wo 2011/148385 A2 |11 0K 00O A O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual Property Organization /5% o
) wal Poperty Organizadon /552 | NN 0 AL AR
International Bureau S,/)
3\ i 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
1 December 2011 (01.12.2011) PCT WO 2011/148385 A2
(51) International Patent Classification: Yantra Park, Thane (west), Mumbai 400 607, Maharash-
GO6F 17/22 (2006.01) tra (IN).
(21) International Application Number: (74) Agent: GUPTA, Priyank; Legasis Partners, B-105, ICC
PCT/IN2011/000345 Trade Towers, Senapati Bapat Road, Pune 411 016 (IN).
(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every
18 May 2011 (18.05.2011) kind of national protection available): AE, AG, AL, AM,
25) Filing L) Enelish AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(25) Filing Language: nglis CA., CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L. HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(30) Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
1600/MUM/2010 24 May 2010 (24.05.2010) IN ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI
(71) Applicant (for all designated States except US). TATA NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
CONSULTANCY SERVICES LIMITED [IN/IN]; Nir- SE, 8G, 8K, SL, SM, ST, SV, 8Y, TH, T/, TM, TN, TR,
mal Building, 9th Floor, Nariman Point, Mumbai 400 TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
021, Maharashtra (IN). (84) Designated States (unless otherwise indicated, for every
(72) Inventors; and kind of regional protection available): ARIPO (BW, GH,
(75) Inventors/Applicants (for US ornly): SAHOOQO, Prabin GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL, SK,

Ranjan [IN/IN]; Tata Consultancy Services Ltd., Yojana
Bhavan, Yantra Park, Thane (west), Mumbai 400 607,
Maharashtra (IN). TENDULKAR, Dattatraya Mohan
[IN/IN]; Tata Consultancy Services Ltd., Yojana Bhavan,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR DISINTEGRATING AN XML DOCUMENT FOR HIGH DEGREE OF PARAL-
LELISM

100 (57) Abstract: The present invention relates to the field of high perfor-

mance computation. Particularly, the invention relates to converting a
huge XML document into SDML format which can be processed with

high degree of parallelism to achieve high performance. In addition also

SDML can be used as a standalone protocol for data representation.
SDML deals with one time write and many times read. Further, SDML

files can be splitted on number of lines which makes it easier to distribute
among multi cores and even distributing across servers.

1. Preprocess the
XML so that each
tag ends in a line

2. Create an

intermediate file

For each line in the
intermediate file read the
start tag and read until end
tag using SDML rules

Read
SDML
Rule file

500

Delete the
intermediate file
END

FIG. 1

WO 2011/148385 A2 I 0000) A0 0O A A

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW, ML, MR, NE, SN, TD, TG). — without international search report and to be republished
Declarations under Rule 4.17: upon receipt of that report (Rule 48.2(g))

— as fto the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

WO 2011/148385 PCT/IN2011/000345

METHOD AND SYSTEM FOR DISINTEGRATING AN XML DOCUMENT FOR HIGH DEGREE OF -
PARALLELISM

FIELD OF THE INVENTION:

The present invention relates to the field of high performance computation. Particularly, the present
invention relates to converting a huge XML file into modified simple dependency markup language
(SDML) which can be processed with high degree of parallelism to achieve high performance in a

multicore technology environment.
BACKGROUND OF THE INVENTION:

Now days, as a World Wide Web Consortium (W3C) recommended general-purpose markup language,
eXtensible Markup Language (XML) has been widely used in various applications, such as Web
Service, Database, etc. XML defines a common grammar to represent data with simple and human-
readable markups, and, for example, can appear as a configuration file, a database file, etc. For many
XML-based applications, especially database and Web Service, response time is one critical
performance criterion. Different applications have different requirements for the response time. For
example, in an Online Transaction Processing (OLTP) system of a large bank, the response time is
usually required to be 100 ms or less, and larger response time will cause the discomfort of users.

The response time of XML-based applications consists of many parts, where the time for XML parsing
is inescapable. Since XML parsing involves many time-consuming operations, such as coding
conversion. tokenization, well-formed checking, and Document Type Definition (DTD) / XML schema
validation, it becomes a performance bottleneck in many XML-based applications, and occupies a main
part of the response time. More particularly, some applications use huge XML documents. For example,
in life science and content management, XML documents of Megabytes (MBs) are very popular, and
even in some case, XML documents of Gigabytes (GBs) are needed. Such large XML documents
further exacerbate parsing performance. Generally, time spent on parsing a huge XML document would

be dozens of seconds, which is usually unacceptable.
Technology Challenges

Over the years the processor technology evolution has come a long way from single processing
technology to the latest multicore technology. Evolution of Processor Technology can be given by:
single threaded processor technology -> symmetric multiprocessing using celeron dual (SMP)

technology -> simuitaneous Vmultithreading (SMT) HT technology -> multicore processing technology.

. WO 2011/148385 .) PCT/IN2011/000345
While today’s commodity processors are equipped with multiple cores which facilitates to achieve

parallelism but most of the applications are not capable of exploiting this multicore mechanism. The
traditional approach of sequential application development needs further evolutions. The need for
paradigm shift from sequential approach to parallel approach is prominent. The need for developing

new tools, frameworks is for parallel processing inevitable.
Performance Challenges

With the globalization effect, the demand for data processing has increased significantly. Business
organizations are facing huge challenges to cope up with processing high volumes of transactions. The
technology advancement has also increased the level of expectation of the consumers. The need of the
hour is to provide information not only faster but also concisely with accurate precisions. This has
opened the opportunities for Parallel processing design. It is difficult to imagine how life would have
been without Google’s map-reduce technology and Yahoo's Hadoop framework. Map-reduce
framework plays an important role in paralle! computation. Huge XML files are highly difficult to process
in parallel, not suitable for high level of parallel processing need. However, XML is popular standard for

data representation and widely used.
Several inventions have been made in this domain some of them known to us are described below:

US Publication 20090006944 discloses a method and system for parsing a markup language document
wherein the method comprises: pre-splitting a body of the markup language document into plurality
parts; scanning each of the plurality parts, wherein while each of the parts is scanned, the scanning of
the part is stopped only when a specific mark is found, and then a stop point at which the scanning is
stopped is recorded; splitting the body of the markup language document into a plurality of fragments
using the respective stop points; parsing the plurality of fragments in paraliel and producing parsinQ
results for the respective fragments; and combining the parsing results for the respective fragments to
form a parsing result for the_ markup tanguage document. However, the integrated space consumption
of the fragments put together is relatively same or more as that of the original huge XML document.

This invention employs a XML splitting and scanning technique which requires the system to scan
through each part of the original XML document for identification of predefined marks, this necessitate
the system to frequently access each part of the XML document, which is a time consuming task and
seldom would able to exploit advantages of parallel processing. Also, SDML is one time write and
many times read, which means once the SDML is created there is no need of applying any rules of pre-

splitting again the original XML document.

US Publication 20090089658 discloses a method of parsing a hierarchically organized data document,
comprising the steps of: preparsing the data document to determine a logical tree structure;

automatically dividing the data document into a plurality of sections, in dependence on the logical tree

2

WO 2011/148385 PCT/IN2011/000345
structure, each section comprising at least a beginning of a logical section of the logical tree structure,

with sufficient context to resolve any ambiguities; and automatically distributing the plurality of sections
to a plurality of processors for concurrent parsing of the sections of the data structure. However, this
document also works directly on XML document rather than converting it into another simple format for
distributing the converted parts among multi cores and even distributing across servers for saving the
time of preparsing process for logical division into plurality sections, each time a XML document is
loaded for processing. SDML is one time write and many times read, which means once the SDML is
created there is no need of applying any rules of pre-splitting again the original XML document.

All the above mentioned prior-arts fail to recognize the potential of converting a huge XML document
into an intermediate format for once write and many read, which can be processed with high degree of

parallelism not only within a multicore server but also across multicore servers.

In order to solve the above mentioned problems, the present invention proposes a system and method
for converting a huge XML document and intro a format and structure which can be processed with high

degree of parallelism to achieve high processing performance in the multicore environment.

Other features and advantages of the present invention will be explained in the following description of

the invention having refereng:_e to the appended drawings.
OBJECT OF THE INVENTION:

The primary object of the invention is to speed up the processing of huge XML document by converting

into SDML format which can be processed in parallel.

Another object of the invention is to present the converted SDML format as a stand alone protocol for

data representation.

SUMMARY OF THE INVENTION:

The present invention relates to the field of high performance computation. Particularly, the present
invention relates to converting a huge XML document into modified simple dependency markup
language (SDML) which can be processed with high degree of parallelism to achieve high performance.
According to one embodiment of the invention, the SDML format can be used as a standalone protocol

for data representation.

WO 2011/148385 PCT/IN2011/000345
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS

The foregoing summary, as well as the following detailed description of preferred embodiments, is
better understood when read in conjunction with the appended drawings. For the purpose of illustrating
the invention, there is shown in the drawings example constructions of the invention; however, the
invention is not limited to the specific system and method disclosed in the drawings:

Figure 1 illustrates a typical method for converting an XML document into SDML file format;

Figure 2 illustrates a typical method of SDML processing logic maps to multicore processor using UML

notation;
Figure 3 illustrates an overview of the framework in accordance with the present invention;

Figure 4 iliustrates a comparison of XML processing using SAX parser, DOM parser as is form and

SDML in multicore with 16 Cores;

Figure 5 illustrates a comparison of XML processing using SAX parser, DOM parser as is form and

SDML in multicore with 8 Cores;
Figure 6 illustrates a graph showing SDML processing in 8 cores Vs 16 cores;
DETAIL DESCRIPTION OF THE INVENTION

Some embodiments of this invention, illustrating its features, will now be discussed in detail. The words
“"comprising," "having," "containing,” and “including," and other forms thereof, are intended to be
equivalent in meaning and be open ended in that an item or items following any one of these words is
not meant to be an exhaustive listing of such item or items, or meant to be limited to only the listed item

or items.

It must also be noted that as used herein and in the- appended claims, the singular forms "a," "an," and
“the" include plural references unless the context clearly dictates otherwise. Although any methods, and
systems similar or equivalent to those described herein can be used in the practice or testing of

embodiments of the present invention, the preferred methods, and systems are now described.

The present invention provides a method for an efficient computation of large XML file, the said method

comprising the computer implemented step of:

reading an XML file having plurality of XML notations arranged in plurality of lines wherein each

4

WO 2011/148}85 ‘ PCT/IN2011/000345
XML notation representing an element of a record and the said XML notation ending with a tag

in the respective line;

converting the said XML file into an Intermediate XML file wherein multiple XML notations are

arranged in a line with tags of each notations ending in the said line;

applying SDML rule to the said intermediate XML file; wherein each element of an XML file is

read without missing any info while conversion to SDML;

enabling the processing of the XML file in a multicore computing environment so that when the
SDML file is splitted across several servers, each server gets its local copy for faster

processing of the large XML file;

SDML (Simple Dependency Markup Language) is a simpler mechanism and attempts to provide
maximum parallelism. This does not require complex XML parsers, complex data structures. SDML
data is represented through string with each line representing a record. That is why simple string
search, string manipulation can achieve what XML parsers can achieve. Data can even be represented
in SDML format directly without using XML as below. However, SDML does not provide any tool to

create SDML directly at present.

In its current form the XML file is first converted to SDML format. Any application which wants to read
the SDML uses SDML library to split the file with offsets depending on the number of cores and maps
each core with a begin offset and end offset. Each core starts reading the file from the given offset till
the end offset. The library takes care of reading from the start of line on a given offset so that a

complete line is processed at a time.

The motivation behind SDML is to convert the huge XML to SDML format for two reasons i) easy of
parsing through string manipulations, and ii) to process each SDML element in parallel using the latest

multicore servers to gain high performance.

SDML notation is simple like XML. For example let us take an example of a XML document to explain
this concept. The following XML document contains information of two employees of company xyz.

<Employees>

<Employee id="10000000000">
<name>Albert Bevan</family>

<company>xyz</company>

WO 2011/148385 PCT/IN2011/000345
</Employee>

<Employee id="20000000000">
<name> Charlie David</name>
<company>xyz</company>
</Employee>

</ Employees>

In SDML we can represent the same info as below.

Employees->Employee (id="10000000000")->name::Albert Bevan->company::xyz
Employees->Employee (id="20000000000")->name::Charlie David->company::xyz

“>” Represents dependency

() Attributes are grouped inside parenthesis

: Represents the value associated with an element
wn Quotes for attributes

This requires at minimum to represent the XML document into SDML format. A huge SDML file with
above template could consume less disk space than XML document. Each line in a SDML is an
independent chain of entities, which can be parsed, processed by a core or thread. Any developers
who are conversant with string handling in any language can write a parser, process the data. The
paralle! factor “P” in Amdahl's theory increases as each line is independent from the other. Therefore if

number of cores increases, the parallel processing also improves.

One of the aspects of the present invention is that SDML provides a mechanism to represent data
which are generally represented through XML. The motivation behind SDML is to process data in
parallel to achieve high degree of parallelism. Though there are tools/frameworks for paraliel
processing of XML, but because of the complexities in XML parsing, true parallelism is difficult to

achieve.

Model and Architecture

According to one embodiment of the invention, the architecture tries to maximize the parallelism factor

based on Amdahl's law.

Amdahl's law states that if P is the proportion of a program that can be made paralle! (i.e. benefit from
parallelization), and (1 - P) is the proportion that cannot be parallelized (remains serial), then the

maximum speed up that can be achieved by using N processors is:

6

WO 2011/148385 PCT/IN2011/000345

1/((1-P) + PIN);

In the limit as N tends to infinity, the maximum speedup tends to 1 / (1-P). In practice,
performance/price falls rapidly as N is increased once there is even a small component of (1 — P). As
an example, if P is 90%, then (1 — P) is 10%, and the problem can be speed up by a maximum of a
factor of 10, no matter how large the value of N used. Which means parallel computing is only useful
for either small numbers of processors, or problems with very high values of P. SDML focuses on

maximizing P.

Figure 1 illustrates a typical method for converting an XML document into SDML file format according to
one embodiment of the invention. In step 1, typically a huge XML file is given as input for processing.
Step 2 preprocesses the XML file and creates an intermediate XML file by reading XML notations line
by line (100). The preprocessing is intended to simplify and reorganize the XML file in a manner that
each tag end in a line, in the intermediate file (200) related tags are organized in a line. In the next step,
thus organized intermediate XML file is subjected to SDML rule (400) wherein each line in the
intermediate file reads the start tag until the end tag using predefined SDML rules (400) and information
(300). Thus scanned intermediate XML file upon application of SDML rules is converted into a SDML
file (500), wherein each line starts with a start tag and ends with a end tag, resulting in the aggregation
of a record in a single line. Each line is converted to represent a record and is written to the SDML file
(500), iteratively the system checks if more lines are left or not (600). Till the last available line in the
intermediate file (600), the system writes the converted‘code to the SDML file. Upon completing the
SDML conversion, subsequg_ntly, the intermediate file (600) is deleted, leaving converted SDML file for

further processing.

Figure 2 illustrates the SDML processing logic which maps to multicore processor using UML notation
according to another embodiment of the invention. The system reads the SDML document line by line
(100). Further, SDML files are splitted based on the number of lines into SDML fragments using a
predefined offset (200). The splitting of the SDML file makes it easier to distribute among multi cores for
evenly distributing across servers. The system forwards each SDML fragment for parsing and
processing to core-0, next SDML fragment to core-1 (300) and like so on. The SDML framework
supports parallel processing through multicore processors. Upon parallely processing all the fragments,
the processing resultants of all the lines in SDML fragments are combined into one SDML file (400).

Figure 3 illustrates a typical SDML processing across multicores in accordance with the framework
envisaged for the present invention. It depicts the parallel processing technique of the SDML fragments
in the respective cores in the multi core processor. This architecture plays an important role in parailel
computation in multicore technologil environment as SDML deals with one time write and many times

read.

WO 2011/148385 PCT/IN2011/000345

Let us consider an XML file as below:
<householders>
<Household>
<id> 1</id>
<memberiD>100</memberlD>
<name> Andrew</name>
<inclome>1000</income>
</Household>

<Household>
<id> 1</id>
<membertD>101</memberlD>
<name> Brian</name>
<inclome>2000</income>

</Household> N

<Household>
<id> 2</id>
<memberiD>103</memberiD>
<name> Charlie</name>
<inclome>4000</income>

</Household>

</Households>
Converting this to SDML would yield:

households->household->id:: 1->member->id::100->name::Andrew->income:: 10000
households->household->id::1->subscriber->id:: 101->name::Brian->income:: 20000
households->household->id::2->subscriber->id:: 103->name::Charlie->income::40000

Figure 4 illustrates a comparison of XML processing using SAX parser, DOM parser as is form and
SDML in multicore with 16 Cores. The graph shows effectiveness of SDML over DOM and SAX parser

Considering 16 cores parallel processing.

Figure 5 illustrates a comparison of XML processing using SAX parser, DOM parser as is form and
SDML in multicore with 8 Cores. The graph shows effectiveness of SDML over DOM and SAX parser

Considering 8 cores parallel processing.

Figure 6 illustrates a graph showing SDML processing effectiveness while employing 8 cores against
16 cores for SDML processing. The graph illustrates that 16 cores are more effective than 8 cores in

WO 2011/148385 PCT/IN2011/000345
SDML parallel processing.

According to one embodiment of the invention, the SDML rule file is simple and said rule file is defined
as below:

<employees>

<employee>

</employee>

<employees>

This means convert the XML document which starts with root <employees> and <employee>
</employee> is the plurality parts. For example the SDML converter script uses this rule to create the
first SDML line as below:

employees->defauIts—>saIary(currency="do|lar")::4000->employee->name::Michale Bollingar->
empid::178645->salary(currency="dollar")::6000->grade:: 1

This helps to read each element of an XML without missing any info while converting to SDML. This
XML file is having a default section, this is repeated to help to process the XML file in a multicore
technology environment so that when this SDML file is splitted across several servers, each server gets

its local copy for faster processing.

BEST MODE / EXAMPLE OF WORKING OF THE INVENTION

The invention is described in the example given below which is provided only to illustrate the invention

and therefore should not be construed to limit the scope of the invention.
We have a XML document which contains the employee details as below:

<employees>

<defaults>

<salary currency="dollar">4000</salary>

</defaults>

<employee>
<name>Michale Bollingar</name>
<empid>178645</empid>
<salary currency="dollar">6000</salary>
<grade>1</grade>

</employee>

<employee>
<name>Steve Bollingar</name>

WO 2011/148385 PCT/IN2011/000345
<empid>178655</empid>

<salary currency="Rupees">16000</salary>
<grade>1</grade>

</employee>

<employee>
<pame>Xinan Calmlin</name>
<empid>178646</empid>
<salary currency="dollar">7000</salary>
<grade>2</grade>

</employee>

<employee>
<name>Charlene Konix</name>
<empid>178646</empid>
<salary currency="dollar">8000</salary>
<grade>2</grade>

</employee>

<employee>
<name>Dogpnier Bollingar</name>
<empid>178647</empid>
<salary currency="dollar">9000</salary>
<grade>2</grade>

</employee>

<employee>
<name>Tom sc</name>
<empid>178648</empid>
<salary currency="dollar">10000</salary>
<grade>3</grade>

</employee>

<employee>
<name>Charlie smith</name>
<empid>178649</empid>
<salary currency="dollar">15000</salary>
<grade>3</grade>

</employee>

<employee>
<pname>Dock I</name>
<empid>178650</empid>
<salary currency="dollar">20000</salary>
<grade>3</grade>

10

WO 2011/148385
</employee>

<employee>
<name>Robert Maria</name>
<empid>178651</empid>
<salary currency="dollar">25000</salary>
<grade>4</grade>

</employee>

<employee>
<name>Scott-Maria</name>
<empid>178651</empid>
<salary currency="dollar">30000</salary>
<grade>4</grade>

</employee>

<employees>

Step1:

Convert the XML into SDML format.

Step2:
After the conversion, the SDML file now contains:

employees->defauIts—>salary(currency="dolIar")::4000->employee->name
>empid:: 178645->salary(currency="dollar").:6000->grade::1

employees->defaults->salary(currency="dollar")::4000->employee->name
>empid::178655->salary(currency="Rupees")::16000->grade::1

employees->defaults->salary(currency="dollar")::4000->employee->name
>empid::178646->salary(currency="dollar")::7000->grade::2

employees->defaults->salary(currency="dollar")::4000->employee->name
>empid::178646->salary(currency="dollar")::8000->grade::2

employees->defaults->salary(currency="dollar").:4000->employee->name
>empid::178647->salary(currency="dollar").:9000->grade::2

employees->defaults->salary(currency="dollar"): :4000->employee->name:

>salary(currency="dollar")::10000->grade::3

1"

PCT/IN2011/000345

::Michale Bollingar-

::Steve Bollingar-

:Xinan Calmlin-

::Charlene Konix-

:Dognier Bollingar-

:Tom sc->empid

::178648-

WO 2011/148385 PCT/IN2011/000345

employees->defauIts->salary(currency="do||ar")::4000—>employee->name::Charlie smith-
>empid:: 178649->salary(currency="dollar"):: 15000->grade::3

employees->defaults->salary(currency="dollar").:4000->employee->name:: Dock I->empid::178650-

>salary(currency="dollar")::20000->grade::3

employees—>defauIts->salary(currency="do|lar")::4000->employee->name::Robert Maria-
>empid:: 178651 ->salary(currency="dollar")::25000->grade::4

employees->defauIts->salary(currency="dollar")::4000->employee->name::Scott Maria-
>empid:: 178651->salary(currency="dollar")::30000->grade::4

This SDML file is one time conversion of the above XML document.

Now lets us find out the total sum of salary for employees belonging to each grade. For example total
sum of salary for grade 1 with currency “dollar” and so on.

Step3: ‘
i) Read the SDML file
a. As per the size of SDML file, divide into a set of offsets depending on the number of
cores, and assigning start and end offset to each core
ii) Now each core,
a. Seeks to the start of offset, and computes to start reading from the beginning of a line
from SDML document.
b. Read the line
c. Look for tag “employee”, and after employee read
For example:
Employee->name::Dock I->empid::178650->salary(currency="dollar")::20000->grade::3
d. Split with “->" , and for each token (
i. Loo-k' for attribute “dollar”
ii. If the attribute is “dollar”, then read the salary for the grade (in this case 20000
for grade 3)
ii. Sum the value and store the partial sum in a core variable. The core variable is
separate for each partial sum (sum_gr_1 for grade 1, sum_gr_2 for garde 2
and so on)
e. Repeat step b above for each line until the end of offset is reached.
f Now once all the cores finished their computation
iii) The main application reduces the final sum for each grade from each core.

12

WO 2011/148385 PCT/IN2011/000345
iv) Finally we get the output as:

Grades Total Salary (dollars)
Grade-1 6000

Grade-2 24000

Grade-3 45000

Grade-4 55000

The output shows Grade-1 as 6000 because we have put a condition only to add for those whose

currency is in dollar.

13

WO 2011/148385 PCT/IN2011/000345
CLAIMS:

1)

2)

3)

5)

6)

7)

A method for an efficient computation of large XML file, the said method comprising the

computer implemented step of:

reading an XML file having plurality of XML notations arranged in plurality of lines wherein each
XML notation representing an element of a record and the said XML notation ending with a tag

in the respective line;

converting the said XML file into an Intermediate XML file wherein multiple XML notations are
arranged in a line with tags of each notations ending in the said line;

applying SDML rule to the said intermediate XML file; wherein each element of an XML file is

read without missing any info while conversion to SDML;

enabling the processing of the XML file in a multicore environment so that when the SDML file '
is splitted across multiple cores, each core gets its local copy for faster processing of the large
XML file;

A method as claimed in claim 1, wherein the processing of SDML file is done through multi core

processor using UML notation.

A method as claimed in claim 1, wherein the parallelism factor “p” is based upon Amdahl’s law

for improving the computing performance.

A method as claim_éd in claim 1, wherein the SDML rule file contains rules and data for
converting the XML file into SDML file wherein the said rules sequentially acts upon each XML
notation in each line and integrate the related members of the notation to form a record in a

single line.

A method as claimed in claim 1, the intermediate XML contains tags, wherein each line of the
intermediate file is converted into a SDML, each string thereof representing a record.

A method as claimed in claim 1, the XML processing latency is reduced in ratio of number of
lines of the primary SDML created and processed in parallel in multiple cores.

A system for efficient computation of large XML file, wherein program instructions are
configured to cause the processor to convert the plurality of XML notations arranged in plurality

of lines in a large XML file to convert into an intermediate XML file wherein multiple XML

14

WO 2011/148385 PCT/IN2011/000345
notations are arranged in a line with tags of each notations ending in the said line; and

The said system further comprising program instructions configured to cause the processor to
apply SDML rule to the said intermediate XML file; wherein each element of an XML file is read

without missing any-info while conversion to SDML; and

The said system further comprising program instructions configured to cause the processor to
process the said file in a multicore environment so that when the SDML file is splitted across

cores , each core gets its local copy for faster processing of the original large XML file.

8) A system as claimed in claim 7, wherein the processing of SDML file is done through multi core

processor using UML notation.

9) A system as claimed in claim 7, wherein the parallelism factor “p” is based upon Amdahl's law

for improving the computing performance.

10) A system as claimed in claim 7, wherein the SDML rule file contains rules and data for
converting the XML file into SDML file wherein the said rules sequentially acts upon each XML
notation in each line and integrate the related members of the notation to form a record in a

single line.

11) A system as claimed in claim 7, the intermediate XML contains tags and nodes, wherein each
line of the intermediate file is converted into a SDML, each string thereof representing a record.

12) A system as claimed in claim 7, the XML processing latency is reduced in ratio of number of

lines of the primary SDML created and processed in parallel in multiple cores.

13) A method and system substantially as herein described with reference to and as illustrated by

the accompanying drawings.

15

WO 2011/148385

Read
SDML
Rule file

PCT/IN2011/000345
1/5

/ Read XML /Q

Preprocess the
XML so that each
tag ends in a line
2. Create an
intermediate file

100

200

300

400

For each line in the
intermediate file read the
start tag and read until end
tag using SDML rules

500

\ 4
Write to SDML file /

600

More lines?

Yes

No

700

Delete the
intermediate file
END

FIG. 1

WO 2011/148385 PCT/IN2011/000345
2/5

100

(Read%‘fm file >/

300

Split the lines using offsets _200
_ o°
Crocess a range of lines in SDML in cor@ Crocess a range of lines in SDML in cor@

FIG. 2

WO 2011/148385 PCT/IN2011/000345
3/5

e e e R R R T R R R R R R R E R R R AR A R AR A RS R A AR

FIG. 3

WO 2011/148385

4/5

PCT/IN2011/000345

rrilli sacs

Parsing XML doc (7000001 elements
(16 Cores)

25000
20000
15000
10000
5000
8]

—o—SAX
—a— DOM

—a— SDML

milli

imei

T

Pasring (7000001) elements
(8 Cores)

120000
100000
80000
60000
40000
20000
0

Test#

FIG. 5

WO 2011/148385

PCT/IN2011/000345

5/5

Time in milli

5000

4000

3000

2000

1000

16 Cores Vs 8 Cores (SDML parsing)

R -
—e— 16 Core;

—a— 8 Core J

FIG. 6

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings

