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Abstract

Deep classifiers have achieved great success in visual recognition. However, real-
world data is long-tailed by nature, leading to the mismatch between training and
testing distributions. In this paper, we show that the Softmax function, though used
in most classification tasks, gives a biased gradient estimation under the long-tailed
setup. This paper presents Balanced Softmax, an elegant unbiased extension of
Softmax, to accommodate the label distribution shift between training and testing.
Theoretically, we derive the generalization bound for multiclass Softmax regression
and show our loss minimizes the bound. In addition, we introduce Balanced Meta-
Softmax, applying a complementary Meta Sampler to estimate the optimal class
sample rate and further improve long-tailed learning. In our experiments, we
demonstrate that Balanced Meta-Softmax outperforms state-of-the-art long-tailed
classification solutions on both visual recognition and instance segmentation tasks.†

1 Introduction

Most real-world data comes with a long-tailed nature: a few high-frequency classes (or head classes)
contributes to most of the observations, while a large number of low-frequency classes (or tail classes)
are under-represented in data. Taking an instance segmentation dataset, LVIS [7], for example, the
number of instances in banana class can be thousands of times more than that of a bait class. In
practice, the number of samples per class generally decreases from head to tail classes exponentially.
Under the power law, the tails can be undesirably heavy. A model that minimizes empirical risk on
long-tailed training datasets often underperforms on a class-balanced test dataset. As datasets are
scaling up nowadays, the long-tailed nature poses critical difficulties to many vision tasks, e.g., visual
recognition and instance segmentation.

An intuitive solution to long-tailed task is to re-balance the data distribution. Most state-of-the-art
(SOTA) methods use the class-balanced sampling or loss re-weighting to “simulate" a balanced
training set [3, 31]. However, they may under-represent the head class or have gradient issues during
optimization. Cao et al. [4] introduced Label-Distribution-Aware Margin Loss (LDAM), from the
perspective of the generalization error bound. Given fewer training samples, a tail class should have
a higher generalization error bound during optimization. Nevertheless, LDAM is derived from the
hinge loss, under a binary classification setup and is not suitable for multi-class classification.

*Corresponding author
†Code available at https://github.com/jiawei-ren/BalancedMetaSoftmax
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We propose Balanced Meta-Softmax (BALMS) for long-tailed visual recognition. We first show that
the Softmax function is intrinsically biased under the long-tailed scenario. We derive a Balanced
Softmax function from the probabilistic perspective that explicitly models the test-time label distribu-
tion shift. Theoretically, we found that optimizing for the Balanced Softmax cross-entropy loss is
equivalent to minimizing the generalization error bound. Balanced Softmax generally improves long-
tailed classification performance on datasets with moderate imbalance ratios, e.g., CIFAR-10-LT [18]
with a maximum imbalance factor of 200. However, for datasets with an extremely large imbalance
factor, e.g., LVIS [7] with an imbalance factor of 26,148, the optimization process becomes difficult.
Complementary to the loss function, we introduce the Meta Sampler, which learns to re-sample for
achieving high validation accuracy by meta-learning. The combination of Balanced Softmax and
Meta Sampler could efficiently address long-tailed classification tasks with high imbalance factors.

We evaluate BALMS on both long-tailed image classification and instance segmentation on five
commonly used datasets: CIFAR-10-LT [18], CIFAR-100-LT [18], ImageNet-LT [23], Places-LT [34]
and LVIS [7]. On all datasets, BALMS outperforms state-of-the-art methods. In particular, BALMS
outperforms all SOTA methods on LVIS, with an extremely high imbalanced factor, by a large margin.

We summarize our contributions as follows: 1) we theoretically analyze the incapability of Softmax
function in long-tailed tasks; 2) we introduce Balanced Softmax function that explicitly considers
the label distribution shift during optimization; 3) we present Meta Sampler, a meta-learning based
re-sampling strategy for long-tailed learning.

2 Related Works

Data Re-Balancing. Pioneer works focus on re-balancing during training. Specifically, re-sampling
strategies [19, 5, 8, 10, 26, 2, 1] try to restore the true distributions from the imbalanced training data.
Re-weighting, i.e., cost-sensitive learning [31, 11, 12, 24], assigns a cost weight to the loss of each
class. However, it is argued that over-sampling inherently overfits the tail classes and under-sampling
under-represents head classes’ rich variations. Meanwhile, re-weighting tends to cause unstable
training especially when the class imbalance is severe because there would be abnormally large
gradients when the weights are very large.

Loss Function Engineering. Tan et al. [30] point out that randomly dropping some scores of
tail classes in the Softmax function can effectively help, by balancing the positive gradients and
negative gradients flowing through the score outputs. Cao et al. [4] show that the generalization
error bound could be minimized by increasing the margins of tail classes. Hayat et al. [9] modify
the loss function based on Bayesian uncertainty. Li et al. [20] propose two novel loss functions
to balance the gradient flow. Khan et al. [17] jointly learn the model parameters and the class-
dependent loss function parameters. Ye et al. [32] force a large margin for minority classes to prevent
feature deviation. We progress this line of works by introducing probabilistic insights that also bring
empirical improvements. We show in this paper that an ideal loss function should be unbiased under
the long-tailed scenarios.

Meta-Learning. Many approaches [13, 25, 27] have been proposed to tackle the long-tailed issue
with meta-learning. Many of them [13, 25] focus on optimizing the weight-per-sample as a learnable
parameter, which appears as a hyper-parameter in the sample-based re-weight approach. This group
of methods requires a clean and unbiased dataset as a meta set, i.e., development set, which is usually
a fixed subset of the training images and use bi-level optimization to estimate the weight parameter.

Decoupled Training. Kang et al. [16] point out that decoupled training, a simple yet effective
solution, could significantly improve the generalization issue on long-tailed datasets. The classifier
is the only under-performed component when training in imbalanced datasets. However, in our
experiments, we found this technique is not adequate for datasets with extremely high imbalance
factors, e.g., LVIS [7]. Interestingly in our experiments, we observed that decoupled training is
complementary to our proposed BALMS, and combining them results in additional improvements.

3 Balanced Meta-Softmax

The major challenge for long-tailed visual recognition is the mismatch between the imbalanced train-
ing data distribution and the balanced metrics, e.g., mean Average Precision (mAP), that encourage
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minimizing error on a balanced test set. Let X = {xi, yi}, i ∈ {1, · · · , n} be the balanced test set,
where xi denotes a data point and yi denotes its label. Let k be the number of classes, nj be the
number of samples in class j, where

∑k
j=1 nj = n. Similarly, we denote the long-tailed training set

as X̂ = {x̂i, ŷi}, i ∈ {1, . . . , n}. Normally, we have ∀i, p(ŷi) 6= p(yi). Specifically, for a tail class j,
p(ŷj)� p(yj), which makes the generalization under long-tailed scenarios extremely challenging.

We introduce Balanced Meta-Softmax (BALMS) for long-tailed visual recognition. It has two
components: 1) a Balanced Softmax function that accommodates the label distribution shift between
training and testing; 2) a Meta Sampler that learns to re-sample training set by meta-learning. We
denote a feature extractor function as f and a linear classifier’s weight as θ.

3.1 Balanced Softmax

Label Distribution Shift. We begin by revisiting the multi-class Softmax regression, where we are
generally interested in estimating the conditional probability p(y|x), which can be modeled as a
multinomial distribution φ:

φ = φ
1{y=1}
1 φ

1{y=2}
2 · · ·φ1{y=k}k ; φj =

eηj∑k
i=1 e

ηi
;

k∑
j=1

φj = 1 (1)

where 1(·) is the indicator function and Softmax function maps a model’s class-j output ηj = θTj f(x)
to the conditional probability φj .

From the Bayesian inference’s perspective, φj can also be interpreted as:

φj = p(y = j|x) = p(x|y = j)p(y = j)

p(x)
(2)

where p(y = j) is in particular interest under the class-imbalanced setting. Assuming that all
instances in the training dataset and the test dataset are generated from the same process p(x|y = j),
there could still be a discrepancy between training and testing given different label distribution
p(y = j) and evidence p(x). With a slight abuse of the notation, we re-define φ to be the conditional
distribution on the balanced test set and define φ̂ to be the conditional probability on the imbalanced
training set. As a result, standard Softmax provides a biased estimation for φ.

Balanced Softmax. To eliminate the discrepancy between the posterior distributions of training and
testing, we introduce Balanced Softmax. We use the same model outputs η to parameterize two
conditional probabilities: φ for testing and φ̂ for training.
Theorem 1. Assume φ to be the desired conditional probability of the balanced dataset, with the form
φj = p(y = j|x) = p(x|y=j)

p(x)
1
k , and φ̂ to be the desired conditional probability of the imbalanced

training set, with the form φ̂j = p̂(y = j|x) = p(x|y=j)
p̂(x)

nj∑k
i=1 ni

. If φ is expressed by the standard

Softmax function of model output η, then φ̂ can be expressed as

φ̂j =
nje

ηj∑k
i=1 nie

ηi
. (3)

We use the exponential family parameterization to prove Theorem 1. The proof can be found in the
supplementary materials. Theorem 1 essentially shows that applying the following Balanced Softmax
function can naturally accommodate the label distribution shifts between the training and test sets.
We define the Balanced Softmax function as

l̂(θ) = − log(φ̂y) = − log

(
nye

ηy∑k
i=1 nie

ηi

)
. (4)

We further investigate the improvement brought by the Balanced Softmax in the following sections.

Many vision tasks, e.g., instance segmentation, might use multiple binary logistic regressions instead
of a multi-class Softmax regression. By virtue of Bayes’ theorem, a similar strategy can be applied to
the multiple binary logistic regressions. The detailed derivation is left in the supplementary materials.
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Generalization Error Bound. Generalization error bound gives the upper bound of a model’s test
error, given its training error. With dramatically fewer training samples, the tail classes have much
higher generalization bounds than the head classes, which make good classification performance on
tail classes unlikely. In this section, we show that optimizing Eqn. 4 is equivalent to minimizing the
generalization upper bound.

Margin theory provides a bound based on the margins [15]. Margin bounds usually negatively
correlate to the magnitude of the margin, i.e., a larger margin leads to lower generalization error.
Consequently, given a constraint on the sum of margins of all classes, there would be a trade-off
between minority classes and majority classes [4].

Locating such an optimal margin for multi-class classification is non-trivial. The bound investigated
in [4] was established for binary classification using hinge loss. Here, we try to develop the margin
bound for the multi-class Softmax regression. Given the previously defined φ and φ̂, we derive l̂(θ)
by minimizing the margin bound. Margin bound commonly bounds the 0-1 error:

err0,1 = Pr

[
θTy f(x) < max

i 6=y
θTi f(x)

]
. (5)

However, directly using the 0-1 error as the loss function is not ideal for optimization. Instead,
negative log likelihood (NLL) is generally considered more suitable. With continuous relaxation of
Eqn. 5, we have

err(t) = Pr[t < log(1 +
∑
i 6=y

eθ
T
i f(x)−θ

T
y f(x))] = Pr [ly(θ) > t] , (6)

where t ≥ 0 is any threshold, and ly(θ) is the standard negative log-likelihood with Softmax, i.e.,
the cross-entropy loss. This new error is still a counter, but describes how likely the test loss will be
larger than a given threshold. Naturally, we define our margin for class j to be

γj = t− max
(x,y)∈Sj

lj(θ). (7)

where Sj is the set of all class j samples. If we force a large margin γj during training, i.e., force the
training loss to be much lower than t, then err(t) will be reduced. The Theorem 2 in [15] can then
be directly generalized as
Theorem 2. Let t ≥ 0 be any threshold, for all γj > 0, with probability at least 1− δ, we have

errbal(t) .
1

k

k∑
j=1

( 1

γj

√
C

nj
+

log n
√
nj

)
; γ∗j =

βn
−1/4
j∑k

i=1 n
−1/4
i

, (8)

where errbal(t) is the error on the balanced test set, . is used to hide constant terms and C is some
measure on complexity. With a constraint on

∑k
j=1 γj = β, Cauchy-Schwarz inequality gives us the

optimal γ∗j .

The optimal γ∗ suggests that we need larger γ for the classes with fewer samples. In other words, to
achieve the optimal generalization ability, we need to focus on minimizing the training loss of the tail
classes. To enforce the optimal margin, for each class j, the desired training loss l̂∗j (θ) is

l̂∗j (θ) = lj(θ) + γ∗j , where lj(θ) = − log(φj), (9)

Corollary 2.1. l̂∗j (θ) = lj(θ) + γ∗j = lj(θ) +
βn

−1/4
j∑k

i=1 n
−1/4
i

can be approximated by l̂j(θ) when:

l̂j(θ) = − log(φ̂j); φ̂j =
eηj−log γ

∗
j∑k

i=1 e
ηi−log γ∗

i

=
n

1
4
j e

ηj∑k
i=1 n

1
4
i e

ηi

(10)

We provide a sketch of proof to the corollary in supplementary materials. Notice that compared
to Eqn. 4, we have an additional constant 1/4. We empirically find that setting 1/4 to 1 leads to
the optimal results, which may suggest that Eqn. 8 is not necessarily tight. To this point, the label
distribution shift and generalization bound of multi-class Softmax regression lead us to the same loss
form: Eqn. 4.
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3.2 Meta Sampler

Re-sampling. Although Balanced Softmax accommodates the label distribution shift, the optimiza-
tion process is still challenging when given large datasets with extremely imbalanced data distribution.
For example, in LVIS, the bait class may appear only once when the banana class appears thousands
of times, making the bait class difficult to contribute to the model training due to low sample rate.
Re-sampling is usually adopted to alleviate this issue, by increasing the number of minority class
samples in each training batch. Recent works [29, 3] show that the global minimum of the Softmax
regression is independent of the mini-batch sampling process. Our visualization in the supplemen-
tary material confirms this finding. As a result, a suitable re-sampling strategy could simplify the
optimization landscape of Balanced Softmax under extremely imbalanced data distribution.

Over-balance. Class-balanced sampler (CBS) is a common re-sampling strategy. CBS balances the
number of samples for each class in a mini-batch. It effectively helps to re-train the linear classifier
in the decoupled training setup [16]. However, in our experiments, we find that naively combining
CBS with Balanced Softmax may worsen the performance.

We first theoretically analyze the cause of the performance drop. When the linear classifier’s weight
θj for class j converges, i.e.,

∑B
s=1

∂L(s)

∂θj
= 0, we should have:

B∑
s=1

∂L(s)

∂θj
=

B/k∑
s=1

f(x
(s)
y=j)(1− φ̂

(s)
j )−

k∑
i 6=j

B/k∑
s=1

f(x
(s)
y=i)φ̂

(s)
j = 0, (11)

where B is the batch size and k is the number of classes. Samples per class have been ensured to be
B/k by CBS. We notice that φ̂j , the output of Balanced Softmax, casts a varying, minority-favored
effect to the importance of each class.

We use an extreme case to demonstrate the effect. When the classification loss converges to 0, the
conditional probability of the correct class φ̂y is expected to be close to 1. For any positive sample
x+ and negative sample x− of class j, we have φ̂j(x+) ≈ φj(x+) and φ̂j(x−) ≈ nj

ni
φj(x

−), when
φ̂y → 1. Eqn. 11 can be rewritten as

1

n2j
E(x+,y=j)∼Dtrain [f(x

+)(1− φj)]−
k∑
i6=j

1

n2i
E(x−,y=i)∼Dtrain [f(x

−)φj ] ≈ 0 (12)

where Dtrain is the training set. The formal derivation of Eqn. 12 is in the supplementary materials.
Compared to the inverse loss weight, i.e., 1/nj for class j, combining Balanced Softmax with CBS
leads to the over-balance problem, i.e., 1/n2j for class j, which deviates from the optimal distribution.

Although re-sampling does not affect the global minimum, an over-balanced, tail class dominated
optimization process may lead to local minimums that favor the minority classes. Moreover, Balanced
Softmax’s effect in the optimization process is dependent on the model’s output, which makes
hand-crafting a re-sampling strategy infeasible.

Meta Sampler. To cope with CBS’s over-balance issue, we introduce Meta Sampler, a learnable
version of CBS based on meta-learning, which explicitly learns the optimal sample rate. We first
define the empirical loss by sampling from dataset D as LD(θ) = E(x,y)∼D[l(θ)] for standard
Softmax, and L̂D(θ) = E(x,y)∼D[l̂(θ)] for Balanced Softmax, where l̂(θ) is defined previously in
Eqn. 4.

To estimate the optimal sample rates for different classes, we adopt a bi-level meta-learning strategy:
we update the parameter ψ of sample distribution πψ in the inner loop and update the classifier
parameters θ in the outer loop,

π∗ψ = argmin
ψ
LDmeta(θ

∗(πψ)) s.t. θ∗(πψ) = argmin
θ
L̂Dq(x,y;πψ)

(θ), (13)

where πjψ = p(y = j;ψ) is the sample rate for class j, Dq(x,y;πψ) is the training set with class sample
distribution πψ, and Dmeta is a meta set we introduce to supervise the inner loop optimization. We
create the meta set by class-balanced sampling from the training set Dtrain. Empirically, we found it
sufficient for inner loop optimization. An intuition to this bi-level optimization strategy is that: we
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want to learn best sample distribution parameter ψ such that the network, parameterized by θ, outputs
best performance on meta dataset Dmeta when trained by samples from πψ .

We first compute the per-instance sample rate ρi = π
c(i)
ψ /nc(i), where c(i) denotes the class for

instance i and nc(i) is the number of samples in that class, and sample a training batch Bψ from a
parameterized multi-nomial distribution ρ. Then we optimize the model in a meta-learning setup by

1. sample a mini-batch Bψ given distribution πψ and perform one step gradient descent to get
a surrogate model parameterized by θ̃ by θ̃ ← θ −∇θL̂Bψ (θ).

2. compute the LDmeta(θ̃) of the surrogate model on the meta dataset Dmeta and optimize the
sample distribution parameter by ψ ← ψ −∇ψLDmeta(θ̃) with the standard cross-entropy
loss with Softmax.

3. update the model parameter θ ← θ −∇θL̂Bψ (θ) with Balanced Softmax.

However, sampling from a discrete distribution is not differentiable by nature. To allow end-to-end
training for the sampling process, when forming the mini-batch Bψ , we apply the Gumbel-Softmax
reparameterization trick [14]. A detailed explanation can be found in the supplementary materials.

4 Experiments

4.1 Exprimental Setup

Datasets. We perform experiments on long-tailed image classification datasets, including CIFAR-10-
LT [18], CIFAR-100-LT [18], ImageNet-LT [23] and Places-LT [34] and one long-tailed instance
segmentation dataset, LVIS [7]. We define the imbalance factor of a dataset as the number of training
instances in the largest class divided by that of the smallest. Details of datasets are in Table 1.

Dataset #Classes Imbalance Factor
CIFAR-10-LT [18] 10 10-200
CIFAR-100-LT [18] 100 10-200
ImageNet-LT [23] 1,000 256
Places-LT [34] 365 996
LVIS [7] 1,230 26,148

Table 1: Details of long-tailed datatsets. For
both CIFAR-10 and CIFAR-100, we report re-
sults with different imbalance factors.

Evaluation Setup. For classification tasks, af-
ter training on the long-tailed dataset, we eval-
uate the models on the corresponding balanced
test/validation dataset and report top-1 accuracy.
We also report accuracy on three splits of the set
of classes: Many-shot (more than 100 images),
Medium-shot (20 ∼ 100 images), and Few-shot
(less than 20 images). Notice that results on small
datasets, i.e., CIFAR-LT 10/100, tend to show large
variances, we report the mean and standard error
under 3 repetitive experiments. We show details
of long-tailed dataset generation in supplementary
materials. For LVIS, we use official training and
testing splits. Average Precision (AP) in COCO style [21] for both bounding box and instance mask
are reported. Our implementation details can be found in the supplementary materials.
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Balanced Softmax
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Figure 1: Experiment on CIFAR-100-LT. x-axis is the class labels with decreasing training samples
and y-axis is the marginal likelihood p(y) on the test set. We use end-to-end training for the
experiment. Balanced Softmax is more stable under a high imbalance factor compared to the Softmax
baseline and the SOTA method, Equalization Loss (EQL).
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Dataset CIFAR-10-LT CIFAR-100-LT
Imbalance Factor 200 100 10 200 100 10
End-to-end training
Softmax 71.2 ± 0.3 77.4 ± 0.8 90.0 ± 0.2 41.0 ± 0.3 45.3 ± 0.3 61.9 ± 0.1
CBW 72.5 ± 0.2 78.6 ± 0.6 90.1 ± 0.2 36.7 ± 0.2 42.3 ± 0.8 61.4 ± 0.3
CBS 68.3 ± 0.3 77.8 ± 2.2 90.2 ± 0.2 37.8 ± 0.1 42.6 ± 0.4 61.2 ± 0.3
Focal Loss [22] 71.8 ± 2.1 77.1 ± 0.2 90.3 ± 0.2 40.2 ± 0.5 43.8 ± 0.1 60.0 ± 0.6
Class Balanced Loss [6] 72.6 ± 1.8 78.2 ± 1.1 89.9 ± 0.3 39.9 ± 0.1 44.6 ± 0.4 59.8 ± 1.1
LDAM Loss [4] 73.6 ± 0.1 78.9 ± 0.9 90.3 ± 0.1 41.3 ± 0.4 46.1 ± 0.1 62.1 ± 0.3
Equalization Loss [30] 74.6 ± 0.1 78.5 ± 0.1 90.2 ± 0.2 43.3 ± 0.1 47.4 ± 0.2 60.5 ± 0.6
Decoupled training
cRT [16] 76.6 ± 0.2 82.0 ± 0.2 91.0 ± 0.0 44.5 ± 0.1 50.0 ± 0.2 63.3 ± 0.1
LWS [16] 78.1 ± 0.0 83.7 ± 0.0 91.1 ± 0.0 45.3 ± 0.1 50.5 ± 0.1 63.4 ± 0.1
BALMS 81.5 ± 0.0 84.9 ± 0.1 91.3 ± 0.1 45.5 ± 0.1 50.8 ± 0.0 63.0 ± 0.1

Table 2: Top 1 accuracy for CIFAR-10/100-LT. Softmax: the standard cross-entropy loss with
Softmax. CBW: class-balanced weighting. CBS: class-balanced sampling. LDAM Loss: LDAM
loss without DRW. Results of Focal Loss, Class Balanced Loss, LDAM Loss and Equalization Loss
are reproduced with optimal hyper-parameters reported in their original papers. BALMS generally
outperforms SOTA methods, especially when the imbalance factor is high. Note that for all compared
methods, we reproduce higher accuracy than reported in original papers. Comparison with their
originally reported results is provided in the supplmentary materials.

4.2 Long-Tailed Image Classification

We present the results for long-tailed image classification in Table 2 and Table 3. On all datasets,
BALMS achieves SOTA performance compared with all end-to-end training and decoupled training
methods. In particular, we notice that BALMS demonstrates a clear advantage under two cases: 1)
When the imbalance factor is high. For example, on CIFAR-10 with an imbalance factor of 200,
BALMS is higher than the SOTA method, LWS [16], by 3.4%. 2) When the dataset is large. BALMS
achieves comparable performance with cRT on ImageNet-LT, which is a relatively small dataset, but
it significantly outperforms cRT on a larger dataset, Places-LT.

In addition, we study the robustness of the proposed Balanced Softmax compared to standard Softmax
and SOTA loss function for long-tailed problems, EQL [30]. We visualize the marginal likelihood
p(y), i.e., the sum of scores on each class, on the test set with different losses given different
imbalance factors in Fig. 1. Balanced Softmax clearly gives a more balanced likelihood under
different imbalance factors. Moreover, we show Meta Sampler’s effect on p(y) in Fig. 2. Compared
to CBS, Meta Sampler significantly relieves the over-balance issue.

0 2 4 6 8
0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22 Softmax
CBS
BS

BS + CBS
BS + Meta Sampler

0 20 40 60 80 100
0.000

0.004

0.008

0.012

0.016

0.020

CIFAR-10-LT CIFAR-100-LT

Figure 2: Visualization of p(y) on test set with Meta Sampler and CBS. x-axis is the class labels with
decreasing training samples and y-axis is the marginal likelihood p(y) on the test set. The result is on
CIFAR-10/100-LT with imbalance factor 200. We use decoupled training for the experiment. BS:
Balanced Softmax. BS + CBS shows a clear bias towards the tail classes, especially on CIFAR-100-LT.
Compared to BS + CBS, BS + Meta Sampler effectively alleviates the over-balance problem.
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Dataset ImageNet-LT Places-LT
Accuracy Many Medium Few Overall Many Medium Few Overall
End-to-end training
Lifted Loss [28] 35.8 30.4 17.9 30.8 41.1 35.4 24.0 35.2
Focal Loss [22] 36.4 29.9 16.0 30.5 41.1 34.8 22.4 34.6
Range Loss [33] 35.8 30.3 17.6 30.7 41.1 35.4 23.2 35.1
OLTR [23] 43.2 35.1 18.5 35.6 44.7 37.0 25.3 35.9
Equalization Loss [30] - - - 36.4 - - - -
Decoupled training
cRT [16] - - - 41.8 42.0 37.6 24.9 36.7
LWS [16] - - - 41.4 40.6 39.1 28.6 37.6
BALMS 50.3 39.5 25.3 41.8 41.2 39.8 31.6 38.7

Table 3: Top 1 Accuracy on ImageNet-LT and Places-LT. We present results with ResNet-10 [23] for
ImageNet-LT and ImageNet pre-trained ResNet-152 for Places-LT. Baseline results are taken from
original papers. BALMS generally outperforms the SOTA models.

Method APm APf APc APr APb

Softmax 23.7 27.3 24.0 13.6 24.0
Sigmoid 23.6 27.3 24.0 12.7 24.0
Focal Loss [22] 23.4 27.5 23.5 12.8 23.8
Class Balanced Loss [6] 23.3 27.3 23.8 11.4 23.9
LDAM [4] 24.1 26.3 25.3 14.6 24.5
LWS [16] 23.8 26.8 24.4 14.4 24.1
Equalization Loss [30] 25.2 26.6 27.3 14.6 25.7
Balanced Softmax† 26.3 28.8 27.3 16.2 27.0
BALMS 27.0 27.5 28.9 19.6 27.6

Table 4: Results for LVIS dataset. APm denotes Average Precision of masks. APb denotes Average
Precision of bounding box. APf, APc and APr denote Average Precision of masks on frequent classes,
common classes and rare classes. †: the multiple binary logistic regression variant of Balanced
Softmax, more details in the supplementary material. BALMS significantly outperforms SOTA
models given high imbalance factor in LVIS. All compared methods are reproduced with higher AP
than reported in the original papers.

4.3 Long-Tailed Instance Segmentation

LVIS dataset is one of the most challenging datasets in the vision community. As suggested in Tabel 1,
the dataset has a much higher imbalance factor compared to the rest (26148 vs. less than 1000)
and contains many very few-shot classes. Compared to the image classification datasets, which are
relatively small and have lower imbalance factors, the LVIS dataset gives a more reliable evaluation
of the performance of long-tailed learning methods.

Since one image might contain multiple instances from several categories, we hereby use Meta
Reweighter, a re-weighting version of Meta Sampler, instead of Meta Sampler. As shown in Table 4,
BALMS achieves the best results among all the approaches and outperform others by a large margin,
especially in rare classes, where BALMS achieves an average precision of 19.6 while the best of
the rest is 14.6. The results suggest that with the Balanced Softmax function and learnable Meta
Reweighter, BALMS is able to give more balanced gradients and tackles the extremely imbalanced
long-tailed tasks.

In particular, LVIS is composed of images of complex daily scenes with natural long-tailed categories.
To this end, we believe BALMS is applicable to real-world long-tailed visual recognition challenges.

4.4 Component Analysis

We conduct an extensive component analysis on CIFAR-10/100-LT dataset to further understand the
effect of each proposed component of BALMS. The results are presented in Table 5.
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Dataset CIFAR-10-LT CIFAR-100-LT
Imbalance Factor 200 100 10 200 100 10
End-to-end training
(1) Softmax 71.2 ± 0.3 77.4 ± 0.8 90.0 ± 0.2 41.0 ± 0.3 45.3 ± 0.3 61.9 ± 0.1
(2) Balanced Softmax 1

4
71.6 ± 0.7 78.4 ± 0.9 90.5 ± 0.1 41.9 ± 0.2 46.4 ± 0.7 62.6 ± 0.3

(3) Balanced Softmax 79.0 ± 0.8 83.1 ± 0.4 90.9 ± 0.4 45.9 ± 0.3 50.3 ± 0.3 63.1 ± 0.2
Decoupled training
(4) Balanced Softmax 1

4
+DT 72.2 ± 0.1 79.1 ± 0.2 90.2 ± 0.0 42.3 ± 0.0 46.1 ± 0.1 62.5 ± 0.1

(5) Balanced Softmax 1
4

+DT+MS 76.2 ± 0.4 81.4 ± 0.1 91.0 ± 0.1 44.1 ± 0.2 49.2 ± 0.1 62.8 ± 0.2
(6) Balanced Softmax+DT 78.6 ± 0.1 83.7 ± 0.1 91.2 ± 0.0 45.1 ± 0.0 50.4 ± 0.0 63.4 ± 0.0
(7) Balanced Softmax+CBS+DT 80.6 ± 0.1 84.8 ± 0.0 91.2 ± 0.1 42.0 ± 0.0 47.4 ± 0.2 62.3 ± 0.0
(8) DT+MS 73.6 ± 0.2 79.9 ± 0.4 90.9 ± 0.1 44.2 ± 0.1 49.2 ± 0.1 63.0 ± 0.0
(9) Balanced Softmax+DT+MR 79.2 ± 0.0 84.1 ± 0.0 91.2 ± 0.1 45.3 ± 0.3 50.8 ± 0.0 63.5 ± 0.1
(10) BALMS 81.5 ± 0.0 84.9 ± 0.1 91.3 ± 0.1 45.5 ± 0.1 50.8 ± 0.0 63.0 ± 0.1

Table 5: Component Analysis on CIFAR-10/100-LT. CBS: class-balanced sampling. DT: decoupled
training without CBS. MS: Meta Sampler. MR: Meta Reweighter. Balanced Softmax 1

4 : the loss
variant in Eqn. 10. Balanced Softmax and Meta Sampler both contribute to the final performance.

Balanced Softmax. Comparing (1), (2) with (3), and (5), (8) with (10), we observe that Balanced
Softmax gives a clear improvement to the overall performance, under both end-to-end training and
decoupled training setup. It successfully accommodates the distribution shift between training and
testing. In particular, we observe that Balanced Softmax 1

4 , which we derive in Eqn. 10, cannot yield
ideal results, compared to our proposed Balanced Softmax in Eqn. 4.

Meta-Sampler. From (6), (7), (9) and (10), we observe that Meta-Sampler generally improves the
performance, when compared with no Meta-Sampler, and variants of Meta-Sampler. We notice that
the performance gain is larger with a higher imbalance factor, which is consistent with our observation
in LVIS experiments. In (9) and (10), Meta-Sampler generally outperforms the Meta-Reweighter and
suggests the discrete sampling process gives a more efficient optimization process. Comparing (7)
and (10), we can see Meta-Sampler addresses the over-balancing issue discussed in Section 3.2.

Decoupled Training. Comparing (2) with (4) and (3) with (6), decoupled training scheme and
Balanced Softmax are two orthogonal components and we can benefit from both at the same time.

5 Conclusion

We have introduced BALMS for long-tail visual recognition tasks. BALMS tackles the distribution
shift between training and testing, combining meta-learning with generalization error bound theory: it
optimizes a Balanced Softmax function which theoretically minimizes the generalization error bound;
it improves the optimization in large long-tailed datasets by learning an effective Meta Sampler.
BALMS generally outperforms SOTA methods on 4 image classification datasets and 1 instance
segmentation dataset by a large margin, especially when the imbalance factor is high.

However, Meta Sampler is computationally expensive in practice and the optimization on large
datasets is slow. In addition, the Balanced Softmax function only approximately guarantees a
generalization error bound. Future work may extend the current framework to a wider range of tasks,
e.g., machine translation, and correspondingly design tighter bounds and computationally efficient
meta-learning algorithms.

6 Acknowledgements

This work is supported in part by the General Research Fund through the Research Grants Council
of Hong Kong under grants (Nos. CUHK14208417, CUHK14207319), in part by the Hong Kong
Innovation and Technology Support Program (No. ITS/312/18FX).

9



Broader Impact

Due to the Zipfian distribution of categories in real life, algorithms, and models with exceptional
performance on research benchmarks may not remain powerful in the real world. BALMS, as a
light-weight method, only adds minimal computational cost during training and is compatible with
most of the existing works for visual recognition. As a result, BALMS could be beneficial to bridge
the gap between research benchmarks and industrial applications for visual recognition.

However, there can be some potential negative effects. As BALMS empowers deep classifiers with
stronger recognition capability on long-tailed distribution, the application of such a classification
algorithm can be further extended to more real-life scenarios. We should be cautious about the misuse
of the method proposed. Depending on the scenario, it might cause negative effects on democratic
privacy.
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