47114061 A2 | IO 00 00O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

29 December 2004 (29.12.2004)

(10) International Publication Number

WO 2004/114061 A2

GO6F

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2004/018435

(22) International Filing Date: 10 June 2004 (10.06.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/477,757 12 June 2003 (12.06.2003) US

(71) Applicant (for all designated States except US):
REUTERS AMERICA [US/US]; 3 Times Square,
20th Floor, New York, NY 10036 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US ornly): BOSE, Subhra
[US/US]; Mohegan Lake, NY (US). SCIMONE, Steve
[US/US]; Massapequa, NY (US). SRIRAMAN, Nallan
[US/US]; Nesconset, NY (US). DUAN, Ziyang [US/US];
Stony Brook, NY (US). BERNSTEIN, Arthur [US/US];
Setauket, NY (US). LEWIS, Philip [US/US]; Stony
Brook, NY (US). GROSU, Radu [US/US]; Rocky Point,
NY (US).

(74) Agent: GLEMBOCKI, Christopher, R.; Banner & Wit-
coff, Ltd., 1001 G. Street, N.W., 11th Floor, Washington,

D.C 2001-4597 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: BUSINESS PROCESS AUTOMATION

& (57) Abstract: A system and method by which business processes within and between organizations and/or individuals may be auto-
& mated using standards-based, service-oriented business process automation architectures based on XML and Web Services Standards
N s described. An execution framework for the business processes is also described. Further aspects include a decomposition method-
ology for deconstructing business process specifications into business flows, business rules and business states. The business flows,
rules and states may be defined in declarative languages and include the interaction, cooperation and coordination between the flow,
rules and state engines, and the execution model for business processes within the framework.

=

WO 2004/114061 PCT/US2004/018435

1
[01]

Business Process Automation

RELATED APPLICATION INFORMATION

This application claims priority to U.S. Provisional Application No. 60/477,757, filed
June 12, 2003, entitled “Business Process Automation”, to Subhra Bose, Steve
Scimone, Nallan Sriraman, Arthur Bernstein, Philip C. Lewis, Radu Grosu, Ziyang
Duan, the contents of which are hereby incorporated herein by reference in its

entirety.

2 FIELD OF THE INVENTION

[02]

3
[03]

[04]

Aspects of the present invention relate to software and business applications. More
particularly, aspects of the present invention relate to automating business

applications.

BACKGROUND OF THE INVENTION

A business process is a collaborative execution of business activities according to the
specific business rules in order to achieve some business goals. Financial Services and
other Businesses have put in a lot of effort into reengineering their business processes
to lower cost and improve efficiency. Recently, with the help of the rapid
advancement of computer and information technology, complex business processes in
financial services and other industries can now be automated, tasks which were
traditionally performed manually. This brings up many new challenges: 1) Business
processes need to be easily created, deployed and updated. 2) Business processes
needs to be constructed in an interoperable way, so that different organizations and
departments can integrate their business processes together. 3) Correctness and
security of a business process needs to be guaranteed. 4) Tools are needed to facilitate

business process management and reusability.

XML has appeared as the new standard for data representation and exchange of the
World Wide Web. More and more applications have been built based on XML to
facilitate interoperability between different heterogeneous systems. XML-Schema has
become a standard to specify semi-structured data-types in XML. Much work has
been done on understanding semi-structured data types and their relationship with
relational data. Web service protocols, such as SOAP, WSDL, and UDDI provides

ubiquitous interoperability of services, and allow coordination of highly distributed

WO 2004/114061 PCT/US2004/018435

[05]

[06]

services in a business process. Native XML databases are emerging on the market to

provide XML data stores with query and update capabilities.

Workflow is known in the art and provides a way to separate the control logic from
the system components, and specify the control logic at a high level. According to
Workflow Management Coalition, workflows are computational models of business
processes. Workflow systems are originally developed for office automation. Those
systems are targeted for simple tasks such as document processing and file sharing.
Then people have been considering more complex transactional workflows to model
business process. Various extended transaction models, which are based on
transaction models with relaxed atomicity and isolation, have a nice theoretical
framework inherited from database transactions. However, few of them are
implemented in commercial systems. The workflow model generalizes them, provides
much broader functionality and is a more appropriate framework to address complex
business processes. During the past few years, many commercial systems have been
developed, such as Tibco’s BPM, Microsoft’s BizTalk, IBM’s Exotica/FlowMark,
etc. Many research prototypes have been created, such as ConTract and Mentor etc.
Many formal methods have been proposed for workflow modeling and execution:
event algebra, state chart, petri net, temporal logic, transaction logic and etc. XML
based standards have been proposed to define and model workflows as interactions of
web services, such as BPML, WSCL, WSCI, BPEL4WS, etc.

Rules engines have also been under development for years, Currently there are several
standards and commercial systems that are provided by IBM, Microsoft, ilog,
Blazesoft and others. The rule engines can consume rule definitions and execute
different types of rules, such as validation rules, business policy rules and business
decisions. There are different types of rule engines as well e.g. inference engines and
decision tree engines. Business processes often contain multiple business rules.
Because most programming environments are designed for either data or procedures,
when confronted with a business specification written as a collection of rules, the
developer is faced with a tricky problem. The rules cannot be expressed in data, and
coding them procedurally leads to “spaghetti code.” Further, the original logical
structure of the rules, which take a declarative form and are easy to understand, get

lost in the code, become difficult to debug, and almost impossible to update if

WO 2004/114061 PCT/US2004/018435

[07]

necessary. There exist several emerging standards for rule description. One such
standard, namely RuleML is the canonical Web language for rules using XML
markup, formal semantics, and efficient implementations. RuleML covers the entire
rule spectrum, from derivation rules to transformation rules to reaction rules. RuleML
can thus specify queries and inferences in Web ontologies, mappings between Web

ontologies, and dynamic Web behaviors of workflows, services, and agents.

State machines have been widely used for modeling reactive systems. The original
finite-state machines have been extended to express hierarchy and concurrency, such
as in Statechart. Many works have been done to define semantics and build modeling
tools based on state machines. Software design languages and tools, such as UML,
ROOM, and STATE-MATE, have employed variations of state machines. Despite the
existence of these technologies, problems still remain in business process automation

and management.

4 SUMMARY

[08]

[09]

Aspects of the present invention provide a framework and methods that solve at least
one of the above problems in business process automation and management. In this
framework, business processes may be modeled as integration of flows, rules and
state machines. XML and web service standards may be used as the basis to provide
interoperability. Standard based declarative languages may be used for high level
specification of a business process and its components; Specifications may be based
on formal logical models so that automatic verification and model checking methods
can be developed to guarantee correctness. Semantics may be formally defined and

methods of semantic based verification and workflow synthesis are provided.

Aspects of the present invention propose an enhanced use of the flow, rule and state
engines. A business process is specified in a declarative language such as XML which
represents the control within the business process, the externalized business rules and
the states of the business entities. The relevant portions of the specification are
executed in the flow, rules and state engines. Each of these engines provides specific
computational aspects to the execution environment described in at least one aspect of

the invention.

WO 2004/114061 PCT/US2004/018435

[10]

1]

[12]

(3]

The ability to describe the key constituents of a business process in a declarative
syntax reduces the impedance mismatch between the business requirements and
technology implementation. The methodology described herein brings a uniform
structure to the thought process of business and technology people, from requirements
analysis to design to implementation. The creation of business process applications as
per this methodology forces the developer to focus on the business application logic
rather than infrastructure code. The framework provides the reliability during business
process execution by adhering to a set of design patterns and exception handling. The
framework also provides the ability to create an inventory of reusable business

activities which, as it evolves, significantly reduces the application development time.

In view of the above described problems associated with the automation of business
processes, at least one aspect of the present invention provides a system and method
by which business process within and between organizations and/or individuals can
be automated using standards based, service oriented business process automation
architecture based on XML and Web Services Standards including but not limited to
SOAP, WSDL, WSIL, UDDI and BPEL4AWS. At least one aspect of the invention
furthermore includes an execution framework for the business processes including but
not limited to financial business processes applications involving simple and complex
machine and human workflows, business rules evaluation, lifecycle management of

business entities and integration with existing applications.

Further, at least one aspect of the present invention provides a decomposition
methodology for business process specifications into business flows, business rules
and business states. The business flows, rules and states are defined in declarative
languages including but not limited to standard or custom XML based languages. At
least one aspect of the invention includes system and method for runtime execution of
the business flows, rules and states described in declarative syntax on commercial
and/or custom built flow, rules and state engines. At least one aspect of the invention
includes the interaction, cooperation and coordination between the flow, rules and

state engines; and the execution model for business processes within the framework.

In yet another aspect of the invention, business process descriptions are classified
according to a set of predefined taxonomy. This includes the mechanism to search

business process definitions for a given name in a taxonomy category; and also given

WO 2004/114061 PCT/US2004/018435

[14]

[15]

[16]

5
[17]

(18]

[19]

a business process the categories and names it points to. At least one aspect of the
invention furthermore includes the management of the business processes executing
in the framework comprising of registry, discovery, monitor, Service Level

Agreement (SLA) managements and autonomic fulfillment of SLAs.

In another aspect, the present invention may provide a formal mechanism to define
the semantics of business processes and their components. This may be done by
annotating the business process specification with syntax for assertions including but
not limited to pre-conditions and post-conditions, supported by rigid mathematical
model, so that semantic correctness can be automatically verified at design time and
run time. At least one aspect of the invention includes mechanism for automatic
verification and guarantee of the semantic correctness of business process at design
time and runtime. The system achieves correctness by semantic check and model

checking of the declarative specification of the business processes.

Further, at least one aspect of the present invention is to provide a method for the
construction of a library of a semantically well-defined business activities or tasks.
This makes it possible to automatic construct new workflows including but not
limited to exception flows within and across business processes based on a library of
semantically well-defined components and business goals of the new workflows. At
least one aspect of the present invention includes the algorithm for generation of such

automatic workflows.

A yet further aspect of the invention is to provide a method for the loose coupling

between business logic and presentation logic for business process applications.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 provides a logical representation of flows, rules and states and interactions

between them in accordance with aspects of the present invention.

Figure 2 provides an example of a trading workflow in accordance with aspects of the

present invention.

Figure 3 provides an example of portfolio retrieval in accordance with aspects of the

present invention.

WO 2004/114061 PCT/US2004/018435

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Figure 4 provides a graphical representation of business process definition language

in accordance with aspects of the present invention.

Figure 5 provides an example of a task library forming part of the corporate action

workflow in accordance with aspects of the present invention.

Figure 6 provides a graphical representation of a construct for a sequence in

accordance with aspects of the present invention.

Figure 7 provides a graphical representation of a construct for a switch in accordance

with aspects of the present invention.

Figure 8 provides a graphical representation of a construct for a loop in accordance

with aspects of the present invention.

Figure 9 provides a graphical representation of a business process management in a

ubiquitous compute environment in accordance with aspects of the present invention.

Figure 10 provides an illustration of model checking in the business process execution

framework in accordance with aspects of the present invention.

6 DETAILED DESCRIPTION

[27]

Aspects of the present invention relate to a system and method by which business
process within and between organizations and/or individuals can be automated using
standards-based, service-oriented business process automation architecture based on
XML and Web Services Standards including, but not limited to, SOAP, WSDL,
WSIL, UDDI and BPEL4WS. At least one aspect of the invention furthermore
includes an execution framework for the business processes including but not limited
to financial business processes applications involving simple and complex machine
and human workflows, business rules evaluation, lifecycle management of business
entities and integration with existing applications. Aspects of the present invention
further relate to a decomposition methodology for. deconstructing business process
specifications into business flows, business rules and business states. The business
flows, rules and states are defined in declarative languages and include the interaction,
cooperation and coordination between the flow, rules and state engines, and the

execution model for business processes within the framework.

WO 2004/114061

[28]

(291

PCT/US2004/018435

The various business flows, rules and states described herein may be resident on

computer readable media including but not limited to removable media, fixed media,

optical and magnetic storage, and the like. For instance, aspects of the invention may

be resident in a host computer or computing network or on a client-side computer.

The following description is separated as follows to assist the reader:

6.1
6.2
6.3

6.4

6.5

6.6

6.7
6.8

Decomposition of a Business Process into Flows, Rules and States (FRS)

Taxonomy of BPD and constituent Flows, Rules and States
Declarative Specification of BPIs

6.3.1 Flow Specifications

6.3.2 Semantics of Actions

6.3.3 Assertions at different points in the workflow

BPI Execution Framework

6.4.1 Flow, Rule and State Engines

6.4.2 Coordination between BPI Flows, Rules and States
6.43 Management of BPIs

Correctness of business process workflow

6.5.1 Automatically annotate a workflow

6.5.2 Automatically verify the correctness of a workflow
Model Checking of Business Processes

6.6.1 Model Checking Approach

6.6.2 Design Time Model Checking

6.6.3 Runtime Monitoring

Automatic synthesis of Business workflows

BPI Framework based Applications (possible examples but not limited to)

6.8.1 Corporate Actions Management

6.8.2 Order Management Systems Integration with Market Data, Portfolio

and Compliance Applications

6.8.3 Data Management System

WO 2004/114061 PCT/US2004/018435

[30]

6.1
[31]

(32]

[33]

The following sections relate to illustrative schemas and example instances that may
be used in accordance with aspects of the present invention.
7 Schemas and Example Instances

7.1 Schemal: BPDL Schema

72 XML-Schema specification of the concrete data model of the
negotiation process

7.3 An instance of the Negotiation Data Model

7.4 Example of high-level data model

Decomposition of a Business Process into Flows, Rules and States (FRS)

Business Process Management (BPM) is becoming more and more important in the
business world. Companies are trying to automate their business processes so that
they can lower cost and improve efficiency. In addition, they need the ability to
quickly integrate new processes and adapt existing processes in order to face the

challenge of the fast-changing market.

A business process, in simple, is a collaborative execution of activities according to
the specific business rules in order to achieve some business goals. An activity is a
unit of work that is either automatically performed by a computer system, or manually
by human beings. Activities, which are performed by computets or computer-human
interactions, are considered here. The following two examples show some typical

business processes.

Example 1 (Figure 2): This example shows the negotiation process between two
traders, A and B. The business goal of this process is trying to reach agreement on a
deal and then settle the deal through the confirmation process. The process starts
when trader A contacts B and makes an offer (i.e., sell 1000 share of stock A at a
certain price). If B accepts the offer and makes a counter offer, A and B will start to
negotiate until either one party quits with no deal or a mutual agreement is made. If
agreement is reached, the deal will be confirmed and settled. If the two traders belong
to the same financial branch, the setflement can be done at once. Otherwise, each

party has to settle the deal separately.

WO 2004/114061 PCT/US2004/018435

[34]

[35]

[36]

137}

Example 2 (Figure 3): In this example, the financial advisor wants to retrieve the
portfolio information of a customer by his name. He first types in the name to search
in the customer database. The summary information of each customer whose name
matches the search criteria will be listed in a grid view. If there is only one customer
listed, his portfolio information will be retrieved and presented automatically.
Otherwise, the advisor can choose one customer from the list and request his portfolio

information being presented.

A Business Process Management System provides capabilities to design, deploy, and
manage automated business processes. It provides tools for designing a business
process using given activities as building blocks and following the given business
rules; It provides facilities to deploy and manage business processes in an
organization; Furthermore, it provides a framework to conirol the execution of

business processes and to coordinate the activities during an execution.

Business processes are becoming increasingly complex and there is a growing need
for automated and streamlined business processes in a more distributed and
heterogeneous environment. The activities involved in a business process are
generally involving activities from different groups in an organization, or across
different organizations. They are probably implemented with different computer
languages, running on different platforms and using different protocols to interact
with each other. The coordination among these activities and tracking them in a

business process is a challenging problem.

Recently, the widespread adoption of web services has begun to fulfill the promise of
a universally interoperable component model. Specifically, it makes reusability and
language/platform independence possible in business process nﬁanagement.
Components that are implemented in different languages and for different platforms
can be packaged as web services to achieve interoperability. The XML-based web
services languages (e.g, SOAP, WSDL, UDDI) decouple implementation from
interface; as a result, an organization can, in theory, create entire solutions using best-
of-breed web services as building blocks. Web services standards have matured to a
“production-ready” degree and continue to evolve as acceptance increases. More and

more, one finds web services employed in the enterprise to achieve enterprise

WO 2004/114061 PCT/US2004/018435

[38]

[39]

application integration (EAI) as well as business-to-business and business-to-

consumer interactions (B2B/B2C).

Yet in contrast to the technological maturity of web services, the tools available for
Business Process Management by web services orchestration remain relatively
primitive. How does one express real world business processes as an aggregate of web
services and message flows? In most cases, skilled integrators create a “master
application” which calls the component web services in proper order, tracks key
values used by them, aggregates the results, etc. This “code the business logic”
approach can work, in the sense that it can successfully fulfill the business
requirements of the moment, but it fails to leverage the benefits of the component
model: When such a “point solution” is created rather than a “productized solution”,
recurring patterns in business semantics cannot be easily reused the way recurring
functionality can; they often need to be coded anew for the next solution to come
along. Even worse, in an effort to gain reusability, business semantic considerations
can tend to get pushed into the web services themselves, corrupting the component
model and reducing the web services’ reuse potential. Without an adequate means of
modeling higher level business abstractions, the IPR associated with the business

process flows, data, and rules is lost.

At least one aspect of the invention is a framework for business process management

based on existing web services standards. The term Business Process Instance (BPI) is
defined as an automated business process with arbitrary level of granularity, which
comprises of business flows, rules and states. Multiple BPIs can be organized in a
hierarchy to represent the automation of a larger business process. A definition of a
business process instance is called a BPD. At least one aspect of the invention
includes the methodology for creating Business Process Definitions (BPD) in a non-
traditional manner and includes a framework to execution Business Process Instances
(BPI). At least one aspect of the invention includes an XML -based language, Business
Process Definition Language (BPDL), to specify business processes declaratively. A
BPI specification not only defines how the business process should be executed, but
also the exact “meaning” of executing the process, that is, what the process is
supposed to do. In another word, the semantics of a business process is formally

defined in addition to its runtime behavior. The business process management

10

WO 2004/114061 PCT/US2004/018435

[40]

[41]

[42]

[43]

[44]

framework, referred to as BPI framework, provides tools, components and

environment for business process definition, deployment, management and execution.

A BPI uses activities and data entities as its building blocks. It assumes that all the
activities expose web service interfaces in WSDL, and therefore can be treated as web
services. The data entities can be accessed as XML documents that are modeled by
XML Schemas. BPDL describes a business process by decomposing it into three
components: flows, rules and states. Flows define the control logic and data flow
among the activities; rules define decision making policies and states define the

legitimate behavior of business data entities in terms of state-transition models.

When creating a BPI, the plain English description of a business process is
decomposed into its constituent business flows, rules and states. The first level break-
down is a combination of structured English and diagrams in Unified Modeling
Language (UML) or similar notations. The UML sequence diagrams and activity
diagrams capture the execution order and logical dependency information among
activities in a business process, and therefore form the basis of the BPD Flow
specification. The UML state diagrams capture the state transition of business entities,
and form the basis of BPD State Model. The rules are generally associated with
decision points in a flow or state transitions in a state diagram. The rules are separated
from the flow or state because, first, the rules might change but the general structure
of the flow or state model keep the same. Second, the same rule might be used in
different occasions. Third, it makes possible to externalize the business rules and
empower the business user to change it. The flows, rules and states are then specified

separately in a declarative form in BPDL.

BPD Flow specification language is based on BPELAWS. BPEL4WS is an XML~
based standard to define web service orchestration protocols, or workflows. WSDL
and the BPEIAWS language is extended so that formal semantics can be annotated on

web service operations and BPELAWS workflows.

An XML based Business Rules Language (BRL) is used as the language-neutral

description of varied types of business rules.

An XML based State Machine Language, StateML, is used to specify the state

transition models of different business entities.

11

WO 2004/114061 PCT/US2004/018435

[45] A BPD specification does not contain the specification of flows, rules and states
directly. Instead, it refers to those definitions by adding a level of indirection. The
following is a simplified example of a BPD specification on the trade negotiation

process.

<?xml version="1.0" encoding="utf-16"7?>
<BPD>
<Name>NegotiationBPI</Name>
<Description>Trade Negotiation Process</Description>
<URI>http://fauxuri.reuters.com/NegotiationBPI </URI>
<Flows>
<Flow>
<Name>Negotiation</Name>
<Description> negotiation ‘ process
flow</Description>

<URI>http://fauxuri.reuters.com/NegotiateBPI/flow</URI>

</Flow>

</Flows>

<RuleSets>
<RuleSet MajorRevision="1” MinorRevision="0">

<Name>Branch</Name>
<Description>Decide if the two traders are from the
same branch</Description>

<URI>http://fauxuri.reuters.com/negotiationBPI/rs/branch</URI>
</RuleSet>
<RuleSet MajorRevision="1” MinorRevision="0">
<Name>match</Name>
<Description>Decide if one trader’s request matches
the interest of another </Description>

<URI>http://fauxuri.reuters.com/NegotiationBPI/rs/match</URI>
</RuleSet>
</RuleSets>
<StateModels>
<StateModel>
<Name>NegotiationASM</Name>
<Description>state machine for trader negotiation
data</Description> :

<URI>http://fauxuri.reuters.com/NegotiationBPI/negotiation/sm</URI>
</StateModel>
</StateModel>

</BPD>

12

WO 2004/114061 PCT/US2004/018435

6.2 Taxonomy of BPD and constituent Flows, Rules and States

[46]

The BPIs are analogous to components in a component oriented software
development. One of the drawbacks in the component oriented software development
is that the enormous numbers of components overlap with each other and there is no
central repository of components or information about components to avoid the same.
In the Web Services paradigm this problem is solved by the notion of UDDI, which
can be used as a repository for the meta-information pertaining to the web services.
Since BPIs are exposed as Web Services the same technique is valid in case of BPIs.
BPI definition by BPDL contains the classification information for the BPI and its
constituent flows, rules and states. The taxonomy of BPI is captured as a node in the

BPDL document, as shown in Figure 4.

6.3 Declarative Specification of BPIs

[47]

48]

With the business requirements properly decomposed into our three major component
categories, the requirements can be expressed as a synthesized set in a BPD document
through BPDL, the XML-based business process definition language. The W3C-style

schema for BPDL is showed in schema 1, and is graphically represented in figure 4.

BPDL contains primary elements under the root element <BPD>: <Flows>,
<RuleSets>, <StateModels>, <Entities>, <SubBPDs>, and
<Views>. We have already discussed the place of flows, rules, and state models
within a BPD. Views provide reusable GUI capabilities in the same fashion that the
other elements provide reusable back-end capabilities. Entities point to named
business entities based on XML schemas related to the business process. And Sub-
BPIs allow for existing BPIs to be reused as it is in much the same way that individual
components are reused. Each of these primary elements contains one or more sub-
elements designating a single instance of the parent collection through the use of a
common set of sub-elements; this set, whose schema is captured in schema 1,
provides the information necessary for the runtime and design time coordination of
the primary elements. These common elements are also applied to the BPD element

itself, so other BPDs may reference it in a hierarchical fashion.

13

WO 2004/114061 PCT/US2004/018435

[49]

[50]

[51]

A BPD element also contains an element holding taxonomy information to facilitate
searching. The proper taxonomic classification of a BPD is absolutely necessary to
obtain the value of business process reuse. The taxonomic elements contain data to
identify the function and purpose of the BPI with respect to established terminological
dictionaries. When a BPD is stored with taxonomical tags in a BPD repository, a BPI
design tool can parse this information and make it available to developers seeking

business processes of a certain type.

Within the set of common sub-elements, one is for use exclusively by a BPI design
tool, and the other two are primarily for use by the BPI runtime engine. In the former
category is <Description>, which provides a longhand summary of the purpose
of the element and any features of note. This summary would be displayed to the
developer when browsing components in a BPI component repository. The other two
elements provide the means for component resolution and invocation. <URI>
designates a unique resource identifier for the specific component in order that a BPI
engine could locate and invoke it. This is in keeping with the overall vision that
BPDL does not provide details about the components themselves, only a way of tying
them together. If <URI> designates the pieces that are tied, then <Name> elements
are the strings that do the tying. <Name> gives a BPI name to the component, by
which other BPI-ready components can refer to it. These names need to be uniquely
resolvable both within a BPD, and in the larger context of any assemblage of

hierarchical BPDs.

The BPI framework enables the coordinated integration of flows, rules, and state
through the employment of two fundamental concepts. The first is reciprocal abstract
invocation. This refers to the ability of flows, rules, and state engines to invoke each
other through named references passed to the BPI framework. It is certainly possible
for flows, fules, and/or state to be wired together without taking advantage of BPI
technology: for example, a flow could call a rule to determine which flow path to
take; a rule could request a state transition if the rule evaluates as false; and a state
transition can trigger a flow execution to provide complex logging of the transition.
But the drawback of this direct-reference strategy is that the coordination is static,
with the specific references built into the flows, rules, and state machines. BPIs

abstract this relationship, and the BPI-ready flows, rules, and state machines reference

14

WO 2004/114061 PCT/US2004/018435

each other by BPI name, not address. If we look at a BPDL document describing a

given BPI, we will see entries like the following:

<RuleSet>

<Name>MajorClientRule</Name>
<Description>is this client a major client?</Description>
<URI>http://fauxuri.reuters.com/crm/client/categorize.asmx</URI>

</RuleSet>

[52]

[53]

[54]

An example of direct invocation will be, if a flow need to invoke the ruleset above,
the flow would have to include -an instruction to call
“http://fauxuri.reuters.com/crm/client/categorize.asmx”. Later, when another more
sophisticated version of the ruleset became available at
“http://fauxuri.reuters.com/crm/client/new-categorize.asmx”, the flow itself would
have to be changed to utilize it. However, in the BPI framework, this is avoided by
never calling the ruleset directly, but by instead asking the BPI engine to invoke
ruleset “MajorClientRule”. To utilize the new ruleset, no change to the flow is

needed, only a change to the BPDL document.

The second concept is mutual data accessibility between flows, rules and state
machines. All should be able to reference, evaluate, and modify the same copy of the
business data while they execute. The importance of this should be obvious: if during
the course of a business process, a flow engine, for example, modifies a particular
piece of data, a subsequent call to, say, a rule engine will need to be aware of that
change to evaluate the rule correctly. To help manage data, BPI uses the construct
“entity” to separate the data from the business process. Rather than a requesting data
from a particular location as a primitive flow might, the BPI-ready flow requests data
from a BPDL-described entity. The BPI framework leverages state machine’s
capabilities to manage the lifecycle of data; thus, an entity will be associated with a

state machine to provide for its instantiation, state progression, and destruction.

With reciprocal abstract invocation and mutual data access providing usable but
flexible connections between a BPDL-described set of flows, rules, and states, the
BPDL can fulfill its stated purpose of embodying a logical set of business
requirements in its fullness. Additionally, BPDLs can be hierarchical, referencing

each other in BPDL by name in the same fashion that a named flow can call a named

15

WO 2004/114061 PCT/US2004/018435

[55]

[56]

6.3.1
(571

[58]

rule. Thus, individual BPIs can be stacked and arranged together to form higher order

BPIs automating larger business processes.

Named references not only allow for runtime resolution of processes and entities, but
for design-time dependency analysis as well. As components get added to a BPD, a
BPI Designer can indicate what other named flows, rules, state machines, and entities
the component refers to, and direct you to associate other components with the BPI
until no hanging references remain. With every internal reference to named
components verified against BPI names in the BPDL document, the designer can be

assured of runtime consistency.

The real elegance of the BPI framework is its use of these features to capture the
essence of business requirements in the manner in which they were intended, without
burying them into the constraints of a single implementation technology. A process
best expressed as a flow can be, while another perhaps best embodied as a rule may
be so without sacrificing the capabilities of each to work together. Furthermore, it
permits subsequent changes to the choices of components used to fulfill those
requirements to be made at minimum cost. By increasing the impedance between
business requirements and technology implementaiton and decreasing the cost of
subsequent evolution of those requirements, the BPI framework makes possible a new

level of maturity in building business solutions

Flow Specifications

A business process involves several actors, either human beings or computer services,
performing activities collaboratively to achieve some business goals. The control
logic and the data flow among the activities are generally coordinated by a controller.
The control and data flow logics of a business process can be shown graphically as in

Example 1 (Figure 2), and Example 2 (Figure 3).

The control flow and data flow of the business processes can be defined in a
workflow specification language. If we model each task as a web service that can be
described by WSDL, then a web service orchestration language, such as BPELAWS,

can be used to define the workflow of a business process.

16

WO 2004/114061 PCT/US2004/018435

[59] We assume the following constructs from BPEL4WS are used to construct a
workflow. Note that though BPEL4WS is used as the basis of BPD flow specification,
other workflow or web service based specifications can also be used if they are based

on constructs of similar semantics.

Invoke
[60] An operation invokes a web service or another workflow by assigning values to the

parameters.

<invoke operation="negotiate.Contact">

<arguments>
<argument index="1">
<name> ... </name>
<value> ... </value>
</argument>
<argument index="2">
<name> ... </name>
<value> .,. </value>
</argument>
</arguments>
</invoke>

[61] The invocation of a task is different from the invocation of a web-service as in
BPELAWS. A web-service end point in WSDL is based on message passing and does

not have semantics defined. A task has semantics and a set of parameters.

Assignment

[62] Assign value to a location.

<assign> \
<from> ... </from>
<to> ... </to>
</assign>
Signaling faults

<throw> name </throw>

Termination

[63] Terminate the execution.

17

WO 2004/114061 PCT/US2004/018435

<terminate/>

Waiting

[64] Wait a certain amount of time.

<wait time=""/>

Doing nothing
[65] Anempty operation does nothing.

<empty/>

Structured Activities

[66] Simple activities can be put together to build complex activities. The following
constructors can be used to construct complex activities. Before or after each activity
or activity block, an assertion can be added to assure the workflow state satisfies some

correctness criteria:

Sequential constructor

[67] A sequential constructor executes several activity blocks sequentially.
<sequentiai>
<!- activity block 1 -->
<!- activity block 2 -->

</sequential>

Concurrent constructor

[68] A concurrent constructor executes several activity blocks concurrently. The
constructor terminates when all concurrent activities terminate. The flow element is
used to specify a concurrent constructor. Links define the dependencies among the

activity blocks.

18

WO 2004/114061 PCT/US2004/018435

<flow>

activity blocks
<links>?

<link name="ncname">+
</links>

</flow>

Branching constructor

[69] A branching constructor executes one of several activity blocks. When that block
terminates the constructor terminates. A condition is specified for each block as an
assertion. Only when the condition evaluates to true can the block be started. If more
than one condition evaluates to true, more than one block can be chosen to start. In
this case a block is chosen non-deterministically from among those with true

conditions.

<switch>

<case>

<condition>

<formula> ... </formula>
</condition>

<activity> ... </activity>
</case>

<case>

<condition>

<formula> ... </formula>
</condition>

<activity> ... </activity>
</case>

<otherwise>

activity

</otherwise>

</switch>

While constructor

[70] A while constructor executes the activity block inside the loop while the guarding
condition is true. It repeats executing the activity block until the condition evaluates to

false.

<while>

<condition>

<formula> ... </formula>
</condition>

<activity> ... </activity>

19

WO 2004/114061 PCT/US2004/018435

</while>

Race constructor

[71] A race constructor starts several tasks concurrently, but only the one that finishes first

takes effect. Other activity blocks will be aborted.

‘<race>
activity blocks
</race>

Exception handling constructor

{721 Exception conditions can be specified as a global condition and a handler as a sub-
flow to handle the condition. When the condition becomes true, the current executing
sub-flow will be stopped and the handler will be executed. The handler can then
throw new exceptions to the outer block. Unhandled exceptions will be thrown out the
outer block automatically. This provides a structural way to handle failures or
exceptional events that could be produced from any tasks in a sub-flow, as shown the
above example. To specify exception situation in a workflow specification, we use the

following notation:

<catch>
<condition>

</condition>
<activity>

</activity>
</catch>

Event

[73] An event is generated either because a timer times out or an external message is

received by the workflow controller.

<event>
<name>

20

WO 2004/114061 PCT/US2004/018435

</name>
<type>
</type>
</event>

Pick

[74] Choose one path to execute depending on which event happens first.

<pick>

<OnEvent>

<name> ... </name>
<activity>

</activity>
</OnEnvent>
</pick>

6.3.2 Semantics of Actions
[75] The following sections describe the Semantics of Actions in the Business Process

Framework.

6.3.2.1 Introduction to SemanticL
[76] A mathematical model is developed to formally specify the semantics of a workflow.
A declarative language, SemanticL, based on the model is designed to formally

specify the semantics of BPI flows.

[77] Ina BPD specification of a business process, the flow is specified declaratively using
an XMIL-based workflow language. Many workflow specification languages have
already been proposed, such as BPEL4AWS, WSCL, etc. BPEL4AWS is chosen to be
the flow description language in BPD. Those languages are adequate to describe the

control flow logic of a business process. However, none have provided a way to

21

WO 2004/114061 PCT/US2004/018435

[78]

describe their semantics, or exact “meaning”. Therefore, correctness can not be

guaranteed by the system automatically, but relies on manual testing.

SemanticL. is not meant to be yet another workflow specification language, but a
language used to annotate workflow specifications to formally define the semantics of
the workflows and their components. SemanticL is based on a rigid mathematical
model, so that semantic correctness can be automatically verified at design time and
run time. In addition, new workflows can be automatically constructed based on a
library of semantically well-defined components and business goals of the new

workflows.

6.3.2.2 Formal Model for Describing Workflow Semantics

(791

A formal workflow model is described. The semantics of a workflow can be precisely
defined based on the model. In this model, a workflow specification is abstracted at a
high level to facilitate logic representation and reasoning. The abstracted workflow
specification is called A-BPD. An A-BPD is defined as a 4-tuple:

<workflow database, task library, workflow>. The definition of each term and their

relationship to BPD flow is described later.

Definitions

[80]

(811

domain, variable, and constant: A domain is a finite set of objects of the same type.
For example, D ={1,2,...,100} represents a domain of integers from 1 to 100. A takes
its value from a particular domain. For example, x € D defines a variable x on
domain D. Constants are interesting values on a domain. For example, 10 is a

constant in D and TRUE, FALSE are constants in the domain Boolean.

predicate: Predicates asserts some properties of an object or relations of objects. A

predicate is in the form P(x,,x,,...,x,). The number of parameters and the type of

each parameter is predefined for each predicate. A predicate that does not take any
parameters can be represented as a symbol that evaluated to either true or false. If P

is a predicate,

Pe{T,F}.

22

WO 2004/114061 PCT/US2004/018435

[82]

[83]

[84]

[85]

[86]

Predicates are used to characterize the current state of the workflow. For example,
Contacted is a predicate in the negotiation workflow. It evaluates to true if trader A

contacts B successfully, false otherwise.

literal: A literal is either a predicate or the negation of a predicate.

literal := {predicate | —predicate}

workflow database: The set of predicates that make up the workflow forms the
workflow database. Workflow database is directly related to the abstract data model
in BPDL. A leaf element in the abstract data model corresponds to a predicate in the
workflow database. The predicates are globally visible to all the tasks. For example

the following is the workflow database for the negotiation example:

{Contacted, Accepted, NewBid A, NewBid B,
Interrupt A, Interrupt B, Agreed A, Agreed B,
Confirmed A, Confirmed B, Settled A, Settled B,
Nodeal, SameBranch;.

formula: A formula is a well-formed first order logic formula based on a given

workflow database. To be specific:

A predicate is a formula.
If P,Q are formulas, thenPvQ, PAQ are formulas.

If P is a formula, then —P is a formula.
If P is a formula and x is a variable, then V(x)P and I(x)P are
formulas.

bl

task: Tasks are building blocks of a workflow. A simple task is a task that performs
an atomic action that satisfies the ACID property. A complex task is composed of
other tasks as a sub-workflow, and therefore is not atomic. When two complex tasks
are running concurrently, their activities may interleave in an arbitrary way. We will

initially assume no interference and we will return to this issue later.

A simple task T is described by {P}T{Q}. P is the precondition of I'. 7' exccute
correctly if and only if P is true when it started. For simplicity, we only consider P

in the form of a conjunct of literals:

23

WO 2004/114061 PCT/US2004/018435

[87]

[88]

[89]

[90]

[91]

[92]

193]

P = a(literal).

In the case that T can be started in several different states:

{B v BIT{0},

Wecan view T as a set of tasks:

{BITAQN AR {0)

Q is the postcondition of T'. Task 7' can have several possible termination states,
and one is non-deterministically chosen when it finishes. Q is of the form
S AQ)V(S,AD,),.., (S, AQ,), where O, is a conjunct of literals, and
$1,8,,...,8, are status variables observable by the workflow controller. One and only
one of §,,S,,...,S, is true when 7" finishes, and is chosen non-deterministically by

the task. For simplicity, we represent (S, AQ)V(S,AQ0,),....v(S, AQ,) as
Ql’QZ""’Q)z *

For example, a task Negotiate A is described as:

{newbid_Bv interrupt_A}Negotiate_A{(newbid_A A—newbid_B),agreed_A,nodeal}.

The task definition follows the frame semantics. Frame semantics means that
executing a task only affects the predicates mentioned in the postcondition. Formally,

frame semantics can be defined by the Result function:

P’ is the workflow state when T starts, and P'= P is true, then when T terminates

Result(P',Q,) is true, where

Result(P',0) = (P1Q) A O, , Where (P79, is P with all the predicates named in O
deleted.

Result(P',Q,), Result(P',0,),...,Result(P',0,) defines all the possible workflow

states when T finishes.

24

WO 2004/114061 PCT/US2004/018435

[94] Or we can reason backwards from the state where T finishes. Suppose when I

finishes, Q' is true, whereQ = Q'

Residue(Q',01) = NQ' - 01) , where O'— 01 is the set difference of the sets of literals
n o anin.

[95] P AResidue(Q',0,) AResidue(Q',Q,),...,AResidue(Q’,0,) should be satisfied when

T starts.

[96] A BPDL specification of a task can be translated info an A-BPD specification easily

according to the relationship between abstract data model and workflow database.

Workflow specification:

[97] A workflow is specified in the following form:

(R Py By BIVF {0105, 050,

Where P, PB,,...P, are conjunctions of literals and mutually exclusive. 0,,0,,...,0, are
in the form

[(SyAQ)V (S, AQL)V 1Ly AV (S ADp) V] I(S, AQIV (S, AD,n) V]

Which means one of WF’s precondition should be true when it starts and if £ is true

then Q, is the postcondition and so on.

[98] A task is a special case of a workflow specification in that it has only one

precondition and postcondition pair.

[99] Workflows are constructed from tasks using workflow constructors. If the complete
construction is given, the frame semantics of the workflow can be derived and the

workflow can be treated as a task.

Semantics of Workflow Constructors

[100] We allow the following constructors in a workflow specification.

{

Task

[101] If the workflow is in state P and a task T; is executed, then we have the following

inference rule:

25

WO 2004/114061 PCT/US2004/018435

B0 LP = P
P} {Result(P,0,)}

When reasoning from backward,

1B)1{03.0, =0
{R A Residue(Q,0)}T{0}

Sequential

[102] A sequential constructor specifies two tasks execute sequentially: SEQ[7;,7,] means

T, is executed and thenT,. We have the following inference rules for sequential

constructors:

BTHOL{BIL{0,)LP= B,0, = B
{P}SEQ[T}, T,){Resuli(Result(P,0,),0,)}

{RITHOLBIT10,0,0, =2 B0, =0
{P, A Residue(Residue(Q,0,),0,)}SEQ[T,, T, 1{0}

AND

[103] The constructor ANDI[T},T,] specifies the two tasks execute concurrently: We have

the following inference rules for and constructors provided there is no interference:

BITHOLBIL 0, P = F,P=> P
{P}ANDIT,,T,]{Result(P,0, A O,)}

B9 150,00 A0, = O
{A A Residue(Q,0, »0,)}AND[T,, T, {0}

OR

26

WO 2004/114061 PCT/US2004/018435

[104] The constructor OR[7},7,,C] specifies that if C is true, then 7; is executed

otherwise 7, is executed. We have the following inference rules:

BITO B0, (PAC) = B,(PA-C)= F)
{P}OR[Z;,T,,Cl{Result(P A C,Q,) v Result(P A —=C,Q,)}

(A9 {81 0{0:1C.0, = 0,0, =0
{(C AP AResidue(Q,0,)) v (=C A B, A Residue(Q,0,))}OR[T,, T,, CHO}

RACE

[105] A race constructor RACE[T,,7,] specifies two tasks running concurrently. However,

the first to finish will commit and the other one will be aborted.

PO LB, P = B, P = B,
{PYRACEIT,, T,]{(S A Result(P,0,)) v (=S AResult(P,0,))}

BT LBIL{0,10 00, =0)
{F, A (Residue(Q,Q,) v Residue(Q,0,))}RACE[T,, T,]{0}

LOOP

[106] A loop constructor LOOP[T;,C] specifies the task 7; will be executed repeatedly

until C becomes true, where C is a well-formed formula. The loop concerned here is

a repeat loop, in the sense that the loop body 7] is executed at least once. A while loop

can be constructed easily using a repeat loop and an OR constructer.

[107] Due to the fact that the loop condition C and the task 7, are both specified as logical

formulas, the loop constructor is less powerful than the loop in a general
programming language. The reason is because no matter how many times the loop

body is executed, when we reach the starting point of the loop constructor, the

27

WO 2004/114061 PCT/US2004/018435

workflow state will always be the same. The loop invariant is simply F, AC. The
semantics of the loop constructor is retrying 7; until it gives us the desired output,

assuming 7; has several non-deterministic outputs.

{RYT{0},P = P,Result(P,0, nC) = R,
{P}YLOOP[T;,C]{Result(P,0, A—C)}

{PTH{S A0V (=S~ 0)}:0. = B0, = O
{P, A Residue(Q,0,)}LOOP[T, {0}

[108] A necessary condition for a well formed loop is that the postcondition of the loop

does not have a contradiction:

—C AQ, = False

[109] This happens to be a necessary condition for the termination of the loop. If we assume

of T,’s output satisfies the fairness property, then the condition is also sufficient.

Event and Pick

[110] An event is a special kind of task. An event is a message sent to the workflow
controller from outside. The workflow controller has no control of when an event
happens. However, the workflow controller will recognize the events that are
registered with it and response to it accordingly, such as starting a new workflow
instance or continue a waiting workflow that is waiting for the event to happen. An

event can be specified as a task with precondition as true.

(TRUE}E{Q}.

[111] Event cannot be used in a workflow specification. Instead, a constructor called Pick is
used to specify the workflow is waiting for some event to happen. A pick can have
one or several Receive clauses. Depending on which event comes first, one block will

be picked up and executed.

[112] The semantics of a Pick constructor is similar to that of a Race, assuming that exactly

one of the waiting events will eventually happen.

28

WO 2004/114061 PCT/US2004/018435

{TRUE}E{Q, },{TRUE}E {O, 1, {P 3T {0, L, {B},{0,}, Result(P,Q,) = B, Result(P,0,) = P,
{P}PICK[RECEIVE[E,, T,], RECEIVE[E,, T,]]{(S A Result(Result(P,Q,),0,)) v (=S A Result(Result(P,Q,),0,))}

{TRUEYE{Q, },{TRUE}E, {0, L, {P}TH{O L {B {30, = 0,0, = 0
{Residue(P, A (Residue(Q,0,),0Q,) Vv Residue(?, A (Residue(J,0,)), 0O,)}PICK[RECEIVE[E,, T,], RECEIVE[E,, T, 11{0}

6.3.2.3 Semantics of Actions
Data Model:

[113] The data model defines the data schema underlying a business application or a set of
related business applications. In addition, describes the abstract data model on which

the semantics of the tasks and workflows are defined.

[114] The data model is defined as semi-structured data types based on XML-Schema.
There are many industry standards, such as FpML and NewsML, which are based on
XML-Schema. They form the basis for many applications.

[115] BPDL provides notations of both a concrete data model and an abstract data model.
The concrete data model is the actual data model that a workflow controller uses at
run time, whereas the abstract data model specifies only some high-level information

that is required for semantic specification, verification and simulation purpose.

Concrete Data Model
[116] The concrete data model defines the data schema that is required for workflow

execution.

[117] For example, the data model of a negotiation process can be defined as shown in 7.2,

in the form of XMIL-Schema. This can be considered as an extended version of the

FPML standard. An instance of the negotiation data model is illustrated in 7.3. (

Abstract Data Model

29

WO 2004/114061 PCT/US2004/018435

[118] The abstract data model is an abstraction layer on top of the concrete data model. Tt
defines the properties that would be used to specify the pre and post conditions of
tasks and workflows. For example, a predicate called Confirmed is defined for a

trader. Confirmed is true if the trader’s deal is already confirmed, false otherwise.

<property name="confirmed”
expression=" (negotiation/CurrentBid/bidder/confirmed = yes) oxr
(negotiation/CurrentBid/listener/confirmed = yes)”/>

[119] The properties are defined as XPATH expressions on the concrete data model that
evaluate to Boolean or integer values. For example, confirmed is defined as at least

one trader reached the confirmed state. An example is shown in 7.4.

Task and task library

[120] Tasks are building blocks of workflow process. Tasks are generally specified as a
web-service interface with WSDL. Semantics of a task is specified in the form of pre

and postconditions.

[121] A task has a set of preconditions. The preconditions have to be satisfied when the task
starts executing. The pre and post conditions are Boolean expressions on the abstract
data model. The execution body of a task can be either an 'application outside the

workflow engine (simple task) or a sub-workflow (complex task).

Requires

{122] Requires specifies the pre-conditions of a task. It can have one or several require
elements. Each require element has a set of formula elements. The formula element is
a Boolean XPath expression on the abstract data model. A require element is satisfied
if and only if all the contained formula elements are true. At least one of the require

element should be satisfied before starting the execution of the task.

<requires>
<require>
<formula> negotiation/SingleConfirm
</formula>
</require>
</requires>

30

WO 2004/114061 PCT/US2004/018435

" QGuarantees

[123] The Guarantees element specifies the post-conditions of the task. Similar to the
require element, each guarantee also has a set of formula elements. When the task
finishes successfully, one and only one of the guarantee elements is chosen as the
output, and the workflow data is guaranteed to be updated accordingly so that the
XPath formula evaluates to true. In addition, only fields explicitly specified in
guarantee are affected by the task and other fields in the abstract data model are not
changed.

<guarantees>

<guarantee>

<formula> negotiation/DoubleConfirm = true
</formula>

</guarantee>

<guarantees>

Exceptions

[124] Exceptions specify the exceptional post-conditions of the task as an XPath expression.
It is similar to the guarantees specification. The only difference is that it defines the

possible output when a task fails or exits abnormally.

<exceptions>
<exception>
<formula> negotiation/timeout </formula>
</exception>
<exceptions>

6.3.2.4 Semantics of Workflow
Requires and guarantees

[125] In a manner similar to a task specification, a workflow specification can have

requires, guarantees and exceptions, which are the same as in a task specification.

Constructors

31

WO 2004/114061 PCT/US2004/018435

[126] Constructors follow the syntax in BPELAWS in general, and we provide a way to

annotate them with assertions.

<assert>

<formula> XPath expression on the abstract data model </formula>

</assert>

6.3.3

Assertions at different points in the workflow

6.4 BPI Execution Framework

[127]

6.4.1
[128]

[129]

[130]

The following sections describe the BPI execution framework.

Flow, Rule and State Engines
BPI Execution Framework has three core components: flow engine, rule engine and
state engine. The three engines interact with each other and invoke existing domain

services during an execution of a business process.

Domain services provide domain specific functionalities as web services. For
example, Customer Relation Management Services provides functions related to
managing customer relations, such as retrieving customer information, searching
customer directory, etc. Domain services provide building blocks that can be

integrated into new applications.

Flow engine orchestrates web services according to a given workflow specification in
the form of a BPELAWS program. When a workflow is deployed at a flow engine,
unique entry point(s) of that flow is created as web services. A new instance of flow
execution will be created and started when a message is received in the corresponding
entry point. During the execution, the flow may invoke domain services to perform
domain specific functions, invoke rule engine to evaluate rules and invoke state
engine to request state query or transition. Since flows are deployed as web services,

they can be invoked by other flows.

32

WO 2004/114061 PCT/US2004/018435

[131]

[132]

6.4.2
[133]

[134]

[135]

State engine manages business object life cycle based on state machine models. State
engine controls the state data and user-defined data of a business object instance at
run time. Those data cannot be updated outside the state engine. State machine
models define the legitimate states, transitions between states, and operations
associated with transitions of a business object. At run time, new instances of a state
machine will be created according to the model when a create request is received.
When requests for transitions on state machine instances are received, the state engine
will first verify the requested transitions are enabled. If enabled, the state data will be
updated accordingly and the associated operations, such as user data update or web
service invocation, will be performed. A state engine has a single web service

interface for all the state machine models.

Rules engine evaluates complex business rules and can possibly perform some actions
depending on what rules are evaluated to true. Business rules are specified in a

declarative language, such as RuleML. At run time, a rules engine will evaluate a set

“of rules on a set of data at request. Like the state engine, rules engine exports only a

single web service interface for all rule evaluation requests

Coordination between BPI Flows, Rules and States

A business process execution requires that flows, rules and state coordinate and
interact with each other. However, engines of flows, rules and states can execute
independently. They are loosely coupled together through web service interfaces.
Figure 1 shows the logical relationship among their interfaces. Hard lines with arrows
in the graph show the invocation relationship among different interfaces, and dashed

lines show data flow relationship.

Each flow has its own unique web service interface. For example, F1 has interface
IFlow1; F2 has interface IFlow2; and F3 has interface IFlow3. The rules engine has a
single interface. Requests for evaluating R1, R2, and R3 all go through the same
interface. State engine also has only a single interface. Query or updates on all state

instances are requested through that interface.

During execution of a flow, rules engine can be invoked to do rule evaluations and

state engine can be invoked to do state transition and data update. Rules engine can

33

WO 2004/114061 PCT/US2004/018435

[136]

6.4.3
[137]

start a flow or invoke the state engine as triggered by the results of some rule
evaluations. State engine can call the rules engine or start a flow if a transition is
successfully performed. The reciprocal invocability of the three is shown in Figure 1
by the arrows L1, L2 and 1.3.

Business object data is guarded by the state machine and can only be written or
updated through the state machine. This guarantees the data will stay in legal states
and can only be changed via legal transitions. Flows and rules can operate on
unguarded data and can perform read-only operations on guarded data. Optionally, to

improve performance, guarded data can be replicated into a read-only data store.

Management of BPIs

As BPIs are deployed in ubiquitous compute environment, the management of BPIs
becomes vital. The BPI management consists of registry, discovery, monitor, Service
Level Agreement (SLA) managements and autonomic fulﬁllment of SLAs
(Management BPIs and End Point Resolution) when violations occur. The following
sections will discuss each of these aspects in detail. Figure 9 provides the
diagrammatic representation of BPI management. A point to note here is that the
management of BPI is a business process and that is automated by using BPIs, which

are referred as management BPIs.

6.43.1 BPI Registry:

[138]

The BPI registry consists of three parts. One, the end points of the BPIs (either logical
or physical) and the second, the SLAs agreements and the third the Taxonomies.
Either a central or federated registry is required to store this information. The
semantics of the BPI registry are: Each of the BPIs and its constituent (flows, rules
and states) are mapped in to abstract interfaces. Each of the abstract interfaces has one
or more instances of run time endpoints. Each of the runtime instances will have
instance data where the various SLAs, configuration and taxonomies are defined. Any
persistence store can be used as BPI registry. The following paragraph describes how

UDDI can be used as BPI Registry:

34

WO 2004/114061 PCT/US2004/018435

6.4.32 BPI Registry using UDDL:

Each of the BPIs and its constituents are mapped into UDDI tModels.
The description of BPIs and its constituents is mapped to UDDI overview document

The SLA agreements, configuration and Taxonomies are mapped to UDDI instance

data

The BPI Taxonomies are mapped to UDDI Taxonomies

6.4.3.3 BPI Discovery
[139] After the BPIs are deployed based on the configuration stored in the registry

(described above), there is always a risk of deployment and the registry being out of
sync because of their disconnected nature. This problem is solved by monitoring the
traffic to the BPI endpoints and provide feedback to the BPI administrator, an ability

to either sync up the registry or identify rouge BPIs running in the environment.

6.4.3.4 BPI Monitor

[140] Since BPI end points are SOAP end points, the messages are monitored for various

characteristics of SLAs in either real time or near real time (for performance reasons).
When violations occur, the monitoring agents notify “Management BPIs” to take

appropriate actions.

6.4.3.5 Management BPIs
[141] Management BPIs are special BPIs that receive the SLA violations (described above)

and make decisions on fulfilling the SLAs. Taking a simplistic example, when a
particular flow service reached 80% of its capacity the, BPI Monitor notifies the
Management BPI and the Management BPI adjusts configuration in the BPI registry
such that subsequent calls to the flow service is routed using End Point Resolution
service to a different end point till the first one can sustain the SLA. The management
BPIs also provide “SLA tolerance and sustain management” to avoid feedback based

oscillations.

35

WO 2004/114061 PCT/US2004/018435

6.4.3.6 End Point Resolution service

[142]

At BPI runtime, every BPI constituent when it needs an endpoint, queries the BPI
registry based on the interface, SLAs and classifications and gets the end point that
needs to be invoked. This provides dynamic discovery of endpoints and provides the
ability to reroute the BPI calls based on the configuration adjustment carried out by
the Management BPIs in order to fulfill SLAs.

6.5 Correctness of business process workflow

[143]

[144]

6.5.1
[145]

[146]

A workflow is correct according to the given requirement if the postcondition of the
workflow requirement is asserted to be true by the workflow specification, suppose

the precondition of the workflow is true when it starts.

Based on the semantics of tasks and the inference rules of workflow constructors,

correctness of a workflow can be verified at compile time.

Automatically annotate a workflow
Given a workflow precondition, assuming each task’s pre and postconditions are
given, a workflow can be automatically annotated at every execution point of what

should be true at that point.

The algorithm AutoAnnotate takes two parameters: A workflow W and a precondition

P of the workflow, and output W, an annotated version of W.

Algorithm: AutoAnnotate(W, P) : W’

1. IF W is a task {P;}T;{Qi}, apply the TASK rule:

P30}, P = R
{P}T,{Result(P,0,)}

RETURN {P} T, {Result(P, Q1)}.

2. IF W is composed with a constructor W = CON(Ty, T, ...), apply the corresponding
constructor rule and recursively annotate T1, To, ...

36

WO 2004/114061 PCT/US2004/018435

6.52
[147]

[148]

Automatically verify the correctness of a workflow
First we annotate a workflow. Then if an assertion does not imply the precondition of
the next task, there is an error at that point. The workflow is wrong because the next

!
task’s precondition is not satisfied and therefore cannot be started at that point.

If the last assertion does not imply the postcondition of the workflow, the workflow is

wrong because the workflow does not satisfy the predefined postcondition.

6.6 Model Checking of Business Processes

[149]

[150]

[151]

Model checking formally verify whether a system implementation satisfies its
requirement specification. Industry and academia has been developing model
checking methodologies and automatic verification tools for various software and
hardware systems. However, very few are applied in business processes and

applications because of their complexity and lack of formal specification.

BPI provides a way to abstract a business process and describe it formally as flows,
rules, and states. The correctness of flow and state specification can be verified using
model checking technique. Based on this, BPI framework offers an approach to model
checking the correctness of a business process. The BPI model checking tool takes the
flow and state specification as the system implementation, and checks them against a
set of system requirement specifications derived from the original business
requirement automatically. It can be used to enforce correctness both at design time

and at run time.

Model checking is different from the semantic-based verification in the following
aspects: First, model checking is based on observational trace semantics, that is, the
observable sequence of states in a possible process execution; whereas semantic-
based verification is based on formal semantics of activities and flows. Second, the
former can be used to verify temporal properties, such as A must happen before B, A
eventually will happen, there is no deadlock, etc; whefeas the latter cannot be used to
verify such properties. Third, the former needs to explore the whole state space of a
system execution; whereas the latter is based on form deduction on the system

specification.

37

WO 2004/114061 PCT/US2004/018435

[152] BPI model checking tool helps us to achieve the following objectives: check design
time correctness, enforce runtime correctness, and ensure security. Security is
especially important in a distributed environment. From the model checking
perspective, security problem is a subset of reliability problem, which can be treated
by language-based techniques. Our model checking tool ensures security policies for

information flow and therefore guarantees confidentiality.

i

6.6.1 Model Checking Approach .
[153] Our model checking approach is based on abstract state machine models.
Specifications are first translated into abstract state machine models and then model

checked. The methodology is summarized in Figure 10.

6.6.2 Design Time Model Checking

[154] The first step is to formally define the system implementation and the requirement
specification, both of which are derived from the business requirement. From the
requirement of a Business process, BPI allows us to specify the flows in BPELAWS
and the state models in terms of StateML, which is based on a hierarchical state
machine model. Those procedures are indicated in Figure 10 as dashed arrows. In
addition, business requirements are abstracted and formalized as temporal predicates
in the form of temporal logic. The set of temporal predicates specifies the temporal
constraints that the system has to observe. This procedure is indicated by arrow g in

Figure 10.

[155] The second step is to define the flows and states in our hierarchic state machine
model, because model checking techniques are based on heirachical state machine
model. The BPEL4WS specification is translated into StateML, which serves as the
state specification language of both BPI state and model checking. An algorithm is
developed to do the translation automatically. This procedure is indicated by arrow a

in Figure 10.

[156] The third step is to abstract the system and requirement specification by mapping both

hierarchical state machines and temporal predicates into Abstract State Machines.

38

WO 2004/114061 PCT/US2004/018435

[157]

[158]

[159]

[160]

This step is necessary because the original specification may have too many states or
even an infinite state space. Model checking on such a state machine will encounter
state explosion problem. Abstraction simplifies the state space of the original

specification. This procedure is indicated by arrow ¢ and d in Figure 10.

The Fourth step is model checking the abstract state machine. The result is then used
to further refine the state machine models. Steps 3 and 4 are performed iteratively
until the abstract state machines are successfully model checked. This procedure is

indicated by arrow b, e, and f in Figure 10.

There are two approaches for abstraction and model checking: Counter-example

guided and weakest precondition guided.
In simple, counter-example guided abstraction follows the following procedure:

Initially set EO to include predicates in the requirement
Iteratively carry out following steps:
a. Abstract concrete model with Ei.
b. Model checking abstract model, if answer is yes, then terminates.

c. If answer is no, we simulate concrete model and find out new predicate Fi
which caused the problem.

d. Let Ei+1 :=Fi union Ei and i :=1i +1, and proceed to next iteration.

Weakest precondition guided abstraction is summarized is follows:

. Apply requirements predicates to the concrete model.

Backwardly compute weakest precondition for each state based on predicates in step
1.

Abstract concrete model with all predicates computed.
Model checking the abstract model. if answer is yes, then terminate.

If answer is no, modify the abstraction and rerun the model checking.

39

WO 2004/114061 PCT/US2004/018435

6.6.3
[161]

[162]

[163]

Runtime Monitoring

Runtime monitoring guarantees the correctness of a running process. Though a
process is verified at design time, runtime monitoring is still necessary. This is
because: a) Some properties may not be verifiable in design time due to the
abstractions; b) some activities may have undesired runtime properties that are not
specified in their interface. ¢) Many performance and security policies have to be

guaranteed at runtime.

A runtime monitor is automatically constructed based on the safety property
requirements formally defined as temporal predicates. The monitor executes in
parallel with the monitored system at runtime and detects any violations of the safety
properties. Once a violation is detected, the monitor will interrupt the current process

execution and start an error-handle procedure.

Security is ensured through language based techniques. Each data item in the
specification is associated with a secure type tag, such as high or low, to indicate the
security level. Each program block is associated with a security context. The model
checker performs type inference analysis to make sure that information flow is
consistent with the tagged values of blocks and data items. For example, all
assignments to a data item tagged low are either derived from low values or take place

in a low context.

6.7 Automatic synthesis of Business workflows

[164]

[165]

[166]

[167]

A workflow requirement specifies the precondition and the expected postcondition of
a workflow. A correct workflow specification, if exists, can hopefully be found out

based on the semantics of a given task library.

The problem is, given a task library and a workflow requirement, a correct workflow

specification is generated automatically.

To illustrate the problem, suppose we have a task library as described in Figure 5. The

tasks are components used to build a corporate action workflow.

It is easy to see that the tasks can not be arbitrarily connected, because the

postcondition of one may not satisfy the precondition of another. There are a set of

40

WO 2004/114061 PCT/US2004/018435

[168]

[169]

[170]

(1713

[172]

[173]

[174]

basic rules on how to correctly connect the tasks together using the workflow

constructs.

Sequence: Suppose a task or workflow A’s postcondition implies the precondition of
task or workflow B, then A and B can be composed in a sequence structure. An

example is shown in Figure 6.

Branching: If the output of task A only partially implies the precondition of task B,
then some output cases from A is not handled by simply forming a sequence of A and
B. The outputs from A that are not handled are called dangling edges. If the
conditions on the dangling edges imply preconditions on other tasks, then a branching
need to be formed to handle different cases by different tasks. If a set of tasks can be
found to cover all possible cases from A, then a correct branching construct can be

formed. An example is shown in Figure 7.

Loop: Sometimes a dangling edge can be fixed by feed it back to some tasks on the
path and form a loop, which means we retry the sub-workflow inside the loop until a

condition is satisfied. An example is shown in Figure 8.

Exception: Exceptions are just special output edges, so they can be handled the same
way as branching. The only difference is that they often imply the workflow is in
some error state, and has to be dealt with separately by error handlers. In addition,
same exceptions may be generated by different tasks, so that a single handler can be
used for a group of them. Instead of creating branches, a catch statement is created to

handle exceptions in a block.

Subflow: a synthesized workflow can be used as a component to form a larger

workflow.

Based on the construction rules, all possible workflows can be constructed from a task
library. However, the number can be astronomical and not all of them satisfy the
business goals. An algorithm is needed to find the right workflow that satisfies given

business goals.

The business goals are specified in terms of workflow preconditions and

postconditions. A workflow needs to be generated such that, suppose the

41

WO 2004/114061 PCT/US2004/018435

[175]

preconditions are true when the workflow starts, postconditions should be true when

the workflow finishes.

To make the problem tractable, algorithms for special cases of the problem are first

constructed, and then more general algorithms are built up based on the special cases.

[176] Casel: Tasks has only positive predicates in preconditions and single output in
postconditions.
[177] The task library satisfies the following assumptions:

1. Task precondition is a conjunction of positive predicates.

2. No variable assignment or conditions on variables are allowed.

3. Task library follows the ranking assumption. (See below)

4. Initially, the value of all predicates is either true or false. The actual value can not be
assumed by the workflow generator. The generated workflow has to work correctly in
all possible cases. (No workflow precondition is given.)

[178] Ranking: a partial order relationship < can be defined on the set of predicates PS, and
the task library TS respects the partial order < in the following sense:

a. For any task T in \mathcal{T}, there exists a positive predicate q 0 in T's
postcondition. q_0 is called primary output. For any predicate p in T's precondition
and non-primary predicate q in T's postcondition, we have

b. p<q0,q<q0.

c. No predicates in T's pre and post conditions have higher rank than $q 0$. A task
can have more than one primary outputs.

d. All predicates are primary outputs of at least one task.

[179] Path: A path is a sequence of tasks. Assuming the precondition of the first task is
satisfied, all tasks in the path can be executed correctly in the sequential order.
Theorem:

[180] Given a task library that satisfies the ranking assumption, we have the following:

[181} For each predicate p, there exists a path Path(p). Path(p) makes p true, and p is the

primary output of the last task of Path(p).

42

WO 2004/114061 PCT/US2004/018435
a. If we view the Path(p) as a subworkflow, then p is the primary output of the
subworkflow.
b. No predicates with a higher rank than p appears in the path.

c. We can use the notation of attribute closure to calculate paths that implement the
predicates.

[182] Algorithm: Given a library TL, find a workflow for each particular predicate by
construct the attribute closure of the library CL(TL).

[183] The closure is all the predicates that can be made true. Each predicate p is
associated with a path attribute, which belongs to Path(p).

Case 2: Allowing conditions

[184] The case follows the same assumption as in the above section, but adds in the
assumptions to handle conditions.

Additional assumptions:

[185] Task precondition is a conjunction of positive predicates, conditions on single

variables, such as $x > 03, or a combination of both.

a. Predicates in postcondition may be of the form gen(x). If a task postcondition has
gen(x), gen(x) must be a primary output, and the only primary output of that task.

b. A variable x is not assigned when the workflow starts, that is, gen(x) = false initially.
c. gen(x) and condition on x (x>0) have the same rank.

[186] Path: A path is a sequence of tasks. There are possibly conditions on variables
preceding some of the tasks. If the precondition of the first task is satisfied, tasks in
the path can be executed correctly in the sequential order if we assume conditions

preceding a task are true when the task starts.

[187] Path(p) is a path with p as the primary output of the last task (and hence the primary
output of the path). If there is no condition on a path, the path is a complete path.
Otherwise, the path is a partial path. Conjunction of all the conditions along a path is
condition of the path.

[188] Given a task library that satisfies our assumptions,

[189] For each predicate p, there exists at least one path Path(p). Path(p) can be partial.

43

WO 2004/114061 PCT/US2004/018435

[190] A task producing gen(x) only needs to appear at most once in a path.

[191] For all variables X={x_1, x_2, ..., x_n} in the task library, gen(x_1), ..., gen(x_n)
can be sorted into a total order which keeps the partial order of the variables' ranking.
If there exists a partial path implementing p with conditions along the path C(x_1),
C(x_2), \Idots, C(x_k), then there exists a partial path implementing p that generates
each variable at most once and with the same set of conditions annotated on the path

in the given total order.
[192] For each variable x_i, we need only one task to generate it.

Attribute Closure algorithm:
[193] We only need to find a partial path for each equivalent set according to the order of
variables. We can achieve this by adding the following rules to the closure algorithm.

[194] Algorithm: construct all partial paths through building the attribute closure.

[195] Algorithm: Construct a workflow from the closure.

Case 3: Multiple primary outputs in postconditions

[196] Additional assumptions:

[197] A task can have more than one output, each of which is a conjunction of predicates as
specified in the previous section. If a task T has multiple outputs, then each output has
one and only one primary predicate. In addition, if p_i, p_j are primary predicates of
T's outputs, then Rank(p_i) is not higher or lower than Rank(p).

Case 4: Allowing multiple output and negations

[198] Extending the definition of rank:

a. Predicates can be arranged in partial order as in the previous section, and the notion of
rank is extended to negations of predicates.

b. Rank(p) = Rank(not p).

c. Rank(p) = Rank(q), p notq => p=notq.

44

WO 2004/114061 PCT/US2004/018435

[199]

[200]

A predicate and its negation have the same rank, and it is the only case that two

literals have the same rank.

The model is extended to allow some limited forms of negation in precondition, and

multiple outputs.

6.8 BPI Framework based Applications (possible examples but not limited to)

[201]

6.8.1
[202]

6.8.2

[203]

6.8.3
[204]

The BPI Framework can be used for a wide range of business process automation

including but not limited to following financial services workflows:

Corporate Actions Management

Managing Corporate Actions Business Process in Custodian and Asset Management
organizations requires a complex combination of business flows, rules and state
management. Corporate actions workflow comprises of seven stages, e.g. data
capture, event certification, entitlement, notification, decision making, account
posting and settlement as independent modules. It is developed on the BPI framework
and uses industry standards such as MDDL, SWIFT MT564/5 for data model and

interfacing with external systems.

Order Management Systems Integration with Market Data, Portfolio and Compliance
Applications

Traditional Order Management Systems are not well integrated to other financial
systems such as Market Data, Portfolio and Compliance applications. The BPIL

framework provides a suitable way to automate the integration workflows.

Data Management System

Creating an accurate repository (often known as ‘gold copy’) of financial data
requires complex automated and human workflow. Traditionally these business
workflows and rules are implemented as custom programs, where the ability to
change the business logic based on market demand is an expensive and slow process.

The BPI Framework provides a way to automate these business processes where

WO 2004/114061 PCT/US2004/018435

business rules can be changed as required without a large impact to the rest of the

systems.

46

WO 2004/114061 PCT/US2004/018435

7 SCHEMAS AND EXAMPLE INSTANCES

7.1 Schemal: BPDL Schema

<?zml version="1.0" encoding="utf-16"?>

<xs:schema targetNamespace="http://Reuters.com/BPD"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

sxmlns:b="http://schemas.microsoft.com/BizTalk/2003" xmlns: rbf="http://Reuters.com/BPD"
xmlns :msdata="urn:schemas-microsoft-com:xml-msdata" elementFormDefault="qualified"

attributeFormDefault="qualified" id="BPD">
<xs:include schemaLocation="BPDArtifactDefinition.xsd" id="rbfArtifactDefinition"/>
<zs:element name="BPD">

<xs:complexType>

<xs:sequence>

<xg:element name="Flows">

<xs:complexType>

<Xs:sequence>

<xs:element name="Flow" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:group ref="rbf:rbfArtifactDefinition"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</zs:element>

<xs:element name="RuleSets">

<xs:complexType>

<x8:sequence>

<xs:element name="RuleSet" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:group ref="rbf:rbfArtifactDefinition"/>

<xs:attribute name="MajorRevision" type="xs:unsignedInt" use="optional"/>
<xs:attribute name="MinorRevision" type="xs:unsignedInt" use="optional"/>
</xs:complexType>

</zs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="StateModels">

<xs:complexType>

<%s:sequence>

<xs:element name="StateModel" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:igroup ref="rbf:rbfArtifactDefinition"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xzs:element name="Entities">

<xs:complexType>

<xs:sequence>

<xs:element name="Entity" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:group ref="rbf:rbfArtifactDefinition"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs;element>

<xs:element name="Taxonomies™">

<xs:complexType>

<x5:sequence>

<xs:element name="RDF">

<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Taxonomy" maxOccurs="unbounded">
<xs:complexType>

<x8:sequence>

<xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

<xs:attribute name="name"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

47

WO 2004/114061

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:group ref="rbf:rbfArtifactDefinition"/>
<xs:element name="SubBPDs">
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="BPD">

<xs:complexType>

<®s:group ref="rbf:rbfArtifactDefinition"/>
</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Views">

<xs:complexType>

<xs:sequence minOccurs="0Q" maxQccurs="unbounded">
<xs:element name="View">

<xs:complexType>

<xs:group ref="rbf:rbfArtifactDefinition"/>
</%s:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</x8:element>

</xs:sequence>

</xs:complexType>
</xzs:element>
</xs:schema>

48

PCT/US2004/018435

WO 2004/114061 PCT/US2004/018435

7.2 XML-Schema specification of the concrete data model of the negotiation process

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”
targetNamespace="http://www.NegotiationML.org”
xmlns="http://www.NegotiationML.org” elementFormDefault="qualified">
<xsd:ComplexType name="NegotiationsType”>

<xsd:element name="negotiation” type="negotiationType”
maxOccurs="unbounded” />

</zsd:ComplexType>

</xsd:ComplexType name="negotiationType”>

<xsd:element name="id” type=”integer”/>

<xsd:element name="CurrentBid” type="bidType”/>
<xsd:element name="BidHistory” type="bidType”
minOccurs="0" maxOccurs="“unbounded”/>
</xsd:ComplexType>

<xsd:ComplexType name="bidType”>

<xsd:element name="id” type="integer”/>

<xsd:element name=“bidder” type="traderType”/>
<xsd:element name="listener” type=“traderType”/>
<xsd:element name="details” type="FpML"/>
</xsd:ComplexType>

</xsd:schema>

49

WO 2004/114061

7.3 An instance of the Negotiation Data Model

<Negotiations>

<Negotiation>

<Id> 101 </Id>

<CurrentBid>

<Id> 1 </Id>

<bidder>

<Id> 1 </Id>

<name> A </name>
<branch>NYC</branch>
<Initiated>NO</Initiated>
<Agreed> value="NO"></Agreed>
<Negotiating>NO</Negotiating>
<Confirmed>NO </Confirmed>
</bidder>

<listener>
S <Id> 2 </Id>

<name> B </name>
<branch>LONDON< /branch>
<Initiated>NO</Initiated>
<Agreed> value="NO"></Agreed>
<Negotiating>NO</Negotiating>
<Confirmed>NO </Confirmed>
</listener>

</CurrentBid>

<BidHistory>

</BidHistory>
</Negotiation>
</Negotiations>

50

PCT/US2004/018435

WO 2004/114061 PCT/US2004/018435

7.4 Example of high-level data model

<property name="SingleConfirmed” expression="
(negotiation/CurrentBid/bidder/confirmed = yes) xor
(negotiation/CurrentBid/listener/confirmed = yes”/>

<property name="DoubleConfirmed” value="
(negotiation/CurrentBid/bidder/confirmed = yes) and
(negotiation/CurrentBid/listener/confirmed = yes”/>

[205] Aspects of the present invention have been described in terms of illustrative
embodiments thereof. Numerous other embodiments, modifications and variations
within the scope and spirit of the appended claims will occur to persons of ordinary

skill in the art from a review of this disclosure.

51

WO 2004/114061 PCT/US2004/018435

TOC
Business Process AUTOMAtIONoccviriieriiicereieirnesiness e s e e e
1 Field Of the TNVEIION . cccieiiree vt eieerire ettt ste st sae e b e sbaes b s sr e s e s s e s s bt st s sbt s s st sant s
2 Background of the iNVEeNtION. ...t
3 SUIMIMALY .oovevereerirsiei e s ieee st et et b e bbb et e s b e e s S sE SRR s bR b et
4 Brief Description of the FIGUTEScccciiiiiiiiiiicce s
5 Detailed DESCIIPON .veuveveeiireriiricriiicit e e e
5.1 Decomposition of a Business Process into Flows, Rules and States (FRS)
5.2 Taxonomy of BPD and constituent Flows, Rules and States............coceevneviniiicicinnnnns 13
5.3 Declarative Specification 0f BPIS........ovvnriiiiiiiicmineiese e 13
53.2 Semantics Of ACLIONScecvivireererererisreer st st 21
53.3 Assertions at different points in the Workflow.........cccccvvnnnvniniiniininiiinnn 32
54 BPI Execution FTameWOTK......c..cocecrrieiniiriiieriinin i ssienss s 32
54.1 Flow, Rule and State ENZINeScceceevrrivniiiniiniiiinic i s 32
542 Coordination between BPI Flows, Rules and States........ccovevivvvinviniccnininninn, 33
5.4.3 Management 0f BPIS.......cccvvimiininninie i 34
5.5 Correctness of business process WOrKfIoWcccoiviiiiininninienininc, 36
551 Automatically annotate @ WOrkflowcceceiiivniiiniinnen s 36
552 Automatically verify the correctness of a Workflow.......ccovuvveiivennininncnn 37
5.6 Model Checking of Business Processes.......couuiriiiiiiniireniininieniininincsininens 37
5.6.1 Model Checking APProachi.......cccveenrievecrininininiinsssssse s e 38
5.6.2 Design Time Model Checking.......coevviiniennniinicn i, 38
5.6.3 RUNHME MODILOTING. 1.1 vevrevrieierereeirreserist s ss e ss s b 40
5.7 Automatic synthesis of Business WOrkflowscooveinmievnnnin 40
5.8 BPI Framework based Applications (possible examples but not limited to)................ 45
5.8.1 Corporate Actions Managementcc.eeminrnnnisnnes s 45

52

WO 2004/114061 PCT/US2004/018435

5.8.2 Order Management Systems Integration with Market Data, Portfolio and
Compliance APPLCALIONS.......ccovviiiiiietiie e 45
5.8.3 Data Management SYSEEIMcvvvurerecererercrmseeneenieisnnee s st 45
6 Schemas and Example INSIANCESc.evieiiiiincininiii e 47
6.1 Schemal: BPDL SChemMAa......ccccciiriiiiriiiiininiiismetne st 47
6.2 XML-Schema specification of the concrete data model of the negotiation process..... 49
6.3 An instance of the Negotiation Data Modelccocovviniiiiiiiiiinnniiinn 50
6.4 Example of high-level data model........cocovveiiiimininini e 51
A O3 -5 1 1 - OO OSSOSO PO PSSP PP PSPPI 52

53

WO 2004/114061 PCT/US2004/018435

9 BACKGROUND OF THE INVENTION

A process and system for automating business functions is described.

54

WO 2004/114061 PCT/US2004/018435

8 CLAIMS
1. An automated workflow system for executing business logic using declarative

languages comprising:
a process description further including flows, rules and states;

wherein Flows represent the control flow between business functions, States represent
the legal state transitions for a business entities, and Rules represent the business rules and

policies enforced on the business entities in an externalized form.

2. An automated workflow system for executing business logic using declarative

languages according to claim 1, further comprising:

a library of tasks, in which each task has a precondition and postcondition wherein the

desired precondition and postcondition are automatically designed prior to execution.

3. An automated workflow system for executing business logic using declarative

languages according to claim 1, further comprising:
a coordinator that coordinates the flows, rules and states.

4. An automated workflow system for executing business logic using declarative
languages according to claim 1 used by a plurality of parties, in which one of the parties acts
as a trusted third party for the other participants, and performs services comprising
Guaranteeing the correctness of a protocol, both at design time and at run time Maintaining
records of all the interactions and Performing some activities for the other participants as a

part of the workflow.

5. An automated workflow system for executing business logic using declarative

languages according to claim 1 in which the declarative language is XML.

6. An automated workflow system for executing business logic using declarative

languages according to claim 1 in which the declarative language is WSDL.

7. An automated workflow system for executing business logic using declarative
languages according to claim 1 in which the workflow further comprises assertions, which

describe the preconditions and postconditions of the system at that point in the workflow.

55

WO 2004/114061 PCT/US2004/018435

8. An automated workflow system for executing business logic using declarative
languages according to claim 7, wherein the assertions are checked at runtime as the system

executes to ensure that the execution is correct.

9. An automated workflow system for executing business logic using declarative
languages according to claim 7, wherein the precondition assertions are used to prove the

correctness of the design before the design; that the assertion specified.

10. An automated workflow system for executing business logic using declarative
languages according to claim 7, wherein the postcondition assertions are used to prove the

correctness of the design at the end of the workflow.

11. An automated workflow system for executing business logic using a Web-

based transport protocol comprising:

a process description which is further comprised of flows, rules and states wherein
Flows represent the control flow between the business functions, States represent the legal
state transitions for a business entity, and Rules influence the control flow and cause the state

transition from one state to the next.

12. An automated workflow system for executing business logic using a Web-

based transport protocol according to claim 11, further comprising:

a library of tasks, in which each task has a precondition and postcondition wherein the

desired precondition and postcondition are automatically designed prior to execution.

13. An automated workflow system for executing business logic using a Web-

based transport protocol according to claim 11, further comprising:
a coordinator that coordinates the flows, rules and states.

14, An automated workflow system for executing business logic using a Web-
based transport protocol according to claim 11 used by a plurality of parties, in which one of
the parties acts as a trusted third party for the other participants, and performs services
comprising Guaranteeing the correctness of a protocol, both at design time and at run time
Maintaining records of all the interactions and Performing some activities for the other

participants as a part of the workflow.

56

WO 2004/114061 PCT/US2004/018435

15. An automated workflow system for executing business logic using a Web-

based transport protocol according to claim 11 in which the Web-based transport protocol is

http.

16. An automated workflow system for executing business logic using a Web-

based transport protocol according to claim 11 in which the Web-based transport protocol is

https.

17. An automated workflow system for executing business logic using a Web-
based transport protocol according to claim 11 in which the workflow further comprises
assertions, which describe the preconditions and postconditions of the system at that point in

the workflow.

18. An automated workflow system for executing business logic using a Web-
based transport protocol according to claim 17, wherein the assertions are checked at runtime

as the system executes to ensure that the execution is correct.

19. An automated workflow system for executing business logic using a Web-

based transport protocol according to claim 17,

wherein the precondition assertions are used to prove the correctness of the design

before the design; that the assertion specified.

20. An automated workflow system for executing business logic using a Web-

based transport protocol according to claim 17,

wherein the postcondition assertions are used to prove the correctness of the design at

the end of the workflow.
21. A system for executing business logic using declarative languages comprising:

means for storing a process description that includes a medium for storing flows, rules
and states, wherein flows represent the control flow between business functions, states
represent the legal state transitions for a business entities, and rules represent the business

rules and policies enforced on the business entities in an externalized form; and

means for executing said process.

57

WO 2004/114061 PCT/US2004/018435

22. A process for executing business logic using declarative languages

comprising:

storing a process description that includes a medium for storing flows, rules and
states, wherein flows represent the control flow between business functions, states represent
the legal state transitions for a business entities, and rules represent the business rules and

policies enforced on the business entities in an externalized form; and
executing said process.

23. An automated workflow system for executing business logic using a Web-

based transport protocol comprising:

means for storing a process description that includes a medium for storing flows, rules
and states, wherein flows represent the control flow between business functions, states
represent the legal state transitions for a business entities, and rules represent the business

rules and policies enforced on the business entities in an externalized form; and
means for executing said process.

24. A process for executing business logic using a Web-based transport protocol

comprising:

storing a process description that includes a medium for storing flows, rules and
states, wherein flows represent the control flow between business functions, states represent
the legal state transitions for a business entities, and rules represent the business rules and

policies enforced on the business entities in an externalized form; and
executing said process.

25. A computer readable medium for storing a program thereon, said program for
executing business logic using a Web-based transport protocol, said program having the steps

of:

storing a process description that includes a medium for storing flows, rules and
states, wherein flows represent the control flow between business functions, states represent
the legal state transitions for a business entities, and rules represent the business rules and

policies enforced on the business entities in an externalized form; and

58

WO 2004/114061 PCT/US2004/018435

executing said process.

59

WO 2004/114061 PCT/US2004/018435

103
IFlow3
owl O— F1
L4
|
1
Unguarded /
Data K
_____________ .R._-__....’
A 105
IRue O— R1,R2, | -~ N istate o~ swt, smz, |
R3,... S
Le\\ oL M3,
107 \ -~ L8

e

A
Data
Store 106

Figure 1

WO 2004/114061 PCT/US2004/018435

start
201
Contact_A
202 \ L F- 2
Accept_B lg LI I'e
203 \
Loop \
204
A Race
Negotiat_A Interrupt_B —t+—— 205
Y OR
newbid_A
int or ¢ B agree_A
interrupt_ v J_REC?— — 206
207 \\ L1
™ ~{| Negotiat_B interrupt_A
v v
agree_A or
agree_B
v OR
208
agree_B agree_A .
\ Y no_deal 209
exception
Agree_A Agree_B p oxit
No_Deal >
Y
B OR
single_branc different_branch
h r [(AD]| — 210
212 Y v) 4
T Confirm_Both Confirm A Confirm_B
/ 211
213 v h 4 Y
T~ Ack_Botn Ack_A Ack_B
A A
Y

214
double_agreed /

306

307

PCT/US2004/018435

- 301
/

302
/

WO 2004/114061
start
304
h 4 v
receiveName receiveCustomerld
305
v h 4
searchCustomer retrievePortfolio
,; OR ,
one more than send CustomeriNfo And
customer one Pottifolio
A4
retrieveCustomerinf customer
o ——— 308
no macthed Y 309
customer retrievePortfolic
sendCustomersS | |
ummary - 312
sendCustomerSummary ———— 310
h 4 311
send CustomerINfo And /
Portifolio
v A4 y

/ 303

Figure 3

PCT/US2004/018435

WO 2004/114061
4/8

404

=l}escn|}tmn]

s :
0:.00
....... .

: Tﬂxonomy = == -.'\an?]
e M R e
Q.0

s

—-| Taxonomies i—{ —-n-.—-l RDF i— o e
el N SR
0..:

/ _..._\EI—I Biziet [T']-(rbf rhfArtifactDefinition [Z]— —ese- =

|

.---\

Views =L —-o—:ﬁl;j]—-l

View [}{rbf:rbiArifactDefintion] @:

.

RS Sy
0.0

rbf:rbfArtitactDefinttion -]
]

Figure 4

WO 2004/114061 PCT/US2004/018435
5/8
501
505
502 Matched and / .
/ no MissingField | Certify certified=yes
= EEE—— —P
Verified | Match Maiched=yes
ey G 506
Matched=no Saved as
Certified Build Schedule | Seheduled
503 —> —
Matched / Unknown :
aiche mitigation | MissingField 507
— — / Saved as
Unmatched | save unmatched | Unmatched
/504 —> Ty
— issingField= 508
'\2'.3?& rj?g MissingField=yes f / Saved as
— leia — Certified e i
I "MissingField=no | Save Certified | Certified
Figure 5
601
602 603 Saved as
/Certified / cortifled ®* Scheduled
Certify » Save Certified |—— | Build Schedule | —

Figure 6

WO 2004/114061 PCT/US2004/018435

6/8
701
701 “Unknown
Verified [iaten | Matched Mitigation | MissingField
—_— : > >
701 Saved as
Unmatched
Unmatched
Save unmatched
Figure 7
701
701 Unknown ~ 701 - . 701
hed / MissingField <~ MissingField / certified
Matche mitigation . Missing Field? ,| Certify ,
A
MissingField

Figure 8

PCT/US2004/018435

WO 2004/114061

vic

Moysoday
191219

g u
so|Iny V1S
iz —]
sjo|zig 16N
Jojiuop
me— | 01zig

[

uohinjosey juiod pug

vie

SaoINeS SlelS

y1z \

SO0INIRS 3Ny

vl \

S20INI9S MO|

vic \

6 24nbi14

1002

WO 2004/114061

1001

BPEL4WS instance S

a e
v A”

PCT/US2004/018435

8/8

1005

Business Requirements

Hierarchic State Machine

: ed

Temporal Predicate

g | - 1008
h

//////10

A
c d i 1003 ‘L
b 4 v /) ;
Abstract State Machine Runtime Monitor
F 3 . f
Y
Model Checking [*

T o4

Figure 10

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

