
50	Shades	Of	Fuzzing
Peter	Hlavaty (@zer0mem)
Marco	Grassi (@marcograss)



Who	Are	You?

• Peter	Hlavaty
• Senior	security	Researcher
• Lead	of	Windows	Kernel	security	Research

• Marco	Grassi
• Senior	Security	Researcher	@	Tencent KEEN	Security	Lab
• Main	focus:	Vulnerability	Research,	OS	X/iOS,	Android,	Sandboxes



Agenda

• The	Team
• VMWare	Overview
• VMWare	Workstation/Fusion	Fuzzing
• Win32k	Overview
• Win32k	Fuzzing
• Conclusions
• Questions



The	Team

• Previously	known	as	KeenTeam
• All	researchers	moved	to	Tencent because	of	business	
requirement
• New	name:	TencentKEEN	Security	Lab
• We	won	the	title	of	“Master	Of	Pwn”	2016	and	actively	
participating	at	pwn2own	from	2013	to	this	year.

• Keep	an	eye	on	our	blog!	(English:	
http://keenlab.tencent.com/en/ Chinese:	
http://keenlab.tencent.com/zh/ )



This	Talk	in	one	Slide



VMWare	Workstation	/	Fusion



VMWare	Workstation	/	Fusion

• Most	likely	everyone	is	sort	of	familiar	with	VMWare	here…
• One	of	the	first	companies	(if	not	the	first)	to	successfully	virtualize	
x86	(which	is	not	formally	virtualizable	– see	Popek	&	Goldberg)
• Nowadays	with	VT-X	support	virtualization	is	faster	and	easier
• It’s	a	product	that	allows	you	to	run	unmodified	operationg	systems	
as	guests.
• Their	software	runs	at	different	privilege	levels,	they	have	kernel	
components	and	some	host	usermode processes.
• Our	talk	will	focus	mainly	on	how	VMWare	virtualizes	the	GPU	in	a	
guest,	since	they	offer	advanced	functions	such	as	3d	acceleration.



Why	VMWare	research?

• VMWare	workstation/fusion	is	a	very	widespread	software,	so	it’s	an	
attractive	target	for	attackers
• Maybe	sometimes	a	virtual	machine	is	used,	and	even	if	you	gain	
code	execution,	or	even	kernel	code	execution	inside	the	virtual	
machine,	you	are	still	trapped	in	there.
• By	leveraring	a	bug	in	some	component	of	VMWare	you	can	
potentially	escape	the	virtual	machine	and	gain	code	execution	in	the	
host	system!



VMWare	– important	resources/prev research

• GPU	Virtualization	on	VMware’s	Hosted	I/O	Architecture	- Micah	
Dowty,	Jeremy	Sugerman – VMWare	(this	is	the	paper	you	absolutely	
want	to	read	before	approaching	this	area)
• CLOUDBURST	A VMware Guest to Host Escape Story	- Kostya
Kortchinsky – Black	Hat	USA	2009	



VMWare	GPU

• Despite	there	is	a	good	support	at	CPU	level	for	virtualization	today	
with	Intel/AMD	in	hardware	support,	for	GPU	and	in	general	other	
hardware	virtualization,	the	status	quo	is	not	as	good	as	CPU	virt
• Vmware wanted	to	offer	high	performance	GPU	/	3d	to	the	guests,	so	
they	had	to	deploy	their	own	solution	to	defeat	also	host	driver	
fragmentation,	introducing	several	abstraction	layers	(and	lot	of	code)



VMWare	GPU	Virtual	Device

• The	VMWare	virtualized	GPU	will	
show	up	in	your	guest	as	a	PCI	device	
called	“Vmware SVGA	3D”
• Has	several	Memory	ranges	that	maps	
to	interesting	stuff	(more	on	the	next	
slide)
• They	implement	a	2D	Framebuffer	
(not	very	interesting,	just	the	pixel	
shown	on	your	screen)
• And	a	GPU	Command	queue	(!)



• Here	you	can	see	the	different	
purposes	of	the	memory	areas.
• We	are	mainly	interested	in	the	
FIFO	Memory
• Think	of	it	like	a	FIFO	processed	
asynchronously	and	
concurrently	outside	of	your	
system,	by	the	VMWare	GPU	
subsystem
• Implements	a	lot	of	commands	
for	3D	and	other	functionalities



High	level	description	of	the	FIFO

• The	FIFO	when	used	for	3D	commands,	expect	a	custom	protocol	
(SVGA3D)
• 1.	Write	commands	into	the	queue
• 2.	optionally	insert	a	fence	if	the	guest	wants	to	be	notified	of	
progress	with	a	virtual	interrupt
• 3.	At	some	point	your	commands	will	be	processed	asynchronously
• The	SVGA3D	protocol	takes	ideas	and	simplify	the	Direct3D	APIs



Where	is	the	VMWare	GPU	code?

• The	core	functionality	of	the	GPU	is	implemented	in	the	vmware-
vmx.exe
• We	should	expect	fault	in	this	process	(or	in	any	.dll	inside	here)
• So	we	turn	on	PageHeap	in	Gflags	for	fault	monitoring	and	WinDbg	
autostart	on	fault
• Maybe	a	fault	will	traverse	the	virtualization	layer	and	appears	in	Host	
graphics	also	J



Code	path



VMWare	SVGA3D

• Very	rich	of	functionalities,	like	shaders,	textures	etc,	lot	of	attack	
surface!
• But…	HOW	DO	WE	FUZZ	THIS?
• Let’s	explore	some	alternatives..



Fuzzing	alternatives:	From	Guest	usermode

• Extremely	inconvenient	for	several	
reasons:
• Too	many	layers	of	software	that	
doesn’t	interest	us	and	perform	
validation
• Performance	reasons
• The	GPU	resource	is	contended	and	
manipulated	by	the	running	Guest	
system.	It	would	be	very	difficult	to	
reproduce	eventual	crashes.
• Heavy,	we	want	to	scale	&	run	lot	of	
Guests



Fuzzing	alternatives:	From	Guest	kernelmode

• This	alternative	is	more	appealing	
because:
• In	general	we	have	more	control
• Less	resource	contention	if	we	don’t	
use	any	UI
• We	can	skip	pretty	much	any	
validation	layer
• But	still	we	are	running	together	with	
a	kernel,	so	we	are	not	the	only	code	
running	on	the	system	and	lot	of	stuff	
is	going	on.
• Heavy,	we	want	to	scale	&	run	lot	of	
Guests



The	right	Fuzzing	option:	Baremetal Guest!

• If	we	run	our	code	as	a	guest,	
without	any	operating	system	we	
have:
• Performance	boost	of	course!
• Complete	control!
• No	validation	steps!
• Exclusive	access	to	the	hardware!
• Extremely	light,	few	MB	of	ram	only,	
we	can	run	a	huge	number	of	guests!



What	to	fuzz?

• We	picked	shaders	because	they	are	complex,	and	they	undergo	
several	layers	of	translations	in	several	points.

1. Collect	valid	shaders
2. Put	together	code	to	load	and	render	with	shaders	correctly	on	

bare	metal	code
3. Mutate	shader,	load,	render,	see	if	it	crash.
4. GOTO	3
• You	can	fuzz	also	raw	commands,	but	the	semantics	is	not	trivial	and	
require	reversing.



Bare	metal	GPU	Fuzzer DEMO



BUG	DEMO	J



Soon	a	couple	of	CVEs	in	VMWare	Fusion,	waiting	
for	the	fix	to	be	deployed	(ETA	q3)	disclosed	

several	months	ago	(slow)



Microsoft	w32k	sub-system
Fuzzing	all	around	your	window,	and	beyond!



w32k	– Data	Parsing #TTF

• TrueType	Font

• Popular	at	sophisticated	- stuxnet,	duqu,	..
• https://cansecwest.com/slides/2013/Analysis%20of%20a%20Windows%20Ke
rnel%20Vuln.pdf

• Abused	at	p2o	2015	– KEEN
• http://www.slideshare.net/PeterHlavaty/windows-kernel-exploitation-this-
time-font-hunt-you-down-in-4-bytes

• A	year	of	Windows	kernel	font	fuzzing	– j00ru
• http://googleprojectzero.blogspot.nl/2016/06/a-year-of-windows-kernel-font-
fuzzing-1_27.html



w32k	– syscalls #DC

DC

bitmap

Brush

Pen

Pallete

Font

…



w32k	– syscalls #DC	#collisions
DC	#UAF,	however	nils was	already	here..	



w32k	– syscalls #DC	#collisions

DC	*nice*	#UAF,		however	..once	again,	nils ..	:)



w32k	– syscalls #DC	#collisions

(nils)	PoC overview	:	



w32k	– syscalls #DC	#collisions

(nils)	PoC overview	:	



w32k	– syscalls #DC	#collisions

(nils)	PoC overview	:	



w32k	– syscalls #DC	#collisions

(nils)	PoC overview	:	



w32k	– syscalls #DC	#collisions

(nils)	PoC overview	:	



w32k	– syscalls #DC	#collisions

(nils)	PoC overview	:	

…	pretty	much	all	to	one…



w32k	– syscalls #DC

• Various	components	are	interconnected
• Binding	to	DC

• GetStockObject,	SelectObject



w32k	– syscalls #Window

ShowSet

WND Msg

ClipBClass

SetWindowText



w32k	– syscalls #DC	#Window

• Interconnections	#2
• GetWindowDC,	BeginPaint,	Caret
• Binding	back	to	DC



w32k	– syscalls #Window	#Menu

• Menu
• PopUps
• Window	connected	{
• DrawMenuBarTemp
• HilitieMenuItem
• TrackPopUpMenu*
• CalcMenuBar
• …

}
• Binded with	window



w32k	– syscalls #Window	#Menu

More	on	our	w32k-syscalls	results	and	another	part	of	w32k	at	ruxcon :
https://ruxcon.org.au/speakers/#Peter	Hlavaty &	Jin Long

f.e.	:



w32k	– DirectX

• Ilja Van	sprundel
• https://www.blackhat.com/us-14/briefings.html#windows-kernel-graphics-
driver-attack-surface

• Nikita	Tarakanov – zeronights
• http://2015.zeronights.org/assets/files/11-Tarakanov.pdf

• p2o	2016	– KEEN
• http://community.hpe.com/t5/Security-Research/Pwn2Own-2016-Day-two-
crowning-the-Master-of-Pwn/ba-p/6842863#.V4d1NMpOKDt



w32k	– Data	Parsing #DirectX

• Code	shipped	by	intel,	nvidia
• Balast of	code	responsible	for	various	data	parsing!
• Extended	arm	of	

{
D3DKMTSubmitCommand
D3DKMTEscape
D3DKMTRender
D3DKMTPresent

}



w32k	– sycalls #2 #DirectX

w32k		
dxg

Adapter

Alloc

Context

Overlay

Mutex

Sync

Paging

Device

o Universal	windows	code
o Independent	on	graphic	

vendors
o More	strict	attack	vector	than	

data	parsing



Fuzzing



w32k	– Fuzzing #templates

• syzkaller • Qilin



w32k	– Fuzzing #templates

• Nt*	syscalls mostly	undocumented
• Various	API	however	nicely	documented!
• goog :	“	MSDN	%target%	functions	“

• Once	you	know	whats going	on	at
API,	easier	to	RE	arg at	syscalls



w32k	– Fuzzing #syscalls

• Just	tip	of	the	IceBerg!
• #1	api is	just	small	part
• #2	what	we	cover	is	just	small	subset!

• Take	a	look	at	win32k	subsystem	syscall table
• x	win32k*!Nt*
• http://j00ru.vexillium.org/win32k_syscalls/

• Around	#xyz	syscalls !!



w32k	– Hardening

• Notably	Nils,	Terjei,	j00ru,	Tencent,	360	and	others
• Securing	code	base

• TTF	stripping	from	kernel
• moving	attack	surface	of	out	kernel

• w32k	separation	win32k{base,	full}
• Step	by	step	to	re-design

• w32k	lockdown
• Strenghten sandboxes

• gdi leaking	locked
• Fixing	OLD	&	obvious	security	issues



w32k	– 50	shades [	Qilin ]



w32k	– 50	shades [	DEMO	]

• ~50	core	test



OSX/iOS	Graphics	fuzzing

• Unfortunately	there	is	not	much	time	left	to	discuss	this,	but	we	can	
reccomend	some	of	our	presentations	on	the	topic	that	you	can	check	
out:
• CanSecWest	16:	Don't	Trust	Your	Eye:	Apple	Graphics	Is	Compromised!	– Liang	
Chen	– Marco	Grassi – Qidan He
• Recon	2016:	Shooting	the	OS	X	El	Capitan	Kernel	Like	a	Sniper	– Liang	Chen	–
Qidan He
• Black	Hat	USA	2016:	SUBVERTING	APPLE	GRAPHICS:	PRACTICAL	APPROACHES	
TO	REMOTELY	GAINING	ROOT	- Liang	Chen	- Qidan He	- Marco	Grassi - Yubin
Fu	(TO	BE	PRESENTED)

• In	pwn2own	2016	we	used	2	different	bugs	to	compromise	twice	OS	
X!



OSX/iOS	Graphics	fuzzing



Conclusions

• Graphics	it’s	a	huge	attack	surface	still	reachable	from	interesting	
sandboxes	(like	some	browser	sandboxes)
• Many	researchers	are	looking	into	this	area,	there	are	a	lot	of	bugs	in	
this	kind	of	code	but	security	is	becoming	better.
• Fuzzing	the	graphic	stack	requires	different	approaches	and	principles	
compared	to	fuzzing	core	components.
• In	graphics	data	and	state	fuzzing	are	both	important	attack	vectors.



Credits

• Wushi
• Liang	Chen
• Daniel	King
• All	our	teammates!



Questions?






