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Abstract

We start with an introduction to Nonlinear Systems. I have tried to make this report interesting and
also covering fundamentals. Still, this is just a glimpse of an extensive topic like Nonlinear Dynamics. This
report is divided into parts: One Dimensional Systems followed by Two Dimensional Systems then Higher
Dimensional stuff and then Discrete Dynamical Systems. Next, we examine Stochastic Systems. On our way,
we will look at corresponding Linear Systems to gain insight onto Nonlinear ones. Then, we explore Chaos
and Fractals. Finally, I encourage you to look at Mathematical Models and their exciting results.
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1 Introduction
“Mathematics, rightly viewed, possesses not only truth, but supreme beauty cold and austere, like that

of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting
or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show.
The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the
highest excellence, is to be found in mathematics as surely as in poetry.”

(Bertrand Russell, Study of Mathematics)

Nonlinear dynamics is the study of systems that are described by nonlinear equations of motion. The knowledge
of nonlinear dynamics is based on the notion of a dynamical system. The concept of a dynamical system has
its origins in Newtonian mechanics. A dynamical system may be thought of as an object of any nature, whose
state evolves in time according to some dynamical law, i.e., as a result of the action of a evolution operator. If the
changes are determined by specific rules, rather than being random, we say that the system is deterministic;
otherwise it is stochastic. The evolution rule of dynamical systems is an implicit relation that gives the state of
the system for only a short time into the future. The relation is either a differential equation, difference equation
or other time scale. To determine the state for all future times requires iterating the relation many times, each
advancing time a small step. The iteration procedure is referred to as solving the system or integrating the
system. If the system can be solved, given an initial point it is possible to determine all its future positions, a
collection of points known as a trajectory.

There are two main types of dynamical systems: differential equations and iterated maps (also known as
difference equations). Differential equations describe the evolution of systems in continuous time, whereas
iterated maps arise in problems where time is discrete. Differential equations are used much more widely in
science and engineering, and we shall therefore concentrate on them.
A very general framework for ordinary differential equations is provided by the system

ẋ1 = f1(x1, . . . , xn)

...
ẋn = fn(x1, . . . , xn)

(1.1)

Here the overdots denote differentiation with respect to t. Thus ẋi ≡ dxi/dt. The variables x1, . . . , xn might
represent concentrations of chemicals in a reactor, populations of different species in an ecosystem, or the
positions and velocities of the planets in the solar system. The functions f1, . . . , fn are determined by the
problem at hand. The system is said to be linear when all the xi on the right-hand side in (1.1) appear to the
first power only. Otherwise the system would be nonlinear. Typical nonlinear terms are products, powers, and
functions of the xi.

1.1 Limitations of Linear Systems
The analysis of linear systems is possible because they satisfy superposition principle: if x1and x2 satisfy the
differential equation for the vector field (x1, . . . , xn) then so will c1x1 + c2x2. The superposition principle fails
when dealing with nonlinear systems.
As we will see later, linear systems are extremely restricted in their dynamical behavior, i.e. exponential increase,
decrease or constant, and cannot provide adequate models for most of the phenomena we observe in nature. In
contrast, nonlinear systems cannot be decoupled, more complex dynamical behavior arises, and in these cases
the whole is more than just the sum of its parts.
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Part I

One Dimensional Systems
2 Flows
One Dimensional Systems are basically those in equation (1.1) with n = 1. That is

ẋ = f(x) (2.1)

Let’s start with linear systems.
Simplest dynamical system is given by

ẋ = 0 → x = c (2.2)

It means nothing happens with time, it’s constant. However, as we shall see, equation (2.2) is extremely useful
to gain insight into the dynamical structure of non-linear systems, as it is the condition for so-called steady
states or fixed points.
Next is an equation of continous growth (or exponential growth), where change ẋ is proportional to x.

ẋ = λx →
∫
dx

x
=

∫
λ dt → x(t) = ceλt (2.3)

As seen in Figure (2.1) the linear differential equation of continuous growth is easy to solve and its solutions are
exponentially increasing, exponentially decaying or simply constant depending on the parameter λ. If we plot ẋ

Figure 2.1: Solutions x(t) for the equation (2.3) for different values of c (solid, dashed, dotted and dash-dotted).

as a function of x, we get a phase space plot. The graphs are straight lines given by ẋ = λx with a negative,
vanishing and positive slope, respectively. Phase space is one of most important topics in nonlinear dynamics.

Figure 2.2: Phase space plots, ẋ as a function of x, for the equation (2.3).

2.1 Flows on the Line
Nonlinear Systems are harder to solve analytically, it’s even impossible for many cases. So, we use geometrical
approach which gives qualitative behaviour of the system. Imagine that a fluid is flowing along the real line with
a local velocity f(x). This imaginary fluid is called the phase fluid, and the real line is the phase space. The
flow is to the right where f(x) > 0 and to the left where f(x) < 0. Fixed points have f(x) = 0.

2



Figure 2.3: Phase portrait, solid black dot(left) is a stable fixed point (the local flow is toward it) and the open
dot(middle) is an unstable fixed point (the flow is away from it) and the right one is half-stable (the flow is
towards it on left and away on right).

2.2 Linear Stability Analysis
Consider a dynamical system of the form ẋ = f(x) and the Taylor expansion around one of its fixed points x̃
and let ξ = x− x̃, then ξ̇ = ẋ

ẋ = f(x) ≈ f(x̃)︸︷︷︸
=0

+f ′(x̃) (x− x̃)︸ ︷︷ ︸
=ξ

+
1

2!
f ′′(x̃) (x− x̃)2︸ ︷︷ ︸

=ξ2

+ · · · (2.4)

f(x̃) vanishes as it is a fixed point, |ξ| is small as we assume x to be in the vicinity of x̃, and therefore ξ2 is tiny
and can be neglected. Taken together, we obtain an approximation of (2.4) around the fixed point x̃.

ξ̇ = f ′(x̃) ξ = λ ξ (2.5)

Now, equation (2.5) is similar to equation (2.3). The slope f ′(x̃) at the fixed point determines its stability1,
if f ′(x̃) > 0 then x̃ is a unstable fixed point and if f ′(x̃) < 0 then x̃ is a stable fixed point. 1/f ′(x̃) is a
characteristic time scale, it determines the time required for x(t) to vary significantly in the neighborhood of
x̃.

2.3 Potential Functions
A second way of representing the dynamics of such systems graphically is the landscape defined by its potential
function. The potential of a dynamical system is a function V (x) such that the relation

ẋ = f(x) = −dV (x)

dx
(2.6)

is fulfilled. All one-dimensional systems have a potential function.
As time evolves, either the value of the potential function decreases, or it stays constant if a local or global
minimum of V (x) has been reached. This behavior can easily be seen by calculating the derivative of V with
respect to time

V̇ =
dV (x)

dt
=
dV

dx︸︷︷︸
−ẋ

dx

dt︸︷︷︸
ẋ

= −
{
dV

dx

}2

= −ẋ2 ≤ 0 (2.7)

Local minima of V correspond to stable fixed points, local maxima correspond to unstable fixed points,
half-stable fixed points are found at locations where the tangent at an inflection point is horizontal.

2.3.1 Impossibility of Oscillations

Fixed points dominate the dynamics of first-order systems. Trajectories either approach a fixed point, or diverged
to ±∞. The reason is that trajectories are forced to increase or decrease monotonically, or remain constant. If a
fixed point is regarded as an equilibrium solution, the approach to equilibrium is always monotonic-overshoot and
damped oscillations can never occur in a first-order system. Hence there are no periodic solutions to ẋ = f(x).

2.4 Flows on the Circle
Periodic systems can be realized in one dimension with dynamics that take place not on a line but on a circle.
The state variable here is not x, it is θ with 0 ≤ θ < 2π or −π ≤ θ < π. The general form here is

θ̇ = f(θ) with f(θ + 2π) = f(θ) (2.8)

The function f(π) has to be 2π−periodic to ensure that it has the same value at θ = 0 and θ = 2π, which are
the same points.

1Our analysis fails for some f(x) in case where solution is not unique or does not exist, See Theorem (5.1).
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2.4.1 Nonuniform Oscillator

It has the equation
θ̇ = ω − a sin θ (2.9)

The parameter a introduces a nonuniformity in the flow around the circle, the flow is fastest at θ = −π/2 and
slowest at θ = π/2.

(a) (b)

Figure 2.4

• For a < ω, the period of the oscillation2 T =
2π√

ω2 − a2
.

• When a is slightly less than ω, the oscillation is very jerky: the phase point θ(t) takes a long time to pass
through a bottleneck near θ = π/2, after which it zips around the rest of the circle on a much faster time
scale (Figure (2.4aa)).

• When a = ω, the system stops oscillating altogether: a half-stable fixed point has been born in a saddle-node
bifurcation (See Section (3.1.1)) at θ = π/2 (Figure (2.4ab)).

• Finally, when a > ω, the half-stable fixed point splits into a stable and unstable fixed point (Figure (2.4ac)).
All trajectories are attracted to the stable fixed point as t→∞.

The same information can be shown by plotting the vector fields on the circle (Figure (2.4b)).

3 Bifurcations
One important property of nonlinear systems is their ability to undergo qualitative changes in their dynamical
behavior when a parameter exceeds a critical value. It is possible to display the locations and stability of fixed
points as a function of the parameter in a single plot called a bifurcation3 diagram. In these diagrams the
locations of stable fixed points are represented by solid lines, unstable fixed points are shown dashed. Also, solid,
open and half-filled circles are used to mark stable, unstable and half-stable fixed points, respectively.

3.1 Local Bifurcations
A local bifurcation occurs when a parameter change causes the stability of an equilibrium (or fixed point) to
change. See Section (10.2) for detailed discussion.

3.1.1 Saddle-Node Bifurcation

The prototype of a system that undergoes a saddle-node bifurcation is given by

ẋ = λ+ x2 → x̃1,2 = ±
√
−λ (3.1)

The graph in phase space for (3.1) is a parabola that opens upwards (Figure (3.1a)). For negative values of λ
one stable and one unstable fixed point exist, which collide and annihilate when λ is increased above zero. There
are no fixed points in this system for positive values of λ.

2

T =

∫
dt =

∫ 2π

0

dt

dθ
dθ =

∫ 2π

0

dθ

ω − a sin θ
3See definition at Section (10)
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(a) Saddle-node bifurcation. (b) Transcritical bifurcation.

Figure 3.1: Top: phase space plots; middle: bifurcation diagram; bottom: potential functions.

3.1.2 Transcritical Bifurcation

The transcritical bifurcation is given by

ẋ = λx− x2 → x̃1 = 0, x̃2 = λ (3.2)

The system has a stable and an unstable fixed point for all values except for λ = 0 (Figure (3.1b)). The
bifurcation diagram consists of two straight lines, one given by x̃ = 0 and one with a slope of one. When these
lines intersect at the origin the fixed points they exchange stability.

3.1.3 Supercritical Pitchfork Bifurcation

The supercritical pitchfork bifurcation is visualized in Figure (3.2a) and prototypically given by

ẋ = λx− x3 → x̃1 = 0, x̃2,3 = ±
√
λ (3.3)

A single stable fixed point at the origin becomes unstable and a pair of stable fixed points appears symmetrically
around x̃ = 0. In terms of symmetry this system has an interesting property: the equation(3.3) is invariant if
we substitute x by −x. All phase plots have a point symmetry with respect to the origin and the plots of the
potential have a mirror symmetry with respect to the vertical axis (Figure (3.2a)). When λ > 0, the slightest
perturbation will move the ball to the left or right where the slope is finite and it will settle down in one of the
new minima as in Figure (3.2a)(bottom right). This phenomenon is called spontaneous symmetry breaking.

(a) Supercritical Pitchfork bifurcation. (b) Subcritical Pitchfork bifurcation.

Figure 3.2: Top: phase space plots; middle: bifurcation diagram; bottom: potential functions.

3.1.4 Subcritical Pitchfork Bifurcation

The equation governing the subcritical pitchfork bifurcation is given by

ẋ = λx+ x3 → x̃1 = 0, x̃2,3 = ±
√
−λ (3.4)

5



As in the supercritical case, the origin is stable for negative values of λ and becomes unstable when the parameter
exceeds λ = 0 (Figure (3.2b)). Two additional fixed points exist for negative parameter values of λ at x̃ = ±

√
−λ

and they are both repellers.

Theorem 3.1 (Bifurcations). Suppose the system ẋ(t) = f(x, λ), x, λ ∈ R has an equilibrium point x = x0 at
λ = λ0 satisfying the conditions

f(x0, λ0) = 0
∂f

∂x
(x0, λ0) = 0 (3.5)

•
∂f

∂λ
(x0, λ0) 6= 0

∂2f

∂x2
(x0, λ0) 6= 0 (3.6)

The system has a saddle-node bifurcation at (x0, λ0).

•
∂f

∂λ
(x0, λ0) = 0

∂2f

∂x2
(x0, λ0) 6= 0

∂2f

∂x∂y
(x0, λ0) 6= 0 (3.7)

The system has a transcritical bifurcation at (x0, λ0).

•
∂f

∂λ
(x0, λ0) = 0

∂2f

∂x2
(x0, λ0) = 0

∂2f

∂x∂y
(x0, λ0) 6= 0

∂3f

∂x3
(x0, λ0) 6= 0 (3.8)

The system has a pitchfork bifurcation at (x0, λ0).

3.2 Bifurcations and Hysteresis
In equation,

ẋ = λ+ x− x3 (3.9)

Depending on whether the parameter is increased from large negative or decreased from large positive values the
switch occurs at λ = λc or λ = −λc, respectively. It consists of two saddle-node bifurcations indicated by the
dotted rectangles in Figure (3.3a).

(a) ẋ = λ+ x− x3 (b) ẋ = λx+ x3 − x5

Figure 3.3: Systems showing hysteresis.

Globally Stable Subcritical Pitchfork Bifurcation In equation,

ẋ = λx+ x3 − x5 (3.10)

A globally stable version of the subcritical pitchfork bifurcation. The diagram contains three basic bifurcations
indicated by the dotted rectangles in Figure (3.3b). Beside the subcritical pitchfork bifurcation at the origin
there are two saddle-node bifurcations at locations λ = − 1

4 , x̃ = ± 1
2

√
2 in the λx̃−plane.
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Part II

Two Dimensional Systems
One Dimensional Systems are basically those in equation (1.1) with n = 2. Two-dimensional dynamical systems
can be represented by either a single differential equation of second order, which contains a second derivative with
respect to time, or by two equations of first order. In general, a second order system can always be expressed as
two first order equations.

ẋ = f(x, y)

ẏ = g(x, y)
or ẍ+ f(x, ẋ) = 0 →

{
ẋ = y

ẏ = −f(x, ẋ)
(3.11)

Let’s start with

4 Linear Systems
A two-dimensional linear system is a system of the form

ẋ = ax+ by

ẏ = cx+ dy
(4.1)

where a, b, c, d are parameters. If we use boldface to denote vectors, this system can be written more compactly
in matrix form as

ẋ = Ax where A =

(
a b
c d

)
and x =

(
x
y

)
x̃ =

(
0
0

)
(4.2)

Notice that ẋ = 0 when x = 0, so x̃ is always a fixed point for any choice of A. The solutions of ẋ = Ax can be
visualized as trajectories moving on the (x, y) plane, in this context called the phase plane.

If the off-diagonal terms in (4.2), b and c are zero, we would have two seperate uncoupled equations in x
and y (Equation (4.3)). Such kind of systems are called Uncoupled Systems. However, there would be two
special lines, where the trajectories starting on it would always stick to it, these are x and y axes.
Suppose d = −1, then the system has solution as shown in Figure (4.1).

ẋ = ax

ẏ = dy
→ A =

(
a 0
0 d

)
→

x(t) = x0e
at

y(t) = y0e
dt

(4.3)

Figure 4.1: Phase Portrait of Equation (4.3). See Section (4.1) for classification.

4.1 Classification of Two-Dimensional Linear Systems
There is the possibility of special lines (like x and y axis in case of uncoupled systems) existing for a general
linear system having a matrix A. The equation for finding such a direction is

Ax = λx (4.4)

This is precisely the form of the eigenvalue problem whose solution is well known in the domain of linear algebra.
The eigenvalues of A can be readily calculated and it is most convenient to express them in terms of the trace
(tr) and determinant (det) of A. ∣∣∣∣a− λ b

c d− λ

∣∣∣∣ = λ2 − λ (a+ d)︸ ︷︷ ︸
tr

+ ad− bc︸ ︷︷ ︸
det

= 0 (4.5)

7



⇒ λ1,2 =
1

2
{tr ±

√
t2r − 4det} (4.6)

The trace and determinant are invariant when the matrix A is expressed by its eigenvalues and becomes diagonal

A =

(
λ1 0
0 λ2

)
as

λ1 + λ2 = tr

λ1λ2 = det
(4.7)

(A) Eigenvalues are Real
t2r − 4det ≥ 0 → λ1,2 ∈ R (4.8)

Case: (1.a) λ1 < λ2 < 0 | t2r − 4det > 0 det > 0 tr < 0

This case is called a stable node, the only straight trajectories are along the eigendirections, which
are given by the eigenvectors of the system. As λ1 < λ2, the trajectories approach the fixed point
faster along the direction of the eigenvector v(1) which corresponds to λ1, and is therefore called the
fast eigendirection. In the same way, the direction related to λ2 is called the slow eigendirection.

(a) Phase Portrait of a Stable Node (b) Phase Portrait of a Saddle Point

Figure 4.2

Case: (1.b) 0 < λ2 < λ1 | t2r − 4det > 0 det > 0 tr > 0

Correspondingly, for the phase space plot when both eigenvalues are positive, the flow, indicated by
the arrows in Figure (4.2), is reversed and leads away from the fixed point, which is then called an
unstable node.

Case: (2) λ1 < 0 < λ2 | t2r − 4det > 0 det < 0

If one of the eigenvalues is positive and the other negative, the fixed point at the origin is half-stable
and called a saddle point. The eigenvector that corresponds to the negative eigenvalue defines the
direction where the flow in phase space is pointing towards the fixed point, the so-called stable
manifold (stable direction), defined as the set of initial conditions x0 such that x(t)→ x̃ as t→∞.
The positive eigenvalue is associated with the unstable manifold (unstable direction) which is set
of initial conditions x0 such that x(t) → x̃ as t → −∞. Here, the flow moves away from the fixed
point4. A typical phase space portrait is shown in Figure (4.2b).

Now, let’s see degenerate cases

Case: (3.a) λ1 = λ2 < 0 | t2r − 4det = 0 det > 0 tr < 0

Let look at the system with

A =

(
λ b
0 λ

)
→ λ1,2 = λ (4.9)

Then Eigenvectors are given by(
λ b
0 λ

)(
vx
vy

)
= λ

(
vx
vy

)
→

λvx + bvy = λvx

λvy = λvy
→ bvy = 0 (4.10)

(i) b 6= 0
The only eigendirection of A is the horizontal axis with vy = 0. The fixed point is called a stable
degenerate node and its phase portrait shown in Figure (4.3 left).

4Note that a typical trajectory asymptotically approaches the unstable manifold as t→∞, and approaches the stable manifold
as t→ −∞.
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(ii) b = 0
Any vector is an eigenvector and the trajectories are straight lines pointing towards the fixed
point. The phase space portrait for this situation is shown in Figure (4.3 right) and the fixed
point is for obvious reasons called a stable star node.

Figure 4.3: Degenerate case where the eigenvalues are the same. The degenerate node (left) has only one
eigendirection, the star node (right) has infinitely many.

Case: (3.b) λ1 = λ2 > 0 | t2r − 4det = 0 det > 0 tr > 0

Similar as above
(i) b 6= 0

The only eigendirection of A is the horizontal axis with vy = 0.The flow, indicated by the arrows
in Figure (4.3 left), is reversed and leads away from the fixed point which is called a unstable
degenerate node.

(ii) b = 0
Any vector is an eigenvector and the trajectories are straight lines pointing away from the fixed
point. The flow, indicated by the arrows in Figure (4.3 left), is reversed and the fixed point is for
obvious reasons called a unstable star node.

Case: (4.a) λ1 < λ2 = 0 | t2r − 4det > 0 det = 0 tr < 0

Here, tragectories are parallel and towards a line of fixed points. The fixed point is Lyapunov
stable5 (Figure (4.4) left).

Case: (4.b) 0 = λ1 < λ2 | t2r − 4det > 0 det = 0 tr > 0

Here, tragectories are parallel and towards a line of fixed points. These are unstable non-isolated
(Figure (4.4) right).

Figure 4.4: Stable non-isolated fixed points on left and unstable non-isolated fixed points on right

Case: (5) λ1 = λ2 = 0 | t2r − 4det = 0 det = 0 tr = 0

Non-isolated fixed point, a plane of fixed points. Nothing happens and nothing can happen! Remember
(2.2)?

(B) Eigenvalues are Complex (In fact, they are Complex Conjugate)

t2r − 4det < 0 → λ1,2 ∈ C → λ2 = λ∗1, Let <(λ1,2) = λ and =(λ1,2) 6= 0 (4.11)

• λ < 0 | t2r − 4det < 0 det > 0 tr < 0

The trajectories in phase space are spiraling towards from the origin as a stable spiral (Figure (4.5)
left).

5It means if all trajectories that start sufficiently close to x remain close to it for all time.
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• λ > 0 | t2r − 4det < 0 det > 0 tr > 0

The trajectories in phase space are spiraling away from the origin as a unstable spiral (Figure (4.5)
middle).

• λ = 0 | t2r − 4det < 0 det > 0 tr = 0

The trajectories are closed orbits. The fixed point x̃ = 0 is Lyapunov stable. The fixed point at
the origin is neutrally stable and called a center (Figure (4.5) right).

Figure 4.5: For complex eigenvalues the trajectories in phase space are stable spirals if their real part is negative
(left) and unstable spirals for a positive real part (middle). If the real part of the eigenvalues vanishes the
trajectories are closed orbits around the origin, which is then a neutrally stable fixed point called a center (right).

4.1.1 Summary

On the left of the vertical axis (det < 0) are the saddle points. On the right (det > 0) are the centers on the
horizontal axis (tr = 0) with unstable and stable spirals located above and below, respectively. The stars and
degenerate nodes exist along the parabola t2r = 4det that separates the spirals from the stable and unstable
nodes.

Figure 4.6: Classification diagram for two-dimensional linear systems in terms of the trace tr and determinant
det of the linear matrix.

4.2 Stability
Attracting

We say that x̃ is attracting if there is a δ > 0 such that lim
t→∞

x(t) = x̃ whenever ‖x(0)− x̃‖ < δ.
Any trajectory that starts within a distance δ of x̃ is guaranteed to converge to x̃ eventually.
If x̃ attracts all trajectories in the phase plane it is called globally attracting.

Lyapunov Stable

We say that x̃ is Lyapunov stable if for each ε > 0, there is a δ > 0 such that ‖x(0)− x̃‖ < ε whenever t ≥ 0 and
‖x(0)− x̃‖ < δ.
Lyapunov stability requires that nearby trajectories remain close for all time.
Trajectories that start within δ of x̃ remain within ε of x̃ for all positive time.

Asymptotically stable

x̃ is asymptotically stable if it is both attracting and Lyapunov stable.
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Neutrally stable

When a fixed point is Lyapunov stable but not attracting, it is called neutrally stable.
Figure (4.1d) shows that a fixed point can be Lyapunov stable but not attracting.

It’s possible for a fixed point to be attracting but not Lyapunov stable.
Consider the system

θ̇ = 1− cos θ (4.12)

Theorem 4.1 (The Lyapunov Stability Theorem). Consider a system ẋ = f(x) with a fixed point at x̃.
Suppose that we can find a Lyapunov function, i.e., a continuously differentiable, real-valued function V (x) (See
Section (5.3)) with the following properties:

• V (x̃) = 0

• V (x) > 0 for all x 6= x̃. (We say that V is positive definite.)

1. if V̇ ≤ 0 for all x, then x̃ is stable;

2. if V̇ < 0 for all x, then x̃ is asymptotically stable;

3. if V̇ > 0 for all x, then x̃ is unstable;

Basin of Attraction

A Basin of Attraction describes that subset of the state space, such that
initializing the dynamics anywhere within the basin leads to convergence to
a single stable fixed point. Thus all points z in basin Bi converge to stable
fixed point z̃i.

Bi =
{
z(0) such that lim

t→∞
z(t) = z̃i

}
(4.13)

4.3 The Harmonic Oscillator

ẍ+
γ̃

m︸︷︷︸
=2γ

ẋ+
k

m︸︷︷︸
=ω2

x = 0 (4.14)

4.3.1 Undamped Harmonic Oscillator

If the damping constant vanishes, γ = 0, (4.14) simplifies to

ẍ+ ω2x = 0 (4.15)

The general solution of (4.15) is given by

x(t) = a cosωt+ b sinωt (4.16)

In contrast to the first order systems we have dealt with so far, this general solution has not one but two free
parameters, a and b, that need to be determined from initial conditions.

4.3.2 Damped Harmonic Oscillator

ẍ+ 2γẋ+ ω2x = 0 →

{
ẋ = y

ẏ = −ω2x− 2γy
(4.17)

(
ẋ
ẏ

)
=

(
0 1
−ω2 −2γ

)(
x
y

)
→ ẋ = Ax (4.18)

The eigenvectors are found from the relation

Av = λv →
(

0 1
−ω2 −2γ

)(
vx
vy

)
= λ

(
vx
vy

)
(4.19)

→ λ1,2 =
{
−γ ±

√
γ2 − ω2

}
(4.20)

By setting vx = 1, it is evident that oscillations can only occur if the eigenvalues have nonvanishing imaginary
parts. This means that the discriminant γ2 − ω2 in (4.20) must be smaller than zero.
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Let γ2 − ω2 = −Ω2 and c = a+ ib.
The general solution of (4.14) is given by(

x(t)
y(t)

)
= e−γt

{
ceiΩt

(
1

−γ + iΩ

)
c∗e−iΩt

(
1

−γ − iΩ

)}
(4.21)

which simplifies to
x(t) = e−γt{a cos Ωt+ b sin Ωt} (4.22)

If the damping constant γ is greater than the angular velocity ω both eigenvalues are real numbers and the

Figure 4.7: Examples for damped harmonic oscillations for the case of positive damping γ > 0 (left) and negative
damping γ > 0 (right).

system does not oscillate. In this case equation (4.21) simplifies to(
x(t)
y(t)

)
= c1e

λ1t

(
1
λ1

)
+ c2e

λ2t

(
1
λ2

)
c1, c2 ∈ R (4.23)

which gives
x(t) = c1e

λ1t + c2e
λ2t (4.24)

The solution is a superposition of two exponentials.

5 Nonlinear Systems

5.1 Existence and Uniqueness Theorem
We have no guarantee that the general nonlinear system ẋ = f(x) even has solutions! This theorem helps

Theorem 5.1 (Existence and Uniqueness Theorem). Consider the initial value problem ẋ = f(x), x(0) =
x0. Suppose that f is continuous and that all its partial derivatives ∂fi/∂xj , i, j = 1, . . . , n are continuous for x
in some open connected set D ⊂ Rn, then for x0 ∈ D, the initial value problem has a solution x(t) on some time
interval (−τ, τ) about t = 0, and the solution is unique.

5.2 Linear Stability Analysis in Two Dimensions
Nodes, stars, saddles, spirals and centers are the types of fixed points that exist in linear two-dimensional
dynamical systems but they also allow for a classification of the fixed points and the dynamical behavior in their
neighborhoods that are found in nonlinear systems.6
To achieve classification for the nonlinear case we have to perform a linear stability analysis7 around the fixed
points in two dimensions.

ẋ = f(x, y), ẏ = g(x, y) with a fixed point x̃ =

(
x̃
ỹ

)
(5.1)

→ f(x̃, ỹ) = g(x̃, ỹ) = 0

We investigate the neighborhood of the fixed point by rewriting x and y in the form

x =

(
x
y

)
=

(
x̃+ ξ
ỹ + η

)
→

(
ẋ
ẏ

)
=

(
ξ̇
η̇

)
=

(
f(x̃+ ξ, ỹ + η)
g((x̃+ ξ, ỹ + η)

)
(5.2)

6The important Hartmann-Grobmann theorem states that the phase space portrait in the neighborhood of a hyperbolic fixed
point is topologically equivalent to its linearization. A fixed point is called hyperbolic if none of the real parts of its eigenvalues
vanish. Such points are also called structurally stable and a small (infinitesimal) perturbation cannot change the topology of the
phase space portrait in the vicinity of a hyperbolic fixed point.

7Also called Linearization.
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We now expand f(x̃+ ξ, ỹ + η) and g(x̃+ ξ, ỹ + η) into a Taylor series

ξ̇ = f(x̃, ỹ)︸ ︷︷ ︸
=0

+ ξ
∂f(x, y)

∂x

∣∣∣∣
x=x̃

+ η
∂f(x, y)

∂y

∣∣∣∣
x=x̃

+O(ξ2, η2, ξη) + · · ·

η̇ = g(x̃, ỹ)︸ ︷︷ ︸
=0

+ ξ
∂g(x, y)

∂x

∣∣∣∣
x=x̃

+ η
∂g(x, y)

∂y

∣∣∣∣
x=x̃

+O(ξ2, η2, ξη) + · · ·
(5.3)

Truncating the expansion after the linear term. In matrix notation this linearization reads

(
ξ̇
η̇

)
=


∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y


︸ ︷︷ ︸

Jacobian

(
ξ
η

)
(5.4)

With Equation (5.4), we can treat nonlinear systems by using methods of linear systems (Section (4.1)).

5.2.1 The Effect of Small Nonlinear Terms

As long as the fixed point for the linearized system is not one of the borderline cases discussed in Figure (4.6) we
can neglect nonlinear terms. In other words, if the linearized system predicts a saddle, node, or a spiral, then
the fixed point really is a saddle, node, or spiral for the original nonlinear system. The borderline cases (centers,
degenerate nodes, stars, or non-isolated fixed points) can be altered by small nonlinear terms.

5.3 Potential Functions in Two-Dimensional Systems
A two-dimensional system of first order differential equations of the form in Equation (4.2) has a potential and
is called a gradient system if there exists a scalar function of two variables V (x, y) such that

(
ẋ
ẏ

)
=

(
f(x, y)
g(x, y)

)
= −


∂V (x, y)

∂x

∂V (x, y)

∂y

 → ẋ = −∇V (x, y) with ∇ =


∂

∂x

∂

∂y

 (5.5)

As in the one-dimensional case the potential function V (x, y) is monotonically decreasing as time evolves.

V̇ (x, y) =
∂V

∂x︸︷︷︸
−ẋ

∂x

∂t︸︷︷︸
ẋ

+
∂V

∂y︸︷︷︸
−ẏ

∂y

∂t︸︷︷︸
ẏ

= −ẋ2 − ẏ2 = −|ẋ|2 ≤ 0 (5.6)

Theorem 5.2 (Existence of a Potential in Two-Dimensional Systems). A potential exists if and only
if the relation

∂f(x, y)

∂y
=
∂g(x, y)

∂x
(5.7)

is fulfilled.

5.3.1 Separatrix

A separatrix is an orbit that divides the phase plane into two distinctly different types of qualitative behavior.
The homoclinic and heteroclinic orbits are examples of separatrix cycles.

Homoclinic Orbit A closed trajectory that starts and ends at the same fixed point is correspondingly called
a homoclinic orbit.
Consider the system

ẋ = y − y2

ẏ = x
→ x̃1 =

(
0
0

)
x̃2 =

(
0
1

)
(5.8)

with the Jacobian Matrix
J =

(
0 1− 2y
1 0

)
→ J(x̃1,2) =

(
0 ±1
1 0

)
(5.9)

At (0, 0), tr[J(x̃)] = 0 and det[J(x̃)] = −1 so, origin is saddle point.
At (0, 1), tr[J(x̃)] = 0 and det[J(x̃)] = 1, it is center.
The trajectory leaves x̃1 along the unstable direction, curves around the center x̃2 and returns along the stable
direction of the saddle (Figure (5.1a)).
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(a) Phase Space Plot of System (5.8) (b) Phase Space Plot of System with
ẋ = y − y3, ẏ = −x− y2

Figure 5.1: Types of Orbits

Heteroclinic Orbit The trajectories connecting between two fixed points are called heteroclinic orbits or
saddle connections (Figure (5.1b)).

5.4 Index Theory
Linearization is a local method, it can’t tell us what happens to the trajectories after they leave that tiny
neighborhood. Index theory, a method that provides global information about the phase portrait.

5.4.1 The Index of a Closed Curve

The index of a closed curve C is an integer that measures the winding of the vector field on C. The index also
provides information about any fixed points that might happen to lie inside the curve.
Suppose that ẋ = f(x) is a smooth vector field on the phase plane. Consider a closed curve C. This curve is not
necessarily a trajectory, it’s simply a loop that we’re putting in the phase plane to probe the behavior of the
vector field. We also assume that C is a “simple closed curve” (i.e., it doesn’t intersect itself) and that it doesn’t
pass through any fixed points of the system. Then at each point x on C, the vector field ẋ = (ẋ, ẏ) makes angle
φ = tan−1(ẏ/ẋ) with the positive x−axis.
As x moves counterclockwise around C, the angle φ changes continuously since the vector field is smooth. Also,
when x returns to its starting place, φ returns to its original direction. Hence, over one circuit, φ has changed by
an integer multiple of 2π. Let [φ]C be the net change in φ over one circuit. Then the index of the closed curve C
(IC) with respect to the vector field f is defined as

IC =
1

2π
[φ]C (5.10)

Thus, IC is the net number of counterclockwise revolutions made by the vector field as x moves once counter-
clockwise around C.

5.4.2 Index of a Point

Suppose x̃ is an isolated fixed point. Then the index I of x̃ is defined as IC , where C is any closed curve that
encloses x̃ and no other fixed points. By property (1) below, IC is independent of C and is therefore a property
of x̃ alone.

• The index I = +1 for stable node, unstable node, spirals, centers, degenerate nodes and stars.

• The index I = −1 for saddle.

5.4.3 Properties of the Index

• Suppose that C can be continuously deformed into C ′ without passing through a fixed point. Then
IC = IC′

• If C doesn’t enclose any fixed points, then IC = 0.

14



• If we reverse all the arrows in the vector field by changing t→ −t, the index is unchanged. Therefore, the
index is not related to stability.

• Suppose that the closed curve C is actually a trajectory for the system, i.e., C is a closed orbit. Then
IC = 1.

Theorem 5.3. If a closed curve C surrounds n isolated fixed points x̃1, . . . , x̃n then

IC = I1 + I2 + · · ·+ In (5.11)

Where Ik is the index of x̃k, for k = 1, . . . , n

Theorem 5.4. Any closed orbit in the phase plane must enclose fixed points whose indices sum to +1.

6 Conservative Systems
Systems for which a conserved quantity exists are called conservative systems.

Given a system ẋ = f(x), a conserved quantity is a real-valued continuous function E(x) that is constant

on trajectories, i.e.
dE

dt
= 0 and E(x) be nonconstant on every open set.

Theorem 6.1. A conservative system cannot have any attracting fixed points.

Proof. Suppose x̃ were an attracting fixed point. Then all points in its basin of attraction would have to be at
the same energy E(x̃) (because energy is constant on trajectories and all trajectories in the basin flow to x̃).
Hence E(x) must be a constant function for x in the basin. But this contradicts our definition of a conservative
system, in which we required that E(x) be nonconstant on all open sets. �

Nonlinear Centers
Centers are ordinarily very delicate (See Section (5.2.1)), they are much more robust when the system is
conservative.

Theorem 6.2 (Nonlinear centers for conservative systems). Consider the system ẋ = f(x), and f is
continuously differentiable. Suppose there exists a conserved quantity E(x) and suppose that x̃ is an isolated
fixed point (i.e., there are no other fixed points in a small neighborhood surrounding x̃). If x̃ is a local minimum
of E, then all trajectories sufficiently close to x̃ are closed.

7 Reversible Systems
Many mechanical systems have time-reversal symmetry. This means that their dynamics look the same whether
time runs forward or backward. A second-order system reversible system is invariant under t→ −t and y → −y.

ẋ = f(x, y)

ẏ = g(x, y)
(7.1)

where f is odd in y and g is even in y.

Nonlinear Centers
Theorem 7.1 (Nonlinear centers for reversible systems). Suppose the origin x̃ = 0 is a linear center for
the reversible continuously differentiable system (7.1). Then sufficiently close to the origin, all trajectories are
closed curves.

8 Limit Cycles
A limit cycle is an isolated closed trajectory. Isolated means that neighboring trajectories are not closed; they
spiral either toward or away from the limit cycle.
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Figure 8.1: Limit cycles attracting or/and repelling neighboring trajectories. Stable (right), unstable (middle),
half-stable (right)

A stable limit cycle attracts trajectories from its outside and its inside, whereas an unstable limit cycle repels
trajectories on both sides. A half-stable limit cycle attract the trajectories from one side and repel those on the
other.
It is intuitively clear that inside a stable limit cycle there must be an unstable fixed point and vic-versa (Figure
(8.1)).

8.1 Closed Orbits
Theorem 8.1 (Gradient System). Closed orbits and Limit Cycles are impossible if the systems can be written
in the form ẋ = −∇V for some continuously differentiable, single-valued scalar function V (x).

Proof. Suppose there were a closed orbit. We obtain a contradiction by considering the change in V after one
circuit. On the one hand, ∆V = 0 since V is single-valued. But on the other hand,

∆V =

∫ T

0

dV

dt
dt =

∫ T

0

(∆V · ẋ) dt = −
∫ T

0

‖ẋ‖2 dt < 0 (8.1)

If ẋ = 0 the trajectory is a fixed point, not a closed orbit. This contradiction shows that closed orbits can’t exist
in gradient systems. �

Theorem 8.2 (Lyapunov Function). Consider Case 2. of Theorem (4.1).
Here x̃ is globally asymptotically stable: for all initial conditions, x(t)→ x̃ as t→∞.
In particular the system has no closed orbits.

Theorem 8.3 (Bendixson’s Negative Criterion). There are no closed paths in a simply connected region

of the phase plane of the system on which
(
∂f1

∂x1
+
∂f2

∂x2

)
is not identically zero and is of one sign.

Theorem 8.4 (Dulac’s Criterion). Let ẋ = f(x) be a continuously differentiable vector field defined on a
simply connected subset R of the plane. If there exists a continuously differentiable, real-valued function g(x)
such that ∇ · (gẋ) has one sign throughout R, then there are no closed orbits lying entirely in R.

Proof. Suppose there were a closed orbit C lying entirely in the region R. Let A denote the region inside C.
Then Green’s theorem yields ∫∫

A

∇ · (gẋ) dA =

∮
C

gẋ · n d` (8.2)

Where n is the outward normal and d` is the element of arc length along C. Look first at the double integral
on the left: it must be nonzero, since ∇ · (gẋ) has one sign in R. On the other hand, the line integral on the
right equals zero since ẋ · n = 0 everywhere, by the assumption that C is a trajectory (the tangent vector ẋ is
orthogonal to n). This contradiction implies that no such C can exist. �

The following theorem gives the criterion for a system to have finite number of limit cycles.

Theorem 8.5 (Dulac). In any bounded region of the plane, a planar analytic system ẋ = f(x) analytic in R2

has at most a finite number of limit cycles. In other words, any polynomial system has at most a finite number
of limit cycles in R2.

Theorem 8.6 (Poincaré). A planar analytic system (3.11) cannot have an infinite number of limit cycles that
accumulate on a cycle of (3.11).

8.2 Poincaré–Bendixson Theorem
This theorem helps in finding methods to establish that closed orbits exist in particular systems.
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Figure 8.2

Theorem 8.7 (Poincaré–Bendixson Theorem). Suppose that:

• R is a closed, bounded subset of the plane.

• ẋ = f(x) is a continuously differentiable vector field on an open set
containing R.

• R does not contain any fixed points.

• There exists a trajectory C that is confinedin R, in the sense that it
starts in R and stays in R for all future time (Figure (8.2)).

Then either C is a closed orbit, or it spirals toward a closed orbit as t→∞.
In either case, R contains a closed orbit (shown as a heavy curve in Figure (8.2)).

9 Nonlinear Oscillators

9.1 Liénard System
Consider the system

ẋ = y − F (x)

ẏ = −g(x)
→ ẍ+ f(x)ẋ+ g(x) = 0 (f(x) = F ′(x)) (9.1)

Theorem 9.1 (Liénard Theorem). Suppose two functions f(x) and g(x) satisfy the following conditions

• f(x) and g(x) are continuously differentiable for all x

• g(−x) = −g(x) ∀ x, i.e. g(x) is an odd function

• g(x) > 0 for x > 0

• f(−x) = f(x) ∀ x, i.e. f(x) is an even function

• The odd function, F (x) =

∫ x

0

f(u)du, has exactly one positive zero at x = α (say), F (x) is negative for

0 < x < α, and F (x) is positive and nondecreasing for x > α and F (x)→∞ as x→∞.

Then the Liénard equation (9.1) has a unique stable limit cycle surrounding the origin of the phase plane.

The Liénard system is a very special type of equation that has a unique stable limit cycle.

Equation of Nonlinear Oscillators are given by introducing nonlinear terms in Equation (4.14)

ẍ+ γẋ+ ω2x+N(x, ẋ) = 0 (9.2)

9.2 Van-der-Pol Oscillator: N(x, ẋ = x2ẋ)

The van-der-Pol oscillator is given by

ẍ+ γẋ+ ω2x+ εx2ẋ = 0 → ẍ+ (γ + εx2)︸ ︷︷ ︸
γ̃

ẋ+ ω2x = 0 (9.3)

Equation (9.3) shows that for the van-der-Pol oscillator the damping ‘constant’ γ̃ becomes time dependent via
the amplitude x2.

• γ > 0 ε > 0
The effective damping γ̃ is always positive. The trajectories are evolving towards the origin, which is a
stable fixed point.

• γ < 0 ε < 0
The effective damping γ̃ is always negative. The system is unstable and the trajectories are evolving
towards infinity.
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• γ > 0 ε < 0
For small values of the amplitude x2 the effective damping γ̃ is positive leading to even smaller amplitudes.
For large values of x2 the effective damping γ̃ is negative leading a further increase in amplitude. The
system evolves either towards the fixed point or towards infinity depending on the initial conditions.

• γ < 0 ε > 0
For small values of the amplitude x2 the effective damping γ̃ is negative leading to an increase in amplitude.
For large values of x2 the effective damping γ̃ is positive and the amplitude decreases. The system evolves
towards a stable limit cycle. Without the nonlinearity the system is unstable (γ < 0) (Figure (4.7) right)
and moves away from the fixed point at the origin. As the amplitude increases the nonlinear damping
(ε > 0) becomes an important player and leads to saturation of the amplitude at a finite value.

The time series is not a sine function but has a fast rising increasing flank and a more shallow slope on the
decreasing side. Such time series are called relaxation oscillations.

(a) The Van-der-Pol oscillator. (b) The Rayleigh oscillator

Figure 9.1: Time series (left), phase space trajectory (middle) and power spectrum (right).

9.3 Rayleigh Oscillator: N(x, ẋ) = ẋ3

The Rayleigh oscillator is given by

ẍ+ γẋ+ ω2 + δẋ3 = 0 → ẍ+ (γ + δẋ2)ẋ+ ω2x = 0 (9.4)

The damping constant for the Rayleigh oscillator depends on the square of the velocity ẋ2. Arguments similar to
those above lead to the conclusion that the Rayleigh oscillator shows sustained oscillations in the parameter
range γ < 0 and δ > 0.
As for the van-der-Pol oscillator, the phase space portrait is almost rectangular but rotated by about 90◦.
It can be shown that for the van-der-Pol oscillator the amplitude is independent of frequency and for the Rayleigh
it decreases proportional to ω−2.

10 Bifurcations
If the phase portrait changes its topological structure (loses topological equivalence8) as a parameter is varied,
we say that a bifurcation has occurred.

10.1 Codimension of a Bifurcation
The codimension of a bifurcation is the number of parameters which must be varied for the bifurcation to occur.
This corresponds to the codimension of the parameter set for which the bifurcation occurs within the full space
of parameters.

10.2 Local Bifurcations
A local bifurcation occurs when a parameter change causes the stability of an equilibrium (or fixed point) to
change. In continuous systems, this corresponds to the real part of an eigenvalue of an equilibrium passing through
zero. In discrete systems (those described by maps rather than ODEs) (See Section (14)), this corresponds
to a fixed point having a Floquet multiplier with modulus equal to one. In both cases, the equilibrium is
non-hyperbolic at the bifurcation point. The topological changes in the phase portrait of the system can be
confined to arbitrarily small neighbourhoods of the bifurcating fixed points by moving the bifurcation parameter
close to the bifurcation point (hence local).

• Bifurcations at λ1 = 0 or λ2 = 0

8Intuitively, two phase portraits are topologically equivalent if one is a distorted version of the other. Bending and warping are
allowed, but not ripping, so closed orbits must remain closed, trajectories connecting saddle points must not be broken, etc.
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10.2.1 Saddle-Node Bifurcation

The prototypical example in two dimensions is given by

ẋ = µ− x2

ẏ = −y
(10.1)

Consider the phase portrait as µ varies. For µ = 0, Figure (10.1a) shows that there are two fixed points, a stable
node at (x̃, ỹ) = (

√
µ, 0) and a saddle at (−√µ, 0). As µ decreases, the saddle and node approach each other,

(a) Saddle-Node Bifurcation (b) Supercritical Pitchfork Bifurcation

Figure 10.1

then collide when µ = 0 and finally disappear when µ < 0. Even after the fixed points have annihilated each
other, they continue to influence the flow as in Section (2.4.1), they leave a ghost, a bottleneck region that sucks
trajectories in and delays them before allowing passage out the other side.

10.2.2 Transcritical Bifurcation

The prototypical example in two dimensions is given by

ẋ = µx− x2

ẏ = −y
(10.2)

This system has always two distinct fixed points (0, 0) and (µ, 0) for µ 6= 0. For µ = 0, these two fixed points
merge at (0, 0). From the Phase portrait, we see that the behavior of the system changes when the parameter µ
passes through the origin. When µ passes through the origin from left, the fixed point origin changes to a saddle
from a stable node and the fixed point (µ, 0) changes from a saddle to a stable node.

10.2.3 Supercritical Pitchfork Bifurcation

The prototypical example in two dimensions is given by

ẋ = µx− x3

ẏ = −y
(10.3)

For µ < 0, the only fixed point is a stable node at the origin. For µ = 0, the origin is still stable, but now we
have very slow (algebraic) decay along the x-direction instead of exponential decay. For µ > 0, the origin loses
stability (becomes a saddle) and gives birth to two new stable fixed points symmetrically located at (±√µ, 0)

10.2.4 Subcritical Pitchfork Bifurcation

The prototypical example in two dimensions is given by

ẋ = µx+ x3

ẏ = −y
(10.4)

• Hopf Bifurcations at λ1,2 = ±iω

10.2.5 Supercritical Hopf bifurcation

We consider the dynamical system

ξ̇ = µ ξ − ξ |ξ|2 with µ, ξ ∈ C Let

{
µ = ε+ iω

ξ = x+ iy
(10.5)

We see that (10.5) is indeed a two-dimensional dynamical system

ẋ = εx− ωy − x(x2 + y2)

ẏ = ωx+ εy − y(x2 + y2)
→

ṙ = εr − r3

ϕ̇ = ω
(10.6)
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Figure 10.2: Supercritical Hopf bifurcation

As we have seen earlier (Equation (3.3)), this equation has a
single stable fixed point r = 0 for ε < 0 and undergoes a su-
percritical pitchfork bifurcation at ε = 0, which turns this fixed
point unstable and gives rise to two new stable fixed points at
r = ±

√
ε. Interpreting r as the radius of a limit cycle, we find

that a stable limit cycle with radius
√
ε arises from a fixed point

when ε exceeds its critical value ε = 0.(
ẋ
ẏ

)
=

(
ε −ω
ω ε

)
=

(
x
y

)
(10.7)

The eigenvalues λ for the matrix in (10.7) are

λ1,2 = ε± iω (10.8)

A Supercritical Hopf bifurcation occurs when a stable spiral changes into an unstable spiral surrounded by a
small, nearly elliptical limit cycle (Figure (10.2)).

10.2.6 Subcritical Hopf Bifurcation

Consider
ṙ = εr + 2r3 − r5

ϕ̇ = ω
(10.9)

The fixed points are given by
r̃1 = 0 r̃2

2,3 = 1±
√

1 + ε (10.10)

For ε < −1 (top left) r1 = 0 is the only real solution of (10.9) and all trajectories spiral towards the origin, which

Figure 10.3: Bifurcation sequence for the subcritical Hopf bifurcation.

is a stable fixed point. At ε = −1 (top right) a half-stable limit cycle exists where trajectories from the outside
are attracted onto it and trajectories on the inside are repelled and evolve towards the origin. For −1 < ε < 0
the phase space plot in Figure (10.3) (bottom left) contains a stable fixed point at the origin and two limit cycles.
The inner limit cycle with a radius r =

√
1−
√

1 + ε is unstable with trajectories moving away towards the still
stable fixed point at the origin and a stable limit cycle with r =

√
1 +
√

1 + ε. At ε = 0 the unstable limit cycle
and the stable fixed point at the origin collide, leaving a system with a single stable orbit with radius r =

√
2

and an unstable fixed point at the origin as shown in Figure (10.3) (bottom right).

10.3 Global Bifurcations
Global bifurcations occur when larger invariant sets, such as periodic orbits, collide with equilibria. This causes
changes in the topology of the trajectories in the phase space which cannot be confined to a small neighbourhood,
as is the case with local bifurcations. In fact, the changes in topology extend out to an arbitrarily large distance
(hence global).

10.3.1 Infinite-Period Bifurcation

Consider the system
ṙ = r(1− r2)

θ̇ = µ− sin θ
where µ ≥ 0 (10.11)

In the radial direction, all trajectories (except r̃ = 0) approach the unit circle monotonically as t→∞. In the
angular direction, the motion is everywhere counterclockwise if µ > 1, whereas there are two invariant rays
defined by sin θ = µ if µ < 1. As µ decreases, the limit cycle r = 1 develops a bottleneck at θ = π/2 that
becomes increasingly severe as µ→ 1+. The oscillation period lengthens and finally becomes infinite at µc = 1,
when a fixed point appears on the circle; hence the term infinite-period bifurcation. For µ < 1, the fixed point
splits into a saddle and a node.
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(a) Infinite-Period
Bifurcation

(b) Homoclinic Bifurcation

Figure 10.4

10.3.2 Homoclinic Bifurcation

Consider the system
ẋ = y

ẏ = µy + x− x2 + xy
(10.12)

Numerically, the bifurcation is found to occur at µc ≈ −0.8645. For µ < µc, say µ = −0.92, a stable limit cycle
passes close to a saddle point at the origin (Figure (10.4ba)). As µ increases to µc, the limit cycle swells (Figure
(10.4bb)) and bangs into the saddle, creating a homoclinic orbit (Figure (10.4bc)). Once µ > µc, the saddle
connection breaks and the loop is destroyed (Figure (10.4bd)).

10.3.3 Heteroclinic Bifurcation

Here, a limit cycle collides with two or more saddle points.
This type of bifurcation will result in the change of stability of the heteroclinic cycle.

Resonance Bifurcations The stability of the cycle changes when an algebraic condition on the eigenvalues
of the equilibria in the cycle is satisfied. This is usually accompanied by the birth or death of a periodic orbit.

Transverse Bifurcation It is caused when the real part of a transverse eigenvalue of one of the equilibria in
the cycle passes through zero.

10.3.4 Crisis

A crisis is the sudden appearance or disappearance of a strange attractor as the parameters of a dynamical
system are varied. It occurs when a chaotic attractor comes into contact with an unstable periodic orbit or its
stable manifold.

Exterior Crisis The attractor is suddenly destroyed as the parameters are varied. In the postbifurcation
state the motion is transiently chaotic, moving chaotically along the former attractor before being attracted to a
fixed point, periodic orbit, quasiperiodic orbit, another strange attractor, or diverging to infinity.

Interior Crisis The size of the chaotic attractor suddenly increases. The attractor encounters an unstable
fixed point or periodic solution that is inside the basin of attraction.

Attractor Merging Crisis Two or more chaotic attractors merge to form a single attractor as the critical
parameter value is passed.
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Part III

Higher Dimensional Systems
The existence and uniqueness theorem (5.1) holds.
Linear Stability Analysis and Potential Functions both generalize from lower dimensional analogues.

Theorem 10.1. Consider the differential equation

ẋ = f(x) x ∈ Rn

Suppose that f(0) = 0 and that the Jacobian matrix has n eigenvalues with nonzero real part. Then, in a small
neighborhood of x = 0, there exist stable and unstable manifolds with the same dimensions as the stable and
unstable manifolds of the linearized system

ẋ = Jx

11 Three Dimensional Systems

11.1 Periodicity and Quasi-periodicity
By increasing the dimension of a system from one to two, we found a new type of attractor: the limit cycle.
Similarly, new things emerge in higher dimensions.
Consider a trajectory given by the superposition of a movement along a circle inside the torus and a circle
around the torus as shown at the top left. Each of these circles has a corresponding frequency, say ωi being the
frequency for the inside circle and ωa for the one that goes around. As long as the ratio between ωi and ωa is a
rational number the trajectories are closed after a finite number of turns inside and around the torus: the flow is
periodic. Such a closed trajectory represents a limit cycle in three dimensions. When the ratio between the
two frequencies is an irrational number, the trajectory never closes and, as time evolves, covers the torus more
and more densely. Such dynamics are called quasi-periodic.

Figure 11.1: a) Flow on the surface of a torus can be described by a superposition of movements along two
circles, one inside the torus and one around it.
b) Here ωi : ωa = 8 : 3.
c) Here ωi : ωa = 1 : 40.
d) e) f) Here ωi : ωa =

√
2.

11.2 Lorenz System
The Lorenz Equations In 1963, the MIT meteorologist Edward Lorenz constructed a highly simplified model
of a convecting fluid. This simple model also displays a wide variety of behavior and for some parameter values
is chaotic.

ẋ = σ(y − x)

ẏ = rx− y − xz with r, b, σ ≥ 0

ż = xy − bz
(11.1)

here x measures the rate of convective overturning, y measures the horizontal temperature variation, z measures
the vertical temperature variation, σ is the Prandtl number, r is the Rayleigh number, and b is a scaling
factor. The Prandtl number is related to the fluid viscosity, and the Rayleigh number is related to the tem-
perature difference between the top and bottom of the column. Lorenz studied the system when σ = 10 and b = 8

3 .

11.2.1 Properties of Lorenz System

• System (11.1) has natural symmetry (x, y, z)→ (−x,−y, z).

• The z−axis is invariant.

22



• The flow is volume contracting since ∇ · x = −(σ + b+ 1) < 0, where x is the vector field.

• The Lorenz system (11.1) has the fixed points

x̃1 =

0
0
0

 and x̃2,3 =


±
√
b(r − 1)

±
√
b(r − 1)

r − 1

 if r ≥ 1 (11.2)

As before, the stability of the fixed points is determined by the Jacobian matrix J(x), which is given
explicitly for the general three-dimensional case and JL(x) for the Lorenz system by

J(x) =



∂ẋ

∂x

∂ẋ

∂y

∂ẋ

∂z

∂ẏ

∂x

∂ẏ

∂y

∂ẏ

∂y

∂ż

∂x

∂ż

∂y

∂ż

∂z


JL(x) =

 −σ σ 0
r − z −1 −x
y x −b

 (11.3)

The eigenvalues for origin is

λ1,2 =
1

2

{
−(σ + 1)±

√
(σ − 1)2 + 4σr

}
and λ3 = −b (11.4)

• At r = 1 the system undergoes a bifurcation where two additional fixed points appear (Equation (11.2)).

r = 0 :


λ1 = −1

λ2 = −σ
λ3 = −b

r = 1 :


λ1 = 0

λ2 = −σ − 1

λ3 = −b
r > 1 :


λ1 > 0

λ2 < −σ − 1

λ3 = −b
(11.5)

The origin is stable for 0 < r < 1 and unstable for r > 1 where the two additional fixed points x̃2 and x̃3

exist and are stable for 1 < r < rH .

• Instability points are characterized by a vanishing real part of the largest eigenvalue, <{λ} = 0. Then,
substitute λ in (11.6) by iω and after equating real and imaginary parts with zero, we get

det[J(x̃2,3)− λI] = 0 → λ3 + λ2(σ + b+ 1) + λb(σ + r) + 2σb(r − 1) = 0 (11.6)

2σb(r − 1)

σ + b+ 1
= b(σ + r) with σ = 10 b =

8

3
→ rH ≈ 24.74 (11.7)

• At rH the two fixed points x̃2 and x̃3 undergo a Subcritical Hopf bifurcation.

• When r > rH a structure emerges, which belongs to a class of objects now called strange attractors, in
this particular case the Lorenz attractor. This is deterministic chaos. Defined as: Aperiodic long-term
behavior in a deterministic system that exhibits sensitive dependence on initial conditions9.

• At r ≈ 13.926, there is a homoclinic bifurcation and the system enters a state of transient chaos.

• At r ≈ 24.06, a strange attractor is formed.

The Lorenz attractor consists of two sheets roughly defined by planes for positive and negative values of x where
the trajectory spirals outwards with the fixed points x̃2,3 located at the centers of these spirals.

11.2.2 Properties of Strange Attractor

• The trajectory is aperiodic.

• The trajectory remains on the attractor forever. (the attractor is invariant)

• The general form is independent of initial conditions.

• The sequence of windings is sensitive to initial conditions.

• The attractor has fractal structure.
9Here ‘aperiodic longterm behavior’ means that the trajectories do not settle down to a fixed point, or periodic or quasi-periodic

orbit; ‘deterministic’ means that the system has no random input or parameters; and ‘sensitive dependence on initial conditions’
means that nearby trajectories may separate exponentially fast.
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(a) Parameter Space of Lorenz System (b) Time series for the Lorenz system for σ = 10, b = 8
3

and r = 28.

Figure 11.3: The Lorenz attractor as a three-dimensional plot of the time series (Figure (11.2b))

11.3 Rössler System
The Rössler system with its standard parameters for chaotic behavior is given by

ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c)
with a = b = 0.2 (11.8)

The dynamics of the Rössler system consist of a spiral movement in the xy−plane and escapes along the positive
z−direction. A three-dimensional plot of the Rössler attractor together with the time series for the x−, y−
and z−coordinates are shown in Figure (11.4). For a = b = 0.2 kept fixed and varying c the Rössler system
undergoes a sequence of period doublings from a simple limit cycle at c = 2.5 to a strange attractor at c = 5.
Beyond this first chaotic règime there are again limit cycles that bifurcate into orbits of increasing complexity,
before the standard attractor at c = 5.7 is reached.

12 Lyapunov Exponents For Continous Systems
Strange attractors can be characterized by a measure that describes how the distance between adjacent trajectories
changes in time. An example is shown in Figure (12.1 (left)) for the cases of diverging, parallel and converging
trajectories. For small initial distances δ0 and short times t this behavior is determined by the local linearization.
The distance between the two trajectories as a function of time is then given by

δ(t) = δ0e
λt → λ =

1

t
ln
δ(t)

δ0
(12.1)
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Figure 11.4: The Rössler attractor in a three-dimensional plot (left) and time series of the corresponding x−, y−
and z−coordinates (right).
Parameters: a = b = 0.2, c = 5.7.

Figure 12.1: Left: Diverging, parallel and converging trajectories correspond to a local divergence rate of
λ > 0, λ = 0 and λ < 0, respectively.
Right: A Lyapunov exponent is determined as an average of the local divergence rate following close-by
trajectories around the attractor.

where for λ > 0 the trajectories are diverging, for λ < 0 they are converging and for λ = 0 the distance between
corresponding points on the two trajectories does not change. The exponent λ is called the local divergence rate,
and as the name indicates, is a local quantity.
A global characterization is found by averaging the local divergence rate obtained from small segments of a
trajectory over a long time by applying the procedure indicated in Figure (12.1 (right)). In general, the sum
over all Lyapunov exponents is negative for any attractor.

Table 12.1: Classification of attractors in three dimensions.

Type 1st exponent 2nd exponent 3rd exponent
Fixed Point −ve −ve −ve
Periodic orbit 0 −ve −ve

Quasi-Periodic orbit 0 0 −ve
Strange attractor +ve 0 −ve
Lorenz attractor 0.906 0 −14.57
Rössler attractor 0.0714 0 −5.39

Theorem 12.1 (Lyapunov Exponents). If at least one of the average Lyapunov exponents is positive, then
the system is chaotic; if the average Lyapunov exponent is negative, then the orbit is periodic and when the
average Lyapunov exponent is zero, a bifurcation occurs.
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Part IV

Discrete Dynamical Systems
13 Linear Discrete Systems
Time-discrete maps are useful to study in order to understand the complexity that can originate from simple
iterative procedures. Maps are much easier to implement numerically than differential equations and exhibit an
incredible richness of complex structures. These systems are known variously as difference equations, recursion
relations, iterated maps, or simply maps. In general, a discrete map is given by

xn+1 = f(xn) (13.1)

where x and f are m−dimensional vectors.
The sequence x0, x1, x2, . . . is called the orbit starting from x0.

Fixed points occur when xn+1 = f(xn) = xn for all n.

13.1 Recurrence Relations
13.1.1 First-Order Difference Equations

A recurrence relation can be defined by a difference equation of the form

xn+1 = f(xn) (13.2)

where xn+1 is derived from xn and n = 0, 1, 2, 3, . . .
If one starts with an initial value, say, x0, then iteration of Equation (13.2) leads to a sequence of the form

{xi : i = 0 to ∞} = {x0, x1, x2, . . . xn, xn+1 . . .} (13.3)

Theorem 13.1. The general solution of the first-order linear difference equation

xn+1 = mxn + c, n = 0, 1, 2, 3, . . . , (13.4)

is given by

xn = mnx0 +


mn − 1

m− 1
c if m 6= 1

nc if m = 1
(13.5)

13.1.2 Second-Order Linear Difference Equations

Recurrence relations involving terms whose suffices differ by two are known as second-order linear difference
equations. The general form of these equations with constant coefficients is

axn+2 = bxn+1 + cxn (13.6)

Theorem 13.2. The general solution of the second-order recurrence relation (13.6) is

xn =

{
k1λ

n
1 + k2λ

n
2 if λ1 6= λ2

(k3 + nk4)λn if λ1 = λ2 = λ (say)
where aλ2 − bλ− c = 0 (13.7)

Note that when λ1 and λ2 are complex, the general solution can be expressed as

xn = k1λ
n
1 + k2λ

n
2 = k1(reiθ)n + k2(re−iθ)n = rn(A cos(nθ) +B sin(nθ)) (13.8)

where A and B are constants. When the roots are complex, the solution oscillates and is real.

14 Analysis

14.1 Linear Stability in One Dimension
Consider a nearby orbit xn = x̃+ ξn for a fixed point x̃

ξn+1 + x̃ = f(xn) ≈ f(x̃) + f ′(x̃) ξn +
1

2!
f ′′(x̃)ξ2

n + · · · (14.1)
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f(x̃) = x̃ as it is a fixed point. |ξn| is small as we assume to be in the vicinity of x̃, and therefore ξ2
n is tiny and

can be neglected. with eigenvalue or multiplier λ = f ′(x̃)

ξn+1 = f ′(x̃) ξn = λ ξn → ξn = λnξ0 (14.2)

If |λ| < 1, then fixed point x̃ is linearly stable. For positive values of λ, ξi = 0 is approached monotonically,
for a negative λ the values of ξi alternate between positive and negative after each iteration step. Conversely, if
|λ| > 1 then the fixed point is unstable.

14.2 Graphical Iteration (Cobwebs)
The general method for determining the itinerary of a seed x0 for a function f(x) is as follows

• Start with the seed x0 on the x-axis.

• Move up to the function f(x).

• Move horizontally (left or right) to the y = x line.

• Move vertically (up or down) to the function f(x)

• Repeat above two steps again and again.

Consider the Tent Map T : [0, 1]→ [0, 1] defined by

T (x) =

{
µx 0 ≤ x < 1

2

µ(1− x) 1
2 ≤ x ≤ 1

(14.3)

Figure 14.1: a) A possible graphical iteration when n =2.
Graphical iterations when µ = 3

2 : b) x0 = 3
5 c) x0 = 6

13 d) x0 = 1
3 , for 200 iterations.

15 Logistic Map
The easiest and best studied nonlinear map is the logistic map defined as

xn+1 = Axn(1− xn) = A(xn − x2
n) with 0 ≤ A ≤ 4 (15.1)

fixed points for map is xn+1 = xn.

xn = A(xn − x2
n) → x̃1 = 0 x̃2 =

A− 1

A
(15.2)

As before, we can linearize around these fixed points to determine their stability

ξn+1 ≈ A(1− 2x̃)︸ ︷︷ ︸
Ã

ξn = Ã ξn

For the two fixed points x̃1 and x̃2 we find

x̃1 = 0 → Ã = A → stable for 0 ≤ A < 1

x̃2 = 1− 1

A
→ Ã = A

{
1− 2

(
A− 1

A

)}
= 2−A → stable for 1 ≤ A ≤ 3

(15.3)

These fixed points and their stability can be seen in the bifurcation diagram shown in Figure (15.3).
By varying the parameter A, the following behavior is observed:
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• With A between 0 and 1, xn → 0 as n→∞ independent of x0.

• With A between 1 and 2, xn →
A− 1

A
as n→∞ independent of x0.

• With A between 2 and 3, xn →
A− 1

A
as n → ∞ but it will fluctuate around that value for some time

(converges linearly).

Figure 15.1: Stationary states from left to right are fixed points 0 and 9
14 then orbits with periods of 2, 4 and 8,

as well as a chaotic trajectory.

• In discrete maps, the analogue to limit cycles in differential equations are periodic orbits of period m,
where xn+m = xn is fulfilled. Orbits of period 2 are solutions with xn+2 = xn

xn+2 = f (2)(xn) = A2xn(1− xn)(1−Axn +Ax2
n) (15.4)

The function f (2)(xn) is called the second iterate and has the fixed points

x̃1 = 0 x̃2 = 1− 1

A
x̃3,4 =

1

2A

{
A+ 1±

√
A2 − 2A− 3

}
(15.5)

The points x̃1 and x̃2 are the fixed points of the map we know already and are unstable for A > 3. It can
be shown that the period-2 solution is stable for 3 < A < 1 +

√
6.

With A between 3 and 1 +
√

6 ≈ 3.44949, from almost all x0, xn will approach permanent oscillations
between two values dependent on A.

• With A between 1 +
√

6 and 3.54409 (approximately10), from almost all x0, xn will approach permanent
oscillations among four values.

• With A increasing beyond 3.54409, from almost all initial conditions x0 will approach oscillations among
8 values. This period doubling behavior continues until a period-∞ is reached at a parameter value of
A ≈ 3.569945672 and is called period-doubling cascade.

• Beyond this point till A = 4, there is a region of deterministic chaos where the solution is a strange
attractor. Evidently, this structure in parameter space is a kind of replication of the whole bifurcation
diagram on a smaller scale in x and A, a feature called self-similarity.
This is not the end of the story, however, Figure (15.3) clearly shows regions where the system returns to
periodic behavior, even if for only a small range of µ values. These regions are called periodic windows.

• The special case of r = 4 can in fact be solved exactly

xn = sin2(2nθπ) where θ =
1

π
sin−1(

√
x0) (15.6)

• Beyond A = 4, almost all initial values eventually leave the interval [0, 1] and diverge.

Near to the period-three window, the logistic map can display a new type of behavior known as intermittency,
which is almost periodic behavior interrupted by occasional chaotic bursts. A graphical iteration and time
series plot are shown in Figure (15.2). As the parameter µ is increased, the length of the intervals of chaotic
bursts become larger and larger until the system becomes fully chaotic. This phenomenon is known as an
intermittency route to chaos.

10This is a root of a 12th degree polynomial 4913+2108x2−604x3−977x4+8x5+44x6+392x7−193x8−40x9+48x10−12x11+x12!
So we turn to approximations. :-(
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Figure 15.2: Left: Iterative paths when µ = 3.8282 and x0 = 0.2.
Right: Time series data.

Figure 15.3: Bifurcation diagram for the logistic map for the ‘interesting’ range of the parameter 3.5 ≤ A ≤ 4.
The whole parameter range 0 ≤ A ≤ 4 is shown in the insert.

16 Hénon Map
The Hénon map is a two-dimensional system given by

xn+1 = yn + 1−Ax2
n

yn+1 = Bxn
(16.1)

Depending on the values for the parameters A and B, iterations of (16.1) lead to fixed points, periodic orbits or
chaotic structures, and for |B| > 1 the map diverges to infinity.
The Fixed points are given by

x̃ =
(B − 1)±

√
(1−B)2 + 4A

2A
ỹ = B

(
(B − 1)±

√
(1−B)2 + 4A

2A

)
(16.2)

The fixed point can be transformed to the origin and the nonlinear terms can be discarded after taking a Taylor
series expansion.

For
xn+1 = f(xn, yn)

yn+1 = g(xn, yn)
→ J(x̃, ỹ) =


∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y


∣∣∣∣∣∣∣∣
x=x̃,y=ỹ

JH =

(
−2Ax̃ 1
B 0

)
(16.3)

The Hénon attractor is found for the parameters A = 1.4 and B = 0.3. It has the form of a horse shoe as shown
in Figure (16.1a)(top). The self-similarity of this structure in the xy-plane is evident from multiple blowups of
the regions inside the squares in Figure (16.1a)(bottom). If one of the parameter is kept at a fixed value and the
other is varied, bifurcation diagrams can be calculated as shown in Figure (16.1b).
An interesting region in parameter space exists in the Hénon map for B = 0.3 and 1.147022 ≤ A ≤ 1.1470615

(Figure (16.2)).
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(a) The Hénon attractor (top) and blowups (bottom)
demonstrating the finestructure and self-similarity of
the attractor in the xy-plane.

(b) Bifurcation diagram for the Hénon map.
Stationary, periodic and chaotic orbits for x with B = 0.3
and 0 ≤ A ≤ 1.4.
The map shows bistability and hysteresis.

Figure 16.1

Figure 16.2: Blowups demonstrating the fine-structure in the bifurcation diagram of the Hénon map in the
directions of the variable x and the parameter A.

17 Universality

17.1 Bifurcation Diagrams for Other Functions

(a) The bifurcation diagram for
xn+1 = rx2n(1− xn).

(b) The bifurcation diagram for
xn+1 = r sin

(πxn
2

)
.

Figure 17.1

Both systems given above has the same shape as the graph of the logistic map. Both curves are smooth,
concave down, and have a single maximum. Such maps are called unimodal. Both Bifurcations look similar. In
fact, we may at first think there has been some error and that logistic equation bifurcation diagram is accidentally
used. The qualitative dynamics of the two maps are identical. They both undergo period-doubling routes to
chaos, followed by periodic windows interwoven with chaotic bands.

17.2 Qualitative Universality: U-Sequence
The order in which stable periodic solutions appear is independent of the unimodal map being iterated. That is,
the periodic attractors always occur in the same sequence, now called the universal or U-sequence.
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17.3 Sharkovsky Ordering
Consider the following ordering of natural numbers a ≺ b means a comes before b

1 ≺ 2 ≺ 22 ≺ 23 ≺ · · · ≺ 2n ≺ · · · ≺ 7 · 2n ≺ 5 · 2n ≺ 3 · 2n ≺ · · · ≺ 7 · 2 ≺ 5 · 2 ≺ 3 · 2 ≺ · · · ≺ 7 ≺ 5 ≺ 3

In general (1 ≺ 2 ≺ 22 ≺ · · · ≺ 2n ≺ 2n · k ≺ · · · ≺ 22 · k ≺ 2 · k ≺ k) where k are odd and decreasing

Theorem 17.1 (Sharkovsky Theorem). If a continuous map of an interval into itself has a cycle of period
m, then it has a cycle of any period m̃ ≺ m. Moreover, for any m there exists a continuous map that has a cycle
of period m but does not have cycles of periods m̃, m ≺ m̃ .

The consequences of this amazing result are manifold:
If f has a point of period 3, then f has periodic points of any period.
If f has a point of period k 6= 2n, then f has infinitely many periodic points.

18 Feigenbaum Constants
The first seven bifurcation points of the Logistic Map computed numerically, are given by
A1 = 3, A2 = 3.449490 . . . , A3 = 3.544090 . . . , A4 = 3.564407 . . . , A5 = 3.568759 . . . , A6 = 3.569692 . . . , and
A7 = 3.569891. . .
Feigenbaum discovered that the ratio of the differences of the parameter values where bifurcations occur
approaches a universal constant called δ when n goes to infinity

δ = lim
n→∞

An −An−1

An+1 −An
= 4.6692016 . . . (18.1)

Figure 18.1: Universal scaling in the horizontal and
vertical direction of a period doubling sequence.

The number δ, known as the Feigenbaum constant, is
universal in the sense that it is the same number for
a big class of nonlinear maps, differential equations. . .
In addition to the scaling along the parameter axis
there is a similar property for the variable x along the
vertical axis in a bifurcation diagram.
The width of the pitchfork at the superstable or-
bits11 converges towards another universal constant,
known as the Feigenbaum constant α.

α = lim
n→∞

dn+1

dn
≈ −2.502907875 (18.2)

As shown in Figure (18.1) for the first four locations
d1−4, the pitchfork alternates between above and below
the superstable orbit, leading to d values alternating
between positive and negative and as a consequence to a negative sign for the constant α.

19 Lyapunov Exponents for Discrete Systems
Starting with two initial values of x0 and x0 + δ0 we perform n iterations of the map

xn = f (n)(x0)

xn + δn = f (n)(x0 + δ0)
→ δn = f (n)(x0 + δ0)− f (n)(x0) (19.1)

where f (n) in the nth iterate of f . The Lyapunov exponent λ is defined by

|δn| = |δ0|enλ → λ =
1

n
ln

∣∣∣∣δnδ0
∣∣∣∣ → λ =

1

n
ln

∣∣∣∣f (n)(x0 + δ0)− f (n)(x0)

δ0

∣∣∣∣ (19.2)

which in the limit δ0 → 0 can be written as

λ =
1

n
ln |f (n)′(x0)| using chain rule λ =

1

n
ln

∣∣∣∣∣
n−1∏
i=0

f ′(xi)

∣∣∣∣∣ =
1

n

n−1∑
i=0

ln |f ′(xi)| (19.3)

11Superstable orbits are those for which the magnitude of the derivative of an iterate vanishes |f (n)′(x0)| = 0. For the logistic
map f ′(x) = A(1− 2x) and therefore x = 0.5 is a superstable orbit. The Lyapunov exponent at such an orbit is λ = −∞ (19).
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Part V

Chaos and Fractals
20 Chaos
A dynamical system is chaotic if it possesses all of the following properties:

• The dynamical rule is deterministic.

• The orbits are aperiodic.

• The orbits are bounded.

• The dynamical system has sensitive dependence on initial conditions12.

We have already seen examples of Chaos Section ((11.2),(11.3),(15),(16)).

21 Fractals
A fractal is an object that displays self-similarity under magnification and can be constructed using a simple
motif (an image repeated on ever-reduced scales).
A fractal is an object that has noninteger fractal dimension (See Section 21.3).

21.1 The Cantor Set

Figure 21.1: An early generation
of the Cantor set.

It is constructed by removing the middle third of a line segment at each
stage of construction. Thus, at stage 0, there is one line segment of unit
length. At stage 1, the middle third is removed to leave two segments each
of length 1

3 . Continuing in this way, there will be N = 2k segments each of
length l = 3−k.
If this process is continued to infinity, then

lim
k→∞

2k =∞ and lim
k→∞

3−k = 0 (21.1)

By using the ternary number system, it is possible to classify which points
in the unit interval belong to the Cantor set and which do not. The Cantor
set can be identified by points whose ternary fractions consist of zeroes and
twos only.

21.2 The Koch Curve

It is constructed by replacing a unit line segment with a motif consisting of four line segments each of length
1

3
.

At the kth stage there are N = 4k line segments each of length l = 3−k.

Figure 21.2: Construction of the Koch curve up to stage 5.

lim
k→∞

4k =∞ and lim
k→∞

3−k = 0 (21.2)

So the mathematical Koch curve consists of a curve that is infinitely long.
12A function f has sensitive dependence on initial conditions if there is some number δ such that for any x0 there is a y0 that

is not more that ε away from x0, where the initial condition y0 has the property that there is some integer n such that, after n
iterates, the orbit of y0 is more than δ away from the orbit of x0. That is, |xn − yn| > δ.
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21.3 Fractal Dimension
The concept of dimensions is quite intuitive as long as the dimension is a nonnegative integer and smaller or
equal to three. For simple geometrical objects like fixed points, limit cycles or tori the dimension is obvious,
they are zero-, one- and two dimensional, respectively.
But what is the dimension of lorenz attractor? Its trajectory stays within a finite volume, it is not closed (in
which case it would be a limit cycle), it does not cover a surface entirely as the quasi-periodic systems, nor does
it fill a volume.
There are several ways to generalize the idea.

21.3.1 Hausdorff index

A self-similar fractal has fractal dimension (or Hausdorff index) Df given by

Df =
lnN(l)

− ln l
≡ N(l) ∝ (l)−Df (21.3)

where l represents a scaling and N(l) denotes the number of segments of length l.

21.3.2 Correlation dimension

We randomly distribute points along an interval on a line and within a square as shown in Figure (21.3). Now

Figure 21.3: Determining the dimension of a line and a plane

we pick one of these points and count how many other points are located within a distance ε. It is intuitively
clear that for the one-dimensional line this number N(ε) will be proportional to ε, for the two-dimensional
square it will be proportional to ε2. In general, the number of points within a radius ε from a given point x
is proportional to εd where d is a generalized dimension, the so-called pointwise dimension of that point. The
correlation dimension for an attractor is found by calculating and averaging N(ε) for all points on the attractor
and plotting logN(ε) as a function of log ε.

N(ε) ∼ εd → N(ε) = cεd → logN(ε) = d log ε+ log c (21.4)

21.3.3 Generalised Fractal Dimensions

The generalized (box-counting) fractal dimensions Dq, where q ∈ R, are defined by

Dq = lim
l→0

1

1− q

ln
N∑
i=1

pqi (l)

− ln l
where pi(l) =

Ni(l)

N
(21.5)

Where the index i labels the individual boxes of size l and pi(l) denotes the relative weight of the ith box or the
probability of the object lying in the box. Ni(l) is the weight of the ith box and N is the total weight of the
object.

D0 = Df = lim
l→0

lnN(l)

− ln l
D1 = lim

l→0

N∑
i=1

pi ln(pi)

− ln l
(21.6)

The quantity D0 is known as the hausdorff dimension. The quantity D1 is known as the information
dimension. The quantity D2 is known as the correlation dimension and indicates the correlation between
pairs of points in each box. The generalized dimensions D3, D4, . . . are associated with correlations between
triples, quadruples, etc., of points in each box.

21.4 Iterated Function Systems
An iterated function system consists of several affine transformations which are applied in a random fashion, a
procedure sometimes called the chaos game.
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Affine transformations are linear transformations where a vector is rotated, scaled and shifted.

(
xn+1

yn+1

)
=

(
a b
c d

)(
xn
yn

)
+

(
e
f

)
≡

xn+1

yn+1

1

 =

a b e
c d f
0 0 1

xnyn
1

 (21.7)

The rules of the chaos game can be generalized as follows:

• Create two or more affine linear transformations.

• Assign probabilities to each of the transformations.

• Start with an initial point.

• Select a random transformation to get a second point.

• Repeat the process.

(a) The Sierpinsky triangle or gasket

(b) Barnsley’s fractal fern

Figure 21.4

(a) The regions that get covered when the
transformations t1 − t3 are applied. (b) The regions that get covered when the transforma-

tions t1 − t4 are applied.

Figure 21.5

21.4.1 Sierpinsky gasket

This structure is constructed geometrically by starting with a solid black triangle and removing the large white
triangle in the middle which leaves three black triangles after the first iteration step. Then this procedure is
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Table 21.1: Parameters for Iterated Function Systems

(a) Sierpinski gasket

a b c d e f p
t1 0.5 0 0 0.5 0 0 1/3
t2 0.5 0 0 0.5 0.5 0.5 1/3
t3 0.5 0 0 0.5 0.5 0 1/3

(b) Barnsley’s fractal fern

a b c d e f p
t1 0 0 0 0.16 0 0 0.01
t2 0.2 −0.26 0.23 0.22 0 1.6 0.07
t3 −0.15 0.28 0.26 0.24 0 0.44 0.07
t4 0.85 0.04 −0.04 0.85 0 1.6 0.85

applied to each of these triangles leading to nine smaller ones and so on.
The parameters for the three transformations that are used to create the Sierpinski gasket by an iterated function
system are shown in Table (21.1a). There is an additional column listing a parameter p, which is the probability
that this particular transformation is applied. Figure (21.5a) are three plots showing the points of Figure (21.4a)
that arise after the transformations t1, t2 and t3 are executed. In the case of the Sierpinski gasket they fall into
the three triangular regions that remain after the big triangle in the middle is removed.

21.4.2 Barnsley’s Fern

The Fractal Fern shown in Figure (21.4b) together with smaller plots of the regions that are created by using
only the points after a particular transformation has been applied.

The basic idea of fractal compression of images is that if pictures of natural scenes (like a fern) are
encoded as pixels, a high resolution is necessary to preserve the complex structure, resulting in a huge amount of
bits that have to be stored. In contrast, for the fern for instance, only 4 · 7 = 28 numbers are needed and the
image can be restored at any desired resolution.
The problem is that even though there were attempts to develop algorithms for finding the transformations and
parameters for encoding a general image, the most impressive examples of fractal compression still need human
intervention.

21.5 Complex Iterative Maps
21.5.1 Julia Sets

Consider a complex polynomial mapping of the form zn+1 = f(zn). The points that lie on the boundary between
points that orbit under f and are bounded and those that orbit under f and are unbounded are collectively
referred to as the Julia set.
Consider the quadratic map

zn+1 = fc(zn) = z2
n + c where zn, c ∈ C (21.8)

The following are properties of a Julia set, say, J

• The set J is a repellor.

• The set J is invariant.

• An orbit on J is either periodic or chaotic.

• All unstable periodic points are on J .

• The set J is either wholly connected or wholly disconnected.

• The set J nearly always has fractal structure.

Figure 21.6: Julia sets for c = 0,−0.72i,−0.1− 0.88i,−0.6 + 0.2i,−0.6 + 0.45i, 0.37 + 0.37i,−0.25− 0.7i
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21.5.2 The Mandelbrot Set

The Mandelbrot Set is the collection of c values for which the Julia sets are connected.

There is an efficient way to determine the Mandelbrot Set as follows:
If the orbit of z0 = 0 for f(z) = z2 + c is bounded, then c is in the Mandelbrot set.
If the orbit is not bounded, then c is not in the Mandelbrot set.

(a) The Mandelbrot Set complete (b) Seahorse Valley

(c) Seahorse Valley Zoom (d) Seahorse

Figure 21.7

Boundaries of Periodic Orbits

The fixed points of period one are given by

z = z2 + c = fc(z) → z1,1 =
1 +
√

1− 4c

2
z1,2 =

1−
√

1− 4c

2
(21.9)

where zm,n is the nth fixed point of period m. For stability,

dfc
dz

= 2z = reiθ where r ≥ 0 0 ≤ θ < 2π → c =
reiθ

2
− r2ei2θ

4
(21.10)

The boundary of points of period one is given by∣∣∣∣dfcdz (z1,1)

∣∣∣∣ = |2z1,1| = r = 1 (21.11)

Let c = x+ iy → x =
1

2
cos θ − 1

4
cos(2θ) y =

1

2
sin θ − 1

4
sin(2θ) (21.12)

The parametric curve is plotted in Figure (21.8) and forms a cardioid that lies at the heart of the Mandelbrot set.
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Figure 21.8: The boundary of
fixed points of periods one and
two for the Mandelbrot set.

Using similar arguments to those above, it is not difficult to extend the
analysis to determine the boundary for the fixed points of period two.

f2
c (z) = (z2 + c)2 + c = z →

z4 + 2cz2 − z + c2 + c = 0

(z2 − z + c)(z2 + z + c+ 1) = 0
(21.13)

z1,1 and z1,2 satisfy equation (21.13).

z2 + z+ c+ 1 = 0 → z2,1 =
−1 +

√
−3− 4c

2
z2,2 =

−1−
√
−3− 4c

2

The stability of each critical point is determined from the derivative of the
map at the point

df2
c

dz
= 4z(z2+c) →

∣∣∣∣df2
c

dz
(z2,1)

∣∣∣∣ = |4+4c| the boundary is given by |c+1| = 1

4

The parametric curve is plotted in Figure (21.8) and forms a circle centered

at (−1, 0) of radius
1

4
in the Argand plane.

21.5.3 The Newton Fractal

The Newton-Raphson method, can be used to find the roots of the equation f(z) = 0 using the iterative formula

zn+1 = zn −
f(zn)

f ′(zn)
(21.14)

Figure 21.9: Julia sets for the rational function associated with Newton’s method for f(z) = z3 − 1

A Newton fractal is the Julia set of f(zn) and shows that the numerical method can be very sensitive to its
choice of initial starting point.
In Figure (21.9),

• All points in the red regions are in the basin of attraction for the fixed point at z̃1 = 1.

• All points in the green regions are in the basin of attraction for the fixed point at z̃2 =
−1 +

√
3i

2
.

• And all points in the blue regions are in the basin of attraction for the fixed point at z̃3 =
−1−

√
3i

2
.

The boundary between the different basins of attraction forms a Julia set.
The colors in Figure (21.7) are determined by the number of iterations the points take to go out of bounding region.
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Part VI

Stochastic Systems
So far we have dealt with systems that are purely deterministic, which means that for two identical systems
with exactly the same initial conditions, their trajectories will be the same for all times. However, for the case of
deterministic chaos, a tiny difference in the initial condition can lead to a completely different long-term behavior.
In contrast to deterministic systems, for stochastic systems not even the short-term behavior is predictable, not
even in principle, because there are forces at work that are outside of our control.
All relevant systems in nature contain both deterministic and stochastic elements, and the question is simply
which part, if any, is dominating.
If there were no random forces, effects like the spontaneous breaking of symmetry discussed in section (3.1.3)
could not occur. If a potential landscape switches from a single minimum to a double-well as in Figure (3.2a),
nothing would happen, the system would simply sit at the unstable fixed point until someone comes along and
kicks it a little.
The stochastic force allows the system to explore all of its phase space as we shall see. Without such a force
the system is restricted to a single trajectory from an initial condition to an attractor or to infinity, or is even
left stranded at an unstable equilibrium point.

22 Langevin Equations

22.1 Brownian Motion
The field of stochastic systems started with an observation by Robert Brown in 1827. In Brown’s experiment,
there are two types of forces at work.
First, even with the particle at rest, it is bombarded by gas or fluid molecules in its surrounding.
Secondly, if the particle is moving, it will face more energetic collisions in the direction it is moving, and the
particle will slow down.
This process is described at the macroscopic level by the frictional force which is exerted on a particle in a
viscous fluid and leads to an acceleration opposite to the direction of its velocity. Assuming the particle is
spherical this force is given by Stoke’s law as

F = −6πηRv (22.1)

where η is the viscosity of the fluid and R the radius of the sphere.
Regarding the process that leads to the movement, we have no idea what force is acting on the particle at a
given time, neither its strength, nor its direction, so we simply call it ξ̃(t).
For simplicity we look at at a one-dimensional system, i.e. a particle that only moves along a line to the left or
right. Then Newton’s second law can be applied:

F = ma = −6πηrv + ξ̃(t) → a = v̇ = − 6πηR

m︸ ︷︷ ︸
α

v +
1

m
ξ̃(t)︸ ︷︷ ︸
ξ(t)

(22.2)

Inserting the substitutions as indicated in (22.2) we obtain

v̇ = −αv + ξ(t) (22.3)

Equations of the form (22.3) with a deterministic part (here −αv) and an additive stochastic part (here ξ(t)) are
called Langevin equations.
We have always dealt with equations that are called autonomous or homogeneous, which means that the
right-hand side does not explicitly depend on time. Equations like (22.3) that contain such an explicit time
dependence are called nonautonomous or inhomogenous.

Theorem 22.1. The general solution of an inhomogeneous differential equation is given by the the sum of
the general solution of the corresponding homogenous equation and a particular solution of the inhomogeneous
equation.

According to this theorem we first have to find the general solution of the homogeneous equation,

v̇ = −αv → v(t) = ce−αt (22.4)
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Now we have to find a particular solution of the inhomogenous equation, which is done by a procedure called
variation of the constant. The constant c = c(t)

vp(t) = c(t)e−αt → v̇p(t) = ċ(t)e−αt − αc(t)e−αt (22.5)

which we insert into the original equation (22.3) to determine the ‘constant’ c(t)

v̇p(t) = ċ(t)e−αt − αc(t)e−αt = −αc(t)e−αt + ξ(t) → ċ(t) = ξ(t)eαt → c(t) =

∫ t

−∞
ξ(t′)eαt

′
dt′ (22.6)

Now the particular solution of the inhomogeneous equation reads

vp(t) = e−αt
∫ t

−∞
ξ(t′)eαt

′
dt′ → v(t) = ce−αt + e−αt

∫ t

−∞
ξ(t′)eαt

′
dt′ (22.7)

For large t the first term in (22.7) vanishes and we finally obtain

v(t) =

∫ t

−∞
ξ(t′)e−α(t−t′)dt′ (22.8)

(a) Two realizations calculated from (22.8) (b) Time series and phase space plot for a
solution of (22.3).

Two time series calculated from (22.8) are shown in Figure (22.1a), where the values for ξ(t) were obtained
from a random number generator. Such different solutions of (22.3) are called realizations of the stochastic
system.
Evidently, the time series are quite different, however the distributions of the values in the time series, represented
by the histograms, are very similar. Such distributions are the foundation of stochastic systems.
In Figure (22.1b), without the stochastic term the trajectory would evolve to the stable fixed point ṽ = 0 but
the stochastic force allows the system to explore its entire phase space. In contrast to deterministic systems, the
trajectories in stochastic systems intersect.

23 Features

23.1 Averages
If we could deal with time series of infinite length, the distributions for a given system would be exactly the
same. This leads to the conclusion that other quantities like mean values or averages are more appropriate to
describe the properties of such systems than their time series.

Time Average It is usually denoted by a bar ¯. . . over the quantity to be averaged and calculated simply as
the mean of a time series

q̄ =
1

T

∫ T

0

q(t)dt (23.1)

Ensemble Average It is usually denoted by brackets 〈. . .〉 around the quantity, is calculated as the mean of
the values from different realizations k at the same point in time

〈q(t)〉 =
1

N

N∑
k=1

qk(t) (23.2)

For so-called Ergodic Systems14 the time and the ensemble average is the same q̄ = 〈q(t)〉. Evidently, in this
case the ensemble average is the same for all points in time.

14Ergodicity is a complicated matter. Roughly, a system is ergodic when its trajectory comes infinitely close to every point in
phase space compatible with the system’s energy. All system we are talking about here are ergodic.
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23.2 Distributions
One of the main characteristics of a stochastic system is its probability distribution. The most common distribution,
which is implemented in random number generators, is the rectangular distribution, where real numbers
between 0 and 1 are drawn, all with the same probability.

23.2.1 Gaussian distribution

It is given by

g(x) =
1

σ
√

2π
e
−

(x− µ)2

2σ2 with
∫ ∞
−∞

g(x) dx = 1 (23.3)

where µ is the mean and σ the standard deviation.

Properties of the Gaussian Distribution

• In very many cases the distributions found in nature are approximately Gaussian;

• It is a nontrivial distribution for which analytical results can be obtained.

The main reason for the first is that the sum of many independent stochastic variables has a Gaussian distribution
whatever the individual distributions are. More precisely, if the numbers xk are from independent stochastic
processes then the variable

Sn = x1 + x2 + x3 + · · ·+ xn (23.4)

has a Gaussian distribution if n goes to infinity independent of the distributions of the individual variables. This
is the essence of the central limit theorem.
The second point has to do with a special property of the Gauss-function and what is known as the moments of
a distribution. The nth moment q(n) of a distribution f(q) is define as

q(n) =

∫ ∞
−∞

qnf(q) dq (23.5)

This may look a little complicated but it is simply an extension of elementary statistics: the zeroth moment of
any properly normalized distribution is 1 because it is just the integral over the distribution itself and the first
moment is the mean value

q(0) =

∫ ∞
−∞

f(q) dq = 1 q(1) =

∫ ∞
−∞

qf(q) dq = 〈q〉 (23.6)

For n > 1 it is more convenient to use the central moments defined as

µ(n) =

∫ ∞
−∞

(q − 〈q〉)nf(q) dq (23.7)

because the second central moment is the variance with its square root the standard deviation. The third central
moment defines the skewness and the fourth the kurtosis and so on.

23.3 Correlations
Besides distributions the second important property of a stochastic system is how fast (on average) it ‘forgets’
about its past, more precisely, how fast the correlations within its time series decay. A quantitative measure of
correlation is the autocorrelation function.
Imagine a time series q(t) and a second time series, which is the same as the first, just shifted by a time τ ,
q(t− τ), the autocorrelation function is defined as

G(τ) = lim
T→∞

T∫
−T

q(t− τ)q(t) dt

T∫
−T

q2(t) dt

(23.8)

There exists an important relation between the autocorrelation function G(τ) of a time series and its spectrum
S(ω), known as the Wiener-Khinchin theorem. It states that the spectrum of a time series S(ω) is the
Fourier transform of the autocorrelation function G(τ) and the autocorrelation function is the inverse Fourier
transform of the spectrum. We now have a look at the spectra and autocorrelation functions for three important
cases.
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23.3.1 Periodic Signal

Figure (23.1a) shows the time series q(t) (a cosine), its distribution p(q) and spectrum S(ω).

(a) Properties of a periodic signal. (b) Properties of uncorrelated noise.

Figure 23.1: Left: Time series; middle: probability distribution; right: spectrum.

it can be shown that the distribution for the cosine function

q(t) = cos Ωt is given by p(q) =
1

sin{cos−1 q}
(23.9)

We now calculate the autocorrelation function

G(τ) = lim
T→∞

N

∫ T

−T
cos Ω(t− τ)q(t) dt with the normalization factor

G(τ) = lim
T→∞

N

2

∫ T

−T
{cos 2Ω(2t− τ) + cos Ωτ} dt

G(τ) = cos Ωτ as T →∞

N =

{∫ T

−T
cos2 Ωt dt

}−1

1

N
=

cos ΩT sin ΩT

Ω
+ T

N ≈ 1

T
as T →∞

(23.10)

So for a cosine the autocorrelation function does not simply decrease with an increasing shift but oscillates
and has a value of 1 at all even multiples of π

Ω , and a value of −1 (anti-correlated) at all odd multiples. In
other words: for such a purely deterministic and periodic signal the correlation does not fall off in time and the
correlation length is infinite.

23.3.2 Uncorrelated (white) Noise

The most common representation for uncorrelated or white noise is of the form

〈ξ(t)ξ(t′)〉 = Qδ(t− t′) where Q = noise strength (23.11)

By writing t′ in the form t− τ the average autocorrelation function takes the form

〈G(τ)〉 = 〈 lim
T→∞

N

∫ T

−T
ξ(t)ξ(t− τ) dt〉

= lim
T→∞

〈N〉
∫ T

−T
Qδ{t− (t− τ)} dt

= lim
T→∞

〈N〉2TQδ(τ)

〈G(τ)〉 =
δ(τ)

δ(0)
=

{
1 if τ = 0

0 if τ 6= 0

with the normalization factor

〈N−1〉 =

∫ T

−T
〈ξ2(t)〉 dt

=

∫ T

−T
Qδ(0) dt

= 2TQδ(0)

(23.12)

It means that the time series is only correlated at the trivial point τ = 0 and the correlations vanish for any
finite shift, so the correlation length is zero.
The features of uncorrelated noise, time series, probability distribution and spectrum are summarized in Figure
(23.1b).

23.3.3 Noise with Finite Correlation Length

Between the two extreme cases just discussed, correlation lengths of zero and infinity, there are stochastic systems
with finite correlations like those where the autocorrelation function falls off exponentially with the shift τ

G(τ) = e−α|τ | where
1

α
= tc (23.13)

41



The correlation length, tc, represents the time after which (on the average) the correlations have decreased by a
factor of e−1. The spectrum for a stochastic process for which the correlations fall off exponentially in time

S(ω) =
2α

α2 + ω2
(23.14)

Figure (23.2a) shows an example of such functions. They look like the Gaussians but are rational functions, not
exponentials, and are called Lorentzians.

(a) Properties of a signal with finite correlations. Left: time
series; middle: probability distribution; right: spectrum.

(b) Properties of the Lorentzian. Left:The function
has half of its maximum value at ω = α and falls off
proportional to w2. Right:The most important noise
colors

23.3.4 Colors of Noise

Certain types of stochastic time series can be classified according to their spectra and are associated with a
‘color’.
The most important color of noise is white: as for the corresponding white light, the spectrum is a constant, i.e.
all frequencies have the same amplitude and, the correlation is a δ−function.
A time series with a spectrum that for large values of ω it falls off proportional to ω−2 is called brown or
Brownian noise.
A further property of these two noise types is that white noise is the derivative of brown noise and, accordingly,
brown noise is the integral of white noise in time.
In between is a noise type known as pink, whose spectrum falls of proportional to ω−1.
Spectra for white, pink and brown noise are shown in Figure (23.2b(right)).

24 Fokker-Planck Equation
A more general case of a Langevin equation is of the form

q̇ = F (q) +
√
Qξ(t) with

{
〈ξ(t)〉 = 0

〈ξ(t)ξ(t′)〉 = δ(t− t′)
(24.1)

where the stochastic term represents additive white noise with a zero mean and a Gaussian distribution.
The system’s stationary distribution is given by the so-called Fokker-Planck equation

ṗ(q, t) =
∂

∂t
p(q, t) = − ∂

∂q
{F (q)p(q, t)}︸ ︷︷ ︸

drift

+
Q

2

∂2

∂q2
p(q, t)︸ ︷︷ ︸

diffusion

(24.2)

Figure 24.1: Numerical simulation
of a Fokker-Planck equation (24.2)
where an initial asymmetric distribu-
tion with two maxima evolves into a
Gaussian.

The first term on the right-hand side is called the drift term representing
the deterministic force in the Langevin equations whereas the second
term, the diffusion term models the stochastic contributions.

ṗ(q, t) =
∂

∂q

{
−F (q)p(q, t) +

Q

2

∂

∂q
p(q, t)

}
︸ ︷︷ ︸

=constant=0

= 0 → F (q)p(q) =
Q

2

d

dq
p(q)

p(q) = eCe
2
Q

∫
F (q) dq = Ne

2
Q

∫
F (q) dq where N =

{∫ ∞
−∞

p(q) dq

}−1

In Section (2.3), the potential for dynamical systems was introduced,
which can be used now to finally write the stationary distribution in the
form

F (q) = −dV (q)

dq
→ p(q) = Ne−

2
QV (q) (24.3)
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Part VII

Modelling Nonlinear Systems
25 The Pendulum

25.1 The Free Pendulum

Figure 25.1: Sketch of
the planar mathemati-
cal pendulum.

The planar mathematical pendulum consists of a rod, suspended at a fixed point in
a vertical plane in which the pendulum can move. All mass is thought of as being
concentrated in a point mass at the end of the rod (see Figure (25.1)), and the rod itself
is massless. Also the rod is assumed stiff. The pendulum has mass m and length `. We
moreover assume the suspension to be such that the pendulum not only can oscillate,
but also can go ‘over the top’. In the case without external forcing, we speak of the
free pendulum.

25.1.1 The Free Undamped Pendulum

In the case without damping and forcing the pendulum is only subject to gravity, with
acceleration g. The gravitational force is pointing vertically downward with strength mg
and has a component −mg sinϕ along the circle described by the point mass (Figure
25.1). Here ϕ is the angle between the rod and the downward vertical, often called
deflection. The distance of the point mass from the rest position (ϕ = 0), measured
along the circle of all its possible positions, then is `ϕ. Applying Newton’s law in the
ϕ-direction.

a =
d2(`ϕ)

dt2
= `ϕ′′(t) → m`ϕ′′ = −mg sinϕ → ϕ′′ = −g

l
sinϕ where m, l > 0

In Figure (25.2a), the points (2πk, 0), k ∈ Z, correspond to the stationary motion (which rather amounts to rest
and not to motion) where the pendulum hangs in its downward equilibrium.
The points (2π

(
k + 1

2

)
, 0), k ∈ Z, correspond to the stationary motion where the pendulum stands upside down.

(a) Curves in the Phase Plane (b) Evolutions in the Phase Plane

Figure 25.2

Remark. The natural state space of the pendulum really is a cylinder. In order to see that the latter curves are
periodic, we have to make the identification ϕ ∼ ϕ+ 2π which turns the (ϕ,ϕ′)-plane into a cylinder.

25.1.2 The Free Damped Pendulum

In the case that the pendulum has damping, dissipation of energy takes place and a possible motion is bound
to converge to rest. For simplicity it is here assumed that the damping or friction force is proportional to the
velocity and of opposite sign.
The equation of motion is given by

ϕ′′ = −ω2 sinϕ− c ϕ′ where c > 0 and ω =
g

`
(25.1)

The undamped case displays an abundance of periodic motions, which is completely destroyed by the tiniest
amount of damping (Figure (25.2b)).
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25.2 The Forced Pendulum
25.2.1 The Forced Undamped Pendulum

We add the external force to the expression for ϕ′′. We assume that this force is periodic in the time t, even that
it has a simple cosine shape.

ϕ′′ = −ω2 sinϕ+A cos Ωt (25.2)

We show two motions in the diagrams of Figure (25.3a). In both cases, Ω = 1, A = 0.01, ϕ(0) = 0.017, ϕ′(0) = 0,
and the time interval is [0, 200]. The free pendulum oscillates with a well-defined frequency and also the forcing
has a well-defined frequency. In the motions depicted in Figure (25.3a) both frequencies remain visible. Like
multi or quasi-periodic motion (Section (11.1)).

(a) Two multiperiodic evolutions of the periodically
forced undamped pendulum.
Left: ω = 1

2
(1 +

√
5) ≈ 1.61803 (golden ratio).

Right: ω =1.602

(b) Evolution of the damped and forced pendulum as t-
parametrised curve.
Left: t ∈ [0, 100], the evolution tends to a periodic motion.
Right: t>100, continuation of the segment in the left diagram.

Figure 25.3

25.2.2 The Forced Damped Pendulum

Adding damping, we arrive at the following equation of motion

ϕ′′ = −ω2 sinϕ− c ϕ′ +A cos Ωt (25.3)

In Figure (25.3b) we took ω = 1.43,Ω = 1, A = 0.2, c = 0.1 and ϕ(0) = 0.3, ϕ′(0) = 0 we show an example of a
motion of the damped forced pendulum (25.3), that only after a long time (say about 100 time units) tends to a
periodic motion. It can be shown that the system, with equation of motion (25.3) with well-chosen values of the
parameters ω, c, A and Ω, has motions that never tend to a periodic motion, i.e. Chaos.

26 Population Models
Population ecologists use a variety of mathematical methods to model population dynamics (how populations
change in size and composition over time). Some of these models represent growth without environmental
constraints, while others include ‘ceilings’ determined by limited resources. Mathematical models of populations
can be used to accurately describe changes occurring in a population and, importantly, to predict future changes.

26.1 Logistic Growth
We can mathematically model logistic growth by modifying our equation for exponential growth (Equation
(2.3)), using an r (per capita growth rate) that depends on population size N and how close it is to carrying
capacity K.

dN

dt
= rN(1− N

K
) → N(t) =

K

1 +
(
K−N0

N0

)
e−rt

(26.1)

It can also be written in continuous form as shown above.
For any initial value N0, N → K as t→∞. Real populations are in danger of extinction if their size falls to a
low level. Predation might eliminate the last few members completely, finding mates becomes more difficult,
and lack of genetic diversity renders the population susceptible to epidemics. We following modification of the
logistic equation by constructing a per capita growth rate that is actually negative below some critical value T .

dN

dt
= rN

(
N

T
− 1

)(
1− N

K

)
(26.2)
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(a) Solutions to Logistic Equation. (b) Solutions to the Predator Pit Equation.

where 0 < T < K. Unlike before, now N = 0 is asymptotically stable; that is, if the starting value N0 of a
solution is near enough to 0, then the solution will tend to 0 as t increases.

26.2 Competing Species
Suppose that there are two species in competition with one another in an environment where the common food
supply is limited. For example, sea lions and penguins, red and gray squirrels, and ants and termites are all
species which fall into this category.
There are two particular types of outcome that are often observed in the real world. In the first case, there is
coexistence, in which the two species live in harmony. (In nature, this is the most likely outcome; otherwise,
one of the species would be extinct.) In the second case, there is mutual exclusion, in which one of the species
becomes extinct. (For example, American gray squirrels imported into the UK are causing the extinction of the
smaller native red squirrels.) The Equations are given by

ẋ = x(β − δx− γy)

ẏ = y(b− dy − cx)
(26.3)

where β, δ, γ, a, b, c are all positive constants with x(t) and y(t) both positive representing the two species
populations measured.
Physical Meaning:

• The terms βx− δx2 and by − dy2 represent the usual logistic growth of one species.

• Both species suffer as a result of competition over a limited food supply, hence the terms −γxy and −cxy
in ẋ and ẏ.

Fixed points of equation (26.3) are

O = (0, 0), P =

(
0,
b

d

)
, Q =

(
β

δ
, 0

)
, and R =

(
γb− βd
γc− δd

,
βc− δb
γc− δd

)
(26.4)

Suppose that C1 = γc− δd, C2 = γb− βd,and C3 = γc− δd. For the fixed point to lie in the first quadrant, one
of the following conditions must hold:

(i) C1,C2, and C3 are all negative.

(ii) C1,C2, and C3 are all positive.

Linearize by finding the Jacobian matrix.

J =

(
β − 2δx− γy −γx
−cy b− 2dy − cx

)
(26.5)

J at each fixed point is

JO =

(
β 0
0 b

)
JP =

(
β − γb/d 0
−bc/d −b

)
JQ =

(
−β −γβ/δ
0 b− βc/δ

)
JR =

1

C1

(
δC2 γC2

cC3 dC3

)
Let’s Consider case (i) first. The fixed points are all simple, and it is not difficult to show that O is an
unstable node, P and Q are cols, and for certain parameter values R is a stable fixed point. A phase por-
trait is plotted in Figure (26.2a), where eight of an infinite number of solution curves are plotted. For the
parameter values chosen here, the two species coexist and the populations stabilize to constant values after
long time periods. The arrows in the Figure (26.2a) show the vector field plot and define the direction of the
trajectories for system (26.2a). There is a stable node lying wholly in the first quadrant at R, and the nonzero
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populations x(t) and y(t) tend to this critical point with increasing time no matter what the initial populations are.

Figure 26.2: (a) A possible phase portrait showing coexistence.
(b) A possible phase portrait depicting mutual exclusion.

Now consider case (ii). The fixed points are all simple, and it is not difficult to show that O is an unstable
node, P and Q are stable or improper nodes, and R is a col. A phase portrait is shown in Figure (26.2b), where
nine of an infinite number of solution curves are plotted. In this case, one of the species becomes extinct. In
Figure (26.2b), the critical point lying wholly in the first quadrant is a saddle point or col, which is unstable.
The long-term behavior of the system is divided along the diagonal in the first quadrant. Trajectories starting
to the right of the diagonal will tend to the critical point at Q = (2, 0), which implies that species y becomes
extinct Trajectories starting to the left of the diagonal will tend to the critical point at P = (0, 2), which means
that species x will become extinct. Numerically, the trajectories lying on the stable manifold of the saddle
point in the first quadrant will tend toward the critical point at R. However, in the real world, populations
cannot remain exactly on the stable manifold, and trajectories will be diverted from this critical point leading to
extinction of one of the species.

26.3 Predator-Prey Models
Consider a two-species predator-prey model in which one species preys on another. Examples in the natural
world include sharks and fish, lynx and snowshoe hares, and ladybirds and aphids. A very simple differential
equation—first used by Volterra in 1926 and known as the Lotka-Volterra model.
The Equations are given by

ẋ = x(α− cy)

ẏ = y(γx− δ)
(26.6)

where α, c, γ, and δ are all positive constants, with x(t) and y(t) representing the scaled population of prey and
predator, respectively, and t is measured in years.
Physical Meaning:

• The term αx represents the growth of the population of prey in the absence of any predators. This is
obviously a crude model; the population of a species cannot increase forever.

• The terms −cxy and +γxy represent species interaction. The population of prey suffers and predators
gain from the interaction.

• The term −δy represents the extinction of predators in the absence of prey.

Fixed points of equation (26.6) are

O = (0, 0) and P =

(
δ

γ
,
α

c

)
(26.7)

Linearize by finding the Jacobian matrix.

J =

(
α− cy −cx
γy −δ + γx

)
→ JO =

(
α 0
0 −δ

)
JP =

(
0 −cδ/γ

γα/c 0

)
(26.8)
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The critical point at the origin is a saddle point, and the stable and unstable manifolds lie along the axes. The
stable manifold lies on the positive y−axis, and the unstable manifold lies on the x−axis. The critical point
at P is not hyperbolic, and so Hartman’s Theorem cannot be applied. System (26.6) has solution curves (the
differential equation is separable) given by xδyαe−γxe−cy = K, where K is a constant. These solution curves
may be plotted in the phase plane. A phase portrait is shown in Figure (26.3a).

(a) A phase portrait for the Lotka Volterra model.

(b) Time series plots, periodic behavior of the prey
and predators for one set of initial conditions, namely
x(0) = 1, y(0) = 2. The population of prey is shown as
the dashed curve and the population of predator is a
solid curve.

Figure 26.3

The population fluctuations can also be represented in the tx and ty planes. The graphs shown in Figure
(26.3a) show how the populations of predator and prey typically oscillate. Note that the oscillations are dependent
on the initial conditions. In Figure (26.3b), the period of both cycles is about 5 years. Different sets of initial
conditions can give solutions with different amplitudes.
Consider the trajectory passing through the point (1, 1) in Figure (26.3a). At this point, the ratio of predators
to prey is relatively high; as a result, the population of predators drops. The ratio of predators to prey drops,
and so the population of prey increases. Once there are lots of prey, the predator numbers will again start to
increase. The resulting cyclic behavior is repeated over and over and is shown as the largest closed trajectory in
Figure (26.3a).
If small perturbations are introduced into system (26.3a) to model other factors, for example, then the qualitative
behavior changes. The periodic cycles can be destroyed by adding small terms into the right-hand sides of system
(26.3a). The system is said to be structurally unstable.
In 1975, Holling and Tanner constructed a system of differential equations whose solutions have the same
amplitudes in the long term, no matter what the initial populations.

26.4 Spread of Disease
26.4.1 SIR Model

We begin with a simple model of a disease in a population of size N . We divide the population into three classes:
susceptible S, infected I, and recovered R. Let

β = infection rate µ = death rate υ = recovery rate
γ = rate by which recovered individuals have lost their immunity and became susceptible to the disease.

Then we have the following diagram:

where A is the growth of susceptible. If all newborns are healthy, then not only S and R,but also I contributes
to the growth term A. We view each of the populations S, I, R, N as representing a number of individuals
(or a number density, that is, the number of individuals per unit area). The dimension of γ, µ, υ is 1/time, the
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dimension of β is 1/(individual·time), and the dimension of A is individual/time.

dS

dt
= A− βSI + γR− µS

dI

dt
= βSI − υI − µI

dR

dt
= υI − γR− µR

(26.9)

To examine more carefully the meaning of A, we introduce a differential equation for N(t), which is obtained by
adding all the equations in (26.9)

dN

dt
= A− µN → N(t) = N0e

−µt +
A

µ
(1− e−µt) (26.10)

Hence N(t)→ A/µ as t→∞. Thus A/µ is equal to the asymptotic density of the population (as t→∞).
The SIR model has an equilibrium point which is disease free, namely

(S0, I0, R0) =

(
A

µ
, 0, 0

)
(26.11)

we call it the disease free equilibrium (DFE). The Jacobian matrix at the DFE is

J(S0, I0, R0) =


−µ −βA

µ
γ

0 β
A

µ
− (υ + µ) 0

0 υ −µ− γ

 → The eigenvalues are

λ1 = −µ
λ2 = −µ− γ

λ3 = β
A

µ
− (υ + µ)

(26.12)

Hence, the DFE is stable if

λ1,2,3 < 0 → β
A

µ
< υ + µ (26.13)

We conclude that in order to stop the spread of infection we need to either decrease the rate of infection (β) by
decreasing contact between healthy and infected individuals, or by increasing the rate of recovery (υ) by drugs.
When (26.13) holds, any new small infection will die out with time.
On the other hand if,

β
A

µ
> υ + µ (26.14)

the DFE is unstable; there are arbitrarily small infections that will not disappear in the population.
Furthermore, there is an equilibrium point (S̃, Ĩ, R̃) with Ĩ > 0, namely

βS̃ = υ + µ R̃ =
υ

γ + µ
Ĩ

β

µ
Ĩ =

(
β
A

µ
− (υ + µ)

)
υ + µ− γυ

γ + µ

(26.15)

Theorem 26.1. If (26.14) holds then the equilibrium point (S̃, Ĩ, R̃) is stable.

Proof. The Jacobian matrix at (S̃, Ĩ, R̃)

J(S̃, Ĩ, R̃) =

−βĨ − µ −βS̃ γ

βĨ βS̃ − (υ + µ) 0
0 υ −µ− γ

 with βS̃ = υ + µ (26.16)

Hence the characteristic polynomial is

det(J(S̃, Ĩ, R̃)−λI) = 0 → λ3 +α1λ
2 +α2λ+α3 = 0 where

α1 = (βĨ + µ) + (γ + µ)

α2 = (βĨ + µ)(γ + µ) + βĨ(υ + µ)

α3 = βĨ[(υ + µ)(γ + µ)− υγ]

(26.17)

Clearly all the αi are positive, and

α1α2 = βĨ(υ + µ)(γ + µ) + positive terms > βĨ[(υ + µ)(γ + µ)− υγ] = α3. (26.18)

Hence, by the Routh-Hurwitz criterion15, the equilibrium point (S̃, Ĩ, R̃) is stable. �

15More about Routh-Hurwitz criterion here
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A stable equilibrium point with I > 0 is called endemic; it represents a disease that will never disappear.
In a healthy population we introduce one infection and compute the expected infection among the susceptibles
caused by this single infection. We call it the expected secondary infection, or basic reproduction
number, and denote it by R0. Then intuitively it is clear that DFE is stable if R0 < 1 (the secondary infection

is smaller than the initial infection) whereas if R0 > 1 then the DFE will be unstable. Clearly, R0 = β
A

µ(υ + µ)
.

26.4.2 SEIR Model

When a susceptible is exposed to an infected individual, he/she may or may not become immediately sick. With
this in mind, we may extend the SIR model by introducing a new class E of exposed individuals. The new
model, called the SEIR model, consists of the following equations:

dS

dt
= A− βSI + γR− µS

dE

dt
= βSI − κE − µE

dI

dt
= κE − υI − µI

dR

dt
= υI − γR− µR

(26.19)

Here κ is the rate by which the exposed become infected, and β is the rate of infection of susceptibles by infected

individuals. The DFE for the SEIR model is
(
A

µ
, 0, 0, 0

)
. Here R0 = β

Aκ

µ(υ + µ)(κ+ µ)
.

So far we considered infectious diseases that do not cause death. In infectious diseases which cause death,
e.g., Ebola, we need to change the equation for I by including a death rate ρ caused by the disease. Then the
equation for I in the system (26.9) becomes

dI

dt
= βSI − γI − µI − ρI (26.20)

Here, R0 = β
A

µ(υ + µ+ ρ)
.
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