior techniques, since they operate on
relatively easy to generate telemetry data, rather than based on monitoring specific thresholds at
individual computer systems and running test scenarios at individual computer systems. In addition, these
techniques can detect many performance defects that would be difficult to anticipate and develop
appropriate thresholds and/or test scenarios to detect. Further, since these techniques operate on
telemetry data from a potentially large number of computer systems, they can detect performance
defects that may be difficult to reproduce on an individual testing system.

[007] This summary is provided to introduce a selection of concepts in a simplified form that are further
described below in the Detailed Description. This Summary is not intended to identify key features or
essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[008] In order to describe the manner in which the above-recited and other advantages and features of
the invention can be obtained, a more particular description of the invention briefly described above will
be rendered by reference to specific embodiments thereof which are illustrated in the appended
drawings. Understanding that these drawings depict only typical embodiments of the invention and are
not therefore to be considered to be limiting of its scope, the invention will be described and explained
with additional specificity and detail through the use of the accompanying drawings in which:

[009] Figure 1 illustrates an example computing environment that facilitates training an ML model
based on data characterizing differences in power consumption by two populations of instances of a
particular computing platform;

[010] Figure 2 illustrates an example of data distributions based on telemetry data received from two
populations of a computing platform;

[011] Figure 3 illustrates a flow chart of an example method for training an ML model based on data
characterizing differences in power consumption by two populations of instances of a particular

computing platform;

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

[012] Figure 4 illustrates an example computing environment that uses a trained ML model to identify
a performance defect within a computing platform;

[013] Figure 5 illustrates a flow chart of an example method for detecting a performance defect at an
electronic computing platform resulting from a configuration change within the computing platform; and
[014] Figure 6 illustrates a flow chart of an example method for calculating an averaged z-score delta.

DETAILED DESCRIPTION

[015] Figure 1 illustrates an example computing environment 100 that facilitates training an ML model
based on data characterizing differences in power consumption by two populations of instances of a
particular computing platform. As shown, computing environment 100 represents a plurality of
populations 101 (i.e., population 101a and population 101b), each made up of a plurality of device
instances 102 (i.e., device instances 102a to 102a-n in population 101a and device instances 102b to 102b-
n in population 101b) of a particular computing platform. In computing environment 100, population 101a
represents device instances 102a at a first time/state, while population 101b comprises device instances
102b at a later second time/state. In differing embodiments, device instances 102a and device instances
102b could be the same devices (i.e., the same computing devices at both the first and second times),
could be different devices (i.e., a first set of computing devices at the first time and different second set
of computing devices at the second time), or there could be some overlap between device instances 102a
and device instances 102b.

[016] As used herein, a "computing platform," refers to a hardware platform of which there can be a
plurality of separate physical instances. In embodiments, a "computing platform" refers to a particular
computing device model or device model family. In some examples, a "computing platform" refers to a
smartphone model or mode! family, a tablet model or model family, a laptop computer model or model!
family, a desktop computer model or model family, etc. In embodiments, a device model refers to a
particular hardware configuration (e.g., the Stock Keeping Unit (SKU) "Surface_Pro_X_1876", referring to
the MICROSOFT SURFACE PRO X with a particular hardware build configuration), while a device model
family refers to different, but related, hardware configurations (e.g., "MICROSOFT SURFACE PRO X",
referring to any SURFACE PRO X regardless of the hardware build configuration). Thus, in some
embodiments the device instances 102 within a given population 101 have substantially identical
hardware configurations (e.g., the same model number or identifier), while in other embodiments the
device instances 102 within a given population 101 have different, but related, hardware configurations
(e.g., the same model family number or identifier}). In embodiments, the device instances within a given

population have a similar software configuration, such as the same operating system version/build. Thus,

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

in embodiments each of device instances 102a in population 101a operates the same operating system
version (e.g., MICRSOFT WINDOWS 10 version 1903). As discussed, population 101a represents device
instances 102a at a first time, while population 101b comprises device instances 102b at a later second
time. Thus, in this example, each of device instances 102b in population 101b could operate the same
operating system version as devices instances 102a (e.g., MICRSOFT WINDOWS 10 version 1903), or they
could alternatively operate some newer operating system version (e.g., MICRSOFT WINDOWS 10 version
1909).

[017] In computing environment 100, the populations 101 provide telemetry data 103 (i.e., telemetry
data 103a corresponding to population 101a, and telemetry data 103b corresponding to population 101b)
to a learning system 104. Although not expressly shown, the populations 101 and the learning system 104
are connected via one or more communications channels, such as one or more networks, and the
individual device instances 102 within those populations 101 provide the telemetry data 103 over those
communications channel(s). Thus, the telemetry data 103 includes one or more individual data points
from each of those device instances 102. in embodiments, the telemetry data 103 includes one or more
data points such as measurements indicating energy consumption by at least one component at each
device instance 102, and/or indicating energy consumption by each device instance 102 generally. Further
examples of this telemetry data 103 are provided later.

[018] In general, the learning system 104 receives telemetry data 103a from population 101a that was
sensed or generated by device instances 102a at one time, and receives telemetry data 103b from
population 101b that was sensed or generated by device instances 102b at a later time. The learning
system 104 uses this telemetry data 103 to create training datasets for training ML models 111 (i.e., ML
model 111a to ML model 111n). These ML models 111 that are then usable later (e.g., by a prediction
system 404, see Figure 4) to determine if subsequent telemetry data received from populations 101 (or
similar populations of the same computing platform) indicates that a performance defect (e.g., a
regression in hardware performance or a regression in software performance) was introduced by a
subsequent configuration change in the computing platform, such as by a software or firmware update.
[019] As shown, the learning system 104 includes a training dataset generation component 105, which
receives telemetry data 103a/103b from populations 101a/101b (e.g., using a data obtaining component
106). Based on this obtained telemetry data 103, the training dataset generation component 105 utilizes
a characterization component 107 to characterize shifts in this telemetry data 103. For example, as
mentioned, the telemetry data 103 for a population 101 can include data points, from each device

instance 102 in the population 101, indicating energy consumption by at least one component of the

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

device instance 102, and/or indicating energy consumption by the device instance 102 generally. In some
embodiments, these data points include relatively course data such as an average energy consumption
rate at the device (or by a hardware component at the device), an amount of energy consumed at the
device (or by a hardware component at the device), an average hardware component (e.g., processor,
graphics processor, communications interface, etc.) utilization at the device, a total hardware component
(e.g., praocessor, graphics processor, communications interface, etc.) utilization at the device, etc. In other
embodiments, these data points include somewhat more granular data such as an average energy
consumption caused at the device when executing a subject process, an amount of energy consumed at
the device when executing the subject process, an amount of hardware component (e.g., processor,
graphics processor, communications interface, etc.) utilization caused at the device when executing the
subject process, etc. In some cases the telemetry data 103 is measured by an operating system of a device
and sent to the learning system 104 over a communications channel.

[020] Based on these data points, the characterization component 107 creates data distributions for
each population 101. In embodiments, the characterization component 107 creates these data
distributions based on specified metrics (e.g., received by the data obtaining component 106), such as
metrics identifying particular types of data points in the telemetry data 103 that are of interest. As an
example, the telemetry data 103 for a device could include one or more different types of power data
(e.g., power consumption rate, power consumption amount, hardware component utilization, etc.) for
one or more hardware or software components at the device, and/or for the device generally. In
embodiments, metrics are used to narrow down the particular type(s) of power data that are of interest,
and for which component(s) and/or for the device generally. Thus, metrics can be used to focus
individually on different aspects of operation of the subject computing platform.

[021] Figure 2 illustrates and example 200 that includes two data distributions 201a and 201b
(collectively, distributions 201) based on telemetry data received from two populations of a computing
platform. For example, distribution 201a could correspond to telemetry data 103a and distribution 201b
and could correspond to telemetry data 103b. In the distributions 201, the X-axis represents different
values reported for a given data point in the telemetry data 103 (e.g., an energy consumption rate caused
by a subject software component), and the Y-axis represents a number of device instances 102 which
reported those values in the telemetry data 103. Thus, data distribution 201a shows a plot 202a derived
from telemetry data 1033, while data distribution 201a shows a plot 202b derived from telemetry data
103b. From plots 202a/202b (collectively plots 202), it is clear that population 101a and population 101b

reported somewhat different patterns for the given data point (e.g., energy consumption rate caused by

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

the subject software component). As will be appreciated, the differences between plots 202a and 202b
might be due to normal variances in the way in which devices instances 102 were being used over time
and/or by different users. However, the differences between plots 202a and 202b might alternatively be
due to some configuration change in population 101b as compared to population 101a. in particular, since
populations 101a and 101b represent devices instances 102/102b at different times, device instances
102b might have undergone a configuration change—such as a software or firmware update—when
compared to device instances 102a. Thus, it is possible that device instances 102b are in a "post-change"
configuration, while device instances 102a are in a "pre-change" configuration. As a result, if that
configuration change caused a performance defect within device instances 102b that affected energy
usage at those device instances 102b, telemetry data 103b could have also been affected by that
configuration change (i.e., as compared to telemetry data 103a). Thus, the differences between plots 202a
and 202b might be due to that performance defect.

[022] In order to quantify/characterize any differences between data distribution 201a and data
distribution 201b (i.e., shifts in data), the characterization component 107 generates one or more
statistical results from those data distributions 201. For example, in embodiments the characterization
component 107 uses data distributions 201 as input to calculate statistical results that include one or
more of (i) one or more probability values (p-values) or (ii) one or more z-scores. In embodiments, a p-
value indicates the probability of the truth of a null hypothesis that the inputs used to generate the p-
value are drawn from the same distribution. Thus, in the context of distributions 201, an example null
hypotheses is that, even though the particular data points in the distributions differ (e.g., due to
differences how the individual device instances 102 were being used when telemetry data 103 was
generated), those data points were generated by device instances of the same computing platform. In
embodiments, if the calculated p-value(s) for two distributions 201 is below a threshold (e.g., p < .05},
then this null hypothesis may not actually be true for those distributions 201, which could indicate that
there was a configuration difference between device instances 102a and device instances 102b that
introduced performance defect in device instances 102b. In embodiments, p-values are computed using
at least one of the two-sample Kolmogorov-Smirnov test (K-S test) or Welch’s t-test (Welch test), which
tests are known and understood by those of ordinary skill in the art.

[023] As will be understood by one of ordinary skill in the art, a z-score (or standard score) is a signed
fractional number of standard deviations by which the value of an observation or data point is above the
mean value of what is being observed or measured, and is calculated by subtracting the population mean

from an individual raw score and then dividing the difference by the population standard deviation. In

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

embodiments, the characterization component 107 calculates a z-score for each distribution 201 at one
or more predefined percentiles. For example, example 200 illustrates that, in embodiments, the
characterization component 107 calculates a z-score for each of distributions 201a and 201b at the 10%
percentile 203a {i.e., P-10), at the 50™ percentile 203b (i.e., P-50), and/or at the 90" percentile 203c (i.e.,
P-90). In an example, to compute the P-10 z-score for distribution 201a, the characterization component
107 calculates the distribution's mean value and the distribution's standard distribution, and identifies
the distribution's value at the 10" percentile 203a (i.e., point 204a). Then, the characterization component
107 subtracts the calculated mean value from the identified value at the 10" percentile 203a, and divides
the result by the calculated standard deviation. After computing z-scores at each identified percentile for
both distributions 201, the characterization component 107 identifies the differences (deltas) between
the z-scores at corresponding percentiles. In one example, the characterization component 107
determines the delta between the 10 percentile z-scores of distribution 201a and distribution 201b, the
delta between the 50" percentiles z-scores of distribution 201a and distribution 201b, and the delta
between the 90™ percentiles z-scores of distribution 201a and distribution 201b. A magnitude of the size
of these deltas can be an indication of an amount of data shift between distribution 201a and distribution
201b, with larger data shifts indicating that there could have been a configuration difference between
device instances 102a and device instances 102b that introduced performance defect in device instances
102b.

[024] It was mentioned previously that, in embodiments, the data obtaining component 106 obtains
metrics, such as metrics for selecting the data used to create distributions 201. In embodiments, these
metrics additionally, or alternatively, include metrics for characterizing the differences between data
distributions 201. For example, metrics could indicate which statistical results to compute (e.g., whether
to use the K-S test, the Welch test, and/or z-score), any parameters for computing those results {e.g., at
which percentile(s) to compute z-scores), and/or metrics for interpreting those results (e.g., thresholds
for rejecting the null hypothesis, the magnitude of deltas between z-scores to consider significant, etc.).
[025] The inventors have noted that use of p-value and/or z-score results, while helpful, may not always
be a reliable indication of whether or not there was a performance defect introduced by a configuration
difference between device instances 102a and device instances 102b. For instance, in some cases, the
statistical results indicate there is an abnormality between data distribution 201a and data distribution
201b when there was, in fact, no configuration difference between device instances 102a and device
instances 102b. Alternatively, in some cases, the statistical results indicate there is no abnormality

between data distribution 201a and data distribution 201b when there was, in fact, a performance defect

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

that was introduced by a configuration difference between device instances 102a and device instances
102b.

[026] Thus, in embodiments, data generated by the characterization component 107 is utilized as one
or more training data sets that are fed to an ML training component 109 which creates one or more ML
models 111 (i.e., model 111a to model 111n) that characterize these results. In embodiments, the training
dataset generation component 105 operates repeatedly on different telemetry data 103 inputs to
generate these training datasets. Thus, in an example, the data obtaining component 106 receives
multiple unique sets of telemetry data 103 at different times and, for each set of telemetry data 103, the
characterization component 107 produces a corresponding set of data distributions 201 and uses those
data distributions 201 as inputs for computing p-value and/or z-score results as the basis of training data
sets.

[027] Insome embodiments, the ML training component 109 operates using supervised ML, which uses
labeled training data sets as input. Accordingly, the training dataset generation component 105 is shown
as potentially including a labeling component 108. In embodiments, the labeling component 108 tags
different p-value and/or z-score results computed from a given set of telemetry data 103 with an
indication of those results' reliability and/or with an indication as to whether those results imply a
performance defect. In embodiments, the labeling component 108 operates based on user input. For
example, the labeling component 108 could obtain user input from subject matter experts, such as
developers or engineers who experience with recognizing whether or not differences in data distributions,
including p-value and/or z-score results computed from those distributions, are indicative of performance
defects. In additional, or alternative, embodiments the labeling component 108 operates based on
knowledge associated with the input telemetry data 103. For example, at least some telemetry data 103
received from populations 101 could be specially crafted or selected to produce p-value and/or z-score
results corresponding to no performance defect, and/or at least some additional telemetry data 103
received from populations 101 could be specially crafted or selected to produce p-value and/or z-score
results corresponding to a performance defect, and the labeling component 108 could label the results
computed from this telemetry data 103 based on knowledge of how the telemetry data 103 had been
crafted/selected. To illustrate, one set of telemetry data 103 could be from two populations 101a and
101b that are known to have no configuration changes, and the labeling component 108 could use this
knowledge to label one or more results from the characterization component 107 identifying a
performance defect from this telemetry data 103 as being inaccurate and/or to label one or more results

identifying no performance defect from this telemetry data 103 as being accurate. In another example,

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

another set of telemetry data 103 could be from two populations 101a and 101b in which it is known that
population 101b has a performance defect as compared to population 101a, and the labeling component
108 could use this knowledge to label one or more results from the characterization component 107
identifying a performance defect from this telemetry data 103 as being accurate and/or to label one or
more results identifying no performance defect from this telemetry data 103 as being inaccurate.

[028] In other embodiments, the ML training component 109 operates using unsupervised ML. In these
embodiments, the ML training component 109 operates based on finding previously unknown patterns in
training data sets that lack pre-existing labels (e.g., data sets generated by the characterization
component, and without use of the labeling component 108). In an example, the ML training component
109 utilizes the density-based spatial clustering of applications with noise (DBSCAN). DBSCAN is a density-
based clustering non-parametric algorithm—i.e., given a set of points in some space, it groups together
points that are closely packed together (points with many nearby neighbors), marking as outliers points
that lie alone in low-density regions (whose nearest neighbors are too far away).

[029] Asshown, using training data set(s) produced by the training dataset generation component 105
(whether they be labeled or unlabeled), the ML training component 109 produces one or more ML models
111 (i.e., model 111a to model 111n}, which are stored within mode! storage 110. In embodiments, the
ML training component 109 utilizes at least one of a logistic regression algorithm, a support vector
machine algorithm, a random forest algorithm (e.g., random forest with 100 trees), a k-nearest neighbors
algorithm, a Naive Bayes algorithm (e.g., gaussian Naive Bayes), or DBSCAN.

[030] To demonstrate operation learning system 104, Figure 3 illustrates a flowchart of a method 300
for training an ML model based on labeled data characterizing differences in power consumption by two
populations of instances of a particular computing platform. Method 300 will be described with respect
to the components and data of computing environment 100, and the data distributions 201 of example
200.

[031] As shown, method 300 comprises an act 301 for obtaining data. In some embodiments act 301
includes obtaining telemetry data and, optionally, obtaining one or more metrics. In an example, the data
obtaining component 106 receives telemetry data 103a from population 101a and telemetry data 103b
from population 101b. In embodiments, the data obtaining component 106 also obtains additional
metrics, such as from a user.

[032] Method 300 also comprises an act 302 of characterizing differences in the telemetry data. In an
example, the characterization component 107 creates a different data distribution 201 for each

population 101, such as data distribution 201a for population 101a (i.e., using telemetry data 103a) and

10

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

data distribution 201b for population 101b (i.e., using telemetry data 103b). in embodiments, creation of
these data distributions 201 is based on received metrics, such as metrics selecting which type(s) of data
points in the telemetry data 103 should be considered. Then, the characterization component 107
characterizes the differences between the data distributions 201 by calculating the one or more statistical
results, such as by using the K-S test, the Welch test, or z-score. In embodiments, computation of these
statistical results is based on received metrics, such as metrics selecting which results to calculate,
parameters for those calculations, etc.

[033] In some embodiments, method 300 also comprises an act 303 of labeling the characterization(s).
In an example, the labeling component 108 labels any statistical results calculated by the characterization
component 107 with an indication of those results' reliability and/or with an indication as to whether
those results indicate a performance defect. In some but not all examples, operation of the labeling
component 108 is guided by user input and/or by knowledge associated with the input telemetry data
103. In some cases knowledge of the presence of a performance defect is available from other sources
such as customer feedback.

[034] Method 300 also comprises an act 304 of training an ML model. in an example, the training
dataset generation component 105 provides one or more training data sets (i.e., comprising the statistical
results produced by the characterization component 107 and which, in some embodiments, have been
labeled by the labeling component 108), as input to the ML training component 109. Using these training
dataset(s), the ML training component 109 utilizes supervised and/or unsupervised ML to train and/or
refine one or more ML models 111 that are usable to provide a prediction as to whether or not subsequent
telemetry data indicates a performance defect. Notably, method 300 can be repeated any number of
times, on any number of sets of telemetry data, with each iteration of method 300 further refining the
predictive accuracy of the ML models 111.

[035] Embodiments also consume these ML models 111 in order to identify performance defects within
a computing platform and, potentially, to identify a root cause of an identified performance defect. For
example, Figure 4 illustrates an example computing environment 400 that uses a trained ML mode! to
identify a performance defect within a computing platform. As shown, similar to computing environment
100, computing environment 400 also represents a plurality of populations 401 (i.e., population 401a and
population 401b), each made up of a plurality of device instances 402 (i.e., device instances 402a to 402a-
n in population 401a and device instances 402b to 402b-n in population 401b}. In embodiments,

populations 401 are made up of device instances 402 of the same computing platform as populations 101.

11

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

In embodiments, populations 401 and device instances 402 could have overlap with populations 101 and
device instances 102, though they could be entirely independent from one another.

[036] Like populations 101, populations 401 generate telemetry data 403 (i.e., telemetry data 403a
corresponding to population 4013, and telemetry data 403b corresponding to population 401b). However,
in computing environment 400 the populations 401 provide this telemetry data 403 to a prediction system
404. Although not expressly shown, populations 401 and prediction system 404 are connected via one or
more communications channels, such as one or more networks, and the individual device instances 402
within populations 401 provide the telemetry data 403 over those communications channel(s). In
embodiments, telemetry data 403 is of substantially the same type of data as telemetry data 103—i.e.,
one or more data points indicating energy consumption by at least one component at each device instance
402, and/or indicating energy consumption by each device instance 402 generally. Also, like telemetry
data 103, telemetry data 403 includes telemetry data 403a from population 401a that was sensed or
generated by device instances 402a at one time, and telemetry data 403b from population 401b that was
sensed or generated by device instances 402b at a later time.

[037] The prediction system 404—which could be embodied on the same computing hardware as
learning system 104, or on entirely separate computing hardware—includes a data obtaining component
405 and a characterization component 406 that, in embodiments, operate in substantially the same
manner as data obtaining component 106 and characterization component 107 within learning system
104. If the prediction system 404 and the learning system 104 are embodied on the same computing
hardware, in embodiments the data obtaining component 405 and the characterization component 406
are the same components as the obtaining component 106 and the characterization component 107.
Thus, in general, the data obtaining component 405 obtains telemetry data 403 from populations 401. In
addition, the data obtaining component 405 could also obtain metric data. Based on this obtained data,
the characterization component 107 creates a data distribution for each population 401, and
characterizes the differences between these data distributions by calculating one or more statistical
results, such as by using the K-S test, the Welch test, or z-score. Like the learning system 104, the
prediction system 404 also includes a model storage 409, which includes one or more ML models 410. In
embodiments, one or more of ML models 410 corresponds to one or more of the ML models 111 that
were generated by the learning system 104. Thus, as an example, ML model 410a could correspond to ML
model 111a, which was trained by learning system 104 using supervised and/or unsupervised ML

techniques, based on telemetry data 103 obtained from populations 101.

12

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

[038] Unlike the learning system 104, the prediction system 404 includes a prediction component 407,
and could also include a root cause analysis component 408. In embodiments, the prediction component
407 receives, as input, the statistical results calculated by the characterization component 406 as well as
an ML model, such as ML model 410a. As will be understood in view of the prior description of the
characterization component 107, if there was a configuration change between population 401a and
population 401b, these statistical results can indicate a likelihood of a performance defect having been
introduced by that configuration change. For example, statistical results including a p-value (e.g.,
computed using the KS-test or the Welch test) can indicate if a nuil hypothesis that the computing
platform of population 401b is the same as the computing platform of population 401a (i.e., that the
configuration change did not introduce a performance defect in population 401b) should be rejected or
not. Additionally, or alternatively, the magnitude of the delta(s) between z-scores can indicate whether
population 401b behaves statistically similar to population 401a, or not (which can be an indication of
whether or not the configuration change introduced a performance defect in population 401b). In
embodiments prediction component 407 inputs these statistical results to the ML model 410a. Since ML
model 410a was trained using supervised ML with labeled training data set(s) that characterized the
accuracy of similar statistical results for the same, or similar, populations, and/or using unsupervised ML
with unlabeled training data set(s), ML model 410a provides an ML-validated prediction of whether or not
there is a performance defect in the computing platform of which device instances 402b are comprised.
[039] By using ML in addition to statistical analysis more accurate performance defect detection is
possible as compared with using statistical analysis alone. Because the ML has good generalization ability,
accuracy of performance defect detection is high even where the configuration changes were not
previously observed in the training data. By using ML in addition to statistical analysis, the need for expert
human to interpret the statistical analysis is reduced.

[040] If included, the root cause analysis component 408 uses an automated analysis to determine a
cause of an identified performance defect. For example, in many instances, performance defects
introduced by software or firmware updates are due to a software (i.e., code) regression. Thus, in
embodiments, the root cause analysis component 408 performs a software regression detection in one
or more instances of the subject computing platform.

[041] As will be appreciated by one of skill in the art, operating systems, complex software applications,
and other types of software products are typically developed by a large number of development teams
organized into a hierarchy. Each team may submit or “check in” one or more changes and/or configuration

modifications (collectively referred to herein as “payloads”) to source code of a software application at a

13

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

corresponding level in the hierarchy daily, weekly, bi-weekly, monthly, or in other time intervals.
Subsequently, the payloads checked in can be propagated to higher levels in the hierarchy which may also
include payloads from other development teams. Periodically, a version of the source code of the software
product with various payloads is compiled into executable instructions as a distinct “build” of the software
product.
[042] One or more computing devices (e.g., servers in a testing lab or client devices of users signed up
for testing) then execute the build of the software product and collect various performance metrics for
analysis. Examples of performance metrics include power consumption, processor load, memory
consumption, execution latency, and/or other suitable types of metrics. In practice, each build of a
software product typically includes a large number of payloads. For instance, individual builds of an
operating system include hundreds or even thousands of payloads. As such, determining impact of one of
these payloads to the measured performance metrics of the software product can be rather difficult. In
addition, as time goes on, payloads from lower levels can be propagated into higher levels of the hierarchy
with additional payloads from other development teams. Thus, the additional payloads can mask impact
of the payloads from the lower levels and render software regression detection difficult.
[043] In embodiments, the root cause analysis component 408 operates as, or utilizes, a regression
detector that is configured to receive data representing measured performance metrics of multiple builds
of a software product and a list of payloads included in each of the builds. In certain implementations,
each payload is assigned a unique identification number or other suitable forms of identification and
tracked for the multiple builds of the software product. In embodiments, the regression detector is
configured to perform statistical analysis of the received dataset using the identification and
presence/absence of each of the payloads as a denominator. For instance, the regression detector can be
configured to apply multiple linear regression to the received dataset to generate a set of regression
coefficients for the respective payloads. For instance, in a dataset with one dependent variable Y; (e.g.,
the “Metric”) and multiple independent variables X, where p corresponds to, e.g., different payloads (e.g.,
“Payload A,” “Payload B,” and “Payload C”), a linear relationship between the dependent variable and the
independent variables can be modeled using a disturbance term or error variable €, as follows:

Yi = Bo+ B Xir + -+ BpXip + &, wherei=1,2, .., n
The coefficients (i.e., Bo, B1, ..., Bp} can be estimated using various techniques, such as least squares
estimation, maximum likelihood estimation, ridge regression, least absolute deviation, etc. As such, by
estimating the coefficients using a suitable technique, a multiple linear mode! of the received dataset can

be obtained.

14

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

[044] Using the obtained multiple linear model, the regression detector can be configured to determine
which one or more of the payloads have statistically significant impact (i.e., above a noise level) to the
performance metrics in the received dataset. For instance, example coefficients for the foregoing

payloads may be as follows:

Payload No. Payload A Payload B Payload C

Coefficient -0.21 .25 104

In the above example, the estimated coefficients for Payload A and Payload B are -0.21 and 0.25,
respectively. The estimated coefficient for Payload Cis 10.4 while an intercept (80) for the model is 100.5.
As such, the multiple linear model for the received dataset can be expressed as follows:
Yi=100.5—-0.21X;; + 0.25X;; + 10.4X;3 + €, where i=1,2, ..., n
[045] In embodiments, the regression detector is configured to detect, identify, or select one or more
payloads as impacting the performance metrics of the software product (referred to herein as a
“significant payloads”) from the multiple linear model based on a preset threshold. For instance, in the
example above, the regression detector can be configured to select “Payload C” as a significant payload
based on a threshold of £0.5. In certain implementations, the threshold is set corresponding to a noise
level in the received dataset. In other implementations, the threshold is set in other suitable manners
with other suitable values. In embodiments, when the regression detector detects, identifies, or selects
one or more payloads as impacting the performance metrics of the software product, the root cause
analysis component 408 identifies those payload(s) as a potential root cause of the performance defect.
In embodiments, the root cause analysis component 408 further identifies the code check-in(s) that
introduced those payload(s).
[046] To further demonstrate operation of prediction system 404, Figure 5 illustrates a flow chart of an
example method 500 for detecting a performance defect at an electronic computing platform resulting
from a configuration change within the computing platform. Method 500 will be described with primarily
respect to the components and data of computing environment 400. In embodiments, when referring to
a configuration change within a computing platform, this configuration change comprises at least one of
a software configuration change within the computing platform or a firmware configuration change within
the computing platform.
[047] As shown, method 500 comprises an act 501a of obtaining a pre-change telemetry distribution
from a device population, and an act 501b of obtaining a post-change telemetry distribution from a device

population. In some embodiments act 501a includes obtaining a first distribution of first telemetry data

15

10

15

20

25

30

13768.3863 / 407978-LU-NP

obtained from a first plurality of instances of the computing platform, the first telemetry data
corresponding to a pre-change configuration, the first telemetry data including data corresponding to
each of the first plurality of instances of the computing platform and indicating energy consumption by at
least one component at the corresponding instance of the computing platform, while act 501b includes
obtaining a second distribution of second telemetry data obtained from a second plurality of instances of
the computing platform, the second telemetry data corresponding to a post-change configuration, the
second telemetry data including data corresponding to each of the second plurality of instances of the
computing platform and indicating energy consumption by the at least one component at the
corresponding instance of the computing platform. In an example, the data obtaining component 405
obtains pre-change telemetry data 403a from population 401a (i.e., a plurality of device instances 402a
of a particular computing platform), and obtains post-change telemetry data 403b from population 401b
(i.e., a plurality of device instances 402b of the particular computing platform). In embodiments,
populations 401la and 401b have partially, or fully, overlapping device instances 402. Thus, in
embodiments, a first set of devices comprising the first plurality of instances of the computing platform
overlaps with a second set of devices comprising the second plurality of instances of the computing
platform. However, in other embodiments, populations 401a and 401b could be entirely separate sets of
devices.

[048] Acts 501a and 501b are illustrated as having no particular ordering among one another. As such,
even though telemetry data 403a is from prior to a configuration change, and telemetry data 403ais from
after the configuration change, the data obtaining component 405 could obtain telemetry data 403a prior
to obtaining telemetry data 403b, could obtain telemetry data 403a subsequent to obtaining telemetry
data 403b, and/or could obtain telemetry data 403a and telemetry data 403b at least partially in parallel.
[049] Asdiscussed, examples of telemetry data 403 includes data points relating to energy consumption
at each of those device instances 402, such as energy consumption by the device as a whole, energy
consumption by one or more hardware components of the device, and/or energy consumption caused by
one or more software components running at the device. Thus, in embodiments, the data indicating
energy consumption by at least one component at a corresponding instance of the computing platform
comprises at least one of data indicating energy consumption by a hardware device at the corresponding
instance of the computing platform, or data indicating energy consumption caused by executing a
software process at the corresponding instance of the computing platform.

[050] In embodiments, the first plurality of instances of the computing platform (e.g., device instances

402a) and the second plurality of instances of the computing platform {e.g., device instances 402b) share

16

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

a substantially identical hardware configurations. For example, each instance of the computing platform
could have the same hardware configuration (e.g., the same model identifier, such as SKU). Thus, in
embodiments, the first plurality of instances of the computing platform comprise a first plurality of
computing devices having a common model identifier, and the second plurality of instances of the
computing platform comprise a second plurality of computing devices having the common model
identifier. However, instances of the computing platform could have substantially similar, but not
necessarily identical, hardware configurations (e.g., being part of the same model family).

[051] Method 500 also comprises an act 502 of characterizing shift{s) between the pre-change and post-
change telemetry distributions. In some embodiments act 502 includes computing one or more results
using at least a portion of the first telemetry data and at least a portion of the second telemetry data as
input, the one or more results characterizing one or more differences between the first distribution and
the second distribution. in an example, the characterization component 406 identifies a first data
distribution of one or more data points from the first telemetry data, and identifies a second data
distribution of one or more data points from the second telemetry data. Then, the characterization
component 406 uses these data distributions as inputs for computing one or more statistical results. As
discussed, in embodiments the statistical results are produced by one or more of the two-sample K-S test,
the Welch test, or z-score. Thus, in embodiments, the one or more results comprise at least one of a z-
score at a particular percentile of the first distribution and the second distribution, a first p-value
generated by a Welch test, or a second p-value generated by a K-S test.

[052] Notably, when using z-scores, the inventors have observed that accurate results are obtained in
an efficient manner where z-scores are calculated at one or more of the 10" percentile (i.e., P-10), the
50t percentile (i.e., P-50), or the 90" percentile (i.e., P-90), though other percentiles could be used. Thus,
in embodiments, the one or more results comprise a z-score at one or more of a 10™ percentile, a 50"
percentile, or a 90" percentile of the first distribution and the second distribution. In addition, when using
z-scores, the inventors have observed it is be less accurate to calculate z-scores at one or more of the 0™
percentile (i.e., P-0), the 25 percentile (i.e., P-20), the 75" percentile (i.e., P-75), or the 100" percentile
{i.e., P-100). Thus, in embodiments, the one or more results exclude a z-score at one or more of a oth
percentile, a 25™ percentile, a 75" percentile, or a 100" percentile of the first distribution and the second
distribution.

[053] Notably, rather than relying on raw z-scores, and the deltas therebetween, the inventors have
observed it is beneficial in some cases to use an averaged z-score delta based on mixing and iterating over

the subject distributions. This process is described later in connection with Figure 6.

17

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

[054] Method 500 also comprises an act 503 of inputting characterization(s) to a trained ML model. In
some embodiments act 503 includes inputting the one or more results to a trained ML model. In an
example, the characterization component 406 provides the results calculated in act 502 to the prediction
component 407. Since making a prediction solely on these results can at times be unreliable, the
prediction component 407 provides these resuits an ML model (e.g., ML model 410a). In embodiments,
this ML mode! has previously been trained by the learning system 104 using telemetry data 103 obtained
from populations 101 that are the same as, or similar to, populations 401. Thus, in embodiments, the
trained ML model has been trained using training data comprising statistical results computed from one
or more portions of historical first and second telemetry data. In some embodiments, the statistical results
are labeled with known indications of performance defects introduced by historical configuration changes
associated with the one or more portions of historical first and second telemetry data. In other
embodiments, the statistical results are unlabeled. In embodiments, the trained ML model comprises at
least one of a logistic regression algorithm, a support vector machine algorithm, a random forest
algorithm, a k-nearest neighbors algorithm, a Naive Bayes algorithm, or a DBSCAN algorithm, and is
trained based on training data comprising one or more of a first set of z-score values, a second set of p-
values generated by a Welch test, or a third set of p-values generated by a K-S test.

[055] Method 500 also comprises an act 504 of obtaining a prediction of whether the shift(s) indicate
that the configuration change introduced a performance defect. in some embodiments act 504 includes
obtaining a prediction of whether the one or more differences between the first distribution and the
second distribution indicate that a performance defect was introduced by the configuration change. In an
example, based on the prediction component 407 having provided the statistical results an ML model
{e.g., ML model 410a) in act 503, the ML model provides an ML-validated prediction of whether or not
there is a performance defect in the computing platform of which device instances 402b are comprised.
As mentioned, a performance defect can be a defect caused by the configuration change. In the case of
the configuration change being a software or firmware update, the performance defect could comprise
at least one of a regression in hardware performance or a regression in software performance.

[056] In some embodiments, method 500 also comprises an act 505 of, based on the prediction
indicating that the configuration change introduced a performance defect, identifying a root cause of the
performance defect. In some embodiments act 505 includes, based on an indication that a performance
defect was introduced by the configuration change, identifying a root cause of the performance defect by
analyzing the configuration change. In an example, the root cause analysis component 408 performs one

or more types of automated analysis to identify a potential root cause for the performance defect. As an

18

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

example, the root cause analysis component 408 might perform a regression detection, as discussed
above, to identify a regression in a software or firmware code update, whether that be due to a change
in code or a change in configuration. As such, in method 500, identifying the root cause of the performance
defect could comprise at least one of determining that a firmware code difference occurred from the pre-
change configuration to the post-change configuration, determining that a firmware configuration
difference occurred from the pre-change configuration to the post-change configuration, determining
that a software code difference occurred from the pre-change configuration to the post-change
configuration, or determining that a software configuration difference occurred from the pre-change
configuration to the post-change configuration. In addition, when the root cause is a code change that
cause a regression, the root cause analysis component 408 might identify a code check-in that introduced
that code change. Thus, determining that a software code or a firmware code difference caused the
performance defect coutd comprise identifying a software or firmware check-in that caused a regression.
[057] As mentioned, the inventors have observed it can be more accurate to use an averaged z-score
delta based on mixing and iterating over the subject distributions, because performance defects are
detected more accurately as compared to using a regular, non-averaged z-score delta. To demonstrate
this process, Figure 6 illustrates a flow chart of an example method 600 for calculating an averaged z-score
delta. As discussed, a classic z-score is calculated by subtracting the population mean from an individual
raw score and then dividing the difference by the population standard deviation. In method 600, an
averaged z-score delta at a particular percentile of two distributions is computed by dividing the z-score
delta at a particular percentile by a standard deviation computed based on iteratively mixing the two
distributions and computing z-score deltas.

[058] As shown, method 600 comprises an act 601 of identifying a particular z-score percentile and an
iteration count. In an example, the characterization component 406 identifies a subject percentile, such
as P-10, P-50, P-90, and the like, as well as a number of times to iterate within method 600 (e.g., 1,000
iterations, 10,000 iterations, 100,000 iterations, etc.).

[059] Method 600 also comprises an act 602 of, at the particular z-score percentile, calculating an
original delta between the pre-change and post-change telemetry distributions. In some embodiments
act 602 includes calculating an original delta between the first distribution and the second distribution at
the particular percentile. In an example, the characterization component 406 calculates a first z-score for
a first distribution at the subject percentile, and calculate a second z-score for a second distribution at the
subject percentile. Then, the characterization component 406 calculates a delta between this first and

second z-scores (e.g., as an absolute value of the difference between those z-scores).

19

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

[060] Method 600 also comprises an act 603 of mixing data points from the pre-change and the post-
change telemetry distributions. In some embodiments act 603 includes mixing data points from the first
telemetry data and the second telemetry data. In an example, the characterization component 406 mixes
the data points from the first and second distributions used in act 602 to create a new mixed distribution.
[061] Method 600 also comprises an act 604 of creating two distinct mixed telemetry distributions from
the mixed data points. In some embodiments act 604 includes dividing the mixed data points to create a
first mixed distribution and a second mixed distribution. In an example, the characterization component
406 divides the mixed distribution into a first new distribution and a second new distribution. In
embodiments, this division is performed randomly. Thus, in embodiments of act 604, dividing the mixed
data points to create the first mixed distribution and the second mixed distribution comprises randomly
dividing the mixed data points. However, in other embodiments the division is done with some predictable
pattern that would nonetheless create a different first mixed distribution and second mixed distribution
with each iteration of act 604.

[062] Method 600 also comprises an act 605 of, at the particular z-score percentile, calculating a
corresponding delta between the mixed telemetry distributions. In some embodiments act 605 includes
calculating corresponding delta between the first mixed distribution and the second mixed distribution at
the particular percentile. In an example, the characterization component 406 calculates a delta between
the first mixed distribution and the second mixed distribution, at the particular percentile, in the same
manner that it calculated the original delta in act 602.

[063] Method 600 also comprises an act 606 of saving the corresponding delta. In an example, the
characterization component 406 saves the delta computed in act 605 in some list or database.

[064] Method 600 also comprises an act 607 of determining if the iteration count met. If the iteration
count was met, method 600 proceeds to act 608. Otherwise, if the iteration count was not met, act 607
includes incrementing the iteration count and returning to act 604 (i.e., for creating two distinct mixed
telemetry distributions from the mixed data points). Thus, method 600 repeats acts 604 through 606 until
the iteration count is met. Since, in act 604, the two mixed telemetry distributions are created randomly
or with some predictable pattern, each iteration of act 604 creates a distinct set of mixed distributions.
Then, in acts 605 and 606 a different corresponding delta is created, and saved, based on these mixed
distributions.

[065] After iterating, act 608 comprises calculating a standard deviation among the corresponding
deltas. In an example, the characterization component 406 computes a standard deviation among all of

the deltas saved in act 606 across the iterations of acts 604 to 606.

20

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

[066] Method 600 also comprises an act 609 of dividing the original delta by the standard deviation. In
an example, the characterization component 406 divides the original delta calculated in act 602 by the
standard deviation calculated in act 608, resulting in a weighted delta between the original two
distributions at the selected percentile.

[067] Accordingly, the embodiments described herein detect performance defects in a computing
platform based on analyzing power consumption data obtained from a population of a plurality of
instances of the computing platform. After a configuration change in the computing platform, these
embodiments obtain a post-change distribution of power consumption telemetry data from the
population of instances of the computing platform, and compare with this post-change distribution of
power consumption telemetry data with a pre-change distribution data of power consumption telemetry
data generated by that population (or from a similar population) prior to the configuration change. The
comparison computes one or more characterizations of differences in the distribution of power
consumption telemetry data found in the pre-change distribution as compared to the distribution of
power consumption telemetry data found in the post-change distribution. These computed
characterization(s) are provided to a trained ML model, which produces a prediction as to whether or not
the differences between the post-change distribution and the pre-change distribution are indicative that
the configuration change introduced a performance defect in the computing platform.

[068] The embodiments described herein can consume fewer computing resources than prior
techniques, since they operate on relatively easy to generate telemetry data (i.e., power consumption
data), rather than monitoring specific thresholds at individual computer systems and running test
scenarios at individual computer systems. In addition, they can detect many performance defects that
would be difficult to anticipate and develop appropriate thresholds and/or test scenarios for. Further,
since the performance defect detection techniques described herein operate on telemetry data from a
potentially large number of computer systems, they can detect performance defects that may be difficult
to reproduce.

[069] Notably, while the embodiments described herein can operate on any granularity of telemetry
data, a distinct advantage of the embodiments described herein is that they can reliably detect
performance defects in a computing environment even when the telemetry data obtained from instances
of that computing environment is relatively course (e.g., power consumption data relating to a device or
device component generally, rather than detailed information about how applications and processes are
executing) or even noisy. Use of course data enables technical efficiencies across the board. At the

instances of the subject computing environment, gathering and transmitting courser data versus more

21

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

granular data conserves processing resources, memory resources, storage resources, and
communications bandwidth. At the prediction system receiving and processing courser data also
conserves processing resources, memory resources, storage resources, and communications bandwidth.
[070] In addition, by operating on relatively course data the embodiments described herein can also
provide distinct privacy advantages as compared to conventional performance defect detection
techniques. For instance, even if the embodiments herein operate on telemetry data that includes the
power consumption caused by executing a particular process at a computing device, this power
consumption information contains no sensitive information about how the process was actually being
used or what it was doing at the computing device. For instance, if the process in question corresponds
to a web browser, information about the power usage that the web browser caused provides no sensitive
information about how the web browser was actually being used (e.g., there is no telemetry on users,
content consumed, websites visited, a number of tabs open, etc.). Nonetheless, the embodiments herein
can use this course power consumption data to detect performance defects introduced by updates to that
web browser.

[071] Although the subject matter has been described in language specific to structural features and/or
methodological acts, it is to be understood that the subject matter defined in the appended claims is not
necessarily limited to the described features or acts described above, or the order of the acts described
above. Rather, the described features and acts are disclosed as example forms of implementing the claims.
In addition, although the methodological acts may have been discussed in a certain order, and may have
been illustrated in a flow chart as occurring in a particular order, no particular ordering is required unless
specifically stated, or required because an act is dependent on another act being completed prior to the
act being performed.

[072] Embodiments of the present invention may comprise or utilize a special-purpose or general-
purpose computer system that includes computer hardware, such as, for example, one or more
processors and system memory, as discussed in greater detail below. Embodiments within the scope of
the present invention also include physical and other computer-readable media for carrying or storing
computer-executable instructions and/or data structures. Such computer-readable media can be any
available media that can be accessed by a general-purpose or special-purpose computer system.
Computer-readable media that store computer-executable instructions and/or data structures are
computer storage media. Computer-readable media that carry computer-executable instructions and/or

data structures are transmission media. Thus, by way of example, and not limitation, embodiments of the

22

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

invention can comprise at least two distinctly different kinds of computer-readable media: computer
storage media and transmission media.

[073] Computer storage media are physical storage media that store computer-executable instructions
and/or data structures. Physical storage media include computer hardware, such as RAM, ROM, EEPROM,
solid state drives (“SSDs”), flash memory, phase-change memory (“PCM”), optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other hardware storage device(s) which can be
used to store program code in the form of computer-executable instructions or data structures, which can
be accessed and executed by a general-purpose or special-purpose computer system to implement the
disclosed functionality of the invention.

[074) Transmission media can include a network and/or data links which can be used to carry program
code in the form of computer-executable instructions or data structures, and which can be accessed by a
general-purpose or special-purpose computer system. A “network” is defined as one or more data links
that enable the transport of electronic data between computer systems and/or modules and/or other
electronic devices. When information is transferred or provided over a network or another
communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer system, the computer system may view the connection as transmission media. Combinations
of the above should also be included within the scope of computer-readable media.

[075] Further, upon reaching various computer system components, program code in the form of
computer-executable instructions or data structures can be transferred automatically from transmission
media to computer storage media (or vice versa). For example, computer-executable instructions or data
structures received over a network or data link can be buffered in RAM within a network interface module
(e.g., a “NIC”), and then eventually transferred to computer system RAM and/or to less volatile computer
storage media at a computer system. Thus, it should be understood that computer storage media can be
included in computer system components that also (or even primarily) utilize transmission media.

[076] Computer-executable instructions comprise, for example, instructions and data which, when
executed at one or more processors, cause a general-purpose computer system, special-purpose
computer system, or special-purpose processing device to perform a certain function or group of
functions. Computer-executable instructions may be, for example, binaries, intermediate format
instructions such as assembly language, or even source code.

[077] Those skilled in the art will appreciate that the invention may be practiced in network computing
environments with many types of computer system configurations, including, personal computers,

desktop computers, laptop computers, message processors, hand-held devices, multi-processor systems,

23

LU101632

10

15

20

25

30

13768.3863 / 407978-LU-NP

microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe
computers, mobile telephones, PDAs, tablets, pagers, routers, switches, and the like. The invention may
also be practiced in distributed system environments where local and remote computer systems, which
are linked (either by hardwired data links, wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks. As such, in a distributed system environment,
a computer system may include a plurality of constituent computer systems. In a distributed system
environment, program modules may be located in both local and remate memory storage devices.

[078] Those skilled in the art will also appreciate that the invention may be practiced in a cloud
computing environment. Cloud computing environments may be distributed, although this is not
required. When distributed, cloud computing environments may be distributed internationally within an
organization and/or have components possessed across multiple organizations. In this description and the
following claims, “cloud computing” is defined as a model for enabling on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services). The definition of “cloud computing” is not limited to any of the other numerous advantages that
can be obtained from such a model when properly deployed.

[079] A cloud computing model can be composed of various characteristics, such as on-demand self-
service, broad network access, resource pooling, rapid elasticity, measured service, and so forth. A cloud
computing model may also come in the form of various service models such as, for example, Software as
a Service (“SaaS”), Platform as a Service {“PaaS”), and Infrastructure as a Service (“laaS”). The cloud
computing model may also be deployed using different deployment models such as private cloud,
community cloud, public cloud, hybrid cloud, and so forth.

[080] Some embodiments, such as a cloud computing environment, may comprise a system that
includes one or more hosts that are each capable of running one or more virtual machines. During
operation, virtual machines emulate an operational computing system, supporting an operating system
and perhaps one or more other applications as well. In some embadiments, each host includes a
hypervisor that emulates virtual resources for the virtual machines using physical resources that are
abstracted from view of the virtual machines. The hypervisor also provides proper isolation between the
virtual machines. Thus, from the perspective of any given virtual machine, the hypervisor provides the
illusion that the virtual machine is interfacing with a physical resource, even though the virtual machine
only interfaces with the appearance (e.g., a virtual resource) of a physical resource. Examples of physical
resources including processing capacity, memory, disk space, network bandwidth, media drives, and so

forth.

24

LU101632

13768.3863 / 407978-LU-NP

[081) The present invention may be embodied in other specific forms without departing from its
essential characteristics. The described embodiments are to be considered in all respects only as
illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their scope. When introducing elements in the

” o

appended claims, the articles “a,” “an,” “the,” and “said” are intended to mean there are one or more of

n o

the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean

that there may be additional elements other than the listed elements.

25

LU101632

LU101632

13768.3863 / 407978-LU-NP

CLAIMS
What is claimed:

1. A method, implemented at a computer system (404) that includes at least one processor,
for detecting a performance defect at an electronic computing platform resulting from a configuration
change within the computing platform, the method comprising:

obtaining (405) a first distribution of first telemetry data (403a) obtained from a first plurality of
instances (402a) of the computing platform, the first telemetry data corresponding to a pre-change
configuration, the first telemetry data including data corresponding to each of the first plurality of
instances of the computing platform and indicating energy consumption by at least one component at the
corresponding instance of the computing platform;

obtaining (405) a second distribution of second telemetry data (403b) obtained from a second
plurality of instances (402b) of the computing platform, the second telemetry data corresponding to a
post-change configuration, the second telemetry data including data corresponding to each of the second
plurality of instances of the computing platform and indicating energy consumption by the at least one
component at the corresponding instance of the computing platform;

computing (406) one or more results using at least a portion of the first telemetry data and at
least a portion of the second telemetry data as input, the one or more results characterizing one or more
differences between the first distribution and the second distribution; and

inputting (407) the one or more results to a trained machine learning model (410) to obtain a
prediction of whether the one or more differences between the first distribution and the second
distribution indicate that a performance defect was introduced by the configuration change.

2. The method of claim 1 wherein the trained machine learning model has been trained
using training data comprising statistical results computed from one or more portions of historical first
and second telemetry data, the statistical results labeled with known indications of performance defects
introduced by historical configuration changes associated with the one or more portions of historical first
and second telemetry data.

3. The method of any preceding claim, wherein the one or more results comprise at least
one of a z-score at a particular percentile of the first distribution and the second distribution, a first p-
value generated by a Welch test, or a second p-value generated by a Kolmogorov-Smirnov test.

4, The method of claim 3, further comprising calculating a z-score delta based on at least:

a) calculating an original delta between the first distribution and the second distribution at the

particular percentile;

26

LU101632

13768.3863 / 407978-LU-NP

b) mixing data points from the first telemetry data and the second telemetry data;

¢) dividing the mixed data points to create a first mixed distribution and a second mixed
distribution;

d) calculating corresponding delta between the first mixed distribution and the second mixed
distribution at the particular percentile;

e) repeating b) through d) a plurality of times while creating a distinct first mixed distribution for
each iteration and creating a distinct second mixed distribution for each iteration;

f) calculating a standard deviation among the calculated corresponding deltas; and

g) dividing the original delta by the standard deviation.

5. The method of claim 4, wherein dividing the mixed data points to create the first mixed
distribution and the second mixed distribution comprises randomly dividing the mixed data points.

6. The method of any preceding claim, wherein the performance defect comprises at least
one of a regression in hardware performance or a regression in software performance.

7. The method of any preceding claim, wherein the first plurality of instances of the
computing platform comprises a first plurality of computing devices having a common model identifier,
and wherein the second plurality of instances of the computing platform comprises a second plurality of
computing devices having the common model identifier.

8. The method of any preceding claim, wherein the data indicating energy consumption by
at least one component at a corresponding instance of the computing platform comprises at least one of:

data indicating energy consumption by a hardware device at the corresponding instance of the
computing platform; or

data indicating energy consumption caused by executing a software process at the corresponding
instance of the computing platform.

9. The method of any preceding claim, wherein the trained machine fearning model
comprises at least one of a logistic regression algorithm, a support vector machine algorithm, a random
forest algorithm, a k-nearest neighbors algorithm, or a Naive Bayes algorithm.

10. The method of any preceding claim, wherein the trained machine learning model is
trained based on training data comprising one or more of a first set of z-score values, a second set of p-
values generated by a Welch test, or a third set of p-values generated by a Kolmogorov-Smirnov test.

11. The method of any preceding claim, wherein a first set of devices comprising the first
plurality of instances of the computing platform overlaps with a second set of devices comprising the

second plurality of instances of the computing platform.

27

LU101632

13768.3863 / 407978-LU-NP

12. The method of any preceding claim, wherein the configuration change comprises at least
one of a software configuration change or a firmware configuration change.

13. The method of any preceding claim, further comprising, based on an indication that a
performance defect was introduced by the configuration change, identifying a root cause of the
performance defect by analyzing the configuration change.

14. The method of claim 13, wherein identifying the root cause of the performance defect
comprises at least one of:

determining that a firmware code difference occurred from the pre-change configuration to the
post-change configuration;

determining that a firmware configuration difference occurred from the pre-change configuration
to the post-change configuration;

determining that a software code difference occurred from the pre-change configuration to the
post-change configuration; or

determining that a software configuration difference occurred from the pre-change configuration
to the post-change configuration.

15. The method of claim 14, wherein identifying the root cause of the performance defect
comprises determining that a software code difference occurred from the pre-change configuration to
the post-change configuration, wherein determining that the software code difference caused the

performance defect comprises identifying a software check-in that caused a regression.

28

LU101632

LU101632

13768.3863 / 407978-LU-NP

REVENDICATIONS LU101632

Ce qui est revendiqué :

1. Un procédé, mis en ceuvre au niveau d’un systeme informatique (404) incluant au moins un
processeur, destiné a détecter un défaut de performance au niveau d’une plateforme informatique électronique
résultant d’un changement de configuration dans la plateforme informatique, le procédé comprenant :

I'obtention (405) d’une premiére distribution de premiéres données de télémétrie (403a) obtenues a partir
d’une premiére pluralité d’instances (402a) de la plateforme informatique, les premiéres données de télémétrie
correspondant a une configuration avant changement, les premiéres données de télémétrie comprenant des
données correspondant a chacune des instances de la premiére pluralité de la plateforme informatique et indiquant
la consommation d’énergie par au moins un composant au niveau de I'instance correspondante de la plateforme
informatique ;

I'obtention (405) d’une deuxiéme distribution de deuxiémes données de télémétrie (403b) obtenues a
partir d’une deuxieme pluralité d’instances (402b) de la plateforme informatique, les deuxiémes données de
télémétrie correspondant a une configuration apreés changement, les deuxiémes données de télémétrie comprenant
des données correspondant & chacune des instances de la deuxieme pluralité de la plateforme informatique et
indiguant la consommation d’énergie par au moins un composant au niveau de l'instance correspondante de la
plateforme informatique ;

le calcul (406) d’'un ou plusieurs résultats 3 'aide d’au moins une partie des premiéres données de
télémétrie et au moins une partie des deuxiemes données de télémétrie comme entrées, le ou les résultats
caractérisant une ou plusieurs différences entre la premiére distribution et la deuxiéme distribution ; et

Fintroduction (407) du ou des résultats dans un modele entrainé d’apprentissage machine (410) afin de
prédire sila ou les différences entre la premiere distribution et {a deuxieme distribution indiquent qu’un défaut de
performance a été causé par le changement de configuration.

2. Le procédé selon la revendication 1, dans leque! le modele entrainé d’apprentissage machine a été
entrainé a l'aide de données d’entrainement comprenant des résultats statistiques calculés a partir d’une ou
plusieurs parties de premiéres et deuxiémes données de télémétrie historiques, les résultats statistiques étiquetés
avec des indications connues de défauts de performance causés par des changements historiques de configuration
associés a la ou aux parties de premiéres et deuxiémes données de télémétrie historiques.

3. Procédé selon I'une quelconque des revendications précédentes, dans lequel le ou les résultats
comprennent au moins un score z a un centile particulier de la premiére et la deuxieme distribution, une premiére

valeur p générée par un test de Welch ou une deuxiéme valeur p générée par un test de Kolmogorov-Smirnov.

4. Procédé selon la revendication 3, comprenant en outre le calcul d’un delta de score z basé sur au
mains :

a) le calcul d’un delta initial entre la premiére distribution et la deuxiéme distribution au centile
particulier ;

b) le mélange de points de données provenant des premiéres données de télémétrie et des deuxiémes

données de télémétrie ;

26

13768.3863 / 407978-LU-NP
c) ladivision des points de données mélangés pour créer une premiere distribution mélangée et une
LU101632
deuxiéme distribution mélangée ;

d) le calcul d’un delta correspondant entre la premiére distribution mélangée et la deuxiéme distribution
mélangée au centile particulier ;

e) larépétition de b) a d) plusieurs fois tout en créant une premiére distribution mélangee distincte pour
chaque itération et en créant une deuxieme distribution mélangée distincte pour chaque itération ;

f) le calcul d’un écart type parmiles deltas calculés correspondants ; et

g) ladivision du delta initial par I'écart type.

5. Le procédé selon la revendication 4, dans lequel la division des points de données mélangés pour
créer la premiére distribution mélangée et la deuxiéme distribution mélangée comprend la division aléatoire des
points de données mélangés.

6. Le procédé selon I'une quelconque des revendications précédentes, dans lequel le défaut de
performance comprend au moins une régression de la performance matérielle ou une régression de la performance
logicielle.

7. Le procédé selon I'une quelconque des revendications précédentes, dans lequel la premiere
pluralité d’instances de la plateforme informatique comprend une premiére pluralité de dispositifs informatiques
ayant un identifiant de modéle commun, et dans lequel la deuxieme pluralité d’instances de la plateforme
informatique comprend une deuxiéme pluralite de dispositifs informatiques ayant I'identifiant de modele commun.

8. Le procédé selon I'une quelconque des revendications précédentes, dans lequel les données
indiquant la consommation d’énergie d’au moins un composant d’une instance correspondante de la plateforme
informatique comprennent au moins :

des données indiquant la consommation d’énergie d'un dispositif matériel de I'instance correspondante
de la plateforme informatique ; ou

des données indiquant la consommation d’énergie causée par I’'exécution d’un processus logiciel au niveau
de I'instance correspondante de la plateforme informatigue.

9. Le procédé selon Pune quelconque des revendications précédentes, dans lequel le modéle
entrainé d’apprentissage machine comprend au moins un algorithme de régression logistique, un algorithme de
machine 2 vecteurs de support, un algorithme de foréts aléatoires, un algorithme des plus proches voisins k ou un
algorithme par classification bayésienne naive.

10. Le procédé selon F'une quelcongue des revendications précédentes, dans lequel le modéle
entrainé d’apprentissage machine est entrainé sur la base de données d’entrainement comprenant un ou plusieurs
éléments d’un premier ensemble de valeurs de score z, d'un deuxiéme ensemble de valeurs p générées par un test
de Welch ou d’un troisiéme ensemble de valeurs p générées par un test de Kolmogorov-Smirnov.

11. Le procédé selon l'une quelconque des revendications précédentes, dans lequel un premier
ensemble de dispositifs comprenant la premiére pluralité d’instances de la plateforme informatique chevauche un

deuxiéme ensemble de dispositifs comprenant la deuxiéme pluralité d’instances de la plateforme informatique.

27

13768.3863 / 407978-LU-NP

12. Le procédé selon I'une quelconque des revendications précédentes, dans lequel le changement de
configuration comprend au moins un changement de configuration de logiciel ou un changement de configuration
de micrologiciel.

13. Le procédé selon I'une quelconque des revendications précédentes, comprenant en outre, sur la
base d’une indication qu’un défaut de performance a été causé par le changement de configuration, 'identification
d’une cause profonde du défaut de performance en analysant le changement de configuration.

14. Le procéde selon la revendication 13, dans lequel I'identification de la cause profonde du défaut
de performance comprend au moins I'un des éléments suivants :

le fait de déterminer qu’une différence de code de micrologiciel est survenue entre la configuration avant
changement et la configuration aprés changement ;

le fait de déterminer qu’une différence de configuration de micrologiciel est survenue entre la
configuration avant changement et la configuration apres changement ;

le fait de déterminer qu’une différence de code de logiciel est survenue entre la configuration avant
changement et la configuration aprés changement ; ou

le fait de déterminer qu’une différence de configuration de logiciel est survenue entre la configuration
avant changement et la configuration aprés changement.

15. Le procédé selon la revendication 14, dans lequel I'identification de la cause profonde du défaut
de performance comprend le fait de déterminer qu’une différence de code de logiciel est survenue entre la
configuration avant changement et la configuration aprés changement, dans lequel le fait de déterminer que la
différence de code de logiciel a provoqué le défaut de performance comprend l'identification d’un enregistrement

de logiciel qui a provoqué une régression.

28

LU101632

LU101632

LU101632

13768.3863 / 407978-LU-NP

1/6

L O
_fl 60} Bures] N
A _
" 801 buieqe |
L o e e e e _ J
H 0} uoRezuajorieyn
oK
abieio}S apoyy a0} Buieiqq ejeqg
TN 501
(\\ uoljeauan) Jasele(] buiuies|
01 wajshg Bulwes]
001

qeol

u-qzo} azor
q|0} uonejndod

u-ego) eZ01
210} uonejndod

13768.3863 / 407978-LU-NP

LU101632
2/6
200
203a 203c
_ __203b _
L ? : 201a]

13768.3863 / 407978-LU-NP
3/6

300

Obtain Data

301

l

The Telmetry Data

Characerize Differeneces In

302

- e am e e i e o ———

Train An ML Model

=

FIG. 3

LU101632

LU101632

13768.3863 / 407978-LU-NP

4/6

¥y Ol
Lt it e dd _
TN 80¥ Sishjeuy asnes jooy |
[w7) o ey e L
_ — q10¥ uoieindo
&0 4
50V 90¥ uonezZUS}ORIEYD
abei0)s [apopy —
—_— U-g, e
» &0 oV Z0v
GOv bulueiqo ejeq |« 107 uonejndog
0¥ WalAg uonoipaid
00¥%

13768.3863 / 407978-LU-NP
LU101632

5/6

8

Obtain A Pre-Change Telemetry Obtain A Post-Change Telemetry
Distribution From A Device Population Distribution From A Device Population
501a 501b

' '

Characterize Shift(s) Between The Pre-Change And Post-Change Telemetry
Distributions

!

Input Characterization(s) To A Trained Machine Leaming Model

!

Obtain A Prediction Of Whether The Shift{s) Indicate That The Configuration Change
Introduced A Peformance Defect 504

Based On The Prediction Indicating That The Configuration Change Introduced A
Performance Defect, Identify A Root Cause Of The Performance Defect 505

13768.3863 / 407978-LU-NP LU101632

6/6
600

Identify A Particular Z-Score Percentile And An Iteration Count

'

At The Particular Z-Score Percentile, Calculate An Original Delta Between
The Pre-Change And Post-Change Telemetry Distributions 602

'

Mix Data Points From The Pre-Change And The Post-Change Telemetry
Distributions 603

'

Create Two Distinct Mixed Telemetry Distributions From The Mixed Data
Points 604

!

At The Particular Z-Score Percentile, Calculate A Corresponding Delta
Between The Mixed Telemetry Distributions 605

: s

Save The Corresponding Delta

601

606
No Iteration
Count Met?
607
Calculate A Standard Deviation Among The Corresponding Deltas
608
Divide The Original Delta By The Standard Deviation
609

FIG. 6

	Page 1 - BIBLIOGRAPHY
	Page 2 - BIBLIOGRAPHY
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - CLAIMS
	Page 30 - CLAIMS
	Page 31 - CLAIMS
	Page 32 - CLAIMS
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - CLAIMS
	Page 37 - DRAWINGS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - DRAWINGS

