

US00RE43441E

US RE43.441 E

*Jun. 5, 2012

(19) United States (12) Reissued Patent

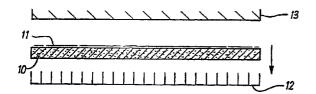
Taylor

(54) FLEXIBLE MATERIAL

- (75) Inventor: David Stirling Taylor, Accrington (GB)
- (73) Assignee: Stirling Mouldings Limited (GB)
- (*) Notice: This patent is subject to a terminal disclaimer.
- (21) Appl. No.: 13/107,688
- (22) Filed: May 13, 2011

Related U.S. Patent Documents

Reissue of:


Patent No .:	6,743,325
Issued:	Jun. 1, 2004
Appl. No.:	10/030,782
PCT Filed:	Jul. 13, 2000
PCT No.:	PCT/GB00/02687
§ 371 (c)(1),	
(2), (4) Date:	Apr. 23, 2002
PCT Pub. No.:	WO01/03530
PCT Pub. Date:	Jan. 18, 2001
	Issued: Appl. No.: PCT Filed: PCT No.: § 371 (c)(1),

- U.S. Applications:
- (63) Continuation of application No. 12/642,522, filed on Dec. 18, 2009, now Pat. No. Re. 42,689, which is a continuation of application No. 11/269,919, filed on Nov. 8, 2005, now Pat. No. Re. 41,346.

(30) Foreign Application Priority Data

Jul. 13, 1999	(GB)	9916291
Sep. 16, 1999	(GB)	9921804

- (51) Int. Cl.
- **B32B 38/04** (2006.01)
- (52) U.S. Cl. 156/265; 156/259; 156/271; 156/299; 156/300; 156/301; 156/512; 156/560; 156/308.2; 428/141; 428/304.4; 2/16; 2/22; 2/456

(56) **References Cited**

(10) Patent Number:

DE

(45) Date of Reissued Patent:

U.S. PATENT DOCUMENTS

2,751,609 A	6/1956	Oesterling et al.
2,785,739 A	3/1957	McGregor, Jr. et al.
3,020,186 A	2/1962	Lawrence
3,137,746 A	6/1964	Seymour et al.
3,285,768 A	11/1966	Habib
(Continued)		

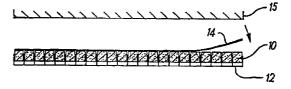
FOREIGN PATENT DOCUMENTS

3641609 C1 2/1988

(Continued)

OTHER PUBLICATIONS

"ESC Steel Rule Dies," available at http://escutters.co.uk/#/laser-flat-bed/4525904364 (last visited Mar. 30, 2010), 1 page. cited by other.


(Continued)

Primary Examiner — Mark A Osele (74) Attorney, Agent, or Firm — Fitch, Even, Tabin & Flannery, LLP

(57) **ABSTRACT**

A flexible material includes a plurality of separate resilient elements joined to a flexible, resiliently stretchable substrate. Such a material is suitable for providing protective war for human and animal bodies. Preferably, the elements includes a foam material such as a closed cell polyethylene foam and the substrate includes a knitted fabric. In an advantageous embodiment, a second flexible substrate is bonded over the elements to sandwich them between the two layers of substrate.

19 Claims, 3 Drawing Sheets

U.S. PATENT DOCUMENTS

	U.S.	PATENT	DOCUMENTS
3,285,800	Α	11/1966	Bartell et al.
3,293,671	Â	12/1966	Griffin
3,305,423	Â	2/1967	Masson
, ,	A		Balliet
3,404,406		10/1968	
3,441,638	A	4/1969	Patchell et al.
3,465,364	A	9/1969	Edelson
3,471,865	Α	10/1969	Molitoris
3,512,190	Α	5/1970	Buff
3,679,263	Α	7/1972	Cadiou
3,746,605	Α	7/1973	Dillon et al.
3,775,526	Α	11/1973	Gilmore
3,867,238	Α	2/1975	Johannsen
3,911,185	Α	10/1975	Wright, Jr.
3,914,487	Ā	10/1975	Azoulay
3,922,329	A	11/1975	Kim et al.
4,023,213	Ā	5/1977	Rovani
4,126,177	A	11/1978	Smith et al.
4,136,222	A	1/1979	Jonnes
4,138,283	A	2/1979	Hanusa
4,197,342	A	4/1980	Bethe
4,272,850	A	6/1981	Rule
4,276,341	А	6/1981	Tanaka
4,415,622	Α	11/1983	Kamat
4,482,592	Α	11/1984	Kramer
4,485,919	Α	12/1984	Sandel
4,507,801	Α	4/1985	Kavanagh et al.
4,512,037	Α	4/1985	Vacanti
4,534,354	A	8/1985	Bonner, Jr. et al.
4,538,301	Ă	9/1985	Sawatzki et al.
4,581,186	A	4/1986	Larson
	A	12/1986	Disselbeck et al.
4,631,221			
4,646,367	A	3/1987	El Hassen
4,692,199	A	9/1987	Kozlowski et al.
4,713,854	A	12/1987	Graebe
4,718,214	A	1/1988	Waggoner
4,730,761	Α	3/1988	Spano
4,734,306	А	3/1988	Lassiter
4,756,026	Α	7/1988	Pierce, Jr.
4,809,374	Α	3/1989	Saviez
4,856,393	Α	8/1989	Braddon
4,859,274	Α	8/1989	Marvel
4,867,826	Α	9/1989	Wayte
4,991,230	Α	2/1991	Vacanti
5,052,053	Α	10/1991	Peart et al.
5,129,295	А	7/1992	Geffros et al.
5,160,785	A	11/1992	Davidson, Jr.
5,168,576	A	12/1992	Krent et al.
5,188,879	A	2/1993	Hill et al.
5,232,762	Â	8/1993	Ruby
5,353,455	A	10/1994	- 1 -
	A		Loving et al.
5,360,653		11/1994	Ackley Shukushima et al.
5,405,665	A	4/1995	
5,452,477	A	9/1995	Mann
5,534,208	A	7/1996	Barr et al.
5,551,082	A	9/1996	Stewart et al.
5,594,954	Α	1/1997	Huang
5,689,836	А	11/1997	Fee et al.
5,727,252	Α	3/1998	Oetting et al.
5,780,147	Α	7/1998	Sugahara et al.
5,823,981	Α	10/1998	Grim et al.
6,054,005	Α	4/2000	Hurley
6,070,267	Α	6/2000	McKewin
6,070,273	Α	6/2000	Sgro
6,085,353	Α	7/2000	van der Sleesen
6,093,468	A	7/2000	Toms et al.
6,167,790	BI	1/2001	Bambara et al.
6,235,661	BI	5/2001	Khanamirian
6,253,376	BI	7/2001	Ritter
6,295,654	B1 D1	10/2001	Farrell
6,301,722	B1	10/2001	Nickerson et al.
	D 1		DUCHORIODO
6,317,888	B1	11/2001	McFarlane
6,374,409	B1	4/2002	Galy
6,374,409 6,485,448	B1 B2	4/2002 11/2002	Galy Lamping et al.
6,374,409 6,485,448 6,584,616	B1 B2 B2	4/2002 11/2002 7/2003	Galy Lamping et al. Godshaw et al.
6,374,409 6,485,448 6,584,616 6,654,962	B1 B2 B2 B2	4/2002 11/2002	Galy Lamping et al.
6,374,409 6,485,448 6,584,616	B1 B2 B2	4/2002 11/2002 7/2003	Galy Lamping et al. Godshaw et al.
6,374,409 6,485,448 6,584,616 6,654,962	B1 B2 B2 B2	4/2002 11/2002 7/2003 12/2003	Galy Lamping et al. Godshaw et al. DeMott
6,374,409 6,485,448 6,584,616 6,654,962 6,743,325	B1 B2 B2 B2 B1	4/2002 11/2002 7/2003 12/2003 6/2004	Galy Lamping et al. Godshaw et al. DeMott Taylor

6,851,124 B2	2/2005	Munoz et al.
6,968,573 B2	11/2005	Silver
6,969,548 B1	11/2005	Goldfine
7,007,356 B2	3/2006	Cudney et al.
RE41,346 E *	5/2010	Taylor 156/265
RE42,689 E *	9/2011	Taylor 156/265
2008/0113143 A1	5/2008	Taylor
2010/0272969 A1	10/2010	Taylor
2010/0285299 A1	11/2010	Taylor

FOREIGN PATENT DOCUMENTS

DE	9102039	U	5/1991
DE	4341722	A1	6/1994
DE	19640263	A1	4/1998
DE	202006013732	U	2/2007
EP	1 369 149	A1	12/2003
FR	2581348	A1	11/1986
FR	2635650	A1	3/1990
GB	800474	A	8/1958
GB	832101	Α	4/1960
GB	2 304 539	A	3/1997
JP	1-316235	Α	12/1989
JP	2508289	Y2	8/1996
JP	9300510	Α	11/1997
JP	10043007	Α	2/1998
JP	10337797	Α	12/1998
WO	97/33493	A1	9/1997
WO	97/36740	A1	10/1997
WO	01/03530	A1	1/2001
WO	01/15892	A1	3/2001
WO	02/16124	A1	2/2002
WO	02/081202	A1	10/2002
WO	2006/036072	A1	4/2006
WO	2006/088734	A1	8/2006

OTHER PUBLICATIONS

"Hot Melt Adhesives Technology Review," Pacific Northwest Pollution Prevention Resource Center (Sep. 1988), available at http://pprc. org/pubs/techreviews/hotmelt.hmintro.html (last visited Mar. 30, 2010), 2 psges. cited by other.

"Protecting Your Assets," World Sports Activewear, vol. 2, Issue 3 (Autumn 1996), pp. 24-28. cited by other.

Bender, Rene J., "Handbook of Foamed Plastics" (1965), pp. 285-293. cited by other.

Corrected Version of Exhibit 2, Part 1 to the Memorandum in Support of Plaintiffs' Motion for Preliminary Injunction, filed Jun. 5, 2009 (Doc. No. 62). cited by other.

Declaration of Alyson G. Barker in support of Nike USA's Responsive Claim Construction, filed Jul. 13, 2009, and Exhibit A thereto (Doc. No. 96). cited by other.

Hoffman, Edward G., "Jig and Fixture Design" (1980), pp. 205-219. cited by other.

Jeff Hopkins, "Advances, Advantages, and Techniques of Hot Melt Adhesives", Journal of Industrial Textiles, (1993), pp. 5-13. cited by other.

John Halbmaier, "Overview of Hot Melt Adhesives Application Equipment for Coating and Laminating Full-Width Fabrics", Journal of Industrial Textiles, (1992), pp. 301-310. cited by other.

Joint Claim Construction Chart and Status Report, filed Sep. 1, 2009 (Doc. No. 135). cited by other.

Lascoe, O.D., "Handbook of Fabrication Processes" (1988), p. 215. cited by other.

Memorandum in Support of Plaintiffs' Motion for Preliminary Injunction, filed May 28, 2009, and Exhibits 1-10 thereto (Public (Redacted) Version) (Doc. No. 54). cited by other.

Memorandum Opinion and Order Construing Disputed Claim Terms, entered Sep. 17, 2009, Honorable James F. Holderman (Doc. No. 137). cited by other.

Petrie, Edward M., "Handbook of Adhesives and Sealants" (2000), p. 308. cited by other.

Plaintiffs' Claim Construction Memorandum, filed Jun. 15, 2009, and Exhibits 1-6 thereto (Doc. No. 67). cited by other.

Plaintiffs' Rebuttal Memorandum on Claim Construction, filed Jul.

13, 2009, and Exhibits 1-5 thereto (Doc. No. 97). cited by other.

Responsive Claim Construction Brief of Defendant Nike USA, Inc., filed Jul. 13, 2009 (Redacted) (Doc. No. 95). cited by other.

Roff, W.J., et al., "Handbook of Common Polymers—Fibres, Films, Plastics and Rubbers" (1971), p. 456. cited by other.

SAE Specification AMS 3698A, (Jul. 1, 1987), 13 pages. cited by other.

SAE Specification AMS 3698B, (Jan. 1, 1993), 1 page. cited by other. Sarna Xiro GmbH, EC Safety Data Sheet, Jan. 16, 2001, 5 pages. cited by other.

Walker, John R., "Machining Fundamentals—From Basic to Applied Techniques" (1993), pp. 502-503. cited by other.

Walter Fung, "Coated And Laminated Textiles", (2002), pp. 114-133. cited by other.

Watson, Chris, "Hot Melt Coating Methods: The More They Change the More They Stay the Same," 1996 Hot Melt Symposium TAPPI Proceedings (1996),pp. 1-5. cited by other.

Memorandum Opinion And Order, case No. 1:08-cv-06584, filed Aug. 17, 2011, 32 pages (Doc. No. 345).

Minute Order dated Nov. 15, 2011 regarding Nike's Motion for Partial Dismissal of Plaintiffs' Third Amended Complaint (Dkt. No. 363)—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.,* Civil No. 08-CV-6584. (Doc. No. 380).

Third Amended Complaint dated Sep. 16, 2011—*McDavid Knee Guard, Inc. v. Nike USA, Inc.,* Civil No. 08-CV-6584. (Doc. No. 355). Plaintiffs' Motion for Reconsideration of Order Granting Nike's Motion for Summary Judgment of Non-Infringement of Claim 1 of the '346 Patent Under The Doctrine of Equivalents dated Sep. 19, 2011—*McDavid Knee Guard, Inc. v. Nike USA, Inc.,* Civil No. 08-CV-6584. (Doc. No. 356).

Defendant Nike USA Inc.'s Opposition to Plaintiff's Motion to Reconsider Order Granting Nike's Motion for Summary Judgment dated Sep. 23, 2011—*McDavid Knee Guard, Inc. v. Nike USA, Inc.,* Civil No. 08-CV-6584. (Doc. No. 358).

Plaintiffs' Reply Brief in Support of Plaintiffs' Motion for Reconsideration of Order Granting Nike's Motion for Summary Judgment of Non-Infringement of Claim 1 of the '346 Patent Under the Doctrine of Equivalents dated Sep. 30, 2011—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584. (Doc. No. 361).

Nike USA, Inc.'s Motion for Partial Dismissal of Plaintiffs' Third Amended Complaint dated Oct. 7, 2011—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584. (Doc. No. 363).

Plaintiffs' Opposition to Defendant Nike's Motion for Partial Dismissal of Plaintiffs' Third Amended Complaint dated Oct. 27, 2011—McDavid Knee Guard, Inc. v. Nike USA, Inc., Civil No. 08-CV-6584. (Doc. No. 367).

Memorandum in Support of Plaintiffs' Motion for Summary Judgment of Infringement of U.S. Reissue Patent RE42,689 dated Nov.9, 2011—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.,* Civil No. 08-CV-6584. (Doc. No. 371).

Plaintiffs' Statement of Material Facts Pursuant to Local Rule 56.1 in Support of Plaintiffs' Motion for Summary Judgment of Infringement of U.S. Patent Reissue Patent RE42,689 dated Nov. 9, 2011— *McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584. (Doc. No. 375).

Nike USA Inc.'s Reply Brief in Support of Motion for Partial Dismissal of Plaintiffs' Third Amended Complaint dated Nov. 10, 2011—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.,* Civil No. 08-CV-6584. (Doc. No. 379).

Defendant Nike USA Inc.'s Opposition to Plaintiff's Motion to Reconsider Order Granting Nike's Motion for Summary Judgment: dated Sep. 23, 2011—*McDavid Knee Guard, Inc. v. Nike USA, Inc.,* Civil No. 08-CV-6584. (Doc. No. 358).

Opinion dated Oct. 19, 2011 regarding Motion For Reconsideration of Order Granting Nikes Motion for Summary judgment of Noninfringement of claim 1 of the '346 Patent Under the Doctrine of Equivalents—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.,* Civil No. 08-CV-6584. (Doc. No. 366).

Plaintiffs' Opening Claim Construction Memorandum dated Nov. 5, 2010—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.,* Civil No. 08-CV-6584 (Doc. No. 307).

Declaration of Alyson G. Barker in Support of Defendant Nike USA Inc 's Responsive Claim Construction Brief re Reissue Patent dated Nov. 19, 2010—*McDavid Knee Guard, Inc. V. Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc. No. 311).

Plaintiffs' Response to Defendant Nike's Opening Claim Construction Brief dated Nov. 19, 2010—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc. No. 318).

Reply by Plaintiffs McDavid Knee Guard, Inc. Stirling Mouldings Limited to Nike's Responsive Claim Construction Brief dated Dec. 10, 2010—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.,* Civil No. 08-CV-6584 (Doc. No. 324).

Memorandum Opinion and Order denying motion for preliminary injunction signed by the Honorable James F. Holderman on Jan. 14, 2010—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc. No 171).

Mandate of USCA Federal Circuit dated Dec. 9, 2010 regarding Notice of Appeal related to denial of motion for preliminary injunction on Dec. 15, 2010—*McDavid Knee Guard, Inc. v. Nike USA, Inc.,* Civil No. 08-CV-6584 (Doc. No. 325).

Plaintiffs' Brief Regarding the Patent Office's Consideration of the Court's Claim Construction in the Prosecution History of U.S. Reissue Patent RE42,689 dated Dec. 12, 2011—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc. No. 389).

Defendants Memorandum Regarding Prosecution History of U.S. Patent RE42,689 dated Dec. 12, 2011—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc,* Civil No. 08-CV-6584 (Doc. No. 390).

Response by Defendant Nike USA, Inc. regarding Plaintiffs' Brief Regarding the Patent Office's Consideration of the Court's Claim Construction in the Prosecution History of U.S. Reissue Patent RE42,689 dated Dec. 19, 2011—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc. No. 391).

Plaintiffs' Response to Nike's Memorandum Regarding the Prosecution History of U.S.Reissue Patent RE42,689 dated Dec. 19, 2011— *McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-DV-6584 (Doc. No. 392).

Transcript of Proceedings held on Nov. 15, 2011—*McDavid Knee Guard, Inc. v. Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc. No. 388). Transcript of Proceedings held on Dec. 20, 2011—*McDavid Knee Guard, Inc. v. Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc. No. 393). Plaintiffs' Reply to Defendant Nike USA, Inc.'s Opposition to Plaintiffs' Motion for Summary Judgment of Infringement dated Dec. 10, 2010—*McDavid Knee Guard. Inc. v. Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc. No. 323).

Defendant-Appellee Appeal Brief in the United States Court of Appeals for the Federal Circuit 2010-1171 (from the United States District Court for the Northern District of Illinois) dated May 11, 2010—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.,* Civil No. 08-CV-6584.

Plaintiff-Appellant Appeal Brief in the United States Court of Appeals for the Federal Circuit 2010-1171 (from the United States District Court for the Northern District of Illinois) dated Mar. 29, 2010—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.,* Civil No. 08-CV-6584.

Plaintiff's Reply Brief in the United States Court of Appeals for the Federal Circuit 2010-1171 (from the United States District Court for the Northern District of Illinois) dated May 28, 2010—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584.

Defendant's Response to Motion for Summary Judgment of Infringement of U.S. Reissue Patent RE42,689 Pursuant to Local Rule 56.1 dated Feb. 3, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.,* Civil No. 08-CV-6584 (Doc. No. 409).

Nike's Response to Plaintiff's Statements of Fact dated Feb. 3, 2012-McDavid Knee Guard, Inc. v. Nike USA, Inc., Civil No. 08-CV-6584 (Doc. No. 415).

Declaration of Turner regarding Nike's Response to Plaintiffs Statements of Fact dated Feb. 3, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc. No. 416).

Declaration of Schletzbaum regarding Nike's Response to Plaintiff's Statements of Fact dated Feb. 3, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc. No. 417).

Declaration of Brookstein regarding Nike's Response to Plaintiff's Statements of Fact dated Feb. 3, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc No. 429).

Memorandum Opinion And Order dated Mar. 5, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil No. 08-CV-6584 (Doc. No. 450), 11 pages.

Motion by Nike USA, Inc. to amend/correct Non-Infringement and Invalidity Contentions Pursuant to Local Patent Rule 3.4 dated Feb. 24, 2012—*McDavid Knee Guard, Inc. v. Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 437).

Response by McDavid Knee Guard, Inc. in Opposition to Motion by Nike USA, Inc. to amend/correct Non-Infringement and Invalidity Contentions Pursuant to Local Patent Rule 3A dated Feb. 29, 2012— *McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 439).

Reply by McDavid Knee Guard, Inc., Stirling Mouldings Limited to response in opposition to motion Reply in Support of Plaintiffs' Motion for Summary Judgment of Infringement of U.S. Reissue Patent RE42,689 dated Feb. 29, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 440).

Response to Defendants Additional Statement of Facts by McDavid Knee Guard, Inc., Stirling Mouldings Limited dated Feb. 29, 2012— *McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 443).

Reply by Nike USA, Inc. In Support of its Motion to Amend Non-Infringement and Invalidity Contentions dated Feb. 29, 2012— *McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 444).

Minute Entry before Honorable James F. Holderman on Mar. 1, 2012 authorizing supplementation of invalidity contentions—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 446).

Minute Entry before Honorable James F. Holderman on Mar. 5, 2012 denying Plaintiffs Motion for Summary Judgment—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 449).

Nike's Invalidity Contention Charts 1-21 (non-confidential attachments to confidential Supplemental Invalidity Contentions)— *McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584.

McDavid's Reply to Defendant's Supplemental Invalidity Contentions regarding U.S. Reissue Patent 42,689 dated Apr. 5, 2012— *McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584.

Nike's Motion for Summary Judgment of Invalidity dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 454).

Nike's Memorandum in Support of Motion for Summary Judgment of Invalidity dated Apr. 19, 2012—*McDavid Knee Guard*, *Inc.* v. *Nike USA*, *Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 458).

Nike's Statements of Undisputed Material Facts Pursuant to Local Rule 56.1 in Support of Defendant's Motion for Summary Judgment of Invalidity dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 459).

Nike's Motion for Summary Judgment of Non-Infringement dated Apr. 19, 2012—*McDavid Knee Guard, Inc. v. Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 462).

Nike's Memorandum and Points of Authorities in Support of Defendants Motion for Summary Judgment of NonInfringement dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 465).

Nike's Statement of Undisputed Material Facts Pursuant to Local Rule 56.1 in Support of Defendant's Motion for Summary Judgment of Non-Infringement dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 466). McDavid's Motion for Summary Judgment of no. Invalidity of US Patent No. RE42,689 dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 470). McDavid's Memorandum in Support of Motion for Summary Judgment of No Invalidity of US Patent No. RE42,689 dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 471).

McDavid's Rule 56(a) Statement regarding Motion for Summary Judgment of No Invalidity US Patent No. RE42,689 dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 472).

McDavid's Motion for Summary Judgment of No Invalidity of US Patent No. RE42,689 Under 35 Usc 112 dated Apr. 19, 2012— *McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 477).

McDavid's Memorandum in Support of Motion for Summary Judgment of No Invalidity of US Patent No. RE42,689 Under 35 USC 112 dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 478).

McDavid's Statement of Material Facts Pursuant to Local Rule 56.1 in Support of Plaintiffs Motion for Summary Judgment of No Invalidity of US Patent No. RE42,689 Under 35 USC 112 dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 479).

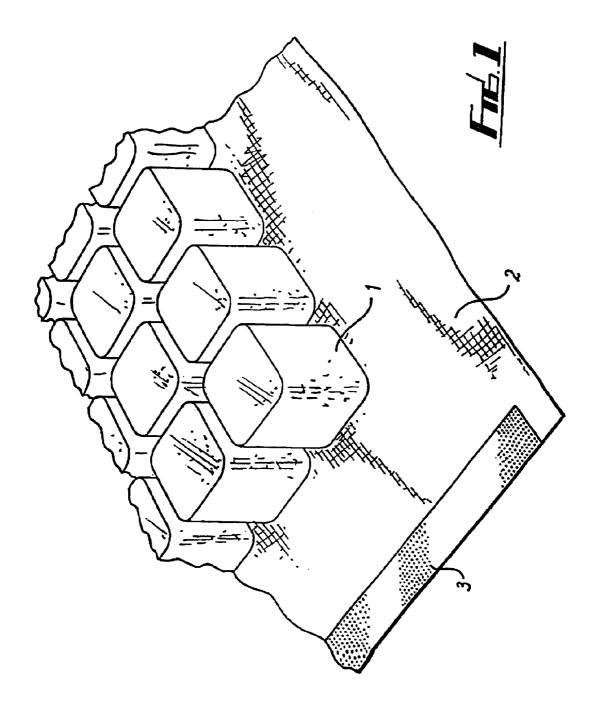
Declaration of Glenn L. Beall regarding Motion for Summary Judgment in Support of Plaintiffs Motion for Summary Judgment of No Invalidity of US Patent No. RE42,689 Under 35 Usc 112 dated Apr. 19,2012—*McDavid Knee Guard, Inc. v. Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 480).

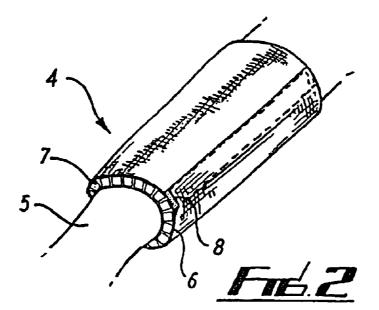
McDavid's Motion for Claim Construction of US Patent No. RE42,689 dated Apr. 19, 2012—*McDavid Knee Guard, Inc. v. Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 483).

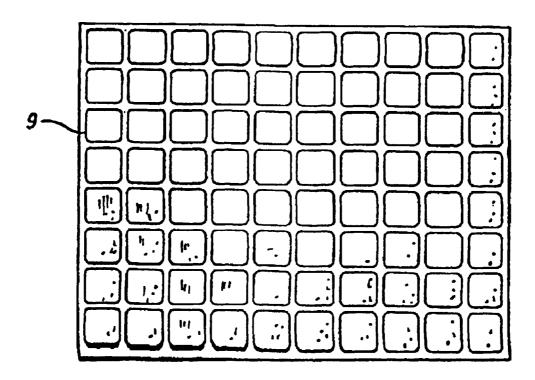
McDavid's Memorandum in Support of Motion for Miscellaneous Relief for Claim Construction of US Patent No. RE42,689 dated Apr. 19,2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 484).

Declaration of Schletzbaum regarding Motion for Summary Judgment of Invalidity dated Apr. 19, 2012 dated Apr. 19, 2012— *McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 460).

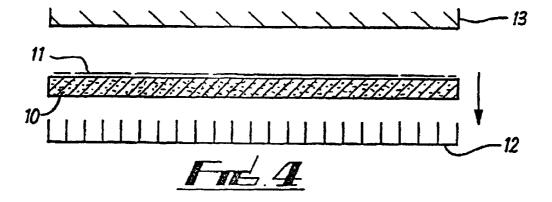
Declaration of Schletzbaum regarding Motion for Summary Judgment of Non-Infringement dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 467).

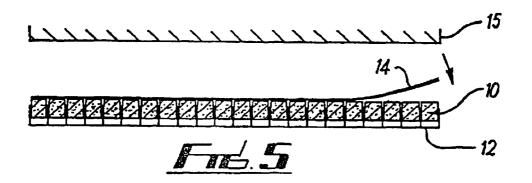

Nike's Motion to Strike Plaintiffs' Reply to Nike's Non-Infringement Contentions dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 473).

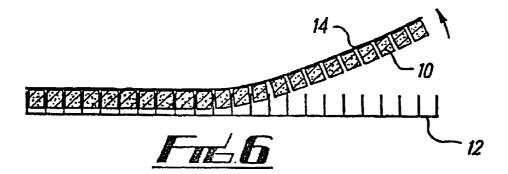

Declaration of Jaren E. Hedman regarding Motion for Summary Judgment of No Invalidity of US Patent No. RE42,689 Under 35 USC 251 dated Apr. 19, 2012—*McDavid Knee Guard, Inc.* v. *Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 474).

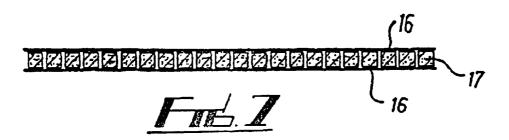

Declaration of Henkelmann regarding Motion for Summary Judgment in Support of Plaintiffs' Motion for Summary Judgment of No Invalidity of US Patent No. RE42,689 Under 35 USC 112 dated Apr. 19, 2012—*McDavid Knee Guard, Inc. v. Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 481).

Corrected Plaintiffs' Statement of Material Facts Pursuant to Local Rule 56.1 in Support of Plaintiffs' Motion for Summary Judgment of No Invalidity of U.S. Patent No. RE42,689 Under 35 USC 112 dated Apr. 19, 2012—*McDavid Knee Guard, Inc. v. Nike USA, Inc.*, Civil Action No. 08-CV-6584 (Doc. No. 486).


* cited by examiner







Fred 3

10

30

55

FLEXIBLE MATERIAL

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

RELATED U.S. APPLICATIONS

[Not applicable.]

Notice: multiple reissue applications have been filed for the reissue of U.S. Pat. No. 6,743,325. This application is a continuation reissue application of reissue application Ser. No. 12/642,522, filed on Dec. 18, 2009, which is a continuation reissue application of Ser. No. 11/269,919, filed on Nov. 8, 2005, now U.S. Pat. No. Re. 41,346, which is a reissue application of U.S. Pat. No. 6,743,325, filed as application Ser. No. 10/030,782 on Apr. 23, 2002, which claims priority to PCT/GB00/02687 filed Jul. 13, 2000; GB99/16291 filed Jul. 13, 1999; and GB 99/21804 filed Sep. 16, 1999; all of which are hereby fully incorporated by reference as if fully set forth herein.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

REFERENCE TO MICROFICHE APPENDIX

Not applicable.

FIELD OF THE INVENTION

The present invention relates to a method of manufacturing a flexible material suitable, primarily, for use as a flexible protective material to protect for human and animal bodies.

BACKGROUND OF THE INVENTION

Protective material and protective wear is currently used by persons to protect themselves from knocks, abrasions and other injury. Protective wear is used during sport, rugby for ⁴⁵ example and equestrian sports and other activities where a person runs a risk of injury, for example building and other trades.

Conventional protective wear may form an integral part of an item of clothing, for example a shoulder pad, or be pro-⁵⁰ vided separately, for example a shin pad.

One existing arrangement comprises a moulded foam article shaped to fit a particular part of the body. There are, however, a number of problems with this arrangement. The article must be produced in different sizes to fit different people. Provision of different sizes can be expensive or inconvenient. Also, closely fitting articles can restrict movement of the wearer, especially when worn on or near joints.

In DE 43 41 722 is disclosed a cushioning material for the 60 treatment of lymphostatic fibroses in which a plurality of foam elements with an enlarged base are disposed side-by-side with their bases touching on a foundation layer to which they are affixed. The troughs defined between the side walls of the elements enable the material to be flexed to form a pressure bandage. However, the foram elements of the bandage touch one another at their base, which restricts the stretch-

ability of the material as a whole and is also designed to be worn with the elements in contact with the skin, which would restrict movement.

A moulded foam article can only correctly fit a joint when in one position. When the joint moves, the article will no longer fit correctly. This may reduce the protection it affords.

In U.S. Pat. No. 3,285,768 is disclosed a fabric coated with a surface deformed foam which is manufactured either by grooving or slashing a sheet of foam to a portion of its depth and then laminating it to the fabric or by laminating a foam sheet to a fabric and then grooving or slashing the form layer. However, neither of these methods enables the foam to be cut to define a plurality of spaced, separate elements, which is preferred if the fabric is to be used in protective wear for ,sports persons when considerable freedom of movement by the wearer is required in addition to comfort.

Another existing arrangement comprises a quilted material including lengths of foam sewn into pockets formed between 20 two layers of fabric. Such materials are time consuming to produce. Also, such materials can generally only easily be flexed in a direction perpendicular to that of the strips of foam. Flexing the material in a direction along the length of the strips involves flexing the strips themselves which, depending 25 on the type of foam used, can be difficult. A similar type of garment is disclosed in U.S. Pat. No. 5,551,082 which describes an athletic garment in which strategically placed rib-shaped gel, air or foam padding is contained in envelopes that are individually affixed to an elasticized fabric shell.

BRIEF SUMMARY OF THE INVENTION

It is an object of the present invention to overcome, or at least reduce, the problems associated with the manufacture of 55 conventional protective material and with protective wear made therefrom.

According to a first aspect of the present invention there is provided a method of manufacturing a flexible material comprising the steps of providing a sheet of a resilient material; 40 cutting the sheet into a plurality of spaced, separate elements using a cutter which is pressed into the sheet to cut therethrough; making one side of the spaced elements to stand proud of the surface of a jig provided to hold the elements in place; and bonding a flexible, resiliently stretchable substrate 45 to one side of the separate elements by heating the substrate either to active an adhesive applied between said one side of the separate elements and the substrate or to weld the elements to the substrate.

The separate elements are preferably bonded to the substrate with a hot melt adhesive, although they can be welded thereto using heat to fuse the elements to the substrate.

According to a second aspect of the present invention there is provided a flexible material comprising a layer of separate resilient elements joined to a flexible, resiliently stretchable substrate and manufactured according to the method of the first aspect of the present invention.

Such a flexible material can confirm more easily to the body of the wearer than conventional materials, as it is flexible in all three dimensions. It is therefore more comfortable to wear and can accommodate movement better than conventional materials. When used as a protective material or to form protective wear a single size, or a reduced number of sizes, can fit many different sized bodies.

As the elements are separate and spaced apart; this facilitates flexing of the substrate to form a curved surface and enables the material to flex in all directions without "locking up" or preventing movement in a particular direction. This is 10

a particular advantage the flexible material of the present invention has over prior art arrangements which tend not to exhibit universal flexibility.

The elements preferably comprise a resilient foam material, for example a closed cell polyethylene, and could comprise a number of different types of foam or other materials to give desired properties, for example layers of foam of different densities.

The elements may be substantially identical, alternatively they can be of different size and shape, for example to fit comfortably part of a wearer's body, or some other article.

The elements preferably take the form of blocks. They can be of regular or irregular shape, for example hexagonal or octagonal in cross-section. The elements are preferably 15 evenly distributed on the substrate with a density of between 100 and 8000 elements/m², more preferably between 250 and 8000 elements/m², and still more preferably between 4000 and 6000 elements/m². In one embodiment, the elements comprise cubes of side 12 mm spaced apart by 2 mm. This 20 gives a density of about 5000 cubes/m². This allows the material to flex easily along all directions, an improvement over known quilted protective materials. Also, one type of material can be cut to many different sizes, for example to form protective wear of different sizes, without significantly 25 affecting its ability to flex. This is in contrast to known quilted protective materials wherein due to the size of the foam strips, the size of each strip must be changed to form an article of different size without reducing flexibility.

The substrate is resiliently stretchable or elastic and prefor erably comprises a fabric, although a resiliently stretchable film or sheet could be used. This enables the material to adopt a greater range of configurations. Suitable fabrics include knitted nylon and polyester fabrics and more particularly those materials comprising elastane.

A second layer of a flexible substrate material is preferably bonded over the elements so that they are sandwiched between two layers. In this case, as the first substrate layer is resiliently stretchable or elastic, this helps to prevent puckering of one side of the material when it is flexed. Advantageously, both substrate layers are resiliently stretchable. However, in cases where only a single stretchable substrate layer is provided and the material is to be used in a curved configuration the material is preferably arranged so that the stretchable layer lies on the outside surface of the curve. 45

The material may be comprised in clothing or other wear. It is particularly suitable for incorporation into protective clothing and wear, for example shoulder pads, knee pads, shin pads, arm bands, head-guards, vests and gauntlets for both humans and animals. It will be appreciated that in these 50 garments the blocks are provided where required and omitted from certain areas of the garment. For example, in a headguard no blocks need be positioned in the ear-flaps of the guard.

The material could also be comprised in furniture or uphol-55 stery and can be particularly useful when used with wheelchairs and hospital beds. Spaced part elements can help to reduce the incidence of bed sores. As the material is resilient, it comprises a cushioning medium, for,; example for saddles. Where the material comprises a foam layer, this provides it 60 with good thermally insulating properties and it can be usefully incorporated into, or used to form wet suits. A foam layer can also render the material buoyant in water, in which case it can be usefully used in or to form buoyancy vests, life jackets and swimming aids. When used as a swimming aid, 65 for example, the material can be incorporated in swimming costumes as an aid to the buoyancy of the wearer. It is possible 4

in this case to arrange for the foam blocks to be progressively removable from the costume as the confidence and skill or the trainee swimmer increases.

The material may also be used for packaging and cladding. As indicated above, the elements may not be distributed all over the surface of the substrate. In particular, there may be a border of substrate having no element thereon. The border may include a fastening means, for example VELCRO(TM) to enable it to be affixed to itself or to another article, say a garment.

In one embodiment, the elements could comprise a series of spaced-apart strips. Such a material would have different properties when flexed in different directions.

Preferably, at least said one side of the elements are coated with the hot-melt adhesive prior to being cut into the separate elements. Alternatively or in addition, the side of the substrate adjacent said one side of the elements is coated with the hot-melt adhesive. A sheet of hot-melt film may also be interposed between said one side of the elements and the substrate to provide said adhesive layer.

Advantageously, the resilient sheet is cut into a plurality of separate elements using a cutter which acts as the jig after cutting through the resilient material to hold the elements in place while the substrate layer is applied thereto. Preferably, the cutter is adapted so that said one side of each, now cut, element are made to stand proud of the surface of the cutter grid. The sheet material may spring back slightly after cutting to accomplish this. Alternatively, means, such as ejectors, are provided to achieve this effect.

In one embodiment of the method, a sheet of a resilient material is provided and at least one side of the sheet is coated with a hot melt adhesive. The sheet is placed, adhesive side up, over a cutter grid arranged to cut the sheet into a plurality of elements, for example squares. The sheet is pressed down onto the cutter to cut through the sheet. Excess material from between the elements is then removed. A resiliently stretchable substrate is placed over the, now cut, sheet and heated to activate the adhesive to join the elements to the substrate. The substrate is then lifted away from the cutter, taking the elements with it.

It will be appreciated that in this embodiment, the cutter grid acts as a jig, holding the elements in placed while the substrate layer is applied. If the flexible material is to be cut into large pieces, in particular large irregularly shaped pieces, then these pieces may be assembled into a specially constructed jig to hold them into place before application of the substrate. Conveniently, as before the sheet of resilient material from which the elements are cut has an adhesive layer applied to one or both surfaces prior to the cutting process.

Alternatively, the sheet of resilient material is cut into strips in a first direction using a plurality of rolling cutters and then cut in a second direction at an angle to the first direction to the separate elements. Preferably, the rolling cutters are moved sideways after each cut to cut narrow strips of material in both directions to space the elements apart, the narrow strips of material being removed to leave the separate elements spaced apart from one another.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Embodiments of the various aspects of the invention will now be described by way of example with reference to the accompanying drawings.

FIG. **1** is an enlarged perspective view of part piece of flexible material according to the invention.

10

20

FIG. 2 shows a schematic view of a protective arm band formed from the type of material of FIG. 1.

FIG. 3 is a plan view of a cutter grid.

FIGS. 4 to 6 are vertical cross-sectional views of apparatus used in the manufacture of material as shown in FIG. 1 at 5 various stages respectively throughout the manufacturing process.

FIG. 7 is a cross-sectional view through another embodiment of a flexible material according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, a flexible material comprises a plurality of cubes 1 of a resilient closed-cell polyethylene foam, of side approximately 12 mm and with corners of radius 15 approximately 2.5 mm, joined with a hot melt adhesive to a fabric substrate 2. The cubes 1 are evenly arranged, each cube being spaced from adjacent cubes by approximately 2 mm. The fabric 2 is a resiliently stretchable knitted fabric, preferably one comprising polyester or elastane fibers.

A margin of fabric 2 is provided around the periphery of the cubes 1. Along the edges of the fabric at opposite ends respectively there are strips 3 of VELCRO(TM), only one of which is shown.

Referring to FIG. 2, a protective armband 4 is shown being 25 worn on part of an arm 5. The armband 4 is formed from a generally rectangular piece of material of the type shown in FIG. 1 but which in this case comprises a fabric substrate 6 bonded to both sides thereof with a plurality of foam cubes 7 sandwiched therebetween. Margins are provided at opposite 30 ends respectively of the substrate 6 and a strip of VELCRO $(^{TM})$ 8 is fastened on this margin to enable opposite ends of the material to be fastened in an overlaying relationship to form a tube. By varying the degree of overlap of the ends, the tube can be closely fitted around arms of different sizes. The pro- 35 vision of a substrate layer 6 on both sides of the cubes 7 prevents the latter from separating too much as the material is curved around to form a tube. Rather, the substrate 6 on the outside of the armband is forced to stretch and the edges of the cubes 7 at the inner side of the armband are compressed. The 40 provision of a substrate layer on both sides of the material therefore enables the material to continue to provide good protection, even when tightly flexed.

FIG. 3 shows a plan view of a cutter used for manufacturing the material of FIG. 1. The cutter comprises blades defining a 45 plurality of squares of 12 mm side with corners of radius 2.5 mm.

FIGS. 4 to 6 are vertical cross-sectional views of apparatus at various stages respectively throughout the manufacture of the flexible material shown in FIG. 1. Referring to these 50 figures, one side of a 12 mm thick layer of closed cell polyethylene foam 10 is coated with a hot melt adhesive 11. The foam 10 is then placed onto a cutter 12, of the type shown in FIG. 3, and pressed down with a press 13 so that the cutter 12 cuts through the foam 10 to form a plurality of separate cubes. 55 The press is then removed, whereupon owing to its resilient nature, the foam will tend to spring back slightly so that the exposed surface of each cube stands proud to lie above the surface of the cutter. Excess material from between the elements is then removed. 60

Next, as shown in FIG. 5, a layer of fabric is placed over the foam and cutter 12 and a heated platen 15 is brought into contact with the fabric 14. Heat is conducted through the fabric 14 to the foam and activates the adhesive, bonding the fabric 14 to the foam 10. In this arrangement, the cutter grid 65 acts as a jig, holding the foam cubes in position whilst the fabric substrate 14 is applied thereto.

Then, as shown in FIG. 6, the fabric can be lifted away from the cutter taking the foam cubes 10 with it.

In an alternative method, ejectors are disposed in the cutter grid to eject the elements, leaving any waste material behind in the cutters.

If the foam 10 is to be cut into large pieces, in particular large irregularly shaped pieces such as may be suitable for use in an equestrian jacket, then these pieces may be assembled into a specially constructed jig to hold them into place before application of the fabric substrate 14. As described above, the sheet of resilient foam from which the elements are cut will have hot-melt adhesive applied to one or both surfaces prior to the cutting process.

In a further variation, the sheet of resilient material is cut into strips in a first direction using a plurality of rolling cutters. The sheet is cut in a second direction perpendicular to the first to form cubes. The cutters are then moved sideways to cut narrow strips of foam in both directions to space the cubes apart, the narrow strips of foam being stripped away to leave the cubes.

FIG. 7 shows another embodiment of flexible material similar to that shown in FIG. 1, but with a layer of fabric 16 bonded to each of opposite sides of tho elements 17. This embodiment may be produced in a similar way to that shown in FIG. 1 except that opposite sides of the foam layer are coated with adhesive and, after the foam cubes bonded to a first layer of fabric have been removed from the cutter, a second layer of fabric is placed over the exposed surface of the elements and pressed with a heated platen to effect a bond.

In other variations to the above methods, the hot-melt adhesive may be applied to the surface the substrate rather or in addition to the sides of the flexible material. Alternatively or in addition, a hot-melt film can be interposed between the elements and the substrate.

Also, heated nip-rollers can be used in place of a heated platen to bond the elements to the substrate, particularly when substrate is bonded to both sides of the elements, which are thereby sandwiched therebetween. This facilitates passage of the material between the rollers prior to activation of the adhesive.

Flexible materials according to the invention are more convenient to produce and more flexible and versatile that known protective materials. They may also be used in a variety of applications including protective wear and clothing.

I claim:

1. A method of manufacturing a flexible material comprising the steps of

providing a sheet of a resilient material;

- cutting the sheet into a plurality of spaced separate elements using a cutter which is pressed into the sheet to cut therethrough;
- making one side of the plurality of spaced separate elements to stand proud of a surface of a jig provided to hold the elements in place; and
- bonding a flexible resiliently stretchable substrate to one side of the separate elements by heating the substrate either to activate an adhesive applied between said one side of the separate elements and the substrate or to weld the separate elements to the substrate.]

[2. The method as claimed in claim 1 wherein the sheet is cut into a plurality of separate elements using a cutter which acts as the jig after cutting through the resilient material to hold the elements in place while the substrate is applied thereto.

[3. The method as claimed in claim 2, wherein the cutter is adapted so that said one side of each of the cut elements is made to stand proud of a surface of the cutter after cutting through said sheet of resilient material.]

4. The method as claimed in claim 3, wherein any excess resilient material located between the plurality of spaced separate elements is retained in the cutter.]

[5. The method as claimed in claim 3, wherein any excess resilient material is removed from between the plurality of spaced separate elements prior to the elements being bonded to the substrate.]

6. The method as claimed in any of claim **1**, wherein the 10 plurality of spaced separate elements comprise a foam material.

7. The method as claimed in claim **1**, further comprising: bonding a second flexible substrate to an opposite side of the plurality of spaced separate elements to said one 15 are comprised of layers of foam having different densities. side.]

[8. The method as claimed in claim 1, wherein at least said one side of the sheet is coated with a hot-melt adhesive prior to being cut into the plurality of spaced separate elements.

9. The method as claimed in claim **1**, wherein the side of 20 the substrate adjacent said one side of the plurality of spaced separate elements is coated with a hot-melt adhesive.

10. The method as claimed in claim **1**, wherein a sheet of hot-melt film is interposed between said one side of the plurality of spaced separate elements and the substrate so as to 25 provide said adhesive.

[11. The method as claimed in claim 1, wherein the sheet of resilient material is cut into strips in a first direction using a plurality of rolling cutters and then cut in a second direction at an angle to the first direction to form the plurality of spaced 30 separate elements.

12. The method as claimed in claim **11** wherein the rolling cutters are moved sideways after each cut to cut narrow strips of material in both directions to space the elements apart, the narrow strips of material being removed to leave the plurality 35 of spaced separate elements spaced from one another.

13. The method as claimed in claim 1 wherein the substrate is heated by a heated platen which either activates the adhesive or melts the surface and thereby bonds the substrate and the plurality of spaced separate elements together.] 40

[14. The method as claimed claim 10, wherein the substrate is heated by passing the substrate and the adjacent plurality of spaced separate elements between heated nip rollers.]

15. A method of manufacturing a flexible resiliently compressible material, the method comprising:

- providing a first resiliently stretchable fabric substrate; cutting a sheet of resiliently compressible foam with a cutter that goes completely through the foam to provide a plurality of separate individual resiliently compressible elements in a spaced apart relationship, the sepa- 50 densities. rate elements having a top surface and bottom surface; providing a second resiliently stretchable fabric substrate; contacting the top surfaces and the bottom surfaces of the plurality of resiliently compressible elements with the
- first and second resiliently stretchable fabric substrates; 55 bonding the top surfaces of the plurality of separate individual compressible elements to the first resiliently stretchable fabric substrate while adjacent elements are held so that a distance between the adjacent elements is about 2 mm, the bonding selected from the group con- 60 having different densities are closed cell foam. sisting of adhesively bonding and welding; and
- bonding the bottom surfaces of the plurality of separate individual compressible elements to the second resiliently stretchable fabric substrate while adjacent elements are at the distance of about 2 mm, the bonding 65 selected from the group consisting of adhesively bonding and welding, to provide the flexible resiliently com-

8

pressible material with the plurality of separate resiliently compressible elements being distributed between the substrates at a density of from about 250 to about $8000 \text{ elements/m}^2$, and the first and second substrates not bonded to each other between the adjacent elements.

16. The method according to claim 15 wherein the elements are distributed between the substrates at a density of from about 4000 to about 8000 elements/ m^2 .

17. The method according to claim 15 wherein the top and bottom surfaces of the elements are flat.

18. The method according to claim 17 wherein the elements are distributed between the substrates at a density of from about 4000 to about 6000 elements/ m^2 .

19. The method according to claim 15 wherein the elements

20. The method according to claims 15 wherein the elements are comprised of polyethylene foam.

21. A method of manufacturing a flexible resiliently compressible material, the method comprising:

cutting a sheet of resiliently compressible foam with a cutter that goes completely through the foam to provide a plurality of separate individual resiliently compressible elements with side walls of adjacent elements being spaced apart at a distance of about 2 mm, the separate individual elements having a top surface and bottom surface;

holding the separate individual elements;

- bonding the top surfaces of the separate individual compressible elements to a first resiliently stretchable fabric substrate while adjacent elements are held so that the distance of about 2 mm is between the side walls of the adjacent elements, the bonding selected from the group consisting of adhesively bonding and welding; and
- bonding the bottom surfaces of the separate resiliently compressible elements to a second resiliently stretchable fabric substrate to provide the resiliently compressible material with the fabric substrates not bonded to each other between the separate elements while walls of adjacent elements are held about 2 mm apart and the separate elements being distributed between the substrates at a density of from about 250 to about 8000 elements/m².

22. The method according to claim 21 wherein the separate elements are distributed between the substrates at a density of 45 from about 4000 to about 6000 elements/ m^2 .

23. The method according to claim 22 wherein the top and bottom surfaces of the separate elements are flat.

24. The method according to claim 23 wherein the separate elements are comprised of layers of foam having different

25. The method according to claim 21 wherein the top and bottom surfaces of the separate elements are flat.

26. The method according to claim 25 wherein the separate elements are comprised of layers of foam having different densities.

27. The method according to claim 26 wherein the separate elements are distributed between the substrates at a density of from about 4000 to about 6000 elements/ m^2 .

28. The method of claim 26 wherein the layers of foam

29. The method according to claim 21 wherein the separate elements are comprised of layers of foam having different densities.

30. The method according to claim 21 wherein the separate elements are comprised of closed cell foam.

31. The method according to claims 21 wherein the separate elements are comprised of polyethylene foam.

32. A method of manufacturing a flexible resiliently compressible material, the method comprising:

providing a first resiliently stretchable fabric substrate;

cutting a sheet of resiliently compressible foam with a cutting grid that goes completely through the foam to ⁵ provide a plurality of separate individual resiliently compressible elements in a spaced apart relationship, separate individual elements of the plurality of resiliently compressible elements having top surfaces and bottom surface which are flat;¹⁰

- providing a second resiliently stretchable fabric substrate; contacting top surfaces and bottom surfaces of the plurality of resiliently compressible elements with the first and second resiliently stretchable fabric substrates;
- *second resiliently stretchable fabric substrates,*¹⁵ *holding the separate individual resiliently compressible elements in spaced apart relation after the cutting grid cuts the resiliently compressible foam;*
- bonding the top surfaces of the resiliently compressible elements to the first resiliently stretchable fabric substrate while adjacent elements are held so that a distance between the elements is about 2 mm, the bonding selected from the group consisting of adhesively bonding and welding; and
- bonding the bottom surfaces of the resiliently compressible elements to the second resiliently stretchable fabric substrate while adjacent elements are at a distance of about 2 mm, the bonding selected from the group consisting of adhesively bonding and welding, to provide the resiliently compressible material with the fabric substrates not bonded to each other between adjacent individual elements and to provide the flexible resiliently compressible material with the individual resiliently compressible

elements being distributed between the substrates at a density of from about 250 to about 8000 elements/m².
33. A method of manufacturing a flexible resiliently compressible material, the method comprising:

providing a first resiliently stretchable fabric substrate;

- cutting a sheet of resiliently compressible foam with a cutting grid that goes completely through the foam to provide a plurality of separate individual resiliently compressible elements, the separate individual elements having a top surface and a bottom surface;
- providing a second resiliently stretchable fabric substrate; holding the plurality of separate individual resiliently compressible elements so that adjacent separate elements are at a distance of about 2 mm after cutting the resiliently compressible foam;
- bonding the top surfaces of the separate compressible elements to one of the first and second resiliently stretchable fabric substrates while the plurality of separate individual resiliently compressible elements are at a distance of about 2 mm between adjacent separate elements to provide a fabric/element combination; and
- bonding one of the first and second fabric substrates to the surface of the elements of the fabric/element combination to provide the resiliently compressible material, the bonding selected from the group consisting of adhesively bonding and welding, the fabric substrates of the resiliently compressible material not bonded to each other between the adjacent separate elements and the separate elements being distributed between the substrates at a density of from about 250 to about 8000 elements/m².

* * * * *