
Université de Montréal

Neural Approaches to Dialog Modeling.

par

Chinnadhurai Sankar

Département d’Informatique et de Recherche Opérationnelle

Faculté des arts et des sciences

Thèse présentée à la Faculté des études supérieures et postdoctorales

en vue de l’obtention du grade de

Philosophiæ Doctor (Ph.D.)
en Informatique

août 2020

c� Chinnadhurai Sankar, 2020





Sommaire

Cette thèse par article se compose de quatre articles qui contribuent au domaine de

l’apprentissage profond, en particulier dans la compréhension et l’apprentissage des ap-

proches neuronales des systèmes de dialogue.

Le premier article fait un pas vers la compréhension si les architectures de dialogue

neuronal couramment utilisées capturent efficacement les informations présentes dans

l’historique des conversations. Grâce à une série d’expériences de perturbation sur des

ensembles de données de dialogue populaires, nous constatons que les architectures de

dialogue neuronal couramment utilisées comme les modèles seq2seq récurrents et basés sur

des transformateurs sont rarement sensibles à la plupart des perturbations du contexte

d’entrée telles que les énoncés manquants ou réorganisés, les mots mélangés, etc.

Le deuxième article propose d’améliorer la qualité de génération de réponse dans les

systèmes de dialogue de domaine ouvert en modélisant conjointement les énoncés avec les

attributs de dialogue de chaque énoncé. Les attributs de dialogue d’un énoncé se réfèrent à

des caractéristiques ou des aspects discrets associés à un énoncé comme les actes de dialogue,

le sentiment, l’émotion, l’identité du locuteur, la personnalité du locuteur, etc.

Le troisième article présente un moyen simple et économique de collecter des ensembles

de données à grande échelle pour modéliser des systèmes de dialogue orientés tâche. Cette

approche évite l’exigence d’un schéma d’annotation d’arguments complexes. La version

initiale de l’ensemble de données comprend 13 215 dialogues basés sur des tâches comprenant

six domaines et environ 8 000 entités nommées uniques, presque 8 fois plus que l’ensemble

de données MultiWOZ populaire.

Le dernier article présente une méthode sans intégration pour calculer les représentations

de mots à la volée. Cette approche réduit considérablement l’empreinte mémoire, ce qui

facilite le déploiement sur les périphériques (contraintes de mémoire) sur l’appareil. En

iii



plus d’être indépendante de la taille du vocabulaire, nous trouvons que cette approche est

intrinsèquement résistante aux fautes d’orthographe courantes.

Mots-clés: systèmes de dialogue axés sur les tâches, actes de dialogue, hachage sensible

à la localité, auto-attention, inférence en langage naturel, analyse des sentiments, graphique

de calcul dynamique, réseaux récurrents, réseaux récursifs, réseaux de neurones, apprentis-

sage profond, naturel traitement du langage, apprentissage par renforcement, apprentissage

automatique.

iv



Summary

This thesis by article consists of four articles which contribute to the field of deep learning,

specifically in understanding and learning neural approaches to dialog systems.

The first article takes a step towards understanding if commonly used neural dialog

architectures effectively capture the information present in the conversation history. Through

a series of perturbation experiments on popular dialog datasets, we find that commonly

used neural dialog architectures like recurrent and transformer-based seq2seq models are

rarely sensitive to most input context perturbations such as missing or reordering utterances,

shuffling words, etc.

The second article introduces a simple and cost-effective way to collect large scale datasets

for modeling task-oriented dialog systems. This approach avoids the requirement of a com-

plex argument annotation schema. The initial release of the dataset includes 13,215 task-

based dialogs comprising six domains and around 8k unique named entities, almost 8 times

more than the popular MultiWOZ dataset.

The third article proposes to improve response generation quality in open domain dialog

systems by jointly modeling the utterances with the dialog attributes of each utterance.

Dialog attributes of an utterance refer to discrete features or aspects associated with an

utterance like dialog-acts, sentiment, emotion, speaker identity, speaker personality, etc.

The final article introduces an embedding-free method to compute word representations

on-the-fly. This approach significantly reduces the memory footprint which facilitates de-

ployment in on-device (memory constraints) devices. Apart from being independent of the

vocabulary size, we find this approach to be inherently resilient to common misspellings.

Keywords: task-oriented dialog systems, dialog-acts, multiwoz, locality sensitive hash-

ing, wizard-of-oz, self-attention, natural language inference, sentiment analysis, dynamic

v



computational graph, recurrent networks, recursive networks, neural networks, deep learn-

ing, natural language processing, reinforcement learning, machine learning.

vi



Contents

Sommaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2. Background : Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. Types of Dialog systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. Task Oriented Dialog Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2. Open-Ended Dialog Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 3. Basic Neural Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1. Feed Forward Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. Recurrent Neural Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1. Long-Short Term Memory units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.2. Gated Recurrent Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3. Deep Learning For NLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1. Language modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2. Sequence to Sequence Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.3. Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.4. Transformers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



Chapter 4. Neural Approaches for End-to-End Dialog modeling . . . . . . . . . . 19

4.1. Sequence to Sequence approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2. The Hierarchical Recurrent Encoder-Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 5. Background : Efficient Locality Sensitive Hashing (LSH)-based

Text Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 6. Prologue to First Article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1. Article Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2. Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4. Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 7. Do Neural Dialog Systems Use the Conversation History

Effectively? An Empirical Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.4. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.4.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.4.2. Types of Perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.4.3. Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.5. Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

viii



Chapter 8. Prologue to Second Article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.1. Article Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.2. Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.4. Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 9. Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset . 43

9.1. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9.3. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.3.1. Human-machine vs. human-human dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.3.2. The Wizard of Oz (WOz) Approach and MultiWOZ . . . . . . . . . . . . . . . . . . . . . . 46

9.4. The Taskmaster Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.4.2. Two-person, spoken dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.4.2.1. WOz platform and data pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.4.2.2. Agents, workers and training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.4.3. Self-dialogs (one-person written dataset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.4.3.1. Task scenarios and instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.4.3.2. Pros and cons of self-dialogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.4.4. Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.5. Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.5.1. Self-dialogs vs MultiWOZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.5.2. Self-dialogs vs Two-person . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.5.3. Baseline Experiments: Response Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.5.4. Baseline Experiments: Argument Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

ix



9.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 10. Prologue to third Article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.1. Article Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.2. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

10.4. Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 11. Deep Reinforcement Learning For Modeling Chit-Chat Dialog

With Discrete Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

11.1. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

11.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

11.2.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11.3. Attribute Conditional HRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

11.3.1. Dialog Attribute Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

11.3.2. Conditional Response Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

11.3.3. RL for Dialog Attribute Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11.4. Training Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

11.5. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

11.5.1. Dialog Attribute Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

11.5.2. Utterance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

11.5.3. RL For Dialog Attribute Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11.6. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

11.7. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 12. Prologue to Fourth Article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

12.1. Article Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

x



12.2. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

12.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

12.4. Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Chapter 13. Transferable Neural Projection Representations . . . . . . . . . . . . . 83

13.1. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

13.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

13.3. Neural Projection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

13.3.1. Vanilla Skip-Gram Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

13.3.2. Neural Projection Skip-Gram (NP-SG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

13.3.3. Training NP-SG Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

13.3.4. Discriminative NP-SG Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13.3.5. Improved NP-SG Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13.4. Training Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

13.4.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

13.4.2. Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

13.5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

13.5.1. Qualitative Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

13.5.2. Quantitative Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

13.5.2.1. Similarity Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

13.5.2.2. Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

13.5.2.3. Text Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

13.6. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Chapter 14. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xi





List of tables

7.1 An example of an LSTM seq2seq model with attention’s insensitivity to shuffling

of words in the dialog history on the DailyDialog dataset. . . . . . . . . . . . . . . . . . . . . . . . 32

7.2 Model performance across multiple datasets and sensitivity to different

perturbations. Columns 1 & 2 report the test set perplexity (without

perturbations) of different models. Columns 3-7 report the increase in perplexity

( � PPL[�] ) when models are subjected to different perturbations. The mean

(µ) and standard deviation [�] across 5 runs are reported. The model that

exhibits the highest sensitivity (higher the better) to a particular perturbation

on a dataset is in bold. seq2seq_lstm_att are the most sensitive models 24/40

times, while transformers are the least with 6/40 times. . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Model performance across multiple datasets and sensitivity to different

perturbations. Columns 1 & 2 report the test set perplexity (without

perturbations) of different models. Columns 3-7 report the increase in perplexity

when models are subjected to different perturbations. The mean (µ) and standard

deviation [�] across 5 runs are reported. The Only Last column presents models

with only the last utterance from the dialog history. The model that exhibits the

highest sensitivity (higher the better) to a particular perturbation on a dataset

is in bold. seq2seq_lstm_att are the most sensitive models 24/40 times, while

transformers are the least with 6/40 times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9.1 Statistics comparison: Self-dialogs vs MultiWOZ corpus both containing

approximately 10k dialogues each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9.2 Statistics comparison: Self-dialogs vs two person corpus both containing 5k dialogs.

Perplexity and BLEU are reported for Transformer baseline. Joint-Perplexity and

xiii



Joint-BLEU are perplexity/BLEU scores from the joint training of self-dialogs

and two-person but evaluated with their respective test sets. . . . . . . . . . . . . . . . . . . . . 56

9.3 Evaluation of various seq2seq architectures [156] on our self-dialog corpus using

both automatic evaluation metrics and human judgments. Human evaluation

ratings in the 1-5 LIKERT scale (higher the better), and human ranking are

averaged over 500 x 3 ratings (3 crowdsourced workers per rating). . . . . . . . . . . . . . 58

9.4 Inter-Annotator Reliability scores of seq2seq model responses computed for 500

self-dialogs from the test set, each annotated by 3 crowdsourced workers. . . . . . . . . 59

9.5 API Argument prediction accuracy for Self-dialogs. API arguments are annotated

as spans in the utterances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11.1 Dialog-acts prediction accuracy in Reddit validation set. . . . . . . . . . . . . . . . . . . . . . . . . 73

11.2 Dialog-acts prediction accuracy for classifiers trained on validation set of different

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

11.3 Perplexity and Embedding Metrics for the Reddit validation set. . . . . . . . . . . . . . . . . 74

11.4 Validation Perplexity for the Open-Subtitles dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

11.5 Human Evaluation results: Seq2Seq+Attr vs Seq2Seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11.6 Sample conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

11.7 Diversity scores on the Open-Subtitles validation set after RL fine-tuning . . . . . . . 77

11.8 Human Evaluation results:RL vs Seq2Seq+Attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

11.9 Percentage of generic responses after RL fine-tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

11.10 Sample conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

13.1 Similarity Tasks: # of params, 100k vocabulary size for skipgram baseline, 100

embedding size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

13.2 Sampled nearest neighbors for NP-SG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xiv



List of figures

2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Deep fully-connected feed forward network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Recurrent Neural Network (RNN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Sequence to Sequence Encoder-Decoder Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 The computational graph of the HRED architecture [141] for a sample dialog

composed of three turns. The token encoder provides a representation for each

utterance and the context encoder provides the condensed representation for the

previous utterances. The decoder predicts tokens conditioned additionally on this

context embedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Memory for V look-up vectors for each token vs storing K(<< V ) vectors and

linearly combining them for token representation. We consider K = 1120 following

[124] in this paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Binary Locality-Sensitive Hashing (LSH) projection representation for text. . . . . . 27

7.1 The increase in perplexity for different models when only presented with the k most

recent utterances from the dialog history for Dailydialog (left) and bAbI dialog

(right) datasets. Recurrent models with attention fare better than transformers,

since they use more of the conversation history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.1 Sample Taskmaster-1 two-person dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9.2 Sample instructions for agents playing “assistant" role . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.3 Sample instructions for crowdsourced workers playing “user" role . . . . . . . . . . . . . . . . 50

9.4 Sample instructions for written “self-dialogs" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xv



9.5 Sample one-person, written dialog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.6 Indicating transaction status with “accept" or “reject" . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

11.1 Dialog attribute classification: We predict the dialog attribute of the next

utterance based on the previous context and attributes corresponding to the

previous utterances. Please note that we depict only a single attribute for

convenience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

11.2 Attribute Conditional HRED : Token generation is additionally conditioned on

the predicted dialog attributes. The dialog attribute’s embedding is concatenated

with the context vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

13.1 Neural Projection Skip-gram (NP-SG) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xvi



Acknowledgement

There are a lot of people who helped me in various aspects of the research I conducted, as

well as being supportive during the past five years.

First, I would like to thank my advisor Yoshua Bengio for his great advice and support.

His optimism, enthusiasm and research freedom helped me explore ambitious research plans

during my PhD. I would like to thank the committee members for suggesting thoughtful

experiments to analyze and improve the methods presented in the thesis. I would like to

thank members of MILA: Sarath Chandar, Julian Serban, Sandeep Subramanian, Srinivas

Venkattaramanujam, Zhouhan Lin, Alex Lamb, Taesup Kim, Sai Rajeswar, Saizheng Zhang,

Prasanna Parthasarathi, Guillaume Alain, Hugo Larochelle, Aaron Courville from whom I

have learned lot about research on a diverse set of topics. Special thanks to all the staff

members at Mila who made my Ph.D. life much easier: Julie Mongeau, and Linda Peinthiere,

Frédéric Bastien, Myriam Cote, Jocelyne Etienne and others.

I spent a considerable amount of time during my PhD at Google Brain/AI where I had

great mentors, Sujith Ravi and Zornitsa Kozareva during internships. I thank the Google

Brain/AI team for providing an excellent atmosphere to learn about many topics in neural

networks and different tasks. Discussing research with fellow internship friends: Arvind

Neelakantan, Semih Yavuz, Bill Byrne, Da Cheng Juan, Gaurav Menghani and others was

was hugely beneficial. I would like to thank Layla El Asri for hosting me at Microsoft

Research and support me with my dataset collection project.

I would like to thank my brother, Jeevan who introduced me to Deep Learning and

encouraged me to pursue a PhD on the topic. My parents, Sankar, and Mala have made

many sacrifices to make sure that I get the best education and they derive immense joy

from my academic progress. Finally, I would like to thank my wife, Prathusha who has been

incredibly supportive of me and has always believed in me.

xvii





Chapter 1

Introduction

Advances in deep learning-based speech recognition systems [10], with improved Automatic

Speech Recognition (ASR) modules [135], resulted in a flurry of voice operated personal-

assistant bots like Apple’s Siri, Amazon’s Alexa, Google Home and Microsoft’s Cortana,

to name a few. Such systems have enjoyed reasonable success in replacing the traditional

touch interface, used by most applications, with voice/speech signals. Over the past few

years, "Chatbots" have been successfully commercialized in several areas, with the most

success in e-commerce, agenda/scheduling, and event/travel reservations. This also lead to

the development of similar applications aimed at people with disabilities like autism, visually

impairment, etc. Unlike traditional rule-based learning systems which are often restricted

to specific domains and require handcrafted rules, deep learning approaches are data driven,

scalable and don’t usually require domain experts to make commercialization viable.

Deep Learning [44] has been extremely effective in machine learning sub-fields like speech

recognition & synthesis [10], and natural language processing (NLP) tasks like language mod-

eling [100], machine translation [8, 184] and abstractive summarization [134], etc. Natu-

rally, there have been several research efforts [127, 168, 83, 80, 141, 142] in deep learning

research community in training end-to-end neural architectures for modeling conversations.

However, the success in applying end-to-end deep learning based approaches in the real

world dialog tasks has been slightly underwhelming. While these models have demonstrated

the ability to generate fluent responses, they still lack the ability to “understand” and produce

incoherent responses. They often produce boring and repetitive responses like “Thank you.”

[79, 136] or meander away from the topic of conversation. Fortunately, the research com-

munity has been very active in deeply understanding the root cause of such issues [81, 147],



organizing challenges [135, 38], releasing effective large scale datasets [84, 93, 20] and

research frameworks like ParlAI [106], ConvLab [76], Plato [111], etc.

In this thesis, we present four articles exploring neural approaches to modeling dialog

systems. Chapter 2 provides the basics of dialog and introduces the types of dialog systems.

Chapters 3 - 5 introduces the basic neural architectures used in the current dialog systems

research.

2



Chapter 2

Background : Dialog

This chapter covers the basics needed to understand the motivation and solutions proposed in

this thesis. Dialog systems are conversational systems which respond to queries or messages

posed by humans, in a meaningful natural language form. Entities take turns to answer to

messages based on the previous context.

A dialog typically consists of multiple turns. Each dialog turn may contain multiple

utterances spoken by the same user. Dialogs can be either dyadic - for example, conversations

between a customer service representative and a customer - or may involve more than two

people, like Reddit forums. Dialogs can involve users interacting through written language,

spoken language, or in a multi-modal setting (e.g. using both speech and visual modalities).

There is usually a very weak correlation between the word usage statistics of spoken and text-

based conversations. Spoken language tends to be less formal, containing lower information

content and many more pronouns than written language [21].

Dialog systems have been an active research topic from the early 60s [162, 25, 174,

7, 97, 146, 67, 17, 87, 167, 126, 149, 15, 68]. Predominately, the hand engineered

rule-based approaches were the ones that were popular and practical, among the ideas put

forward. Advances in machine learning systems and computing power, thanks to Moore’s

law, paved the way for successful statistical machine learning approaches, embedded with

hand engineered rules, to gather necessary attention [155, 60, 16, 180]. Recent progress in

the last years in both Automatic Speech Recognition (ASR) and Question Answering (QA)

systems opens the way to a new generation of dialog systems allowing a human user to,

through a phone or in front of a screen, ask a computer for information on any subject.



2.1. Types of Dialog systems

Dialog systems can be commonly grouped into two categories based on most uses-cases.

• Task oriented - conversational agents are expected to accomplish well defined tasks

with quantifiable goals like movie or restaurant reservation, meeting scheduling, book-

ing cabs, etc.

• Open-Ended - conversational agents capable of conversing with humans on popular

topics, such as entertainment, fashion, politics, sports, technology, etc.

We introduce the nature of each dialog task along with commonly used approaches to solving

each task in this section.

2.1.1. Task Oriented Dialog Systems

Traditionally, for goal oriented systems, the dialog task is framed as a sequential slot

filling process [186, 171] where the dialog system interacts with users to extract the data

needed to fill the slots and the task is completed when all the slots are filled. Typical domains

of this task are telephone shopping, online banking, online trading, etc [97, 146, 7]. The

user has his/her purpose and knows almost all information in order to achieve the task. As

an example, for a restaurant reservation system, such slots can be the location, price range

or type of cuisine served at the restaurant.

A typical task-oriented dialog system architecture as shown in Figure 2.1 contains four

major components - a natural language interpreter/understanding (NLU) unit, a state

tracker, a dialog manager, and a Natural Language Generation (NLG) unit. Spoken di-

alog systems additionally contain an Automatic speech recognition (ASR) module.

Fig. 2.1

4



The NLU unit. : parses the user utterance for extracting features like user intent, entities,

etc., which are vital for dialog state tracking.

The state/user intent tracker. : computes a probability distribution over the dialog

states, taking into account previous user utterances and states [179]. For instance, consider

a restaurant reservation system where the dialog states in this case might be slot values

like time, city and number of people. Each slot might be filled with one of the many valid

discrete values. The task of the dialog state tracker is to output a distribution over all

possible slot-value pairs.

The Dialog manager. : collects scores from ASR module, if available and gathers the dialog

state features computed from the other submodules (practical implementations typically

incorporate helper modules like Question-Answering (QA) modules, Memory/Knowledge

base (KB) modules, etc.) in the system and chooses an action with the intention of increasing

user satisfaction, both in the short term as well as in the long term. Actions here usually refer

to dialog acts pertaining to the conversational domain (e.g., movie booking). Dialog acts

can be used to suggest, inform, request certain information, etc. and they are unique to each

dialog domain. Therefore, the set of dialog acts in the hotel domain may be different from

the train domain although there could be some overlap among domains. For example, in the

MultiWOZ [20], the hotel and train domain share the following dialog acts - offer booking,

inform booked, decline booking. Apart from dialog acts, the NLG response selection problem

can also be formulated as a planning problem and solved using reinforcement learning (RL)

to optimize a dialog policy through interaction with users [77, 181, 61, 186].

The NLG unit. : converts the selected dialog manager actions to natural language re-

sponses. In case of a spoken system, the generated responses are passed to the Text To

Speech module (TTS). There are, indeed, no standard rules as to what responsibilities should

be assigned to each module. In recent years there has been a trend towards developing fully

data driven systems by unifying these modules using a deep neural network that maps the

user input to the agent output directly [175, 20, 150].

Although there are recent end-to-end trainable models using RNNs for slot filling [102], it

is inherently hard to scale to new domains, i.e, it is will be a tedious task to manually list down

5



all the slots that users might refer to in a conversation. Nevertheless, sequence to sequence

based models have inspired recent task oriented system designs [128, 176] where the models

are end-to-end trainable but still modularly connected. [19], taking inspiration from the

latest developments in memory networks [177] for question answering, propose a completely

end-to-end trainable model from scratch, without any prior slot structure assumption. While

it is easier to evaluate task oriented systems, it is difficult to gather large data-sets to train

models as they are usually too domain specific. So, this makes it especially harder to train

deep learning based architectures as they are known to be data hungry.

Evaluation. : Task oriented systems are usually evaluated on two types of metrics - task

completion metrics like accuracy, precision, recall, F1 etc., and generated response quality

metrics like F1 and BLEU scores. Although there are several recent research efforts [63, 88],

human evaluation is still among best possible ways to judge the quality of the generated

responses.

2.1.2. Open-Ended Dialog Systems

Open-Ended dialog systems belong to a class of unstructured dialogs where the agents are

expected to converse with humans on pretty much any popular topic, such as entertainment,

fashion, politics, sports, technology, etc. Open-Ended dialog systems are evaluated only on

user satisfaction scores. Unlike task oriented systems, there are no task completion metrics

like accuracy, precision, etc. Open-Ended conversations are more complex to model as they

inherently exhibit high entropy i.e., there are numerous plausible responses or directions

in which discussions can progress at each time step. Evaluation criteria for testing such

systems are hard for the same reason, and we usually resort to human evaluation (mechanical

turkers), like Amazon Mechanical Turk (AMT) [35], to rate the responses of Open-Ended

dialog systems.

Early works in non-goal oriented systems like the popular ELIZA program [174] involved

template (regular expression) matching and just simple text parsing rules. It soon gained

popularity mostly by persistently rephrasing statements or asking questions. ELIZA’s rep-

utation led to similar works like [32], where the authors used simple text parsing rules,

similar to ELIZA, to mimic behaviors of paranoid patients. However, such systems were

merely viewed as an amusement and not commercialized for any real world applications.

6



Later, works like [55] employed data driven methods to statistically model dialog as a sto-

chastic sequence of tokens using Markov chains. During inference, their model would first

generate topic or intent-based tokens, which was then fed to another Markov chain to fill in

the words surrounding the topic tokens.

Lack of low latency, reliable evaluation metrics, lack of large scale datasets and other

related issues contributed to the slow pace of the Open-Ended dialog research until recently

when promising works like [150, 141, 168, 83, 80] took inspiration from the success of deep

neural network based sequence to sequence modeling for Neural Machine Translation (NMT)

[29] and proposed end-to-end training of dialog systems by posing the response generation

as a machine translation problem. We explain the end-to-end neural approaches to dialog

modeling further in Chatper 4.

7





Chapter 3

Basic Neural Network Architectures

In this chapter we are going to introduce some important building bricks of modern neural

architectures specifically in the context of natural language processing. These components

forms the basis of the models we are going to introduce in the following articles.

3.1. Feed Forward Networks

The architecture of a shallow feed-forward neural network is typically defined as follows:

ht = f(Wxt + b)

ŷt = softmax(V ht + c)
(3.1.1)

where f is some non-linearity function like sigmoid or tanh, and ht is the hidden state of

the network. Softmax gives a valid probability distribution over possible values yt can take.

Figure 3.1 depicts a deep fully-connected feed forward network.

Fig. 3.1. Deep fully-connected feed forward network



Fig. 3.2. Recurrent Neural Network (RNN)

3.2. Recurrent Neural Architectures

Recurrent neural networks(RNNs) [130] are a family of neural networks for processing

sequential data, Figure 3.2. The typical architecture of a vanilla RNN is defined as follows:

ht = f(Wxt + Uht�1 + b) (3.2.1)

ŷt = softmax(V ht + c) (3.2.2)

where the matrix U corresponds to hidden-to-hidden connections. RNNs can be used as a

probabilistic model [103] over a sequence of tokens, as in eq 3.3.1. The hidden state acts

as a sufficient statistic, which summarizes the past sequence and parametrizes the output

distribution of the model: P✓(wt|w1:t�1) = P✓(wt|ht�1).

3.2.1. Long-Short Term Memory units

Vanilla RNNs suffer from exploding and vanishing gradients [14] for tasks involving longer

sequences like language modeling. RNNs become very ineffective when the gap between the

relevant information and the point where it is needed become very large. That is due to

the fact that the information is passed at each step and the longer the chain is, the more

probable the information is lost along the chain. While techniques like gradient clipping [14]

can limit exploding gradients, vanishing gradients are harder to prevent and so limit the

network’s ability to learn long term dependencies [52]. A key development in addressing the

10



vanishing gradient issue in RNNs was the introduction of gated memory in the Long Short

Term Memory (LSTM) network [53]. LSTM can be viewed as an extension to vanilla RNN

by adding a series of gates and an internal cell state. The update equations at time step t

for the LSTM are as follows

it = �(Uixt +Wist�1 + bi)

ft = �(Ufxt +Wfst�1 + bf )

ot = �(Uoxt +Wost�1 + bo)

gt = tanh(Ugxt +Wgst�1 + bg)

ct = ct�1 � f + g � i

ht = tanh(ct)� ot

(3.2.3)

Here � stands for element-wise multiplication, and �(·) is the sigmoid activation function.

W· and b· are the corresponding weights and biases. The it, ft, ot are the input gate, forget

gate, and output gates, respectively. ct is the internal cell state, and ht is the output hidden

state.

The three gates control the flow of information in the network. All of it, ft, ot are outputs

of sigmoid functions, thus their values are in between 0 and 1. Input gate (it), forget gate

(ft), and output gate (ot) control the inputs to the cell state (g), the cell state inherited from

the last time step (ct�1), and the cell state at the current time step (ct), respectively. These

gating mechanisms are explicitly designed to enable the LSTM to retain contents in the cell

states for longer time steps.

3.2.2. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [29, 31] is a simplified version of the LSTM (with

fewer gates) which works equally well. It can be viewed as a simplified version of LSTM

without the cell state and output gate.

At time step t, GRU first computes two sets of gates, i.e., the update gate zt and the

reset gate rt:

zt = �(Wxzxt +Whzht�1 + bz)

rt = �(Wxrxt +Whrht�1 + br)
(3.2.4)

11



where xt is the input at time step t, W⇤ and b⇤ are the corresponding weights and biases.

ht�1 is its hidden state at t� 1, which we will elaborate later. Then a candidate activation
eht is computed with the reset gate rt and hidden state ht�1:

eht = tanh(Wxt + U(rt � ht�1)) (3.2.5)

The reset gate, rt is used to control the amount of past information to erase, just like the

forget gate in the LSTM. The final hidden state of GRU is then specified by

ht = (1� zt)� ht�1 + zt � eht (3.2.6)

where the hidden state ht is a linear combination of previous activation ht�1 and the

candidate activation eht, where the interpolation is determined by the update gate zt. The

update gate helps the model to determine how much of the past information (from previous

time steps) needs to be passed along to the future.

Note that there is another variant for the Equation 3.2.5, which was proposed in [31],

where the order of multiplication between U and rt is slightly different [28]:

eht = tanh(Wxt + rt � (Uht�1)) (3.2.7)

The GRU effectively removes one fourth of the parameters in the LSTM, thus allows

more hidden states with a same budget of model size. This advantage allows the GRU to be

able to yield better results on tasks with large datasets such a machine translation and dialog

modeling. Although gates introduced in LSTMs and GRUs help model the long-term depen-

dencies better, it often gets tricky to train the gates when they are saturated especially when

they are expected to be saturated by design [23]. Also, it gets hard to parallelize the model

for processing sentences due to their sequential computations requirements. Now, Trans-

formers [166] - a self-attention-based non-recursive architecture, has become widely popular

and has achieved state-of-the-art performance on several NLP tasks [36, 91]. It allows for

parallelizable implementations as the self-attention-based architecture is non-recursive by

design. We introduce the Transformer model in Section 3.3.4.

12



3.3. Deep Learning For NLP

3.3.1. Language modeling

We use language models to compute the probability distribution over the sequence of

words w1, ..., wT . One way to factorize the probability P (w1, ..., wT ), is to represent it as the

product of conditional probabilities of each word given all the previous ones, as in eq 3.3.1.

P (w1:T ) =
TY

t=1

P (wt|w1:t�1) (3.3.1)

where w1:t�1 is the sequence w1, ..., wt�1 and w
0
1 is defined as null. N-gram models adopt

a count-based approach towards statistical language modeling. N-gram models compute

probability of a sequence of words by maintaining a look up table of conditional probabilities

for each word given the previous (N � 1) words. As for neural network based approaches,

we can either use feed-forward neural networks or Recurrent Neural Networks (RNNs) to

parameterize the probability of the next token given the previous tokens, for each time step,

1  t  T . We train such models with the standard maximum likelihood objective, by

decreasing the cross-entropy loss [45]. Once trained, we can use this model for conditional

language generation by sampling a word given the sequence of previously sampled words.

[12] use feed-forward neural networks for language modeling, where they approximate the

next word prediction (in eq 3.3.1) by conditioning with the previous N words instead of

the entire history : P (wt|w1:t�1) ⇡ P✓(wt|wt�1�N :t�1), where ✓ refers to the parameters of

the feed forward network. With the assumption that the outputs lie within in closed set

V (vocabulary of the tokens), RNNs can also be considered as a simple generative model of

discrete sequences. For probabilistic language models word perplexity is a well-established

performance metric [13, 103]. Word perplexity of a language model over a sequence W =

w1, ..., wt is defined as

PP (W ) = 2�
1
N log2P (w1,...,wt�1) (3.3.2)

3.3.2. Sequence to Sequence Models

We can extend the idea of predicting the next token given the previous tokens to predict-

ing the output sequence given the input sequence directly. For instance, we can frame the

problem of machine translation (translating text from one language to another) as a sequence

13



Fig. 3.3. Sequence to Sequence Encoder-Decoder Architecture

to sequence problem where the input sequence is a sentence belonging to the source language

sentence and output sequence is the target language sentence. Sequence to Sequence models

(Figure 3.3) mainly involve a Recurrent Neural Network (RNNs) based encoder to summa-

rize the input sequence w
i
1:N and a RNN based decoder which predicts the output sequence

w
o
1:t�1 token by token conditioned on the encoder hidden state.

P✓(w
o
t |wo

1:t�1, w
i
1:N) / softmax (W o

t � f(hdecodert�1 , hencoderN )) (3.3.3)

where W
o
t is the output token embedding of wo

t , hdecodert�1 , hencoderN are the hidden states of

the decoder and encoder respectively. f is a non-linear transformation - usually a Multi-Layer

Perceptron (MLP) network.

3.3.3. Attention Mechanism

In the Sequence to Sequence model described above, the basic premise of the Encoder

RNN is to parse every item in an input series, one after the other, and keep updating it’s

hidden state vector every step of the way as shown in Figure 3.3. This hidden vector at the

end of every step is understood to represent the context of all prior inputs. In other words,

the last hidden state represents the context of the entire sequence and is fed to the decoder

at every time step to generate the output sequence. Attention mechanism introduced in

14



[8] enables the decoder to attend to all the tokens in the input sequence directly instead of

just conditioning on the last hidden state context vector. The attention mechanism can be

described by the following equations

ci =
PM

j=1 ↵ijhj

↵ij = exp(eij)PM
k=1 exp(eik)

eij = f(si�1, hj)

(3.3.4)

where M is the input sequence length, ci is the attention based context vector which is

fed to decoder instead of hM , f is a type of non-linear transformation (eg. a feedforward

neural network) termed as the alignment model. The attention context vector, ci is a linear

combination of the input hidden states from all the time steps. As seen from the Equation

3.3.4, there is a shorter and direct path for the backpropagation training signals to propagate

from the decoder equally to all the input time steps. ↵ij are called as the attention weights

corresponding to the attention placed by the decoder at the i
th time step over the j

th input

token.

There have been different variants of attention mechanisms since they were first pro-

posed, among which self-attention becomes the most influential variant, which was proposed

under the name of self-attention [86]. Later on the Transformer model [166] significantly

developed the self-attention mechanism, which resulted in a series of the state-of-the-art

performances. Transformers [166] based architectures like BERT [36], XL-net [185], GPT-

2 [118], MT-DNN [89], RoBERTA [92] reached state-of-the-art performance on tasks like

machine translation [6], language modeling [118], text classification benchmarks like GLUE

[170].

3.3.4. Transformers

The Transformer still follows the encoder-decoder framework as depicted in Section

3.3.2. The difference lies in the form of the encoder and decoder, and the attention mech-

anism between them. Following the notations from [166], the encoder maps an input se-

quence of symbol representations (x1, . . . , xn) to a sequence of continuous representations

z = (z1, . . . , zn). Given z, the decoder then generates an output sequence (y1, . . . , ym)

of symbols one element at a time. Transformers consists of multiple layers (typically 6) of

15



encoder and decoder layers stacked upon each other. All encoder and decoder layers have

similar structure.

Each encoder consists of two layers: self-attention and a feed forward layer.

Self-attention layer. : The encoder’s inputs first flow through the self-attention layer. The

self-attention operation can be described as mapping a query and a set of key-value pairs to

an output, where the query, keys, values, and output are all vectors. In the first layer, the

input tokens are converted to query, keys and values by a simple linear transformation and

packed into matrices, Q,K, V 2 RN ·d, where N in the input sequence length and d is the

embedding dimension. We compute the matrix of outputs as:

A = softmax(
QK

T

p
d

)V (3.3.5)

The scaling factor, d is to avoid the softmax from saturating due to high values resulting

the dot products. Please note that the dimension of the self-attention output matrix, A is

RN ·d as well.

Feed forward layer. : The output of the self-attention layer is fed into a full connected

layer with ReLU activation [109]. The output of this feed-forward layer is fed into the

subsequent encoder layers after which they are fed into the decoder.

Position encodings. : Since the transformer doesn’t have a recurrent mechanism, the token

embeddings are added with positional encodings to inform the network about the token’s

position in the sequence. [166] use the following functions to create a constant positional

encoding matrix with position-specific values.

PEpos,2i = sin( pos
100002i/d

)

PEpos,2i+1 = cos( pos
100002i/d

)
(3.3.6)

where pos is the position in the sequence and i is the dimension in the embedding vector,

d is the embedding dimension. The positional encoding matrix is simply added to the token

embedding matrix before feeding to the encoder layer. The authors chose a sinusoid function

as it would allow the model to easily learn to attend by relative positions, since for any fixed

offset k, PEpos+k can be represented as a linear function of PEpos. Such embeddings are

16



typically referred to as absolute position embeddings, to usually depend on the absolute

location of the token within the sequence. This differs from how recurrent neural networks

operate as they model position in relative terms through their recurrence over the positions

in the input sequence. [143] introduce relative position embeddings to allow attention to be

informed by how far two tokens are apart in a sequence. This involves learning a separate

relative position embedding, PEi 2 Rd for 0  i  N�1. which is added to the self-attention

weights.

Cross-attention. : Similar to the encoder layers, the partially decoded outputs are fed

into the decoder layers. In the final decoder layer, the attention is performed between the

encoder and decoder layers where the query, Q is from the final decoder layer and key K &

value V are the outputs from the last encoder layer. The output of this attention is fed to

softmax layer to decode the next token. It is important to note that the Transformer is still

an auto-regressive model which generates sequences token by token.

17





Chapter 4

Neural Approaches for End-to-End Dialog modeling

4.1. Sequence to Sequence approaches

Following the success of neural machine translation systems [8], there were multiple works

[150, 141, 142] with the sequence to sequence paradigm adapted to the generative dialog

framework. Early work on probabilistic end-to-end generative dialog systems done by [127,

168, 83, 80] pose the utterance generation problem as a machine translation problem. All

the utterances within a conversation concatenated back-to-back (with appropriate sequence

delimiters) in order to form a flattened dialog history serves as the input sequence and next

utterance serves as the output sequence.

For instance, [168] feed the flattened dialog history into a single layer LSTM based

encoder and generate the next utterance via another single layer LSTM based decoder con-

ditioned on the dialog history as in Figure 3.3. Let U1:m be the sequence of m utterances in

a conversation where each utterance, Ui = wi1, wi2 ...win in turn can be seen as a sequence of

n tokens. Now, the input and outputs to the sequence to sequence model are of the form

Inputs = U1 < eou > U2 < eou > · · · < eou > Um�1

Outputs = Um

(4.1.1)

During training, the true output sequence is given to the model, so learning can be

done by backpropagation [130]. The model is trained to maximize the cross entropy of the

ground truth utterance given its dialog context. During inference, given that the true output

sequence is not observed, we simply feed the predicted output token as input to predict the

next output token. This approach is referred to as the "greedy inference" approach. A less

greedy approach would be to use beam search [156], by feeding several probable candidates



at the previous step to the next step. In the next section, we introduce a encoder-decoder

architecture [141] (used in Article 3) which takes into the view that a dialog is a sequence

of utterances which, in turn, are sequences of tokens.

4.2. The Hierarchical Recurrent Encoder-Decoder

For modeling dialog systems, we can concatenate all the utterances of a conversation

into a single sequence and train the LSTMs (or GRU) as a conditional language model as

in [167]. However, we lose the utterance level structure present in the dialog data while

flattening out the utterances. Also, this throttles the gradient flow for efficient training, as

sequence lengths get unnecessarily longer. It would be difficult to model the dependencies of

later utterances of a dialog on the initial utterances due to lack of alternate shorter paths for

information flow across utterances. The Hierarchical Recurrent Encoder-Decoder (HRED)

[141] tries to address both these issues by adding another utterance level RNN encoder

over the token level encoder, thus reducing the number of computational steps between

two utterances facilitating gradient flow. The model architecture presented in [150] is as

shown in Figure 4.1. The model primarily consists of three modules - token level encoder,

utterance level encoder and output token decoder.

The m
th tokenized utterance, Um = wm1 , wm2 ...wmn is fed through the token level RNN

to obtain a utterance representation as in equation 4.2.1.

hmn = GRUenc(hmn�1 , wmn), n = 1, 2...Nm (4.2.1)

where GRUenc is the token-level encoder GRU function, hmn is GRU’s hidden state

representation and hm0 = 0, the null vector. So, the token encoder should give us a sequence

of fixed size distributed order sensitive representations, h1, h2...hM where M is the number

of utterances in the conversation.

Now, we pass the sequence of utterance representations h1, h2...hM through another GRU

to compute a representation of the M utterances so far as in equation 4.2.2.

si = GRUuttr(si�1, hi), i = 1, 2...M (4.2.2)

20



Fig. 4.1. The computational graph of the HRED architecture [141] for a sample dialog

composed of three turns. The token encoder provides a representation for each utterance

and the context encoder provides the condensed representation for the previous utterances.

The decoder predicts tokens conditioned additionally on this context embedding.

where GRUuttr is the utterance-level encoder GRU function, si is the GRU’s hidden

state representation and s0 = 0, the null vector. The recurrent hidden state si summarizes

the utterances that have been processed up to position i in addition to preserving the order

information of both utterances and tokens spoken so far.

The RNN output token decoder is responsible for the prediction of the next utterance

given the previous utterances. The probability of the next utterance prediction is given by

P (Um/U1:m�1) =
NmY

n=1

P (wn|w1:n�1, U1:m�1) (4.2.3)

21



where Um is the mth utterance, U1:m�1 are the past utterances. The contribution of the

previous utterances to the recurrent equation of the output token decoder is as in equation

4.2.4

hdecm,n = GRUdec(hdecm,n�1 , wm,n, sm), n = 1, · · · , Nm (4.2.4)

where hdecn is the n
th
GRUdec’s recurrent hidden state and sn is the recurrent hidden state

of the utterance encoder from 4.2.2. It is a common practice to either set hdecm,0 to the null

vector or initialize it sm.

The model is trained by maximizing the log-likelihood of each conversation as in 4.2.5

LL =
MX

m=1

logP (Um|U1:m�1) =
MX

m=1

NmX

n=1

logP (wm,n|wm,1:n�1, U1:m�1) (4.2.5)

While the adaptation of sequence to sequence based hierarchical generative model is a

good first direction, such dialog systems have difficulties with training as there is a wide

range of plausible responses, unlike the translation setting. Dialog datasets, especially open

domain corpus like the Twitter dataset [127], are jammed with short generic responses like

"yes", "thank you", "got it.thanks!" etc. Also, there are contrasting responses to the same

types of utterances across different conversations.

During training, when the decoder sees the same output utterance for different utter-

ance encoder hidden states, it manages to ignore the encoder hidden state over time

regarding it as just noise and instead concentrates on being a better language model.

Thus, the decoder doesn’t generalize to new encoder states during inference and ends up

predicting one of the many generic responses it has seen during training. Also, we cannot

afford to remove the abundant generic responses from the dataset, like some sampling-based

solutions, for class imbalance problems in classification.

Several approaches have been proposed in the literature to address the generic response

generation issue. [80] propose to modify the loss function to increase the diversity in the

generated responses. Multi-resolution RNN [138] addresses the above issue by additionally

conditioning with entity information in the previous utterances. Alternatively, [148] uses

22



external knowledge from a retrieval model to condition the response generation. Latent vari-

able models inspired by Conditional Variational Autoencoders (CVAEs) [147] are explored

in [144, 189]. In Article 3, we propose to address this problem by jointly modeling the

utterances with the dialog attributes of each utterance. Dialog attributes of an utterance

refer to discrete features or aspects associated with an utterance like dialog-acts, sentiment,

emotion, speaker identity, speaker personality, etc.

23





Chapter 5

Background : Efficient Locality Sensitive Hashing

(LSH)-based Text Representation

This chapter covers the basics of Locality Sensitive Hashing (LSH) [24] based projection

operations for efficient text representations discussed in Article 4.

5.1. Introduction

In the last decade, research in deep neural networks has lead to tremendous advances

and state of-the-art performance on wide range of Natural Language Processing (NLP) ap-

plications [8, 139]. The availability of high performance computing has enabled research

in deep learning to focus largely on the development of deeper and more complex network

architectures for improved accuracy. However, the increased complexity of the deep neural

networks has become one of the biggest obstacles to deploy deep neural networks on-device

such as mobile phones, smart watches and Internet of Things (IoT) devices [56]. On-device

deployment of neural network models specifically require a tiny memory footprint and low

inference latency.

Recently, [123, 124, 72, 62], introduced a class of on-device deep learning models

learned via embedding-free lightweight binary LSH-based projections learned on-the-fly.

The projection approach surmounts the need to store any embedding matrices, since

the projections are dynamically computed. The computation of the representation is

linear in the number of inputs in the sentence surmounting the need to maintain and

lookup global vocabulary. Additionally, this further enables user privacy by performing in-

ference directly on device without sending user data (e.g., personal information) to the server.



They propose a modified LSH-based projection operation, P that dynamically gener-

ates a fixed binary projection representation P(x) 2 [0, 1]K for any text, x by extracting

morphological input features like char (or token) n-gram & skip-gram features, parts of

speech tags, etc. The first step of the projection operation involves a string-based hashing

method to extract a fixed vector,

~x 2 Rd

from the morphological input features. Similar to the LSH via random projection methods,

the projection vectors, Pk in the projection matrix P (contains K randomly generated vectors

2 Rd) transform the input ~xi to a binary hash representation denoted by Pk(~xi) 2 [0, 1] as

in

Pk(~xi) := sgn[h~xi, Pki]

where h, i denotes inner product and sgn denotes the sign of the inner product. This results

in a K-bit vector representation P(x) 2 [0, 1]K one bit corresponding to each projection row.

Fig. 5.1. Memory for V look-up vectors for each token vs storing K(<< V ) vectors and

linearly combining them for token representation. We consider K = 1120 following [124] in

this paper.

26



Fig. 5.2. Binary Locality-Sensitive Hashing (LSH) projection representation for text.

5.2. Motivation

The dependency on vocabulary size V , is one of the primary reasons for the huge memory

footprint of embedding matrices. It is common to represent a token x by one-hot representa-

tion Y(x) 2 [0, 1]V and a distributed representation of the token is obtained by multiplying

the one-hot representation with the embedding matrix, WV 2 Rd⇥V as in

UV (x) = WV ⇤ Y(x) 2 Rd

where ⇤ refers to matrix-vector product.

One way to remove the dependency on the vocabulary size is to learn a smaller matrix

WK 2 Rd⇥K (K << V ), as shown in Figure 5.1. For instance, 300-dimensional Glove

embeddings, WV [113] with 400k vocabulary size occupies > 1 GB while the WK occupies

only ⇡ 1.2 MB for K = 1000 yielding a 1000⇥ reduction in size. Instead of learning a unique

vector for each token in the vocabulary, we can think of the columns of this WK matrix as a

set of basis vectors and each token can be represented as a linear combination of basis vectors

in WK . We select the basis vectors from WK for each token with a fixed K-bit binary vector

instead of a V -bit one-hot vector.

The LSH Projection function, P (Figure 5.2)[122] used in [124, 72, 62] does exactly this

as it dynamically generates a fixed binary projection representation P(x) 2 [0, 1]K for any

token x by extracting morphological input features like char (or token) n-gram & skip-gram

27



features, parts of speech tags etc. from x and a modified Locality-Sensitive Hashing (LSH)

based transformation, L as in

x
F�! [f1, · · · , fn]

L�! P(x) 2 [0, 1]K

where F extracts n-grams (or skip-grams), [f1, · · · , fn] from the input text. Here, [f1, · · · , fn]

could refer to either character level or token level n-grams(or skip-grams) features. Given

the LSH projection representation P(x), the distributed representation of the token x is

represented as in

UW (x) = WK ⇤ P(x) 2 Rd

It is worth noting that the projection operation P can also be used to map an entire sentence

directly to the [0, 1]K space.

28



Chapter 6

Prologue to First Article

6.1. Article Details

Do Neural Dialog Systems Use the Conversation History Effectively? An

Empirical Study. Chinnadhurai Sankar, Sandeep Subramanian, Christopher Pal, Sarath

Chandar, Yoshua Bengio, 57th Annual Meeting of the Association for Computational Lin-

guistics, 2019

Personal Contribution. There has been a surge of end-to-end neural dialog approaches

[141, 138, 165] advocating different kinds of architectures, loss functions and training pro-

cedures addressing the utterance repetition problem. However, there is very little under-

standing of how or if these dialog models are leveraging dialog history effectively. With

this motivation, I proposed the idea to analyze existing dialog models over multiple goal-

oriented and chit-chat datasets within the ParlAI framework [106]. I set up the initial coding

framework on top of ParlAI code-base. Sandeep Subramanian helped with extending the ex-

perimental coverage to other models and datasets. Additionally, he contributed to the initial

draft of the paper while others helped improve the presentation.

6.2. Context

A common criticism of recent neural dialog systems is that they seldom understand or

use the available dialog history effectively due to which they tend to generate repetitive

utterances or meander away from the context of the conversation [79, 136]. [66] proposed

a perturbation-based study on how language models attend to words near and far away in



the context. In this paper, we proposed to understand how neural dialog models use context

via perturbation-based experiments along the lines of previous research efforts [66, 11].

6.3. Contributions

We separately train various types of neural dialog models on multi-turn datasets and

study how the learned probability distribution over generated utterances behaves as we

artificially perturb the conversation history. We measure behavior by looking at how much

the per-token perplexity of the generated utterance increases under these perturbations. We

experiment with 10 different types of perturbations on 4 multi-turn dialog datasets and find

that commonly used neural dialog architectures like recurrent and transformer-based seq2seq

models are rarely sensitive to most perturbations such as missing or reordering utterances,

shuffling words, etc.

6.4. Recent Developments

This article was nominated for the best paper award at ACL 2019, Florence. There

are multiple research efforts extending our perturbation-based experimental setting to other

dialog domains such as Conversational Question Answering [26], Conversational Machine

Comprehension [115], etc. [145] propose a similar experimental setting to study the robust-

ness of representations learnt by BERT [36] for multiple-choice reading comprehension tasks.

Research efforts like [132] propose reinforcement learning a method to effectively attend to

longer dialog context.

30



Chapter 7

Do Neural Dialog Systems Use the Conversation History

Effectively? An Empirical Study

7.1. Abstract

Neural generative models have been become increasingly popular when building conver-

sational agents. They offer flexibility, can be easily adapted to new domains, and require

minimal domain engineering. A common criticism of these systems is that they seldom un-

derstand or use the available dialog history effectively. In this paper, we take an empirical

approach to understanding how these models use the available dialog history by studying

the sensitivity of the models to artificially introduced unnatural changes or perturbations

to their context at test time. We experiment with 10 different types of perturbations on

4 multi-turn dialog datasets and find that commonly used neural dialog architectures like

recurrent and transformer-based seq2seq models are rarely sensitive to most perturbations

such as missing or reordering utterances, shuffling words, etc. Also, by open-sourcing our

code, we believe that it will serve as a useful diagnostic tool for evaluating dialog systems in

the future.

7.2. Introduction

With recent advancements in generative models of text [184, 166, 116], neural ap-

proaches to building chit-chat and goal-oriented conversational agents [150, 167, 141, 19,

137] have gained popularity with the hope that advancements in tasks like machine transla-

tion [8], abstractive summarization [134] should translate to dialog systems as well. While

these models have demonstrated the ability to generate fluent responses, they still lack the



No Perturbations Token shuffling

1 Good afternoon ! Can I help you ? I afternoon help you Good ? ! Can

2 Could you show me where the Chinesc-style

clothing is located ? I want to buy a silk

coat

the located Chinesc-style where is show a .

buy you ? I clothing want coat silk me Could

to

3 This way , please . Here they are . They’re

all handmade .

are handmade . way please This all Here

they . , They’re .

4 Model Response: How much is it ? Model Response: How much is it ?

Tab. 7.1. An example of an LSTM seq2seq model with attention’s insensitivity to shuffling

of words in the dialog history on the DailyDialog dataset.

ability to “understand” and process the dialog history to produce coherent and interesting

responses. They often produce boring and repetitive responses like “Thank you.” [79, 136]

or meander away from the topic of conversation. This has been often attributed to the

manner and extent to which these models use the dialog history when generating responses.

However, there has been little empirical investigation to validate these speculations.

In this work, we take a step in that direction and confirm some of these speculations,

showing that models do not make use of a lot of the information available to it, by subjecting

the dialog history to a variety of synthetic perturbations. We then empirically observe how

recurrent [157] and transformer-based [166] sequence-to-sequence (seq2seq) models respond

to these changes. The central premise of this work is that models make minimal use of certain

types of information if they are insensitive to perturbations that destroy them. Worryingly,

we find that 1) both recurrent and transformer-based seq2seq models are insensitive to most

kinds of perturbations considered in this work 2) both are particularly insensitive even to

extreme perturbations such as randomly shuffling or reversing words within every utterance

in the conversation history (see Table 7.1) and 3) recurrent models are more sensitive to

the ordering of utterances within the dialog history, suggesting that they could be modeling

conversation dynamics better than transformers.

32



7.3. Related Work

Since this work aims at investigating and gaining an understanding of the kinds of infor-

mation a generative neural response model learns to use, the most relevant pieces of work are

where similar analyses have been carried out to understand the behavior of neural models

in other settings. An investigation into how LSTM based unconditional language models

use available context was carried out by [66]. They empirically demonstrate that models

are sensitive to perturbations only in the nearby context and typically use only about 150

words of context. On the other hand, in conditional language modeling tasks like machine

translation, models are adversely affected by both synthetic and natural noise introduced

anywhere in the input [11]. Understanding what information is learned or contained in the

representations of neural networks has also been studied by “probing” them with linear or

deep models [2, 154, 33].

Several works have recently pointed out the presence of annotation artifacts in common

text and multi-modal benchmarks. For example, [48] demonstrate that hypothesis-only base-

lines for natural language inference obtain results significantly better than random guessing.

[64] report that reading comprehension systems can often ignore the entire question or use

only the last sentence of a document to answer questions. [4] show that an agent that does

not navigate or even see the world around it can answer questions about it as well as one

that does. These pieces of work suggest that while neural methods have the potential to

learn the task specified, its design could lead them to do so in a manner that doesn’t use all

of the available information within the task.

Recent work has also investigated the inductive biases that different sequence models

learn. For example, [161] find that recurrent models are better at modeling hierarchical

structure while [158] find that feedforward architectures like the transformer and convolu-

tional models are not better than RNNs at modeling long-distance agreement. Transformers

however excel at word-sense disambiguation. We analyze whether the choice of architecture

and the use of an attention mechanism affect the way in which dialog systems use information

available to them.

33



Fig. 7.1. The increase in perplexity for different models when only presented with the k

most recent utterances from the dialog history for Dailydialog (left) and bAbI dialog (right)

datasets. Recurrent models with attention fare better than transformers, since they use more

of the conversation history.

7.4. Experimental Setup

Following the recent line of work on generative dialog systems, we treat the problem

of generating an appropriate response given a conversation history as a conditional lan-

guage modeling problem. Specifically we want to learn a conditional probability distribution

P✓(y|x) where y is a reasonable response given the conversation history x. The conversa-

tion history is typically represented as a sequence of utterances x1,x2, . . .xn, where each

utterance xi itself is comprised of a sequence of words xi1 , xi2 . . . xik . The response y is a

single utterance also comprised of a sequence of words y1, y2 . . . ym. The overall conditional

probability is factorized autoregressively as

P✓(y|x) =
nY

i=1

P✓(yi|y<i,x1 . . .xn)

P✓, in this work, is parameterized by a recurrent or transformer-based seq2seq model. The

crux of this work is to study how the learned probability distribution behaves as we artificially

perturb the conversation history x1, . . .xn. We measure behavior by looking at how much the

per-token perplexity (defined in Section 3.3.1) increases under these changes. For example,

one could think of shuffling the order in which x1 . . .xn is presented to the model and observe

how much the perplexity of y under the model increases. If the increase is only minimal, we

can conclude that the ordering of x1 . . .xn isn’t informative to the model. For a complete

34



list of perturbations considered in this work, please refer to Section 7.4.2. All models are

trained without any perturbations and sensitivity is studied only at test time.

7.4.1. Datasets

We experiment with four multi-turn dialog datasets.

bAbI dialog. is a synthetic goal-oriented multi-turn dataset [19] consisting of 5 different

tasks for restaurant booking with increasing levels of complexity. We consider Task 5 in our

experiments since it is the hardest and is a union of all four tasks. It contains 1k dialogs

with an average of 13 user utterances per dialog.

Persona Chat. is an open domain dataset [188] with multi-turn chit-chat conversations

between turkers who are each assigned a “persona” at random. It comprises of 10.9k dialogs

with an average of 14.8 turns per dialog.

Dailydialog. is an open domain dataset [84] which consists of dialogs that resemble day-

to-day conversations across multiple topics. It comprises of 13k dialogs with an average of

7.9 turns per dialog.

MutualFriends. is a multi-turn goal-oriented dataset [49] where two agents must discover

which friend of theirs is mutual based on the friends’ attributes. It contains 11k dialogs with

an average of 11.41 utterances per dialog.

7.4.2. Types of Perturbations

We experimented with several types of perturbation operations at the utterance and word

(token) levels. All perturbations are applied in isolation.

Utterance-level perturbations. We consider the following operations 1) Shuf that shuffles the

sequence of utterances in the dialog history, 2) Rev that reverses the order of utterances in

the history (but maintains word order within each utterance) 3) Drop that completely drops

certain utterances and 4) Truncate that truncates the dialog history to contain only the k

most recent utterances where k  n, where n is the length of dialog history.

Word-level perturbations. We consider similar operations but at the word level within every

utterance 1) word-shuffle that randomly shuffles the words within an utterance 2) reverse

that reverses the ordering of words, 3) word-drop that drops 30% of the words uniformly 4)

noun-drop that drops all nouns, 5) verb-drop that drops all verbs.

35



Models Test PPL Word Drop Verb Drop Noun Drop Word Shuf Word Rev

Word level perturbations ( � PPL[�] )

DailyDialog

seq2seq_lstm 32.90[1.40] 1.58[0.15] 0.87[0.08] 1.06[0.28] 3.37[0.33] 3.10[0.45]
seq2seq_lstm_att 29.65[1.10] 2.03[0.25] 1.37[0.29] 2.22[0.22] 2.82[0.31] 3.29[0.25]

transformer 28.73[1.30] 1.20[0.69] 0.63[0.17] 2.60[0.98] 0.15[0.08] 0.26[0.18]
Persona Chat

seq2seq_lstm 43.24[0.99] 1.81[0.25] 0.68[0.19] 0.75[0.15] 1.29[0.17] 1.95[0.20]
seq2seq_lstm_att 42.90[1.76] 2.47[0.67] 1.11[0.27] 1.20[0.23] 2.03[0.46] 2.39[0.31]

transformer 40.78[0.31] 0.54[0.08] 0.40[0.00] 0.32[0.18] 0.01[0.01] 0.00[0.06]
MutualFriends

seq2seq_lstm 14.17[0.29] 0.28[0.11] 0.00[0.03] 0.61[0.39] 0.31[0.25] 0.56[0.39]
seq2seq_lstm_att 10.60[0.21] 1.56[0.20] 0.15[0.07] 3.28[0.38] 2.35[0.22] 4.59[0.46]

transformer 10.63[0.03] 0.75[0.05] 0.16[0.02] 1.50[0.12] 0.07[0.01] 0.13[0.04]
bAbi dialog: Task5

seq2seq_lstm 1.28[0.02] 0.38[0.11] 0.01[0.00] 0.10[0.06] 0.09[0.02] 0.42[0.38]
seq2seq_lstm_att 1.06[0.02] 0.64[0.07] 0.03[0.03] 0.22[0.04] 0.25[0.01] 1.10[0.80]

transformer 1.07[0.00] 0.36[0.02] 0.25[0.06] 0.37[0.06] 0.00[0.00] 0.00[0.00]

Tab. 7.2. Model performance across multiple datasets and sensitivity to different pertur-

bations. Columns 1 & 2 report the test set perplexity (without perturbations) of different

models. Columns 3-7 report the increase in perplexity ( � PPL[�] ) when models are sub-

jected to different perturbations. The mean (µ) and standard deviation [�] across 5 runs are

reported. The model that exhibits the highest sensitivity (higher the better) to a particular

perturbation on a dataset is in bold. seq2seq_lstm_att are the most sensitive models 24/40

times, while transformers are the least with 6/40 times.

7.4.3. Models

We experimented with two different classes of models - recurrent and transformer-based

sequence-to-sequence generative models. All data loading, model implementations and eval-

uations were done using the ParlAI framework. We used the default hyper-parameters for

all the models as specified in ParlAI.

36



Recurrent Models. We trained a seq2seq (seq2seq_lstm) model where the encoder and de-

coder are parameterized as LSTMs [53]. We also experiment with using decoders that use

an attention mechanism (seq2seq_lstm_att) [8]. The encoder and decoder LSTMs have 2

layers with 128 dimensional hidden states with a dropout rate of 0.1.

Transformer. Our transformer [166] model uses 300 dimensional embeddings and hidden

states, 2 layers and 2 attention heads with no dropout. This model is significantly smaller

than the ones typically used in machine translation since we found that the model that

resembled [166] significantly overfit on all our datasets.

While the models considered in this work might not be state-of-the-art on the datasets

considered, we believe these models are still competitive and used commonly enough at least

as baselines, that the community will benefit by understanding their behavior. In this paper,

we use early stopping with a patience of 10 on the validation set to save our best model.

All models achieve close to the perplexity numbers reported for generative seq2seq models

in their respective papers.

7.5. Results & Discussion

Our results are presented in Table 7.3 and Figure 7.1. Table 7.3 reports the perplexities

of different models on test set in the second column, followed by the increase in perplexity

when the dialog history is perturbed using the method specified in the column header.

Rows correspond to models trained on different datasets. Figure 7.1 presents the change in

perplexity for models when presented only with the k most recent utterances from the dialog

history.

We make the following observations:

(1) Models tend to show only tiny changes in perplexity in most cases, even under extreme

changes to the dialog history, suggesting that they use far from all the information

that is available to them.

(2) Transformers are insensitive to word-reordering, indicating that they could be learn-

ing bag-of-words like representations.

(3) The use of an attention mechanism in seq2seq_lstm_att and transformers makes

these models use more information from earlier parts of the conversation than vanilla

seq2seq models as seen from increases in perplexity when using only the last utterance.

37



Models Test PPL Only Last Shuf Rev Drop First Drop Last

Utterance level perturbations ( � PPL[�] )

DailyDialog

seq2seq_lstm 32.90[1.40] 1.70[0.41] 3.35[0.38] 4.04[0.28] 0.13[0.04] 5.08[0.79]

seq2seq_lstm_att 29.65[1.10] 4.76[0.39] 2.54[0.24] 3.31[0.49] 0.32[0.03] 4.84[0.42]
transformer 28.73[1.30] 3.28[1.37] 0.82[0.40] 1.25[0.62] 0.27[0.19] 2.43[0.83]

Persona Chat

seq2seq_lstm 43.24[0.99] 3.27[0.13] 6.29[0.48] 13.11[1.22] 0.47[0.21] 6.10[0.46]

seq2seq_lstm_att 42.90[1.76] 4.44[0.81] 6.70[0.67] 11.61[0.75] 2.99[2.24] 5.58[0.45]
transformer 40.78[0.31] 1.90[0.08] 1.22[0.22] 1.41[0.54] �0.1[0.07] 1.59[0.39]

MutualFriends

seq2seq_lstm 14.17[0.29] 1.44[0.86] 1.42[0.25] 1.24[0.34] 0.00[0.00] 0.76[0.10]
seq2seq_lstm_att 10.60[0.21] 32.13[4.08] 1.24[0.19] 1.06[0.24] 0.08[0.03] 1.35[0.15]

transformer 10.63[0.03] 20.11[0.67] 1.06[0.16] 1.62[0.44] 0.12[0.03] 0.81[0.09]
bAbi dialog: Task5

seq2seq_lstm 1.28[0.02] 1.31[0.50] 43.61[15.9] 40.99[9.38] 0.00[0.00] 4.28[1.90]
seq2seq_lstm_att 1.06[0.02] 9.14[1.28] 41.21[8.03] 34.32[10.7] 0.00[0.00] 6.75[1.86]

transformer 1.07[0.00] 4.06[0.33] 0.38[0.02] 0.62[0.02] 0.00[0.00] 0.21[0.02]

Tab. 7.3. Model performance across multiple datasets and sensitivity to different pertur-

bations. Columns 1 & 2 report the test set perplexity (without perturbations) of different

models. Columns 3-7 report the increase in perplexity when models are subjected to differ-

ent perturbations. The mean (µ) and standard deviation [�] across 5 runs are reported. The

Only Last column presents models with only the last utterance from the dialog history. The

model that exhibits the highest sensitivity (higher the better) to a particular perturbation

on a dataset is in bold. seq2seq_lstm_att are the most sensitive models 24/40 times, while

transformers are the least with 6/40 times.

(4) While transformers converge faster and to lower test perplexities, they don’t seem to

capture the conversational dynamics across utterances in the dialog history and are

less sensitive to perturbations that scramble this structure than recurrent models.

38



7.6. Conclusion

This work studies the behaviour of generative neural dialog systems in the presence of

synthetically introduced perturbations to the dialog history, that it conditions on. We find

that both recurrent and transformer-based seq2seq models are not significantly affected even

by drastic and unnatural modifications to the dialog history. We also find subtle differences

between the way in which recurrent and transformer-based models use available context. By

open-sourcing our code, we believe this paradigm of studying model behavior by introducing

perturbations that destroys different kinds of structure present within the dialog history can

be a useful diagnostic tool. We also foresee this paradigm being useful when building new

dialog datasets to understand the kinds of information models use to solve them.

39





Chapter 8

Prologue to Second Article

8.1. Article Details

Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset. Bill Byrne*,

Karthik Krishnamoorthi*, Chinnadhurai Sankar*, Arvind Neelakantan, Daniel Duckworth,

Semih Yavuz, Ben Goodrich, Amit Dubey, Andy Cedilnik, Kyu-Young Kim, 2019 Con-

ference on Empirical Methods in Natural Language Processing and 9th International Joint

Conference on Natural Language Processing

Personal Contribution. (*) denotes co-first authorship. I helped Bill Byrne & team

with feedback during the dialog collection process. Specifically, helped identify imbalance

issues. I ran all the dataset analyses, set baselines with the current state-of-the-art neural

conversational models, computed human baseline scores for better evaluation and collected

multiple human ground truth responses for each dialog in the test set. In addition to other

sections of the paper, I mainly contributed to the models/experiments section of the paper

with help from Arvind Neelakantan. I also used the Pointer-Generator network coded by

Semih Yavuz as one of the baselines in my experiments.

8.2. Context

A significant barrier to progress in data-driven approaches to building dialog systems

is the lack of high quality, goal-oriented conversational data. Collection of goal oriented

datasets usually is a costly process as it usually involves setting up a “Wizard of Oz” (WOz)

system [65], where one human agent acts as the digital assistant and another human agent



acts as the user. While the two-person approach to data collection creates a realistic sce-

nario for robust, spoken dialog data collection, this technique is time consuming, complex

and expensive, requiring considerable technical implementation as well as administrative pro-

cedures to train and manage agents and crowdsourced workers. In this article, we propose

to address this issue by an alternative self-dialog approach.

8.3. Contributions

In this article, we introduce the initial release of the Taskmaster-1 dataset which includes

13, 215 task-based dialogs comprising six domains. The first involves a two-person, spoken

“Wizard ofOz" (WOz) approach in which trained agents and crowdsourced workers interact

to complete the task while the second is “self-dialog" in which crowdsourced workers write

the entire dialog themselves. Taskmaster-1 has richer and more diverse language than the

current popular benchmark in task-oriented dialog, MultiWOZ [20]. Beyond the corpus

and the methodologies used to create it, we present several baseline models including state-

of-the-art neural seq2seq architectures together with perplexity and BLEU scores. We also

provide qualitative human performance evaluations for these models and find that automatic

evaluation metrics correlate well with human judgments. We publicly released our corpus

containing conversations, API call and argument annotations, and also the human judgments.

8.4. Recent Developments

This paper was selected as an oral presentation at EMNLP 2019. Post our dataset release,

another relevant research effort [120] released the the largest public task-oriented dialogue

corpus. It consists of over 16000 dialogues in the training set spanning 26 services belong-

ing to 16 domains. While the number of dialogs collected by [120] exceeded our dataset,

Taskmaster-1’s self-dialog approach is still scalable and in-expensive to collect. Another

distinct difference between the two approaches is that while [120] ground their dialogs to

pre-defined API services and intents, Taskmaster-1 grounds on predefined slot types. Inde-

pendence over predefined API services allows models trained with Taskmaster-1 dataset to

generalize to new types of API services which uses the predefined slot (or argument) types.

We believe that grounding the conversations with argument types could be easier to scale to

new intents which share common argument types.

42



Chapter 9

Taskmaster-1: Toward a Realistic and Diverse Dialog

Dataset

9.1. Abstract

A significant barrier to progress in data-driven approaches to building dialog systems is

the lack of high quality, goal-oriented conversational data. To help satisfy this elementary

requirement, we introduce the initial release of the Taskmaster-1 dataset which includes

13,215 task-based dialogs comprising six domains. Two procedures were used to create this

collection, each with unique advantages. The first involves a two-person, spoken “Wizard of

Oz" (WOz) approach in which trained agents and crowdsourced workers interact to complete

the task while the second is “self-dialog" in which crowdsourced workers write the entire di-

alog themselves. We do not restrict the workers to detailed scripts or to a small knowledge

base and hence we observe that our dataset contains more realistic and diverse conversa-

tions in comparison to existing datasets. We offer several baseline models including state

of the art neural seq2seq architectures with benchmark performance as well as qualitative

human evaluations. Dialogs are labeled with API calls and arguments, a simple and cost

effective approach which avoids the requirement of complex annotation schema. The layer of

abstraction between the dialog model and the service provider API allows for a given model

to interact with multiple services that provide similar functionally. Finally, the dataset will

evoke interest in written vs. spoken language, discourse patterns, error handling and other

linguistic phenomena related to dialog system research, development and design.



9.2. Introduction

Voice-based “personal assistants" such as Apple’s SIRI, Microsoft’s Cortana, Amazon

Alexa, and the Google Assistant have finally entered the mainstream. This development

is generally attributed to major breakthroughs in speech recognition and text-to-speech

(TTS) technologies aided by recent progress in deep learning [75], exponential gains in

compute power [152, 58], and the ubiquity of powerful mobile devices. The accuracy of

machine learned speech recognizers [51] and speech synthesizers [163] are good enough to

be deployed in real-world products and this progress has been driven by publicly available

labeled datasets. However, conspicuously absent from this list is equal progress in machine

learned conversational natural language understanding (NLU) and generation (NLG). The

NLU and NLG components of dialog systems starting from the early research work [173]

to the present commercially available personal assistants largely rely on rule-based systems.

The NLU and NLG systems are often carefully programmed for very narrow and specific

cases [46, 135]. General understanding of natural spoken behaviors across multiple dialog

turns, even in single task-oriented situations, is by most accounts still a long way off. In this

way, most of these products are very much hand crafted, with inherent constraints on what

users can say, how the system responds and the order in which the various subtasks can be

completed. They are high precision but relatively low coverage. Not only are such systems

unscalable, but they lack the flexibility to engage in truly natural conversation.

Yet none of this is surprising. Natural language is heavily context dependent and often

ambiguous, especially in multi-turn conversations across multiple topics. It is full of subtle

discourse cues and pragmatic signals whose patterns have yet to be thoroughly understood.

Enabling an automated system to hold a coherent task-based conversation with a human

remains one of computer science’s most complex and intriguing unsolved problems [173].

In contrast to more traditional NLP efforts, interest in statistical approaches to dialog un-

derstanding and generation aided by machine learning has grown considerably in the last

couple of years [129, 18, 50]. However, the dearth of high quality, goal-oriented dialog data

is considered a major hindrance to more significant progress in this area [18, 94].

To help solve the data problem we present Taskmaster-1, a dataset consisting of 13,215

dialogs, including 5,507 spoken and 7,708 written dialogs created with two distinct proce-

dures. Each conversation falls into one of six domains: ordering pizza, creating auto repair

44



appointments, setting up ride service, ordering movie tickets, ordering coffee drinks and

making restaurant reservations. For the spoken dialogs, we created a “Wizard of Oz” (WOz)

system [65] to collect two-person, spoken conversations. Crowdsourced workers playing the

“user" interacted with human operators playing the “digital assistant” using a web-based

interface. In this way, users were led to believe they were interacting with an automated

system while it was in fact a human, allowing them to express their turns in natural ways but

in the context of an automated interface. We refer to this spoken dialog type as “two-person

dialogs". For the written dialogs, we engaged crowdsourced workers to write the full con-

versation themselves based on scenarios outlined for each task, thereby playing roles of both

the user and assistant. We refer to this written dialog type as “self-dialogs". In a departure

from traditional annotation techniques [50, 129, 20], dialogs are labeled with simple API

calls and arguments. This technique is much easier for annotators to learn and simpler to

apply. As such it is more cost effective and, in addition, the same model can be used for

multiple service providers.

Taskmaster-1 has richer and more diverse language than the current popular benchmark

in task-oriented dialog, MultiWOZ [20]. Table 9.1 shows that Taskmaster-1 has more unique

words and is more difficult for language models to fit. We also find that Taskmaster-1 is more

realistic than MultiWOZ. Specifically, the two-person dialogs in Taskmaster-1 involve more

real-word entities than seen in MultiWOZ since we do not restrict conversations to a small

knowledge base. Beyond the corpus and the methodologies used to create it, we present

several baseline models including state-of-the-art neural seq2seq architectures together with

perplexity and BLEU scores. We also provide qualitative human performance evaluations

for these models and find that automatic evaluation metrics correlate well with human judg-

ments. We will publicly release our corpus containing conversations, API call and argument

annotations, and also the human judgments.

9.3. Related work

9.3.1. Human-machine vs. human-human dialog

[140] discuss the major features and differences among the existing offerings in an ex-

haustive and detailed survey of available corpora for data driven learning of dialog systems.

One important distinction covered is that of human-human vs. human-machine dialog data,

45



hline Statistic Self-dialogs MultiWOZ

# unique words 21,894 19,175

# unique named 8,218 1,338

entities

# utterances 169,469 132,610

# dialogs 7,708 10,438

Avg. utterances 21.99 13.70

per dialog

Avg. tokens 8.62 13.82

per utterance

Perplexity 17.08 15.62

BLEU 6.53 11.02

Tab. 9.1. Statistics comparison: Self-dialogs vs MultiWOZ corpus both containing approx-

imately 10k dialogues each.

each having its advantages and disadvantages. Many of the existing task-based datasets

have been generated from deployed dialog systems such as the Let’s Go Bus Information

System [121] and the various Dialog State Tracking Challenges (DSTCs) [178]. However, it

is doubtful that new data-driven systems built with this type of corpus would show much im-

provement since they would be biased by the existing system and likely mimic its limitations

[182]. Since the ultimate goal is to be able to handle complex human language behaviors,

it would seem that human-human conversational data is the better choice for spoken dia-

log system development [20]. However, learning from purely human-human based corpora

presents challenges of its own. In particular, human conversation has a different distribution

of understanding errors and exhibits turn-taking idiosyncrasies which may not be well suited

for interaction with a dialog system [182, 140].

9.3.2. The Wizard of Oz (WOz) Approach and MultiWOZ

The WOz framework, first introduced by [65] as a methodology for iterative design

of natural language interfaces, presents a more effective approach to human-human dialog

collection. In this setup, users are led to believe they are interacting with an automated

46



assistant but in fact it is a human behind the scenes that controls the system responses. Given

the human-level natural language understanding, users quickly realize they can comfortably

and naturally express their intent rather than having to modify behaviors as is normally the

case with a fully automated assistant. At the same time, the machine-oriented context of the

interaction, i.e. the use of TTS and slower turn taking cadence, prevents the conversation

from becoming fully fledged, overly complex human discourse. This creates an idealized

spoken environment, revealing how users would openly and candidly express themselves

with an automated assistant that provided superior natural language understanding.

Perhaps the most relevant work to consider here is the recently released MultiWOZ

dataset [20], since it is similar in size, content and collection methodologies. MultiWOZ

has roughly 10,000 dialogs which feature several domains and topics. The dialogs are anno-

tated with both dialog states and dialog acts. MultiWOZ is an entirely written corpus and

uses crowdsourced workers for both assistant and user roles. In contrast, Taskmaster-1 has

roughly 13,000 dialogs spanning six domains and annotated with API arguments. The two-

person spoken dialogs in Taskmaster-1 use crowdsourcing for the user role but trained agents

for the assistant role. The assistant’s speech is played to the user via TTS. The remaining

7,708 conversations in Taskmaster-1 are self-dialogs, in which crowdsourced workers write

the entire conversation themselves. As [73, 108] show, self dialogs are surprisingly rich in

content.

9.4. The Taskmaster Corpus

9.4.1. Overview

There are several key attributes that make Taskmaster-1 both unique and effective for

data-driven approaches to building dialog systems and for other research.

Spoken and written dialogs: While the spoken sources more closely reflect conversational

language [22], written dialogs are significantly cheaper and easier to gather. This allows for

a significant increase in the size of the corpus and in speaker diversity.

Goal-oriented dialogs: All dialogs are based on one of six tasks: ordering pizza, creating

auto repair appointments, setting up rides for hire, ordering movie tickets, ordering coffee

drinks and making restaurant reservations.

47



ASSISTANT: How can I help you?

USER: Hi, could you help me with book-

ing movie tickets for tonight?

ASSISTANT: What movie are you interested

in?

USER: The Upside.

ASSISTANT: Did you have a theater in mind?

USER: Could you check if the Regal Ne-

shaminy... No, AMC Neshaminy

in Neshaminy, PA is playing it?

ASSISTANT: Could you spell that?

USER: Sure, n e s h a m i n y.

ASSISTANT: I have a showtime at 7:30 and at

10:30, is that okay?

USER: Yes, could you get two tickets for

the 7:30?

ASSISTANT: One moment. Okay so that’s 2

tickets for 7:30 at the AMC Ne-

shaminy 24?

USER: Yes.

ASSISTANT: It’ll be twenty-four ninety-nine

for your tickets.

USER: That sounds great.

ASSISTANT: I’ve confirmed your tickets,

they’ll arrive via text shortly.

Did you need any other informa-

tion?

USER: No, that was it. Thank you so

much for your help.

ASSISTANT: Great, no problem. I hope you

have fun.

USER: I hope so, too. Thank you so

much.

Fig. 9.1. Sample Taskmaster-1 two-person dialog

48



MAIN TASK: Users will pretend they are using a voice-powered personal digital assistant

to book movie tickets for a film they ALREADY have in mind.

(1) In several turns (not just one!), cover the following:

(a) Film name

(b) Number of people

(c) City

(d) Theater

(e) Time

(f) If applicable: 3D vs. IMAX vs. standard.

(2) They may also want to know things like:

(a) Run time

(b) End time

(c) Director, actors, etc.

(3) Make sure to CONFIRM all the relevant ticket details before the end of the dialogue

INCLUDING:

(a) Total cost for two tickets

(b) Time, location, theater

(4) You can assume you have the user’s account info with the ticket service–so no credit

card information is necessary.

(5) After confirming the details, end the conversation by confirming that the tickets are

being sent to the user’s mobile device as a text message.

Fig. 9.2. Sample instructions for agents playing “assistant" role

Two collection methods: The two-person dialogs and self-dialogs each have pros and cons,

revealing interesting contrasts.

Multiple turns: The average number of utterances per dialog is about 23 which ensures

context-rich language behaviors.

API-based annotation: The dataset uses a simple annotation schema providing sufficient

grounding for the data while making it easy for workers to apply labels consistently.

Size: The total of 13,215 dialogs in this corpus is on par with similar, recently released

datasets such as MultiWOZ [20].

49



MAIN TASK: Pretend you are using your voice-powered digital assistant to book movie

tickets.

(1) Start by thinking of a particular movie PLAYING NOW in theaters that you’d like

to see. (Use the internet to find one if necessary.)

(2) Choose a DIFFERENT CITY from where you live, work, or happen to be at the

moment.

(3) Pretend you’ve decided to see this movie tonight and you’re taking a friend.

(4) The assistant will ask about all relevant details BUT you should make sure it covers

all your needs.

(5) You can assume you already have an account with the ticket service–so no credit card

information is necessary.

(6) The assistant will end the conversation by confirming that your tickets are being sent

to your mobile device as a text message. (And you can respond thanks, goodbye, ok,

etc. for a final closing turn, if you like).

Fig. 9.3. Sample instructions for crowdsourced workers playing “user" role

9.4.2. Two-person, spoken dataset

In order to replicate a two-participant, automated digital assistant experience, we built

a WOz platform that pairs agents playing the digital assistant with crowdsourced workers

playing the user in task-based conversational scenarios. An example dialog from this dataset

is given in Figure 9.1.

9.4.2.1. WOz platform and data pipeline

While it is beyond the scope of this work to describe the entire system in detail, there

are several platform features that help illustrate how the process works.

Modality: The agents playing the assistant type their input which is in turn played to the

user via text-to-speech (TTS) while the crowdsourced workers playing the user speak aloud

to the assistant using their laptop and microphone. We use WebRTC to establish the audio

channel. This setup creates a digital assistant-like communication style.

50



Conversation and user quality control: Once the task is completed, the agents tag

each conversation as either successful or problematic depending on whether the session had

technical glitches or user behavioral issues. We are also then able to root out problematic

users based on this logging.

Agent quality control: Agents are required to login to the system which allows us to mon-

itor performance including the number and length of each session as well as their averages.

User queuing: When there are more users trying to connect to the system than available

agents, a queuing mechanism indicates their place in line and connects them automatically

once they move to the front of the queue.

Transcription: Once complete, the user’s audio-only portion of the dialog is transcribed

by a second set of workers and then merged with the assistant’s typed input to create a full

text version of the dialog. Finally, these conversations are checked for transcription errors

and typos and then annotated, as described in Section 9.4.4.

9.4.2.2. Agents, workers and training

Both agents and crowdsourced workers are given written instructions prior to the session.

Examples of each are given in Figure 9.2 and Figure 9.3. The instructions continue to

be displayed on screen to the crowdsourced workers while they interact with the assistant.

Instructions are modified at times (for either participant or both) to ensure broader coverage

of dialog scenarios that are likely to occur in actual user-assistant interactions. For example,

in one case users were asked to change their mind after ordering their first item and in

another agents were instructed to tell users that a given item was not available. Finally, in

their instructions, crowdsourced workers playing the user are told they will be engaging in

conversation with “a digital assistant”. However, it is plausible that some suspect human

intervention due to the advanced level of natural language understanding from the assistant

side.

Agents playing the assistant role were hired from a pool of dialog analysts and given two

hours of training on the system interface as well as on how to handle specific scenarios such

as uncooperative users and technical glitches. Uncooperative users typically involve those

who either ignored agent input or who rushed through the conversation with short phrases.

Technical issues involved dropped sessions (e.g. WebRTC connections failed) or cases in

51



which the user could not hear the agent or vice-versa. In addition, weekly meetings were

held with the agents to answer questions and gather feedback on their experiences. Agents

typically work four hours per day with dialog types changing every hour. Crowdsourced

workers playing the user are accessed using Amazon Mechanical Turk. Payment for a com-

pleted dialog session lasting roughly five to seven minutes was typically in the range of $1.00

to $1.30. Problematic users are detected either by the agent involved in the specific dialog

or by post-session assessment and removed from future requests.

(1) Think of a particular movie PLAYING NOW in theaters that you’d like to see. (Use

the internet to find one if necessary.)

(2) Choose a DIFFERENT CITY from where you live, work, or happen to be at the

moment.

(3) Pretend you’ve decided to see this movie tonight and you’re taking a friend.

(4) Use the internet to look up the details of the city, the theater name, showtimes

offered, ticket prices, and any additional options like 3D, etc.

(5) MAIN TASK: Pretend you call your personal assistant on the phone who will book

the ticket for you. Write the conversation that would happen between you and your

assistant in order to buy two tickets.

(6) MAKE SURE the assistant asks about all relevant details (see #4) INCLUDING the

number of tickets needed. BUT you should choose the order that makes sense to you

as far what details to ask (theater, times, etc)

(7) You can assume you already have an account with the ticket service–so no credit card

information is necessary.

(8) The assistant should end the conversation by confirming that your tickets are being

sent to your mobile device as a text message. (And you can respond thanks, goodbye,

ok, etc. for a final closing turn, if you like).

• YOUR TASK: Write the conversation that results between you and your assistant.

It must be at least 10 turns long (for both you and the assistant). Below we have

provided 15 turns in case you need more. KEEP IT NEW AND FRESH! DON’T

REPEAT DIALOGUES FROM THE PAST!

Fig. 9.4. Sample instructions for written “self-dialogs"

52



USER: Hi I would like to buy 2 tickets for Shazam!

ASSISTANT: What city would you like to see this

movie?

USER: Ontario, California

ASSISTANT: Ok, I’ll check that location for you.

USER: I would prefer the Edwards Ontario Moun-

tain Village, since it’s closest to me and my

guest.

ASSISTANT: What time is best for you?

USER: Either 4 or 6 pm.

ASSISTANT: I’m sorry, but it looks like the 4:10 and the

6:10 pm showings are sold out.

USER: That’s too bad. I really wanted to see that

movie.

ASSISTANT: I’m sorry. Is there another movie you

would like to see?

USER: How about Captain Marvel at the Ed-

wards Ontario Mountain theater.

ASSISTANT: Show times are 3:45, 7:10 and 10:10 pm.

Which would you like?

USER: I am interested in the 7:10 showing.

ASSISTANT: I’m sorry, it looks like the 7:10 showing is

also sold out.

USER: Wow, that’s too bad.

ASSISTANT: I’m sorry. Is there another movie you

would like me to look up?

USER: No, I think I’ll pass on the movies tonight

since those were the two I really wanted to

see.

ASSISTANT: If you want, I can check another theater.

USER: No, that’s fine. Thank you for your help.

ASSISTANT: You’re welcome.

Fig. 9.5. Sample one-person, written dialog

53



9.4.3. Self-dialogs (one-person written dataset)

While the two-person approach to data collection creates a realistic scenario for robust,

spoken dialog data collection, this technique is time consuming, complex and expensive,

requiring considerable technical implementation as well as administrative procedures to train

and manage agents and crowdsourced workers. In order to extend the Taskmaster dataset

at minimal cost, we use an alternative self-dialog approach in which crowdsourced workers

write the full dialogs themselves (i.e. interpreting the roles of both user and assistant).

9.4.3.1. Task scenarios and instructions

Targeting the same six tasks used for the two-person dialogs, we again engaged the

Amazon Mechanical Turk worker pool to create self-dialogs, this time as a written exercise.

In this case, users are asked to pretend they have a personal assistant who can help them

take care of various tasks in real time. They are told to imagine a scenario in which they are

speaking to their assistant on the phone while the assistant accesses the services for one of

the given tasks. They then write down the entire conversation. Figure 9.4 shows a sample

set of instructions.

9.4.3.2. Pros and cons of self-dialogs

The self-dialog technique renders quality data and avoids some of the challenges seen

with the two-person approach. To begin, since the same person is writing both sides of

the conversation, we never see misunderstandings that lead to frustration as is sometimes

experienced between interlocutors in the two-person approach. In addition, all the self-

dialogs follow a reasonable path even when the user is constructing conversations that include

understanding errors or other types of dialog glitches such as when a particular choice is not

available. As it turns out, crowdsourced workers are quite effective at recreating various

types of interactions, both error-free and those containing various forms of linguistic repair.

The sample dialog in Figure 9.5 shows the result of a self-dialog exercise in which workers

were told to write a conversation with various ticket availability issues that is ultimately

unsuccessful.

Two more benefits of the self-dialog approach are its efficiency and cost effectiveness. We

were able to gather thousands of dialogs in just days without transcription or trained agents,

54



USER: Finally, I need the table to be

for three people and 8pm.

ASSISTANT: One moment....OK, I

have your table for three

(num.guests.accept) at

8pm (time.reservation.accept)

reserved.

Fig. 9.6. Indicating transaction status with “accept" or “reject"

and spent roughly six times less per dialog. Despite these advantages, the self-dialog written

technique cannot recreate the disfluencies and other more complex error patterns that occur

in the two-person spoken dialogs which are important for model accuracy and coverage.

9.4.4. Annotation

We chose a highly simplified annotation approach for Taskmaster-1 as compared to tradi-

tional, detailed strategies which require robust agreement among workers and usually include

dialog state and slot information, among other possible labels. Instead we focus solely on

API arguments for each type of conversation, meaning just the variables required to execute

the transaction. For example, in dialogs about setting up UBER rides, we label the “to" and

“from" locations along with the car type (UberX, XL, Pool, etc). For movie tickets, we label

the movie name, theater, time, number of tickets, and sometimes screening type (e.g. 3D

vs. standard). A complete list of labels is included with the corpus release.

As discussed in Section 9.4.2.2, to encourage diversity, at times we explicitly ask users

to change their mind in the middle of the conversation, and the agents to tell the user that

the requested item is not available. This results in conversations having multiple instances

of the same argument type. To handle this ambiguity, in addition to the labels mentioned

above, the convention of either “accept” or “reject" was added to all labels used to execute

the transaction, depending on whether or not that transaction was successful.

In Figure 9.6, both the number of people and the time variables in the assistant utterance

would have the “.accept" label indicating the transaction was completed successfully. If the

utterance describing a transaction does not include the variables by name, the whole sentence

55



Statistic Self-dialogs Two Person

# unique words 17,275 13,490

# utterances 110,074 132,407

# dialogs 5000 5000

Avg. utterances 22.01 24.04

per dialog

Avg. tokens 8.62 7.54

per utterance

Perplexity 16.28 6.44

BLEU 4.73 15.16

Joint-Perplexity 16.44 6.04

Joint-BLEU 5.80 13.09

Tab. 9.2. Statistics comparison: Self-dialogs vs two person corpus both containing 5k di-

alogs. Perplexity and BLEU are reported for Transformer baseline. Joint-Perplexity and

Joint-BLEU are perplexity/BLEU scores from the joint training of self-dialogs and two-

person but evaluated with their respective test sets.

is marked with the dialog type. For example, a statement such as The table has been booked

for you would be labeled as reservation.accept.

9.5. Dataset Analysis

9.5.1. Self-dialogs vs MultiWOZ

We quantitatively compare our self-dialogs (Section 9.4.3) with the MultiWOZ dataset

in Table 9.1. Compared to MultiWOZ, we do not ask the users and assistants to stick to

detailed scripts and do not restrict them to have conversations surrounding a small knowledge

base. Table 9.1 shows that our dataset has more unique words, and has almost twice the

number of utterances per dialog than the MultiWOZ corpus. Finally, when trained with

the Transformer [165] model, we observe significantly higher perplexities and lower BLEU

scores for our dataset compared to MultiWOZ suggesting that our dataset conversations

are difficult to model. Finally, Table 9.1 also shows that our dataset contains close to 10

56



times more real-world named entities than MultiWOZ and thus, could potentially serve as

a realistic baseline when designing goal oriented dialog systems. MultiWOZ has only 1338

unique named entities and only 4510 unique values (including date, time etc.) in their

datatset.

9.5.2. Self-dialogs vs Two-person

In this section, we quantitatively compare 5k conversations each of self-dialogs (Section

9.4.3) and two-person (Section 9.4.2). From Table 9.2, we find that self-dialogs exhibit higher

perplexity ( almost 3 times) compared to the two-person conversations suggesting that self-

dialogs are more diverse and contains more non-conventional conversational flows which is

inline with the observations in Section-9.4.3.2. While the number of unique words are higher

in the case of self-dialogs, conversations are longer in the two-person conversations. We also

report metrics by training a single model on both the datasets together.

9.5.3. Baseline Experiments: Response Generation

We evaluate various seq2seq architectures [156] on our self-dialog corpus using both au-

tomatic evaluation metrics and human judgments. Following the recent line of work on

generative dialog systems [169], we treat the problem of response generation given the di-

alog history as a conditional language modeling problem. Specifically we want to learn a

conditional probability distribution P✓(Ut|U1:t�1) where Ut is the next response given dialog

history U1:t�1. Each utterance Ui itself is comprised of a sequence of words wi1 , wi2 . . . wik .

The overall conditional probability is factorized autoregressively as

P✓(Ut|U1:t�1) =
nY

i=1

P✓(wti |wt1:i�1 , U1:t�1)

P✓, in this work, is parameterized by a recurrent, convolution or Transformer-based

seq2seq model.

n-gram: We consider 3-gram and 4-gram conditional language model baseline with

interpolation. We use random grid search for the best coefficients for the interpolated model.

Convolution: We use the fconv architecture [42] and default hyperparameters from the

fairseq [110] framework. We train the network with ADAM optimizer [70] with learning

rate of 0.25 and dropout probability set to 0.2.

57



Baseline PPL BLEU Ratings Rank

Models (LIKERT)

GPT-2 (117M) - 0.26 - -

3-gram 38.12 0.20 - -

4-gram 34.49 0.21 - -

LSTM 25.73 4.45 - -

Convolution 21.25 5.09 2.89 3

LSTM-attention 20.05 5.12 3.51 2

Transformer 18.19 6.11 3.22 1

Tab. 9.3. Evaluation of various seq2seq architectures [156] on our self-dialog corpus using

both automatic evaluation metrics and human judgments. Human evaluation ratings in the

1-5 LIKERT scale (higher the better), and human ranking are averaged over 500 x 3 ratings

(3 crowdsourced workers per rating).

LSTM: We consider LSTM models [54] with and without attention [9] and use the

tensor2tensor [164] framework for the LSTM baselines. We use a two-layer LSTM network

for both the encoder and the decoder with 128 dimensional hidden vectors.

Transformer: As with LSTMs, we use the tensor2tensor framework for the Transformer

model. Our Transformer [165] model uses 256 dimensions for both input embedding and

hidden state, 2 layers and 4 attention heads. For both LSTMs and Transformer, we train

the model with ADAM optimizer (�1 = 0.85, �2 = 0.997) and dropout probability set to 0.2.

GPT-2: Apart from supervised seq2seq models, we also include results from pre-trained

GPT-2 [117] containing 117M parameters.

We evaluate all the models with perplexity and BLEU scores (Table 9.3). Additionally,

we perform two kinds of human evaluation - Ranking and Rating (LIKERT scale) for the

top-3 performing models - Convolution, LSTM-attention and Transformer. For the ranking

task, we randomly show 500 partial dialogs and generated responses of the top-3 models from

the test set to three different crowdsourced workers and ask them to rank the responses based

on their relevance to the dialog history. For the rating task, we show the model responses

individually to three different crowdsourced workers and ask them to rate the responses on a

1-5 LIKERT scale based on their appropriateness to the dialog history. From Table-9.4, we

58



Evalation Inter-Annotator Reliability

method (Krippendorf’s Alpha)

Rating (1-5 LIKERT) 0.21

Ranking 0.29

Tab. 9.4. Inter-Annotator Reliability scores of seq2seq model responses computed for 500

self-dialogs from the test set, each annotated by 3 crowdsourced workers.

Model Micro F1 (%)

Transformer 48.73

Transformer + copy 51.79

Tab. 9.5. API Argument prediction accuracy for Self-dialogs. API arguments are annotated

as spans in the utterances.

see that inter-annotator reliability scores (Krippendorf’s Alpha) are higher for the ranking

task compared to the rating task. From Table 9.3, we see that Transformer is the best

performing model on automatic evaluation metrics. It is interesting to note that there is a

strong correlation between BLEU score and human ranking judgments.

9.5.4. Baseline Experiments: Argument Prediction

Next, we discuss a set of baseline experiments for the task of argument prediction. API

arguments are annotated as spans in the dialog (Section 9.4.4). We formulate this problem

as mapping text conversation to a sequence of output arguments. Apart from the seq2seq

Transformer baseline, we consider an additional model - an enhanced Transformer seq2seq

model where the decoder can choose to copy from the input or generate from the vocabulary

[101, 47]. Since all the API arguments are input spans, the copy model having the correct

inductive bias achieves the best performance.

9.6. Conclusion

To address the lack of quality corpora for data-driven dialog system research and devel-

opment, this paper introduces Taskmaster-1, a dataset that provides richer and more diverse

language as compared to current benchmarks since it is based on unrestricted, task-oriented

59



conversations involving more real-word entities. In addition, we present two data collection

methodologies, both spoken and written, that ensure both speaker diversity and conversa-

tional accuracy. Our straightforward, API-oriented annotation technique is much easier for

annotators to learn and simpler to apply. We give several baseline models including state-

of-the-art neural seq2seq architectures, provide qualitative human performance evaluations

for these models, and find that automatic evaluation metrics correlate well with human

judgments.

60



Chapter 10

Prologue to third Article

10.1. Article Details

Deep Reinforcement Learning For Modeling Chit-Chat Dialog With Discrete

Attributes. Chinnadhurai Sankar, Sujith Ravi 20th Annual Meeting of the Special Interest

Group on Discourse and Dialogue (SIGDIAL), 2019

Personal Contribution. I came up with the idea of jointly modeling dialog with discrete

dialog states during discussions with Sujith Ravi. I implemented the prototype of the model

in Tensorflow and iterated on the prototype to significantly improve its performance with

guidance from Sujith. The paper was largely written by me and Sujith helped improve its

presentation.

10.2. Context

Open domain dialog systems face the challenge of being repetitive and producing generic

responses [80, 142, 172]. Several approaches have been proposed in the literature to address

the generic response generation issue [80, 148, 144, 189, 138]. This paper proposes to

improve response generation quality in open domain dialog systems by jointly modeling the

utterances with the dialog attributes of each utterance. Dialog attributes of an utterance

refer to discrete features or aspects associated with an utterance like dialog-acts, sentiment,

emotion, speaker identity, speaker personality, etc. This modeling framework also enables

us to formulate the dialog attribute selection as a reinforcement learning (RL) problem and

optimize the policy initialized by the supervised training using REINFORCE [183].



10.3. Contributions

In this paper we have two main contributions - 1) we propose a conditional utterance

generation model in which the next utterance is conditioned on the dialog attributes corre-

sponding to the next utterance. 2) we propose to formulate the dialog attribute selection as

a reinforcement learning (RL) problem using REINFORCE [183]. Additionally, we annotate

an existing open domain dialog dataset using dialog attribute classifiers trained with tagged

datasets and demonstrate both quantitative (in terms of token perplexity/embedding met-

rics) and qualitative improvements (based on human evaluations) in generating interesting

responses.

10.4. Recent Developments

This paper was awarded the best paper in SIGDIAL 2019. Following our paper, [132]

extended our approach by replacing discrete dialog attributes with a continuous latent vari-

able. They also follow a similar fine-tuning technique to frame the latent variable prediction

as a reinforcement learning (RL) problem using REINFORCE [183].

62



Chapter 11

Deep Reinforcement Learning For Modeling Chit-Chat

Dialog With Discrete Attributes

11.1. Abstract

Open domain dialog systems face the challenge of being repetitive and producing generic

responses. In this paper, we demonstrate that by conditioning the response generation on

interpretable discrete dialog attributes and composed attributes, it helps improve the model

perplexity and results in diverse and interesting non-redundant responses. We propose to

formulate the dialog attribute prediction as a reinforcement learning (RL) problem and use

policy gradients methods to optimize utterance generation using long-term rewards. Unlike

existing RL approaches which formulate the token prediction as a policy, our method reduces

the complexity of the policy optimization by limiting the action space to dialog attributes,

thereby making the policy optimization more practical and sample efficient. We demonstrate

this with experimental and human evaluations.

11.2. Introduction

Following the success of neural machine translation systems [8, 156, 27], there has

been a growing interest in adapting the encoder-decoder models to model open-domain

conversations [150, 141, 142, 167]. This is done by framing the next utterance generation

as a machine translation problem by treating the dialog history as the source sequence and

the next utterance as the target sequence. Then the models are trained end-to-end with

Maximum Likelihood (MLE) objective without any hand crafted structures like slot-value

pairs, dialog manager, etc., used in conventional dialog modeling [74]. Such data driven



approaches are worth pursuing in the context of open-domain conversations since the next

utterance distribution in open-domain conversations exhibit high entropy which makes it

impractical to manually craft good features.

While the encoder-decoder approaches are promising, lack of specificity has been one of

the many challenges [172] in modeling non-goal oriented dialogs. Recent encoder-decoder

based models usually tend to generate generic or dull responses like “I don’t know.". One

of the main causes are the implicit imbalances present in the dialog datasets that tend to

potentially handicap the models into generating uninteresting responses.

Imbalances in a dialog dataset can be broadly divided into two categories: many-to-one

and one-to-many. Many-to-one imbalance occurs when the dataset contain very similar

responses to several different dialog contexts. In such scenarios, decoder learns to ignore

the context (considering it as noise) and behaves like a regular language model. Such a

decoder would not generalize to new contexts and will end up predicting generic responses

for all contexts. In the one-to-many case, the dataset may exhibit a different type of im-

balance where a certain type of generic response may be present in abundance compared

to other plausible interesting responses for the same dialog context [172]. When trained

with a maximum-likelihood (MLE) objective, generative models usually tend to place more

probability mass around the most commonly observed responses for a given context. So, we

end up observing little variance in the generated responses in such cases. While these two

imbalances are problematic for training a dialog model, they are also inherent characteristics

of a dialog dataset which cannot be removed.

Several approaches have been proposed in the literature to address the generic response

generation issue. [80] propose to modify the loss function to increase the diversity in the

generated responses. Multi-resolution RNN [138] addresses the above issue by additionally

conditioning with entity information in the previous utterances. Alternatively, [148] uses

external knowledge from a retrieval model to condition the response generation. Latent

variable models inspired by Conditional Variational Autoencoders (CVAEs) are explored

in [144, 189]. While models with continuous latent variables tend to be uninterpretable,

discrete latent variable models exhibit high variance during inference. [144] append discrete

attributes such as sentiment to the latent representation to generate next utterance.

64



11.2.1. Contributions

New Conditional Dialog Generation Model. Drawing insights from [144, 190], we

propose a conditional utterance generation model in which the next utterance is conditioned

on the dialog attributes corresponding to the next utterance. To do this, we first predict

the higher level dialog attributes corresponding to the next response. Then we generate

the next utterance conditioned on the dialog context and predicted attributes. The dialog

attribute of an utterance refers to discrete features or aspects associated with the utterance.

Example attributes include dialog-acts, sentiment, emotion, speaker id, speaker personality

or other user defined discrete features of an utterance. While previous research works lack the

framework to learn to predict the attributes of the next utterance and mainly view the next

utterance’s attribute as a control variable in their models, our method learns to predict the

attributes in an end-to-end manner. This alleviates the need to have utterances annotated

with attributes during inference.

RL for Dialog Attribute Selection. Further, it also enables us to formulate the

dialog attribute selection as a reinforcement learning (RL) problem and optimize the policy

initialized by the supervised training using REINFORCE [183]. While the Supervised pre-

training helps the model to generate utterances coherent with the dialog history, the RL

formulation encourages the model to generate utterances optimized for long term rewards

like diversity, user-satisfaction scores etc. This way of optimizing the policy over the discrete

dialog attribute space is more practical as the action space is low dimensional instead of

the entire vocabulary (as common in policies which involve predicting the next token to

generate).

By using REINFORCE [183] to further optimize the dialog attribute selection process, we

then show improvements in specificity of the generated responses both qualitatively (based

on human evaluations) and quantitatively (with respect to the diversity measures). The

diversity scores, distinct-1 and distinct-2 are computed as the fraction of uni-grams and

bi-grams in the generated responses as described in [80].

Improvements on Dialog datasets demonstrated through quantitative & qualitative Eval-

uations: Additionally, we annotate an existing open domain dialog dataset using dialog at-

tribute classifiers trained with tagged datasets like Switchboard [43, 59], Frames [133] and

demonstrate both quantitative (in terms of token perplexity/embedding metrics [131, 107])

65



and qualitative improvements (based on human evaluations) in generating interesting re-

sponses. In this work, we show results with two types of dialog attributes - sentiment and

dialog-acts. It is worth investigating this approach as we need not invest much in training

classifiers for very high accuracy and we show empirically that annotations from classifiers

with low accuracy are able to boost token perplexity. We conjecture that the irregularities in

the auto-annotated dialog attributes induce a regularization effect while training deep neural

networks analogous to the dropout mechanism. Also, annotating utterances with many types

of dialog attributes could increase the regularization effect and potentially tip the utterance

generation in the favor of certain low frequency but interesting responses.

In this work, we are mainly interested in exploring the impact of the jointly modeling

extra discrete dialog attributes along with dialog history for next utterance generation and

their contribution to addressing the generic response problem. Although our approach is

flexible enough to include latent variables additionally, we mainly focus on the contribution

of dialog attributes to address the "generic" response issue in this work.

11.3. Attribute Conditional HRED

In this paper, we extend the HRED [141] model (elaborated in the Appendix section)

by jointly modeling the utterances with the dialog attributes of each utterance. HRED is

a encoder-decoder model consisting of a token-level RNN encoder and an utterance-level

RNN encoder to summarize the dialog context followed by a token-level RNN decoder to

generate the next utterance. Assuming that the next utterance and its dialog attributes are

conditionally independent given the dialog context, the joint probability can be factorized

into dialog attributes prediction, followed by next utterance generation conditioned on the

predicted dialog attributes as shown in equation 11.3.1 .

P (Um,DA1:K|U1:m�1) =
KY

i=1

P (DAi|U1:m�1) ⇤ P (Um|U1:m�1,DA1:K) (11.3.1)

where DA1:K denote K different dialog attributes corresponding to the utterance Um. Um

is the mth utterance, U1:m�1 are the past utterances. For instance, if we condition on three

dialog attributes - sentiment, dialog-acts and emotion, we would have K = 3. Further, we

assume that the dialog attributes are conditionally independent given the dialog context.

66



More simply, we predict the attributes of the next utterance and then, condition on the

previous context & the predicted attributes to generate the next utterance.

Fig. 11.1. Dialog attribute classification: We predict the dialog attribute of the next utter-

ance based on the previous context and attributes corresponding to the previous utterances.

Please note that we depict only a single attribute for convenience

11.3.1. Dialog Attribute Prediction

We predict the dialog attribute of the next utterance conditioned on the context vector

i.e. summary of the previous utterances and the dialog attributes of the previous utterances.

We first pass the attributes of all the previous utterances through an RNN. We combine only

the last hidden state of this RNN with the context vector (represents the summary of all the

previous utterances) to predict the dialog attribute of the next utterance as shown in Figure

11.1.

If the dialog dataset is not annotated with the dialog attributes, we build a classifier

(with a manually tagged dataset) to annotate the dialog attributes. This classifier is a simple

MLP. We empirically show that this classifier need not have high accuracy to improve the

67



Fig. 11.2. Attribute Conditional HRED : Token generation is additionally conditioned on

the predicted dialog attributes. The dialog attribute’s embedding is concatenated with the

context vector.

dialog modeling. We hypothesize that few misclassified attributes could potentially provide

a regularization effect similar to the dropout mechanism [151].

11.3.2. Conditional Response Generation

After the dialog attributes prediction, we generate the next utterance conditioned on the

dialog context and the predicted attributes as shown in Figure 11.2. Token generation of the

next utterance is modelled as in equation 11.3.2. The context and attributes are combined

by concatenating their corresponding hidden states.

hdecm,n = fdec(hdecm,n�1, wm,n�1, cm) (11.3.2)

68



where hdecm,n is the recurrent hidden state of the decoder after seeing n � 1 words in the

m-th utterance, fdec is the token level response decoder, and

cm = [sm�1; da
1
m; da

2
m; ...; da

K
m] (11.3.3)

where sm�1 is the summary of previous m � 1 utterances (recurrent hidden state of the

utterance-level encoder), and da
1
m, da

2
m, ..., da

K
m are the K dialog attribute embeddings cor-

responding to the m-th utterance.

During inference, we first predict the dialog attributes of the dialog context. We then

predict the dialog attribute of the next utterance conditioned on the predicted attribute and

the hierarchical utterance representations. We combine the predicted attribute’s embedding

vector with the context representation to generate the next utterance. Looking from another

perspective, we could formulate the conditional utterance generation problem as a multi-

task problem where we jointly learn to predict the dialog attributes and tokens of the next

utterance.

11.3.3. RL for Dialog Attribute Prediction

Often the MLE objective does not capture the true goal of the conversation and lacks the

framework which can take developer-defined rewards into account for modeling such goals.

Also, the MLE-based seq2seq models fail to model long term influence of the utterances on

the dialog flow causing coherency issues. This calls for a Reinforcement Learning (RL) based

framework which has the ability to optimize policies for maximizing long term rewards. At

the core, the MLE objective tries to increase the conditional utterance probabilities and

influences the model to place higher probabilities over the commonly occurring utterances.

On the other hand, RL based methods circumvent this issue by shifting the optimization

problem to maximizing long term rewards which could promote diversity, coherency, etc.

Previous approaches [82, 71, 78] propose to model the token prediction of the next

utterance as a reinforcement learning problem and optimize the models to maximize hand-

crafted rewards for improving diversity, coherency, and ease of answering. Their approaches

involves pre-training the encoder-decoder models with supervised training and then refining

the utterance generation further with RL using the hand-engineered rewards. Their state

space consists of the dialog context representation (encoder hidden states). Their action

69



space at a given time step includes all possible words that the decoder can generate (which

is very large).

While this approach is appealing, policy gradient methods are known to suffer from high

variance when using large action spaces. This makes training extremely unstable and requires

significant engineering efforts to train successfully.

Another potential drawback with directly acting over the vocabulary space is that the

RL optimization procedure tends to strip away the linguistic and natural language aspects

learned during the supervised pre-training step, as observed in [71, 78]. Since the primary

focus of the RL objective function is to improve the final reward (which may not emphasize on

the linguistic aspects of the generated responses, for e.g., diversity scores), the optimization

algorithm could lead the decoder into generating unnatural responses. We propose to avoid

both the issues by reducing the action space to a higher level abstraction space i.e. the dialog

attributes. Our action space comprises the discrete dialog attributes and the state space is

the dialog context. Intuitively, this enables the RL policy to view the dialog attributes as

control variables for improving dialog flow and modeling long term influence. For instance, if

the input response was “how old are you?", an RL policy optimized to maximize conversation

length and engagement could choose to set one of the next utterance attributes as a question-

type to generate a response like “why do you ask?" instead of a straightforward answer, to

keep the conversation engaging. Thus, we believe that this approach enables the model

to predict such rare but interesting utterances to which the MLE objective fails to give

attention.

Our policy network comprises of the encoders and the attribute prediction network.

Given the previous utterances U1:m�1, the policy network first encodes them by using the

encoders. Then this encoded representation is passed to the attribute prediction network.

The output of the attribute prediction network is the action. While there are many ways

to design the reward function, we adopt the ease-of-answering reward introduced by [82]

- negative log-likelihood of a set of manually constructed dull utterances (usually the most

commonly occurring phrases in the dataset) in response to the next generated utterance.

Let S be the set of dull utterances. With the sampled dialog-acts, DA1:K from the policy

network, we generate the next utterance Um using the decoder. Then we add this generated

utterance to the context and predict the probability of seeing one of the dull utterances in

70



the m+ 1-th step. This is used to compute the reward as follows:

R = � 1

|S|
X

s2S

1

Ns
logP (s|U1:m�1,DA1:K), (11.3.4)

where Ns is the number of tokens in the dull utterance s. The normalization avoids the

reward function attending to only the longer dull responses. We use REINFORCE [183] to

optimize our policy, PRL(DA1:K|U1:m�1). The expected reward is given by equation 11.3.5

J(✓) = E[R(U1:m�1,DA1:K)] (11.3.5)

The gradient is estimated as in equation 11.3.6

rJ(✓RL) = (R� b)rlogPRL(DA1:K|U1:m�1), (11.3.6)

where b is the reward baseline (computed as the running average of the rewards during

training). We initialize the policy with the supervised training and add an L2-loss to penalize

the network weights from moving away from the supervised network weights.

11.4. Training Setup

Datasets: We first start with the Reddit-discourse dataset [187] for training dialog at-

tribute classifiers and modeling utterance generation.

Reddit : The Reddit discourse dataset [187] is manually pre-annotated with dialog-acts via

crowd sourcing. The dialog-acts comprise of answer, question, humor, agreement, disagree-

ment, appreciation, negative reaction, elaboration, announcement. It comprises conversations

from around 9000 randomly sampled Reddit threads with over 100000 comments and an av-

erage of 12 turns per thread.

Open-Subtitles : Additionally, we show results with the unannotated Open-Subtitles dataset

[160] (we randomly sample up to 2 million dialogs for training and validation). We tag the

dataset with dialog attributes using pre-trained classifiers.

We experiment with two types of dialog attributes in this paper - sentiment and dialog-

acts. We annotate the utterances with sentiment tags - positive, negative, neutral using the

Stanford Core-NLP tool [96]. We adopt the dialog-acts from two annotated dialog corpus -

Switchboard [43] and Frames [133].

Switchboard : Switchboard corpus [43] is a collection of 1155 chit-chat style telephonic

conversations based on 70 topics. [59] revised the original tags to 42 dialog-acts. In our

71



experiments, we restrict dialog-acts to the top-10 most frequently annotated tags in the cor-

pus - Statement-non-opinion, Acknowledge , Statement-opinion, Agree/Accept, Abandoned or

Turn-Exit, Appreciation, Yes-No-Question, Non-verbal, Yes answers, Conventional-closing.

We consider the top-10 frequently annotated tags as a simple solution to avoid the class

imbalance issue (the Statement-non-opinion act is tagged 72824 times, while Thanking is

tagged only 67 times) for training the dialog attribute classifiers.

Frames: Frames [133] is a task oriented dialog corpus collected in the Wizard-of-Oz

fashion. It comprises of 1369 human-human dialogues with an average of 15 turns per dialog.

The wizards had access to a database of hotels and flights information and had to converse

with users to help finalize vacation plans. The dataset has 20 different types of dialog-acts

annotations. Like the Switchboard corpus, we adopt the top 10 frequently occurring acts

in the dataset for our experiments - inform, offer, request, suggest, switch-frame, no result,

thank you, sorry, greeting, affirm.

Model Details: We use two-layer GRUs [30] for both encoder and decoders with hid-

den sizes of 512. We restrict the vocabulary for both the datasets to top 25000 frequency

occurring tokens. The dialog attribute classifier for dialog attributes is a simple 2-layer MLP

with layer sizes of 256, and 10 respectively. We use the rectified linear unit (ReLU) as the

non-linear activation function for the MLPs and use dropout rate of 0.3 for the token embed-

dings, hidden-hidden transition matrices of the encoder and decoder GRUs. For generation

we use standard beam search (beam size 10).

Training Details: We ran our experiments on Nvidia Tesla-K80 GPUs and optimized

using the ADAM optimizer with the default hyper-parameters used in [98, 99]. All models

are trained with batch size 128 and a learning rate 0.0001.

11.5. Experimental Results

In this section, we present the experimental results along with qualitative analysis.

In Section 11.5.1, we discuss the dialog attribute classification results for different model

architectures trained on the Reddit, Switchboard and Frames datasets.

In Section 11.5.2, we first demonstrate quantitative improvements (token perplex-

ity/embedding based metrics) for the Attribute conditional HRED model with the manually

annotated Reddit dataset. Further, we discuss the model perplexity improvements along

72



with sample conversations and human evaluation results on the Open-Subtitles dataset. We

annotate it with sentiment and dialog-acts (from Switchboard/Frames datasets) using pre-

trained classifiers described in Section 11.5.1.

Finally, in Section 11.5.3, we analyze the quality of the generated responses after RL

fine-tuning using diversity scores (distinct-1, distinct-2 ), sample conversations and human

evaluation results for diversity and relevance. The diversity scores, (distinct-1, distinct-2 )

are computed as the fraction of uni-grams and bi-grams in the generated responses following

the previous work by [74].

11.5.1. Dialog Attribute Prediction

In this section, we present the experiments with the model architectures for the dialog

attribute prediction - dialog-acts from Reddit, Switchboard and Frames datasets. First, we

demonstrate the performance of the dialog-acts classifiers on the Reddit dataset as shown in

Table 11.1.

Model Acc(%)

F(Ut) 57

F(DAt�1,t�2) 54

F(Ut,DAt�1,t�2) 68

Tab. 11.1. Dialog-acts prediction accuracy in Reddit validation set.

The model F(Ut) refers to the architecture which predicts the dialog-acts based on current

utterance Ut alone. The tokens in the current utterance Ut are fed through a two-layer

GRU and the final hidden state is used to predict the dialog-acts. The model F(DAt�1,t�2)

predicts the current utterance’s dialog-acts DAt based on the dialog-acts corresponding to

the previous two utterances. We consider the dialog-acts prediction problem as a sequence

modeling problem where we feed the dialog-acts into a single-layer GRU and predict the

current dialog-acts conditioned on the previous dialog-acts. We settled on conditioning on

the dialog-acts corresponding to the previous two utterances alone as we didn’t observe

any boost in the classifier performance from the older dialog-acts. As seen in Table 11.1,

conditioning additionally on the dialog attributes helps improve classifier performance.

73



Next, we train classifiers to predict dialog-acts of utterances of the Switchboard and

Frames corpus. In our experiments, the number of act types is 11 - the top 10 most frequently

occurring acts in the corpus and "others" category covering the rest of the tags.

Corpus Num Acts Acc(%)

Reddit 9 68.1

Switchboard 11 67.9

Frames 11 71.1

Tab. 11.2. Dialog-acts prediction accuracy for classifiers trained on validation set of differ-

ent datasets.

As seen from Table 11.2, classifier performance is not really high and yet, contribute

to improvements in perplexity for the conditional Seq2Seq models (discussed in Section

11.5.2). While we aim for better classifier performance, it is important to note here that

the primary objective of such dialog attribute classifiers is to tag unannotated open-domain

dialog datasets. As future work, we will study how the classification errors influence response

generation.

11.5.2. Utterance Evaluation

Following [141], we use token perplexity and embedding based metrics (average, greedy

and extrema) [107, 131] for utterance evaluation.

Metric LM Seq2Seq Seq2Seq+Attr

Perplexity176 170 163

Greedy - 0.47 0.54

Extrema - 0.37 0.47

Average - 0.67 0.62

Tab. 11.3. Perplexity and Embedding Metrics for the Reddit validation set.

Reddit: First, we evaluate Seq2Seq models trained on the manually annotated Reddit

corpus as shown in Table 11.3. Seq2Seq+Attr refers to our model where we condition on

the dialog-acts additionally. Please note that we use the notation "Attr" here to maintain

74



Num Dialogs(in Millions)

Model Attributes 0.2 M 0.5 M 1 M 2 M

Seq2seq - 101.63 80.05 74.78 67.28

Seq2seq Sentiment 98.61 79.15 72.23 66.11

Seq2seq Switchboard 97.03 77.81 71.51 64.21

Seq2seq Frames 96.61 77.41 72.01 65.33

Seq2seq Sentiment, Switchboard 96.67 78.01 72.17 66.01

Seq2seq Sentiment, Frames 96.32 77.61 72.15 66.13

Seq2seq Switchboard, Frames 94.80 77.40 71.18 65.01

Tab. 11.4. Validation Perplexity for the Open-Subtitles dataset.

generality as it may refer to other dialog attributes like sentiment later in this section. For

both the baseline and conditional Seq2Seq models, we consider a dialog context involving the

previous two turns as we did not observe significant performance improvement with three

or more turns. We use a 2-layer GRU language model as a baseline for comparison. As

seen from Table 11.3, Seq2Seq+Attr fares well both in terms of perplexity and embedding

metrics. Higher perplexity observed in the Reddit corpus could be due to the presence of

several topics in the dataset (exhibits high entropy) and fewer dialogs compared to other

open domain dialog datasets.

Open-Subtitles: With promising results on the manually tagged Reddit corpus, we now

evaluate our attribute conditional HRED model on the unannotated Open-Subtitles dataset.

We tag the Open-Subtitles dataset with the sentiment tags using the Stanford Core-NLP

tool [96] and dialog-acts from Frames & Switchboard corpus using the pre-trained classifiers

described in Section 11.5.1.

In Table 11.4, we compare the model perplexity when trained on varying dialog corpus

size. In most of the cases, we observe that the conditioning with acts from both the frames

and switchboard yields the lowest perplexity. We observe that the perplexity improvement

is substantial for smaller datasets which is also corroborated from the experiments with the

Reddit dataset.

75



Human Evaluation: Following the human evaluation setting in [82], we randomly

sample 200 input message and the generated outputs from the Seq2Seq+Attr & Seq2Seq

models. We present each of them to 3 judges and ask them to decide which of the two

outputs is 1) most relevant and 2) diverse or interesting. Ties are permitted. Results for

human evaluation are shown in Table 11.8. We observe that Seq2Seq+Attr performs better

than the Seq2Seq model both in terms of diversity and relevance.

Seq2Seq+Attr vs Seq2Seq

Metric Wins(%) Losses(%) Ties(%)

Diversity 42 24.16 33.84

Relevance 40.16 36.83 23.01

Tab. 11.5. Human Evaluation results: Seq2Seq+Attr vs Seq2Seq

Please note that the Seq2Seq+Attr model performs better in terms of diversity compared

to the relevancy. This is in line with our expectations, as the purpose of dialog attribute

annotations is to help the model focus better on less-frequent responses.

Additionally, we present a few sample conversations in Table 11.6, where we observe that

the Seq2Seq+Attr model generates more interesting responses.

11.5.3. RL For Dialog Attribute Prediction

For the RL fine-tuning, we report the diversity scores of the generated responses with the

models trained on the Open-Subtitles dataset in Table 11.7. The diversity scores, distinct-1

and distinct-2 are computed as the fraction of uni-grams and bi-grams in the generated

responses following the previous work by [79].

We use the model conditioned on acts from both Switchboard and Frames for the

Seq2Seq+Attr and RL cases. The action space for the policy in this case, covers the 10

acts from Switchboard and Frames each. We choose a collection of commonly occurring

phrases in the Open-Subtitles dataset as the set of dull responses, S for the reward compu-

tation in equation 11.3.4. We observe that the RL fine-tuning improves over the conditional

seq2seq in terms of the diversity scores.

76



Input: i wish i was home watching tv.

Seq2Seq: i dont know what i was thinking

about

Seq2Seq+Attr: i cant wait to see it.

Input: He used from his charity to settle le-

gal problems.

Seq2Seq: i have no idea what youre talking

about

Seq2Seq+Attr: i dont think he is going to be a pres-

ident.

Input: tell us how you really feel

Seq2Seq: i dont understand why

Seq2Seq+Attr: lmao i could hella picture your reac-

tion

Tab. 11.6. Sample conversations

Model distinct-1 distinct-2

Seq2Seq 0.004 0.013

Seq2Seq+Attr 0.005 0.018

RL 0.011 0.033

Tab. 11.7. Diversity scores on the Open-Subtitles validation set after RL fine-tuning .

Human Evaluation: As described in Section 11.5.2, we present each of the 200 ran-

domly sampled input-response pairs of the Seq2Seq +Attr and RL models to 3 judges and

ask to them rate each sample for diversity and relevance. From Table 11.8, we can see that

the RL model significantly performs better both in terms of diversity and relevance.

Qualitative Analysis: In Table 11.9, we present the percentage of the commonly oc-

curring generic responses from the Open-Subtitles dataset in the validation set samples

corresponding to the RL and Seq2Seq + Attr models. We observe very low percentages of

such generic responses in the samples after RL fine-tuning. It is interesting to note that RL

77



RL vs Seq2Seq+Attr

Metric Wins(%) Losses(%) Ties(%)

Diversity 54.66 28.50 16.84

Relevance 43.33 26.62 30.05

Tab. 11.8. Human Evaluation results:RL vs Seq2Seq+Attr

model has successfully learned to minimize the generation of other dull responses like I would

love to be , I would love to see, I dont want to apart from expected the dull responses, S
(used in the reward computation). At the same time, RL model has scored higher in terms of

the Relevancy metric, as seen in Table 11.8 which indicates that the RL fine-tuning actually

explores interesting responses whilst avoiding the generic responses.

Generic Responses RL(%) Seq2Seq + Attr(%)

thank you so much 7.56 7.32

i dont understand why 0.0 15.64

i would love to see 0.66 5.65

i dont know how 0.0 13.97

i dont want to 1.66 3.99

i dont know why 0.0 3.66

i would love to be 0.99 2.21

i have no idea 4.31 3.33

Tab. 11.9. Percentage of generic responses after RL fine-tuning.

Additionally, we present a few sample conversations in Table 11.10, where we observe

that the RL model generates more diverse and relevant responses.

11.6. Related Work

There are several works focusing on dialog-acts classification and clustering based anal-

ysis [125, 90, 67, 5, 34, 153, 39]. [144] additionally add sentiment feature to the latent

variables in the VAE setting for utterance generation. In our work, we use dialog attributes

from different sources - Switchboard and Frames corpus to model utterance generation in a

78



Input: i’m honestly a bit confused why no

one has brought me or my books any

cake

Seq2Seq+Attr: i dont think i dont think anything

RL: i cant wait to see you in the city.

Input: ive been playing spaceship with my

year old niece for the past few days

Seq2Seq+Attr: i dont even know what i was talking

about.

RL: this is the best thing ive ever seen.

Input: it makes me so happy that you like

them

Seq2Seq+Attr: i dont know what i was thinking

about it

RL: i was just thinking about the same

thing

Tab. 11.10. Sample conversations

more realistic setting. As for the RL setting, existing research efforts include [82, 37, 57]

which formulate the token prediction as a RL policy in Seq2Seq models. However, searching

over a huge vocabulary space typically involves training with huge number of samples and

careful fine-tuning of the policy optimization algorithms. Additionally, as discussed in Sec-

tion 11.3.3, it requires precautionary measures to prevent the RL algorithm from removing

the linguistic aspects of the generated utterances. In another related research work, [135]

use dialog-acts as one among their hand crafted features to select responses from an ensem-

ble of dialog systems. They use dialog-acts in their RL policy, however their action space

comprises of responses from an ensemble of dialog models. They include dialog-acts in their

features for their distributed state representation.

79



11.7. Conclusion

In this work, we address the dialog utterance generation problem by jointly modeling pre-

vious dialog context and discrete dialog attributes. We analyze both quantitatively (model

perplexity and other embedding based metrics) and qualitatively (human evaluation, sam-

ple conversations) to validate that composed dialog attributes help generate interesting re-

sponses. Further, we formulate the dialog attribute prediction problem as a reinforcement

learning problem. We fine tune the attribute selection policy network trained with supervised

learning using REINFORCE and demonstrate improvements in diversity scores compared to

the Seq2Seq model. In the future, we plan to extend the model for additional dialog at-

tributes like emotion, speaker persona etc. and evaluate the controllability aspect of the

responses based on the dialog attributes.

80



Chapter 12

Prologue to Fourth Article

12.1. Article Details

Transferable Neural Projection Representations. Chinnadhurai Sankar, Sujith

Ravi, Zornitsa Kozareva 2019 Annual Conference of the North American Chapter of the

Association for Computational Linguistics (NAACL 2019)

Personal Contribution. After discussions with Sujith Ravi and Zornitsa Kozareva, I came

up with the idea for training on-device neural text representations along the lines of the skip-

gram model [104]. I implemented the prototype of the model and iterated on the prototype

to significantly improve its performance. Zornitsa and I wrote up the paper, while Sujith

helped improve its presentation.

12.2. Context

The tremendous success of deep learning models and the explosion of mobile, IoT devices

coupled together with the growing user privacy concerns have led to the need for deploying

deep learning models on-device for inference. This has led to new research in compress-

ing large and complex deep learning models for low power on-device deployment. Recently,

[124] developed an on-device neural text classification model. They proposed to reduce the

memory footprint of large neural networks by replacing the input word embeddings with

Locality Sensitive Hashing (LSH) [24] projection-based representations. However, the pro-

jections in [124] are static and currently do not leverage pre-training on large unsupervised

corpora, which is an important property to make the projections transferable to new tasks.



In this paper, we propose to combine the best of both worlds by learning transferable neural

projection representations over randomized LSH projections.

12.3. Contributions

We introduce a new neural architecture inspired by the skip gram model of [104] and

combined with a deep MLP plugged on top of LSH projections. In order to make this model

train better, we introduce a novel regularizing loss function critical for generalization. We

conduct a qualitative analysis of the nearest neighbours in the learned representation spaces

and a quantitative evaluation via similarity, language modeling and NLP tasks.

12.4. Recent Developments

Efficient neural representations for on-device models have been explored extensively since

the publication of the paper. For instance, [62] train tiny neural networks just 200 Kilobytes

in size that improve over prior CNN and LSTM models and achieve near state of the art

performance on multiple long document classification tasks. They also explore transfer

learning capabilities to further improve the performance in limited data scenarios. In another

work [72], authors introduce novel on-device sequence model for text classification using

recurrent LSH-based projection representations.

82



Chapter 13

Transferable Neural Projection Representations

13.1. Abstract

Neural word representations are at the core of many state-of-the-art natural language

processing models. A widely used approach is to pre-train, store and look up word or

character embedding matrices. While useful, such representations occupy huge memory

making it hard to deploy on-device and often do not generalize to unknown words due to

vocabulary pruning.

In this paper, we propose a skip-gram based architecture coupled with Locality-Sensitive

Hashing (LSH) projections to learn efficient dynamically computable representations. Our

model does not need to store lookup tables as representations are computed on-the-fly and

require low memory footprint. The representations can be trained in an unsupervised fashion

and can be easily transferred to other NLP tasks. For qualitative evaluation, we analyze the

nearest neighbors of the word representations and discover semantically similar words even

with misspellings. For quantitative evaluation, we plug our transferable projections into a

simple LSTM and run it on multiple NLP tasks and show how our transferable projections

achieve better performance compared to prior work.

13.2. Introduction

Pre-trained word representations are at the core of many neural language understanding

models. Among the most popular and widely used word embeddings are word2vec [104],

GloVe [112] and ELMO [114]. The biggest challenge with word embedding is that they



require lookup and a large memory footprint, as we have to store one entry (d-dim vector)

per word and it blows up.

In parallel, the tremendous success of deep learning models and the explosion of mobile,

IoT devices coupled together with the growing user privacy concerns have led to the need

for deploying deep learning models on-device for inference. This has led to new research in

compressing large and complex deep learning models for low power on-device deployment.

Recently, [124] developed an on-device neural text classification model. They proposed to

reduce the memory footprint of large neural networks by replacing the input word embeddings

with projection-based representations. [124] used n-gram features to generate binary LSH

[24] randomized projections on the fly surpassing the need to store word emebdding tables

and reducing the memory size. The projection models reduce the memory occupied by the

model from O(|V |) to O(nP), where |V | refers to the vocabulary size and nP refers to number

of projection operations [122]. Two key advantages of the projection-based representations

over word embeddings are: (1) they are fixed and have low memory size; (2) they can handle

out of vocabulary words. However, the projections in [124] are static and currently do not

leverage pre-training on large unsupervised corpora, which is an important property to make

the projections transferable to new tasks.

In this paper, we propose to combine the best of both worlds by learning transferable

neural projection representations over randomized LSH projections. We do this by intro-

ducing new neural architecture inspired by the skip gram model of [104] and combined with

a deep MLP plugged on top of LSH projections. In order to make this model train better,

we introduce new regularizing loss function, which minimizes the cosine similarities of the

words within a mini-batch. The loss function is critical for generalization.

In summary, our model (1) requires a fixed and low memory footprint, (2) can handle

out of vocabulary words and misspellings, (3) captures semantic and syntactic properties of

words; (4) can be easily plugged to other NLP models and (5) can support training with

data augmentation by perturbing characters of input words. To validate the performance

of our approach, we conduct a qualitative analysis of the nearest neighbours in the learned

representation spaces and a quantitative evaluation via similarity, language modeling and

NLP tasks.

84



13.3. Neural Projection Model

We propose a novel model (NP-SG) to learn compact neural representations that com-

bines the benefit of representation learning approaches like skip-gram model with efficient

LSH projections that can be computed on-the-fly.

13.3.1. Vanilla Skip-Gram Model

In the skip-gram model [104], we learn continuous distributed representations for words

in a large fixed vocabulary, V to predict the context words surrounding them in documents.

We maintain an embedding look up table, v(w) 2 Rd for every word, w 2 V.

For each word, wt in the training corpus of size T , the set of context words Ct =

{wt�Wt , . . . , wt�1, wt+1, . . . , wt+Wt} includes Wt words to the left and right of wt respectively.

Wt is the window size randomly sampled from the set {1, 2, . . . , N}, where N is the maxi-

mum window size. Given a pair of words, {wc, wt}, the probability of wc being within the

context window of wt is given by equation 13.3.1.

P(wc|wt) = �(v0(wc)
|
v(wt))

=
1

1 + exp(�v0(wc)|v(wt))

(13.3.1)

where v, v
0 are input and context embedding look up tables.

13.3.2. Neural Projection Skip-Gram (NP-SG)

In the neural projection approach, we replace the input embedding look up table, v(w) in

equation 13.3.1 with a deep n-layer MLP over the binary projection, P(w) as shown equation

13.3.2.

vP(w) = N(fn(P(w))) (13.3.2)

where vP(w) 2 Rd, fn is a n-layer deep neural network encoder with ReLU non-linear

activations after each layer except for the last layer as shown in Figure 13.1. N refers to a

normalization applied to the final layer of fn. We experimented with Batch-normalization,

L2-normalization and layer normalization; batch-normalization works the best.

85



Fig. 13.1. Neural Projection Skip-gram (NP-SG) model

The binary projection P(w) is computed using locality-sensitive projection opera-

tions [122] which can be performed on-the-fly (i.e., without any embedding look up) to yield

a fixed, low-memory footprint binary vector. Unlike [124] which uses static projections to

encode the entire input text and learn a classifier, NP-SG creates a trainable deep projection

representation for words using LSH projections over character-level features combined with

contextual information learned via the skip-gram architecture.

13.3.3. Training NP-SG Model

We follow a similar approach as [104] and others for training our neural projection

skip-gram model (NP-SG). We define the training objective to maximize the probability of

predicting the context words given the current word. Formally, the model tries to learn the

word embeddings by maximizing the objective, J(✓) known as negative sampling (NEG),

given by equation 13.3.3.

J(✓) =
TX

t=1

X

wc2Ct

Jwt,wc(✓) (13.3.3)

Jwt,wc(✓) = log(P(wc|wt))

+
kX

i=1,wi⇠Pn(w)

log(1� P(wi|wt))
(13.3.4)

86



where k is the number of randomly sampled words from the training corpus. Following [105],

we sample words according to the noise distribution Pn(w) / U(w)3/4, where U(w) is the

unigram distribution of the training corpus.

Model improvements: Training an NP-SG model as is, though efficient, may not lead to

highly discriminative representations. During training, we noticed that the word represen-

tations, vP(w) were getting projected in a narrow sub-space where the cosine similarities of

all the words in the dataset were too close to 1.0. This made the convergence slower and led

to poor generalization.

13.3.4. Discriminative NP-SG Models

To encourage the word representations to be more spaced out in terms of the cosine

similarities, we introduce an additional explicit regularizing L2-loss function. With the

assumption that the words in each mini-batch are randomly sampled, we add a L2-loss over

the cosine similarities between all the words within a mini-batch, as shown in equation 13.3.6.

Loss = �J(✓) + Lcs
2 (wmb) (13.3.5)

Lcs
2 (wmb) = � · sqrt(

X

0<ijmb

CS(wi, wj)
2) (13.3.6)

where CS(wi, wj) refers to the cosine similarity between wi and wj, mb refers to the mini-

batch size and wmb refers to the words in the mini-batch. We enforce this using a sim-

ple outerproduct trick. We extract the cosine-similarities between all the words within a

mini-batch in a single shot by computing the outer-product of the L2 row normalized word

representations corresponding to each minibatch v̂P(wmb), as shown in equation 13.3.7.

Lcs
2 (wmb) =

�

2
· kFlatten(v̂P(wmb) · v̂P(wmb)

|) k22 (13.3.7)

13.3.5. Improved NP-SG Training

Since the NP-SG model does not have a fixed vocabulary size, we can be flexible and

leverage a lot more information during training compared to standard skip-gram models

which require vocabulary pruning for feasibility.

87



To improve training for NP-SG model, we augment the dataset with input words after

applying character level perturbations to them. The perturbations are such that they are

commonly occurring misspellings in documents. We mainly experiment with three types of

perturbation operation APIs [41].

• insert(word, n) : We randomly choose n chars from the character vocabulary and

insert them randomly into the input word. We ignore the locations of first and last

character in the word for the insert operation. Example transformation: sample !

samnple.

• swap(word, n) : We randomly swap the location of two characters in the word n

times. As with the insert operation, we ignore the first and last character in the

word for the swap operation. Example transformation: sample ! sapmle.

• duplicate(word, n) : We randomly duplicate a character in the word by n times.

Example transformation: sample ! saample.

We would like to note that the perturbation operations listed above are not exhaustive

and we plan to experiment with more operations in the future.

13.4. Training Setup

13.4.1. Dataset

We train our skipgram models on the wikipedia data XML dump, enwik9. We extract

the normalized English text from the XML dump using the Matt Mahoney’s pre-processing

perl script.

We fix the vocabulary to the top 100k frequently occurring words. We sub-sample words

in the training corpus, dropping them with probability, P(w) = 1 �
p

t/freq(w), where

freq(w) is the frequency of occurrence of w in the corpus and we set the threshold, t to 10�5.

We perturb the input words with a probability of 0.4 using a randomly chosen perturbation

described in Section 13.3.5.

13.4.2. Implementation Details

We fix the number of random projections to 80 and the projection dimension to 14.

We use a 2-layer MLP (sizes: [2048, 100]) regularized with dropout (with probability of

88



Dataset SG (10M) NP-SG (w/oOP) NP-SG (1M) NP-SG (2M) NP-SG (4M)

EN-MTurk-287 0.5409 0.0107 0.5629 0.5517 0.5494

EN-WS-353-ALL 0.5930 0.0710 0.4891 0.5215 0.5370

EN-WS-353-REL 0.5359 0.0203 0.4956 0.5746 0.5671

EN-WS-353-SIM 0.6242 0.1043 0.4994 0.5116 0.5111

EN-RW-STANFORD 0.1505 0.0401 0.0184 0.0375 0.0835

EN-VERB-143 0.2452 0.0730 0.1333 0.1500 0.2108

Tab. 13.1. Similarity Tasks: # of params, 100k vocabulary size for skipgram baseline, 100

embedding size.

0.65) and weight decay (regularization parameter of 0.0005) to transform the binary random

projections to continuous word representation. For the vanilla skipgram model, we fix the

embedding size to 100. For both models, we use 25 negative samples for the NEG loss. We

learn the parameters using the Adam optimizer [69] with a default learning rate of 0.001,

clipping the gradients which have a norm larger than 5.0. We initialize the weights of the

MLP using Xavier initialization, and output embeddings uniformly random in the range

[�1.0, 1.0]. We use a batch size of 1024 in all our experiments. We found that � = 0.01 for

the outerproduct loss to be working better after experimenting with other values. Training

time for our model was around 0.85 times that of the skipgram model. Both the models

were trained for 10 epochs.

13.5. Experiments

We show both qualitative and quantitative evaluation on multiple tasks for the NP-SG

model.

13.5.1. Qualitative Evaluation and Results

Table 13.2 shows the nearest neighbors produced by NP-SG for select words. Independent

of whether it is an original or misspelled word, our NP-SG model accurately retrieves relevant

and semantically similar words.

89



Word Nearest neighbours

king reign, throne, kings, knights, vii, regent

kingg vii, younger, peerage, iv, tiberius, frederick

woman man, young, girl, child, girls, women

wwoamn man, herself, men, couple, herself, alive

city town, village, borough, township, county

ciity town, village, borough, county, unorganized

time few, times, once, entire, prominence, since

tinme times, once, takes, taken, another, only

zero two, three, seven, one, eight, four

zzero two, three, five, six, seven, four

Tab. 13.2. Sampled nearest neighbors for NP-SG.

13.5.2. Quantitative Evaluation and Results

We evaluate our NP-SG model on similarity, language modeling and text classification

tasks. Similarity tests the ability to capture words, while language modeling and classification

warrant the ability to transfer the neural projections.

13.5.2.1. Similarity Task

We evaluate our NP-SG word representations on 4 different widely used benchmark

datasets for measuring similarities.

Dataset:

MTurk-287 [119] has 287 pairs of words and was constructed by crowdsourcing the

human similarity ratings using Amazon Mechanical Turk. WS353 [40] has 353 pairs of

similar English words rated by humans and is further split into WS353-SIM. WS353-REL

[3] captures different types of similarities and relatedness. RW-STANFORD [95] has 2034

rare word pairs sampled from different frequency bins.

90



Evaluation:

For all the datasets, we compute the Spearman’s rank correlation coefficient between

the rankings computed by skip-gram models (baseline SG and NP-SG) and the human

rankings. We use the cosine similarity metric to measure word similarity.

Results:

Table 13.1 shows that NP-SG, with a significantly smaller number of parameters comes close

to the skip-gram model (SG) and even outperforms it with 2.5x-10x compression. NP-SG

gets better representations even with misspellings which cannot be handled by vanilla SG.

It is interesting to note that the vanilla skip-gram model does well on WS353-SIM com-

pared to WS353-REL. This behavior is reversed in our NP-SG model, which indicates that it

captures meronym-holonym relationships better than the vanilla skip-gram model. Although

NP-SG handles out of vocabulary words in the form of misspellings, it needs further improve-

ment for the rare word similarity task. We plan to improve it by including context word

n-gram features in the LSH projection function, allowing NP-SG to also leverage information

from the context words in the case of rare words and provide word sense disambiguation.

13.5.2.2. Language Modeling

We applied NP-SG to language modeling task on the Penn Treebank (PTB)[159] dataset.

We consider a single layer LSTM with hidden size of 2048 for the language model task. With

the input embedding size of 200, we observed a perplexity of ⇡ 120 on the test set after train-

ing for 5 epochs. We replace the input embeddings in the LSTM with transferable encoder

layer of the NP-SG model. We train the LSTMs with and without pretrained initializations.

Since we observed convergence issues with the single layer NP-SG representation, we con-

sidered 2-layer MLP with layer sizes (1024, 256) for the NP-SG representations. We found

that while the model without pretrained NP-SG layer got stuck at a perplexity of around

300, the pretrained version converged to a perplexity of 140, comparable to the embedding

based network. We leave the analysis of the impact of the deeper NP-SG layers to the future

work.

91



13.5.2.3. Text Classification

For the text classification evaluations, we used two different tasks and datasets. For the

dialog act classification task, we used the MRDA dataset from the ICSI Meeting Recorder

Dialog Act Corpus [1]. MRDA is a multiparty dialog annotated with 5 dialog act tags. For

the question classification task, we used the TREC dataset [85]. The task is given a question

to predict the most relevant category.

We trained a single layer LSTM (hidden size: 256) with and without the pretrained NP-

SG layers. Overall, we observed accuracy improvements of +5.7% and +3.75% compared to

baseline models without pretrained NP-SG initializations on TREC and MRDA respectively.

13.6. Conclusion

In this paper, we introduced a new neural architecture (NP-SG), which learns transferable

word representations that can be efficiently and dynamically computed on-device without

any embedding look up. We proposed an unsupervised method to train the new architecture

and learn more discriminative word representations. We compared the new model with

a skip-gram approach and showed qualitative and quantitative comparisons on multiple

language tasks. The evaluations show that our NP-SG model learns better representations

even with misspellings and reaches competitive results with skip-gram on similarity tasks,

even outperforming with 2.5x-10x fewer parameters.

92



Chapter 14

Conclusion

This thesis has touched various topics around neural approaches for modeling dialog.

The work on perturbation-based analysis evaluates how sensitive different neural gener-

ative dialog models are to perturbations in dialog history, where sensitivity is measured as a

change in perplexity. It considers a range of utterance-level and sentence-level perturbations,

three model variants, and 4 different datasets. The overall finding is that all models are sur-

prisingly insensitive to dialog history. By open-sourcing our code, we believe this paradigm

of studying model behavior by introducing perturbations that destroys different kinds of

structure present within the dialog history can be a useful diagnostic tool. We also foresee

this paradigm being useful when building new dialog datasets to understand the kinds of

information models use to solve them. This work calls for more analysis and in-depth studies

of how dialog context is modeled in current neural architectures. We believe that this work

could potentially inspire more analysis-based research efforts to understand why neural con-

versational models generate generic responses and possibly lead to quantitative techniques

to study the shortcomings of current state of the art neural conversational models. Follow

up works could focus on the impact of some of the following factors over the sensitivity of

neural dialog models

• Neural architectures for dialog context encoding,

• Dialog training loss functions & metrics,

• Nature of imbalances present in the dialog dataset,

To address the lack of quality corpora for data-driven dialog system research and devel-

opment, the second work introduces Taskmaster-1, a dataset that provides richer and



more diverse language as compared to current benchmarks since it is on unrestricted,

task-oriented conversations involving more real-word entities. In addition, we present two

data collection methodologies, both spoken and written, that ensure both speaker diversity

and conversational accuracy. Our straightforward, API-oriented annotation technique

is much easier for annotators to learn and simpler to apply. We give several baseline

models including state-of-the-art neural seq2seq architectures, provide qualitative human

performance evaluations for these models, and find that automatic evaluation metrics

correlate well with human judgments. While there have been other larger dataset releases

following our work, they have largely been grounded in dialog intent types where as our

framework involves grounding conversations in argument types. We believe that grounding

the conversations in argument types over intents is a scalable solution to approaching

modeling task oriented dialogs as the number of possible intents could be exponentially

large compared to the number of argument types. As a future work, we wish to collect

datasets that consist of a training set with conversations involving only certain combinations

of argument types and benchmark generalization capabilities of neural models to unseen

combinations of argument types.

The third work describes a learning procedure for training chitchat seq2seq-based

dialog agents that are conditioned on dialogue context and discrete dialogue attributes.

We analyze both quantitatively (model perplexity and other embedding-based metrics)

and qualitatively (human evaluation, sample conversations) to validate that composed

dialog attributes help generate interesting responses. Further, we formulate the dialog

attribute prediction problem as a reinforcement learning problem. We fine-tune the

attribute selection policy network trained with supervised learning using REINFORCE

and demonstrate improvements in diversity scores compared to the Seq2Seq model. In the

future, we plan to extend the model for additional dialog attributes like emotion, speaker

persona etc. and evaluate the controllability aspect of the responses on the dialog attributes.

The final work aims at producing learned word representations on-the-fly, without having

to use gigabytes of memory for a lookup table. Instead, a locality-sensitive hashing (LSH)

projection on the characters level features of a word is transformed using a MLP to create

94



a trainable representation of that word. The main aim of this approach is to reduce the

large memory overhead required for storing conventional embedding look-up matrices. We

compared the new model with a skip-gram approach and showed qualitative and quantitative

comparisons on multiple language tasks. The evaluations show that our model learns better

representations even with misspellings and reaches competitive results with skip-gram on

similarity tasks, even outperforming with 2.5x-10x fewer parameters. In the immediate

future, we wish to extend this work by including the the morphological features of the context

words additionally to generate a context dependent on-device representation of words. As

for the future research directions, LSH-based text representation could potentially be used to

succinctly represent dialog utterances which are usually short (5 to 9 words on an average).

We believe that LSH-based projection representations could lead to deploying conversational

models directly on edge and IoT devices.

95





Bibliography

[1] Janin Adam, Don Baron, Jane Edwards, Dan Ellis, David Gelbart, Nelson Morgan, Barbara Peskin,

Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke, and Chuck Wooters. The icsi meeting corpus. In

Proceedings of the 5TH SIGdial Workshop on Discourse and Dialogue, pages 364–367, 2003.

[2] Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. Fine-grained analysis of

sentence embeddings using auxiliary prediction tasks. arXiv preprint arXiv:1608.04207, 2016.

[3] Eneko Agirre, Enrique Alfonseca, Keith B. Hall, Jana Kravalova, Marius Pasca, and Aitor Soroa. A

study on similarity and relatedness using distributional and wordnet-based approaches. In Human Lan-

guage Technologies: Conference of the North American Chapter of the Association of Computational

Linguistics, Proceedings, May 31 - June 5, 2009, Boulder, Colorado, USA, pages 19–27, 2009.

[4] Ankesh Anand, Eugene Belilovsky, Kyle Kastner, Hugo Larochelle, and Aaron Courville. Blindfold

baselines for embodied qa. arXiv preprint arXiv:1811.05013, 2018.

[5] Jeremy Ang, Yang Liu, and Elizabeth Shriberg. Automatic dialog act segmentation and classification

in multiparty meetings. In ICASSP (1), pages 1061–1064, 2005.

[6] Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,

Mia Xu Chen, Yuan Cao, George Foster, Colin Cherry, Wolfgang Macherey, Zhifeng Chen, and Yonghui

Wu. Massively multilingual neural machine translation in the wild: Findings and challenges. CoRR,

abs/1907.05019, 2019.

[7] H. Aust, M. Oerder, F. Seide, and V. Steinbiss. The philips automatic train timetable information

system. Speech Communication, 17(3):249–262, 1995.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learn-

ing to align and translate. In Proceedings Of The International Conference on Representation Learning

(ICLR 2015), 2015.

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learn-

ing to align and translate. ICLR, 2015.

[10] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and Yoshua Bengio. End-to-

end attention-based large vocabulary speech recognition. In 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai, China, March 20-25, 2016, pages

4945–4949, 2016.



[11] Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural machine transla-

tion. arXiv preprint arXiv:1711.02173, 2017.

[12] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic lan-

guage model. The Journal of Machine Learning Research, 3:1137–1155, 2003.

[13] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic lan-

guage model. J. Mach. Learn. Res., 3:1137–1155, March 2003.

[14] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient

descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166, 1994.

[15] Stuart Bird, Sue Browning, Roger Moore, and Martin Russell. Dialogue move recognition using topic

spotting techniques. In Spoken Dialogue Systems-Theories and Applications, 1995.

[16] Dan Bohus, Antoine Raux, Thomas K Harris, Maxine Eskenazi, and Alexander I Rudnicky. Olympus:

an open-source framework for conversational spoken language interface research. In Proceedings of the

workshop on bridging the gap: Academic and industrial research in dialog technologies, pages 32–39.

Association for Computational Linguistics, 2007.

[17] Dan Bohus and Alexander I. Rudnicky. Ravenclaw: dialog management using hierarchical task de-

composition and an expectation agenda. In 8th European Conference on Speech Communication and

Technology, EUROSPEECH 2003 - INTERSPEECH 2003, Geneva, Switzerland, September 1-4, 2003,

2003.

[18] Antoine Bordes, Y-Lan Boureau, and Jason Weston. Learning end-to-end goal-oriented dialog. ICLR,

2017.

[19] Antoine Bordes and Jason Weston. Learning end-to-end goal-oriented dialog. CoRR, abs/1605.07683,

2016.

[20] Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan Ultes, Osman

Ramadan, and Milica Gasic. Multiwoz - a large-scale multi-domain wizard-of-oz dataset for task-

oriented dialogue modelling. EMNLP, 2018.

[21] Ronald Carter and Michael McCarthy. Cambridge grammar of English: a comprehensive guide; spoken

and written English grammar and usage. Ernst Klett Sprachen, 2006.

[22] Wallace Chafe and Deborah Tannen. The relation between written and spoken language. Annual Review

of Anthropology, 1987.

[23] Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou, and Yoshua

Bengio. Towards non-saturating recurrent units for modelling long-term dependencies. CoRR,

abs/1902.06704, 2019.

[24] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the

Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages 380–388, New York,

NY, USA, 2002. ACM.

98



[25] Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. A survey on dialogue systems. ACM

SIGKDD Explorations Newsletter, 19(2):25–35, Nov 2017.

[26] Ting-Rui Chiang, Hao-Tong Ye, and Yun-Nung Chen. An empirical study of content understanding in

conversational question answering, 2019.

[27] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation.

ArXiv e-prints, June 2014.

[28] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder for statistical

machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1724–1734, Doha, Qatar, October 2014. Association for Computational

Linguistics.

[29] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and Yoshua

Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation.

arXiv preprint arXiv:1406.1078, 2014.

[30] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical Evaluation of Gated Recurrent Neural

Networks on Sequence Modeling. ArXiv e-prints, December 2014.

[31] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of

gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[32] Kenneth Mark Colby. Modeling a paranoid mind. Behavioral and Brain Sciences, 4(4):515–534, 1981.

[33] Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni. What you

can cram into a single vector: Probing sentence embeddings for linguistic properties. arXiv preprint

arXiv:1805.01070, 2018.

[34] Nigel Crook, Ramón Granell, and Stephen G. Pulman. Unsupervised classification of dialogue acts using

a dirichlet process mixture model. In Proceedings of the SIGDIAL 2009 Conference, The 10th Annual

Meeting of the Special Interest Group on Discourse and Dialogue, 11-12 September 2009, London, UK,

pages 341–348, 2009.

[35] Kevin Crowston. Amazon mechanical turk: A research tool for organizations and information systems

scholars. In Anol Bhattacherjee and Brian Fitzgerald, editors, Shaping the Future of ICT Research.

Methods and Approaches, pages 210–221, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[36] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep

bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[37] B. Dhingra, L. Li, X. Li, J. Gao, Y.-N. Chen, F. Ahmed, and L. Deng. Towards End-to-End Reinforce-

ment Learning of Dialogue Agents for Information Access. ArXiv e-prints, September 2016.

99



[38] Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander Miller, Kurt Shuster, Jack Urbanek,

Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye, Alan W. Black, Alexan-

der Rudnicky, Jason Williams, Joelle Pineau, Mikhail Burtsev, and Jason Weston. The second conver-

sational intelligence challenge (convai2). In Sergio Escalera and Ralf Herbrich, editors, The NeurIPS

’18 Competition, pages 187–208, Cham, 2020. Springer International Publishing.

[39] Aysu Ezen-Can and Kristy Elizabeth Boyer. Unsupervised classification of student dialogue acts with

query-likelihood clustering. In Proceedings of the 6th International Conference on Educational Data

Mining, Memphis, Tennessee, USA, July 6-9, 2013, pages 20–27, 2013.

[40] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-

tan Ruppin. Placing search in context: the concept revisited. In Proceedings of the Tenth International

World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001, pages 406–414, 2001.

[41] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. Black-box generation of adversarial text

sequences to evade deep learning classifiers. In 2018 IEEE Security and Privacy Workshops, SP Work-

shops 2018, San Francisco, CA, USA, May 24, 2018, pages 50–56, 2018.

[42] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional Sequence to Sequence

Learning. Arxiv, 2017.

[43] John J. Godfrey, Edward C. Holliman, and Jane McDaniel. Switchboard: Telephone speech corpus for

research and development. In Proceedings of the 1992 IEEE International Conference on Acoustics,

Speech and Signal Processing - Volume 1, ICASSP’92, pages 517–520, Washington, DC, USA, 1992.

IEEE Computer Society.

[44] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[45] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[46] Google. Actions on google. 2019.

[47] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. Incorporating copying mechanism in sequence-

to-sequence learning. ACL, 2016.

[48] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R Bowman, and Noah A

Smith. Annotation artifacts in natural language inference data. arXiv preprint arXiv:1803.02324, 2018.

[49] H. He, A. Balakrishnan, M. Eric, and P. Liang. Learning Symmetric Collaborative Dialogue Agents

with Dynamic Knowledge Graph Embeddings. arXiv e-prints, April 2017.

[50] Matthew Henderson, Blaise Thomson, and Steve Young. Deep neural network approach for the dialog

state tracking challenge. SIGDIAL, 2013.

[51] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed, Navdeep Jaitly, Andrew

Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury. Deep neural networks

for acoustic modeling in speech recognition. Signal Processing Magazine, 2012.

100

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org


[52] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische Universität

München, page 91, 1991.

[53] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–

1780, 1997.

[54] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 1997.

[55] Jason L. Hutchens and Michael D. Alder. Introducing megahal. In Proceedings of the Joint Con-

ferences on New Methods in Language Processing and Computational Natural Language Learning,

NeMLaP3/CoNLL ’98, pages 271–274, Stroudsburg, PA, USA, 1998. Association for Computational

Linguistics.

[56] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt

Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size. CoRR,

abs/1602.07360, 2016.

[57] N. Jaques, S. Gu, D. Bahdanau, J. M. Hernández-Lobato, R. E. Turner, and D. Eck. Sequence Tutor:

Conservative Fine-Tuning of Sequence Generation Models with KL-control. ArXiv e-prints, November

2016.

[58] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, and Gaurav Agrawal et al. In-

datacenter performance analysis of a tensor processing unit. ISCA, 2017.

[59] D. Jurafsky, R. Bates, N. Coccaro, R. Martin, M. Meteer, K. Ries, E. Shriberg, A. Stolcke, P. Taylor,

and C. Van Ess-Dykema. Automatic detection of discourse structure for speech recognition and under-

standing. In 1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings,

pages 88–95, Dec 1997.

[60] Filip Jurčíček, Ondřej Dušek, Ondřej Plátek, and Lukáš Žilka. Alex: A statistical dialogue systems

framework. In International Conference on Text, Speech, and Dialogue, pages 587–594. Springer, 2014.

[61] Filip Jurcícek, Blaise Thomson, and Steve J. Young. Natural actor and belief critic: Reinforcement

algorithm for learning parameters of dialogue systems modelled as pomdps. TSLP, 7(3):6:1–6:26, 2011.

[62] Prabhu Kaliamoorthi, Sujith Ravi, and Zornitsa Kozareva. PRADO: Projection attention networks

for document classification on-device. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP), pages 5012–5021, Hong Kong, China, November 2019. Association for

Computational Linguistics.

[63] Anjuli Kannan and Oriol Vinyals. Adversarial evaluation of dialogue models. CoRR, abs/1701.08198,

2017.

[64] Divyansh Kaushik and Zachary C Lipton. How much reading does reading comprehension require? a

critical investigation of popular benchmarks. arXiv preprint arXiv:1808.04926, 2018.

[65] John F Kelley. An iterative design methodology for user-friendly natural language office information

applications. ACM Transactions on Information Systems (TOIS), 1984.

101



[66] Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. Sharp nearby, fuzzy far away: How neural

language models use context. arXiv preprint arXiv:1805.04623, 2018.

[67] Hamed Khanpour, Nishitha Guntakandla, and Rodney D. Nielsen. Dialogue act classification in

domain-independent conversations using a deep recurrent neural network. In COLING 2016, 26th

International Conference on Computational Linguistics, Proceedings of the Conference: Technical Pa-

pers, December 11-16, 2016, Osaka, Japan, pages 2012–2021, 2016.

[68] Seokhwan Kim, Luis Fernando D’Haro, Rafael E Banchs, Jason Williams, and Matthew Henderson.

Dialog state tracking challenge 4. 2015.

[69] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[70] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,

abs/1412.6980, 2014.

[71] S. Kottur, J. M. F. Moura, S. Lee, and D. Batra. Natural Language Does Not Emerge ’Naturally’ in

Multi-Agent Dialog. ArXiv e-prints, June 2017.

[72] Zornitsa Kozareva and Sujith Ravi. ProSeqo: Projection sequence networks for on-device text classifi-

cation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages

3894–3903, Hong Kong, China, November 2019. Association for Computational Linguistics.

[73] Ben Krause, Marco Damonte, Mihai Dobre, Daniel Duma, Joachim Fainberg, Federico Fancellu, Em-

manuel Kahembwe, Jianpeng Cheng, and Bonnie Webber. Edina: Building an open domain socialbot

with self-dialogues. Arxiv, 2017.

[74] Krista Lagus and Jukka Kuusisto. Topic identification in natural language dialogues using neural net-

works. In Proceedings of the SIGDIAL 2002 Workshop, The 3rd Annual Meeting of the Special Interest

Group on Discourse and Dialogue, Thursday, July 11, 2002 to Friday, July 12, 2002, Philadelphia,

PA, USA, pages 95–102, 2002.

[75] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015.

[76] Sungjin Lee, Qi Zhu, Ryuichi Takanobu, Xiang Li, Yaoqin Zhang, Zheng Zhang, Jinchao Li, Baolin

Peng, Xiujun Li, Minlie Huang, and Jianfeng Gao. Convlab: Multi-domain end-to-end dialog system

platform. CoRR, abs/1904.08637, 2019.

[77] Esther Levin and Roberto Pieraccini. A stochastic model of computer-human interaction for learning

dialogue strategies. In Fifth European Conference on Speech Communication and Technology, EU-

ROSPEECH 1997, Rhodes, Greece, September 22-25, 1997, 1997.

[78] M. Lewis, D. Yarats, Y. N. Dauphin, D. Parikh, and D. Batra. Deal or No Deal? End-to-End Learning

for Negotiation Dialogues. ArXiv e-prints, June 2017.

[79] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A Diversity-Promoting Objective Function for

Neural Conversation Models. ArXiv e-prints, October 2015.

102



[80] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A diversity-promoting objective function for neural

conversation models. In The North American Chapter of the Association for Computational Linguistics

(NAACL), pages 110–119, 2016.

[81] J. Li, M. Galley, C. Brockett, G. P. Spithourakis, J. Gao, and B. Dolan. A Persona-Based Neural

Conversation Model. ArXiv e-prints, March 2016.

[82] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky. Deep Reinforcement Learning for

Dialogue Generation. ArXiv e-prints, June 2016.

[83] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A persona-based neural conver-

sation model. CoRR, abs/1603.06155, 2016.

[84] Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. Dailydialog: A manually

labelled multi-turn dialogue dataset. arXiv preprint arXiv:1710.03957, 2017.

[85] Jimmy J. Lin and Boris Katz. Building a reusable test collection for question answering. JASIST,

57(7):851–861, 2006.

[86] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua

Bengio. A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130, 2017.

[87] Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Michael Noseworthy, Laurent Charlin, and Joelle

Pineau. How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation

metrics for dialogue response generation. CoRR, abs/1603.08023, 2016.

[88] Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Michael Noseworthy, Laurent Charlin, and Joelle

Pineau. How NOT to evaluate your dialogue system: An empirical study of unsupervised evaluation

metrics for dialogue response generation. CoRR, abs/1603.08023, 2016.

[89] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks for

natural language understanding. CoRR, abs/1901.11504, 2019.

[90] Yang Liu. Using SVM and error-correcting codes for multiclass dialog act classification in meeting

corpus. In INTERSPEECH 2006 - ICSLP, Ninth International Conference on Spoken Language Pro-

cessing, Pittsburgh, PA, USA, September 17-21, 2006, 2006.

[91] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,

Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach.

arXiv preprint arXiv:1907.11692, 2019.

[92] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,

Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach.

CoRR, abs/1907.11692, 2019.

[93] Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. The ubuntu dialogue corpus: A large dataset

for research in unstructured multi-turn dialogue systems. CoRR, abs/1506.08909, 2015.

[94] Ryan Lowe, Nissan Pow, Iulian V. Serban, and Joelle Pineau. The ubuntu dialogue corpus: A large

dataset for research in unstructured multi-turn dialogue systems. SIGDIAL, 2015.

103



[95] Thang Luong, Richard Socher, and Christopher D. Manning. Better word representations with recur-

sive neural networks for morphology. In Proceedings of the Seventeenth Conference on Computational

Natural Language Learning, CoNLL 2013, Sofia, Bulgaria, August 8-9, 2013, pages 104–113, 2013.

[96] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David

McClosky. The Stanford CoreNLP natural language processing toolkit. In Association for Computa-

tional Linguistics (ACL) System Demonstrations, pages 55–60, 2014.

[97] S. McGlashan, N. Fraser, N. Gilbert, E. Bilange, P. Heisterkamp, and N. Youd. Dialogue management

for telephone information systems. In Proceedings of the third conference on Applied natural language

processing, pages 245–246. Association for Computational Linguistics, 1992.

[98] S. Merity, N. Shirish Keskar, and R. Socher. Regularizing and Optimizing LSTM Language Models.

ArXiv e-prints, August 2017.

[99] S. Merity, N. Shirish Keskar, and R. Socher. An Analysis of Neural Language Modeling at Multiple

Scales. ArXiv e-prints, March 2018.

[100] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM lan-

guage models. CoRR, abs/1708.02182, 2017.

[101] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models.

ICLR, 2017.

[102] Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tür, Xiaodong

He, Larry Heck, Gokhan Tur, Dong Yu, and Geoffrey Zweig. Using recurrent neural networks for slot

filling in spoken language understanding. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 23:530–539, 2015.

[103] Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur. Recurrent

neural network based language model. In INTERSPEECH 2010, 11th Annual Conference of the Inter-

national Speech Communication Association, Makuhari, Chiba, Japan, September 26-30, 2010, pages

1045–1048, 2010.

[104] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed represen-

tations of words and phrases and their compositionality. In Advances in Neural Information Processing

Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of

a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States., pages 3111–3119, 2013.

[105] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed represen-

tations of words and phrases and their compositionality. In Advances in Neural Information Processing

Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of

a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States., pages 3111–3119, 2013.

[106] Alexander H Miller, Will Feng, Adam Fisch, Jiasen Lu, Dhruv Batra, Antoine Bordes, Devi Parikh,

and Jason Weston. Parlai: A dialog research software platform. arXiv preprint arXiv:1705.06476, 2017.

104



[107] Jeff Mitchell and Mirella Lapata. Vector-based models of semantic composition. In ACL, pages 236–244,

2008.

[108] Nikita Moghe, Siddhartha Arora, Suman Banerjee, and Mitesh M. Khapra. Towards exploiting back-

ground knowledge for building conversation systems. EMNLP, 2018.

[109] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In

Johannes Fürnkranz and Thorsten Joachims, editors, Proceedings of the 27th International Conference

on Machine Learning (ICML-10), pages 807–814. Omnipress, 2010.

[110] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and

Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. NAACL Demonstrations, 2019.

[111] Alexandros Papangelis, Mahdi Namazifar, Chandra Khatri, Yi-Chia Wang, Piero Molino, and Gokhan

Tur. Plato dialogue system: A flexible conversational ai research platform. ArXiv, abs/2001.06463,

2020.

[112] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word repre-

sentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1532–1543. Association for Computational Linguistics, 2014.

[113] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word

representation. In EMNLP, volume 14, pages 1532–1543, 2014.

[114] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and

Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), pages 2227–2237. Association for Computational Linguistics,

2018.

[115] Chen Qu, Liu Yang, Minghui Qiu, W. Bruce Croft, Yongfeng Zhang, and Mohit Iyyer. Bert with history

answer embedding for conversational question answering. Proceedings of the 42nd International ACM

SIGIR Conference on Research and Development in Information Retrieval - SIGIR’19, 2019.

[116] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understand-

ing by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/research-

covers/languageunsupervised/language understanding paper. pdf, 2018.

[117] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models

are unsupervised multitask learners. Arxiv, 2019.

[118] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language

models are unsupervised multitask learners. 2019.

[119] Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. A word at a time:

computing word relatedness using temporal semantic analysis. In Proceedings of the 20th International

Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011, pages

337–346, 2011.

105



[120] Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. Towards

scalable multi-domain conversational agents: The schema-guided dialogue dataset, 2019.

[121] Antoine Raux, Brian Langner, Alan W Black, and Maxine Eskenazi. Let’s go: Improving spoken dialog

systems for the elderly and non-natives. Eurospeech, 2003.

[122] Sujith Ravi. Projectionnet: Learning efficient on-device deep networks using neural projections. CoRR,

abs/1708.00630, 2017.

[123] Sujith Ravi. Efficient on-device models using neural projections. In Proceedings of the 36th International

Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 5370–

5379, 2019.

[124] Sujith Ravi and Zornitsa Kozareva. Self-governing neural networks for on-device short text classifica-

tion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,

Brussels, Belgium, October 31 - November 4, 2018, pages 804–810, 2018.

[125] Norbert Reithinger and Martin Klesen. Dialogue act classification using language models. In Eu-

roSpeech, 1997.

[126] Hang Ren, Weiqun Xu, Yan Zhang, and Yonghong Yan. Dialog state tracking using conditional random

fields. In Proceedings of the SIGDIAL 2013 Conference, Metz, France, August, 2013.

[127] A. Ritter, C. Cherry, and W. B. Dolan. Data-driven response generation in social media. In Proceedings

of the Conference on Empirical Methods in Natural Language Processing, pages 583–593, 2011.

[128] Lina Maria Rojas-Barahona, Milica Gasic, Nikola Mrksic, Pei-Hao Su, Stefan Ultes, Tsung-Hsien Wen,

Steve J. Young, and David Vandyke. A network-based end-to-end trainable task-oriented dialogue

system. In Proceedings of the 15th Conference of the European Chapter of the Association for Com-

putational Linguistics, EACL 2017, Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers, pages

438–449, 2017.

[129] Lina Maria Rojas-Barahona, Milica Gasic, Nikola Mrksic, Pei-Hao Su, Stefan Ultes, Tsung-Hsien Wen,

Steve J. Young, and David Vandyke. A network-based end-to-end trainable task-oriented dialogue

system. EACL, 2017.

[130] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations by back-

propagating errors. Cognitive modeling, 5(3):1.

[131] Vasile Rus and Mihai Lintean. A comparison of greedy and optimal assessment of natural language

student input using word-to-word similarity metrics. In Proceedings of the Seventh Workshop on Build-

ing Educational Applications Using NLP, pages 157–162. Association for Computational Linguistics,

2012.

[132] Abdelrhman Saleh, Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, and Rosalind Picard.

Hierarchical reinforcement learning for open-domain dialog, 2019.

[133] Hannes Schulz, Jeremie Zumer, Layla El Asri, and Shikhar Sharma. A frame tracking model for

memory-enhanced dialogue systems. CoRR, abs/1706.01690, 2017.

106



[134] Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-

generator networks. arXiv preprint arXiv:1704.04368, 2017.

[135] I. V. Serban, C. Sankar, M. Germain, S. Zhang, Z. Lin, S. Subramanian, T. Kim, M. Pieper, S. Chandar,

N. R. Ke, S. Rajeshwar, A. de Brebisson, J. M. R. Sotelo, D. Suhubdy, V. Michalski, A. Nguyen,

J. Pineau, and Y. Bengio. A Deep Reinforcement Learning Chatbot. ArXiv e-prints, September 2017.

[136] I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. Courville, and Y. Bengio. A hierarchi-

cal latent variable encoder-decoder model for generating dialogues. In Thirty-First AAAI Conference

(AAAI), 2017.

[137] Iulian V Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin, Sandeep

Subramanian, Taesup Kim, Michael Pieper, Sarath Chandar, Nan Rosemary Ke, et al. A deep rein-

forcement learning chatbot. arXiv preprint arXiv:1709.02349, 2017.

[138] Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kartik Talamadupula, Bowen Zhou, Yoshua Bengio,

and Aaron C. Courville. Multiresolution recurrent neural networks: An application to dialogue response

generation. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,

2017, San Francisco, California, USA., pages 3288–3294, 2017.

[139] Iulian Vlad Serban, Ryan Lowe, Laurent Charlin, and Joelle Pineau. Generative deep neural networks

for dialogue: A short review. In NIPS, Let’s Discuss: Learning Methods for Dialogue Workshop, 2016.

[140] Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, and Joelle Pineau. A survey of

available corpora for building data-driven dialogue systems. nnn, 2017.

[141] Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, and Joelle Pineau. Build-

ing end-to-end dialogue systems using generative hierarchical neural network models. In Proceedings

of AAAI, 2016.

[142] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron C.

Courville, and Yoshua Bengio. A hierarchical latent variable encoder-decoder model for generating

dialogues. CoRR, abs/1605.06069, 2016.

[143] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.

CoRR, abs/1803.02155, 2018.

[144] X. Shen, H. Su, Y. Li, W. Li, S. Niu, Y. Zhao, A. Aizawa, and G. Long. A Conditional Variational

Framework for Dialog Generation. ArXiv e-prints, April 2017.

[145] Chenglei Si, Shuohang Wang, Min-Yen Kan, and Jing Jiang. What does bert learn from multiple-choice

reading comprehension datasets?, 2019.

[146] A. Simpson and N. M Eraser. Black box and glass box evaluation of the sundial system. In Third

European Conference on Speech Communication and Technology, 1993.

[147] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep

conditional generative models. In Advances in Neural Information Processing Systems 28: Annual

107



Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,

Canada, pages 3483–3491, 2015.

[148] Y. Song, R. Yan, X. Li, D. Zhao, and M. Zhang. Two are Better than One: An Ensemble of Retrieval-

and Generation-Based Dialog Systems. ArXiv e-prints, October 2016.

[149] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue Simonsen, and

Jian-Yun Nie. A hierarchical recurrent encoder-decoder for generative context-aware query suggestion.

In Proceedings of the 24th ACM International Conference on Information and Knowledge Management

(CIKM 2015), 2015. In press.

[150] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Margaret Mitchell, Jian-

Yun Nie, Jianfeng Gao, and Bill Dolan. A neural network approach to context-sensitive generation of

conversational responses. arXiv preprint arXiv:1506.06714, 2015.

[151] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. Journal of machine learning

research, 15(1):1929–1958, 2014.

[152] Dave Steinkrau, Patrice Y. Simard, and Ian Buck. Using gpus for machine learning algorithms. ICDAR,

2005.

[153] Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul

Taylor, Rachel Martin, Carol Van Ess-Dykema, and Marie Meteer. Dialogue act modeling for automatic

tagging and recognition of conversational speech. Computational linguistics, 26(3):339–373, 2000.

[154] Sandeep Subramanian, Adam Trischler, Yoshua Bengio, and Christopher J Pal. Learning gen-

eral purpose distributed sentence representations via large scale multi-task learning. arXiv preprint

arXiv:1804.00079, 2018.

[155] David Suendermann-Oeft, Vikram Ramanarayanan, Moritz Teckenbrock, Felix Neutatz, and Dennis

Schmidt. Halef: An open-source standard-compliant telephony-based modular spoken dialog system:

A review and an outlook. In Natural language dialog systems and intelligent assistants, pages 53–61.

Springer, 2015.

[156] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.

In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information

Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3104–3112, 2014.

[157] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In

Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

[158] Gongbo Tang, Mathias Müller, Annette Rios, and Rico Sennrich. Why self-attention? a targeted

evaluation of neural machine translation architectures. arXiv preprint arXiv:1808.08946, 2018.

[159] Ann Taylor, Mitchell Marcus, and Beatrice Santorini. The penn treebank: An overview, 2003.

[160] Jörg Tiedemann. News from OPUS - A collection of multilingual parallel corpora with tools and

interfaces. In N. Nicolov, K. Bontcheva, G. Angelova, and R. Mitkov, editors, Recent Advances in

108



Natural Language Processing, volume V, pages 237–248. John Benjamins, Amsterdam/Philadelphia,

Borovets, Bulgaria, 2009.

[161] Ke Tran, Arianna Bisazza, and Christof Monz. The importance of being recurrent for modeling hier-

archical structure. arXiv preprint arXiv:1803.03585, 2018.

[162] Gokhan Tur. Spoken Language Understanding: Systems for Extracting Semantic Information from

Speech. John Wiley and Sons, January 2011.

[163] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alexander Graves,

Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw

audio. Arxiv, 2016.

[164] Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N. Gomez, Stephan Gouws,

Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, and Jakob

Uszkoreit. Tensor2tensor for neural machine translation. CoRR, 2018.

[165] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz

Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

[166] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing

Systems, pages 5998–6008, 2017.

[167] Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint arXiv:1506.05869, 2015.

[168] Oriol Vinyals and Quoc V. Le. A neural conversational model. CoRR, abs/1506.05869, 2015.

[169] Oriol Vinyals and Quoc V. Le. A neural conversational model. Arxiv, 2015.

[170] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.

GLUE: A multi-task benchmark and analysis platform for natural language understanding. CoRR,

abs/1804.07461, 2018.

[171] Zhuoran Wang and Oliver Lemon. A simple and generic belief tracking mechanism for the dialog state

tracking challenge: On the believability of observed information. In Proceedings of the SIGDIAL 2013

Conference, pages 423–432, 2013.

[172] B. Wei, S. Lu, L. Mou, H. Zhou, P. Poupart, G. Li, and Z. Jin. Why Do Neural Dialog Systems

Generate Short and Meaningless Replies? A Comparison between Dialog and Translation. ArXiv e-

prints, December 2017.

[173] Joseph Weizenbaum. Eliza a computer program for the study of natural language communication

between man and machine. Computational Linguistics, 1966.

[174] Joseph Weizenbaum. Eliza—a computer program for the study of natural language communication

between man and machine. Communications of the ACM, 9(1):36–45, 1966.

[175] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina Maria Rojas-Barahona, Pei-Hao Su, Stefan Ultes,

David Vandyke, and Steve J. Young. A network-based end-to-end trainable task-oriented dialogue

system. CoRR, abs/1604.04562, 2016.

109



[176] Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, and Steve J. Young. Latent intention dialogue models.

In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,

Australia, 6-11 August 2017, pages 3732–3741, 2017.

[177] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In Proceedings Of The Inter-

national Conference on Representation Learning (ICLR 2015), 2015. In Press.

[178] Jason Williams, Antoine Raux, and Matthew and Henderson. The dialog state tracking challenge series:

A review. Dialog and Discourse, 2016.

[179] Jason Williams, Antoine Raux, Deepak Ramachandran, and Alan Black. The dialog state tracking

challenge. In Proceedings of the SIGDIAL 2013 Conference, pages 404–413, 2013.

[180] Jason D Williams. An empirical evaluation of a statistical dialog system in public use. In Proceedings

of the SIGDIAL 2011 Conference, pages 130–141. Association for Computational Linguistics, 2011.

[181] Jason D Williams and Steve Young. Partially observable markov decision processes for spoken dialog

systems. Computer Speech & Language, 21(2):393–422, 2007.

[182] Jason D. Williams and Steve J. Young. Partially observable markov decision processes for spoken dialog

systems. Computer Speech & Language, 2007.

[183] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine learning, 1992.

[184] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,

Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation

system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144,

2016.

[185] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.

Le. Xlnet: Generalized autoregressive pretraining for language understanding. CoRR, abs/1906.08237,

2019.

[186] Steve Young, Milica Gasic, Blaise Thomson, and Jason D Williams. Pomdp-based statistical spoken

dialog systems: A review. Proceedings of the IEEE, 101(5):1160–1179, 2013.

[187] Amy X. Zhang, Bryan Culbertson, and Praveen Paritosh. Characterizing online discussion using coarse

discourse sequences. In Proceedings of the 11th International AAAI Conference on Weblogs and Social

Media, ICWSM ’17, 2017.

[188] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. Per-

sonalizing dialogue agents: I have a dog, do you have pets too? arXiv preprint arXiv:1801.07243,

2018.

[189] T. Zhao, R. Zhao, and M. Eskenazi. Learning Discourse-level Diversity for Neural Dialog Models using

Conditional Variational Autoencoders. ArXiv e-prints, March 2017.

[190] H. Zhou, M. Huang, T. Zhang, X. Zhu, and B. Liu. Emotional Chatting Machine: Emotional Conver-

sation Generation with Internal and External Memory. ArXiv e-prints, April 2017.

110






	Sommaire
	Summary
	Contents
	List of tables
	List of figures
	Acknowledgement
	Chapter 1. Introduction
	Chapter 2. Background : Dialog
	2.1. Types of Dialog systems
	2.1.1. Task Oriented Dialog Systems
	2.1.2. Open-Ended Dialog Systems


	Chapter 3. Basic Neural Network Architectures
	3.1. Feed Forward Networks
	3.2. Recurrent Neural Architectures
	3.2.1. Long-Short Term Memory units
	3.2.2. Gated Recurrent Unit

	3.3. Deep Learning For NLP
	3.3.1. Language modeling
	3.3.2. Sequence to Sequence Models
	3.3.3. Attention Mechanism
	3.3.4. Transformers


	Chapter 4. Neural Approaches for End-to-End Dialog modeling
	4.1. Sequence to Sequence approaches
	4.2. The Hierarchical Recurrent Encoder-Decoder

	Chapter 5. Background : Efficient Locality Sensitive Hashing (LSH)-based Text Representation
	5.1. Introduction
	5.2. Motivation

	Chapter 6. Prologue to First Article
	6.1. Article Details
	6.2. Context
	6.3. Contributions
	6.4. Recent Developments

	Chapter 7. Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
	7.1. Abstract
	7.2. Introduction
	7.3. Related Work
	7.4. Experimental Setup
	7.4.1. Datasets
	7.4.2. Types of Perturbations
	7.4.3. Models

	7.5. Results & Discussion
	7.6. Conclusion

	Chapter 8. Prologue to Second Article
	8.1. Article Details
	8.2. Context
	8.3. Contributions
	8.4. Recent Developments

	Chapter 9. Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset
	9.1. Abstract
	9.2. Introduction
	9.3. Related work
	9.3.1. Human-machine vs. human-human dialog
	9.3.2. The Wizard of Oz (WOz) Approach and MultiWOZ

	9.4. The Taskmaster Corpus
	9.4.1. Overview
	9.4.2. Two-person, spoken dataset
	9.4.2.1. WOz platform and data pipeline
	9.4.2.2. Agents, workers and training

	9.4.3. Self-dialogs (one-person written dataset)
	9.4.3.1. Task scenarios and instructions
	9.4.3.2. Pros and cons of self-dialogs

	9.4.4. Annotation

	9.5. Dataset Analysis
	9.5.1. Self-dialogs vs MultiWOZ
	9.5.2. Self-dialogs vs Two-person
	9.5.3. Baseline Experiments: Response Generation
	9.5.4. Baseline Experiments: Argument Prediction

	9.6. Conclusion

	Chapter 10. Prologue to third Article
	10.1. Article Details
	10.2. Context
	10.3. Contributions
	10.4. Recent Developments

	Chapter 11. Deep Reinforcement Learning For Modeling Chit-Chat Dialog With Discrete Attributes
	11.1. Abstract
	11.2. Introduction
	11.2.1. Contributions

	11.3. Attribute Conditional HRED
	11.3.1. Dialog Attribute Prediction
	11.3.2. Conditional Response Generation
	11.3.3. RL for Dialog Attribute Prediction

	11.4. Training Setup
	11.5. Experimental Results
	11.5.1. Dialog Attribute Prediction
	11.5.2. Utterance Evaluation
	11.5.3. RL For Dialog Attribute Prediction

	11.6. Related Work
	11.7. Conclusion

	Chapter 12. Prologue to Fourth Article
	12.1. Article Details
	12.2. Context
	12.3. Contributions
	12.4. Recent Developments

	Chapter 13. Transferable Neural Projection Representations
	13.1. Abstract
	13.2. Introduction
	13.3. Neural Projection Model
	13.3.1. Vanilla Skip-Gram Model
	13.3.2. Neural Projection Skip-Gram (NP-SG)
	13.3.3. Training NP-SG Model
	13.3.4. Discriminative NP-SG Models
	13.3.5. Improved NP-SG Training

	13.4. Training Setup
	13.4.1. Dataset
	13.4.2. Implementation Details

	13.5. Experiments
	13.5.1. Qualitative Evaluation and Results
	13.5.2. Quantitative Evaluation and Results
	13.5.2.1. Similarity Task
	13.5.2.2. Language Modeling
	13.5.2.3. Text Classification


	13.6. Conclusion

	Chapter 14. Conclusion
	Bibliography

