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Graphical models

Representing knowledge through graphical models
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I Nodes correspond to the entities (variables).

I Edges encode the relationships between entities (dependencies between
the variables)
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Why do we need graphical models?

I Graphs are intuitive way of representing and visualising the
relationships between entities.

I Graphs allow us to abstract out the conditional independence
relationships between the variables from the details of their parametric
forms. Thus we can answer questions like: “Is x1 dependent on x6
given that we know the value of x8?” just by looking at the graph.

I Graphs are widely used in a variety of applications in machine learning,
graph CNN, graph signal processing, etc.

I Graphs offer a language through which different disciplines can
seamlessly interact with each other.

I Graph-based approaches with big data and machine learning are driving
the current research frontiers.

Graphical Models = Statistics × Graph Theory × Optimization × Engineering
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Why do we need graph learning?

Graphical models are about having a graph representation that can encode
relationships between entities.

In many cases, the relationships between entities are straightforward:
I Are two people friends in a social network?
I Are two researchers co-authors in a published paper?

In many other cases, relationships are not known and must be learned:
I Does one gene regulate the expression of others?
I Which drug alters the pharmacologic effect of another drug?

The choice of graph representation affects the subsequent analysis and
eventually the performance of any graph-based algorithm.

The goal is to learn a graph representation of data with specific properties
(e.g., structures).
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Schematic of graph learning

I Given a data matrix X ∈ Rn×p = [x1,x2, . . . ,xp], each column
xi ∈ Rn is assumed to reside on one of the p nodes and each of the n
rows of X is a signal (or feature) on the same graph.

I The goal is to obtain a graph representation of the data.
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Graph is a simple mathematical structure of form G = (V, E), where
I V contains the set of nodes V = {1, 2, 3, . . . , p}, and
I E = {(1, 2), (1, 3), . . . , (i, j), . . . , (p, p− 1)} contains the set of edges

between any pair of nodes (i, j).
I Weights {w12, w13, . . . , wij , . . .} encode the relationships strength.
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Examples

Learning relational dependencies among entities benefits numerous
application domains.

Figure 1: Financial Graph

Objective: To infer inter-dependencies of
financial companies.
Input xi is the economic indices (stock
price, volume, etc.) of each entity.

Figure 2: Social Graph

Objective: To model behavioral similarity/
influence between people.
Input: Input xi is the individual online
activities (tagging, liking, purchase).
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Types of graphical models

I Models encoding direct dependencies: simple and intuitive.
I Sample correlation based graph.

I Similarity function (e.g., Gaussian RBF) based graph.

I Models based on some assumption on the data: X ∼ F(G)
I Statistical models: F represents a distribution by G (e.g., Markov model

and Bayesian model).

I Physically-inspired models: F represents generative model on G (e.g.,
diffusion process on graphs).
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Gaussian Markov random field (GMRF)

A random vector x = (x1, x2, . . . , xp)
> is called a GMRF with parameters

(0, Θ), if its density follows:

p(x) = (2π)(−p/2)(det(Θ))
1
2 exp

(
−1

2
(x>Θx)

)
.

The nonzero pattern of Θ determines a conditional graph G = (V, E) :

Θij 6= 0 ⇐⇒ {i, j} ∈ E ∀ i 6= j

xi ⊥ xj |x/(xi, xj) ⇐⇒ Θij = 0

I For a Gaussian distributed data x ∼ N (0,Σ = Θ†) the graph
learning is simply an inverse covariance (precision) matrix estimation
problem [Lauritzen, 1996].

I If the rank(Θ) < p then x is called an improper GMRF (IGMRF)
[Rue and Held, 2005].

I If Θij ≤ 0 ∀ i 6= j then x is called an attractive improper GMRF
[Slawski and Hein, 2015].
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Historical timeline of Markov graphical models

Data X = {x(i) ∼ N (0,Σ = Θ†)}ni=1, S = 1
n

∑n
i=1(x(i))(x(i))>

I Covariance selection [Dempster, 1972]: graph from the elements of S−1

inverse sample covariance matrix. Not applicable when sample
covariance is not invertible!

I Neighborhood regression [Meinshausen and Bühlmann, 2006]:

arg min
β1

|x(1) − β1X/x(1) |2 + α‖β1‖1

I `1-regularized MLE [Friedman et al., 2008, Banerjee et al., 2008]:

maximize
Θ�0

log det(Θ)− tr
(
ΘS
)
− α‖Θ‖1.

I Ising model: `1-regularized logistic regression [Ravikumar et al., 2010].
I Attractive IGMRF [Slawski and Hein, 2015].
I Laplacian structure in Θ [Lake and Tenenbaum, 2010].
I `1-regularized MLE with Laplacian structure

[Egilmez et al., 2017, Zhao et al., 2019]
Limitation: Existing methods are not suitable for learning graphs with
specific structures.
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Structured graphs

(i) Multi-component
graph

(ii) Regular graph (iii) Modular graph

(iv) Bipartite graph (v) Grid graph (vi) Tree graph

Figure 3: Useful graph structures
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Structured graphs: importance

Useful structures:
I Multi-component: graph for clustering, classification.
I Bipartite: graph for matching and constructing two-channel filter

banks.
I Multi-component bipartite: graph for co-clustering.
I Tree: graphs for sampling algorithms.
I Modular: graph for social network analysis.
I Connected sparse: graph for graph signal processing applications.
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Structured graph learning: challenges

Structured graph learning from data
I involves both the estimation of structure (graph connectivity) and

parameters (graph weights),
I parameter estimation is well explored (e.g., maximum likelihood),
I but structure is a combinatorial property which makes structure

estimation very challenging.
Structure learning is NP-hard for a general class of graphical models
[Bogdanov et al., 2008].
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Structured graph learning: direction

State-of-the-art direction:
I The effort has been on characterizing the families of structures for

which learning can be made feasible e.g., maximum weight spanning
tree for tree structure [Chow and Liu, 1968] and local-separation and
walk summability for Erdos-Renyi graphs, power-law graphs, and
small-world graphs [Anandkumar et al., 2012].

I Existing methods are restricted to some particular structures and it is
difficult to extend them to learn other useful structures, e.g.,
multi-component, bipartite, etc.

I A recent method in [Hao et al., 2018], for learning multi-component
structure follows a two-stage approach: non-optimal and not scalable to
large-scale problems.

Proposed direction: Graph (structure) ⇐⇒ Graph matrix (spectrum)

I Spectral properties of a graph matrix is one such characterization
[Chung, 1997] which is considered in the present work.

I Under this framework, structure learning of a large class of graph
structures can be expressed as an eigenvalue problem of the graph
Laplacian matrix.
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Problem statement

To learn structured graphs via Laplacian
spectral constraints
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Laplacian matrix

A set of p× p symmetric graph Laplacian matrices Θ:

SΘ =
{

Θ|Θij = Θji ≤ 0 for i 6= j,Θii = −
∑
j 6=i

Θij

}
.

Properties of Θ: Symmetric, diagonally dominant, positive semi-definite,
and eigenvalues of Θ encodes the structural properties of many important
structures.

Laplacian quadratic energy function:

tr(SΘ) =
∑
i,j

−Θij(xi − xj)2

I The above trace term is used to quantify smoothness of graph signals:
a smaller tr(SΘ) indicating a smoother signal x.

I A graph learned by minimizing the trace term tends to put more weight
on the relationship of xi, xj if they are similar, and vice versa.

I If the signals xi, xj are similar then the learned Laplacian weights |Θij |
will be large, and vice versa.
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Motivating example: structure via Laplacian eigenvalues

Spectral graph theory: Graph (structure)⇐⇒ Graph Matrix (spectrum)
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3 zero eigenavlues of 3 component graph Laplacian

A graph and its Laplacian matrix eigenvalues: k = 3 zero eigenvalues corresponding to
k = 3 connected components.



21/48

Proposed framework for structured graph learning

maximize
Θ

log gdet(Θ)− tr
(
ΘS
)
− αh(Θ),

subject to Θ ∈ SΘ, λ(T (Θ)) ∈ Sλ,

I gdet is the generalized determinant defined as the non-zero
eigenvalues product,

I SΘ encodes the typical constraints of a Laplacian matrix,
I λ(T (Θ)) is the vector containing the eigenvalues of matrix T (Θ),
I T (·) is the transformation matrix to consider the eigenvalues of

different graph matrices, and
I Sλ allows to include spectral constraints in the eigenvalues.
I Precisely Sλ will facilitate the process of incorporating the spectral

properties required for enforcing structure.

The proposed formulation has converted the combinatorial structural
constraints into analytical spectral constraints.
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Structures via Laplacian spectral constraints

T (Θ) = Θ

I Connected: Sλ = {λ1 = 0, c1 ≤ λ2 ≤ · · · ≤ λp ≤ c2}

I k−component: Sλ = {{λi = 0}ki=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2}

I d−regular: Sλ = {{λi = 0}ki=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2} and
Diag(Θ) = dI

I Popular connected structures, e.g., Grid, Modular, and Erdos-Renyi
can also be learned under the connected spectral constraint.

Note: By properly specifying the transformation matrix T (·) in the proposed
formulation, the spectral properties of other than graph Laplacian, e.g.,
adjacency, normalized Laplacian, and signless Laplacian can also be
utilized to learn more non-trivial structures (e.g., bipartite and
multi-component bipartite graph structures)
[Van Mieghem, 2010, Kumar et al., 2019, Chung, 1997].
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Problem formulation for Laplacian spectral constraints

maximize
Θ,λ,U

log gdet(Θ)− tr
(
ΘS
)
− α ‖Θ‖1 ,

subject to Θ ∈ SΘ, Θ = UDiag(λ)UT , λ ∈ Sλ, UTU = I,

where λ = [λ1, λ2, . . . , λp] is the vector of eigenvalues and U is the matrix
of eigenvectors.

The resulting formulation is still complicated and intractable:
I Laplacian structural constraints,
I non-convex constraints coupling Θ,U,λ, and
I non-convex constraints on U.

In order to derive a feasible formulation:
I we first introduce a linear operator L that transforms the Laplacian

structural constraints to simple algebraic constraints and
I then relax the eigen-decomposition expression into the objective

function.
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Linear operator for Θ ∈ SΘ

SΘ =
{

Θ|Θij = Θji ≤ 0 for i 6= j,Θii = −
∑
j 6=i

Θij

}
,

Θij = Θji ≤ 0 and Θ1 = 0 implying the target matrix is symmetric with
degrees of freedom of Θ equal to p(p− 1)/2.
We define a linear operator L : w ∈ Rp(p−1)/2+ → Lw ∈ Rp×p, which maps a
weight vector w to the Laplacian matrix:

[Lw]ij = [Lw]ji ≤ 0; i 6= j

[Lw]ii = −
∑
j 6=i

[Lw]ij

Example of Lw on w = [w1, w2, w3, w4, w5, w6]>:

Lw =


∑
i=1,2,3 wi −w1 −w2 −w3

−w1

∑
i=1,4,5 wi −w4 −w5

−w2 −w4

∑
i=2,4,6 wi −w6

−w3 −w5 −w6

∑
i=3,5,6 wi

 .
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Problem reformulation

maximize
Θ,λ,U

log gdet(Θ)− tr
(
ΘS
)
− α ‖Θ‖1 ,

subject to Θ ∈ SΘ, Θ = UDiag(λ)UT , λ ∈ Sλ, UTU = I,

Using: i) Θ = Lw and ii) tr
(
ΘS
)

+ αh(Θ) = tr
(
ΘK

)
, K = S + H and

H = α(2I− 11T ) the proposed problem formulation becomes:

⇓

maximize
w,λ,U

log gdet(Diag(λ))− tr(KLw)− β

2
‖Lw −UDiag(λ)UT ‖2F ,

subject to w ≥ 0, λ ∈ Sλ, UTU = I.
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SGL algorithm for k−component graph learning

I Variables: X = (w, λ, U)

I Spectral constraint: Sλ = {{λj = 0}kj=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2}.
I Positivity constraint: w ≥ 0

I Orthogonality constraint: UTU = Ip−k

We develop a block majorization-minimization (block-MM) type method
which updates each block sequentially while keeping the other blocks
fixed [Sun et al., 2016, Razaviyayn et al., 2013].
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Update for w

Sub-problem for w:

minimize
w≥0

tr (KLw) +
β

2
‖Lw −UDiag(λ)UT ‖2F .

minimize
w≥0

f(w) =
1

2
‖Lw‖2F − cTw,

This problem is a convex quadratic program, but does not have a
closed-form solution due to the non-negativity constraint w ≥ 0.

We obtain a closed-form update by using the MM technique
[Sun et al., 2016]

wt+1 =

(
wt − 1

2p
∇f(wt)

)+

,

where (a)+ = max(a, 0).
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Update for U

Sub-problem for U:

maximize
U

tr
(
UTLwUDiag(λ)

)
subject to UTU = Ip−k.

This sub- problem is an optimization on the orthogonal Stiefel manifold
[Absil et al., 2009, Benidis et al., 2016]. From the KKT optimality
conditions the solution is given by

Ut+1 = eigenvectors(Lwt+1)[k + 1 : p],

that is, the p− k principal eigenvectors of the matrix Lwt+1 in increasing
order of eigenvalue magnitude.
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Update for λ

Sub-problem for λ:

minimize
λ∈Sλ

− log det(λ) +
β

2
‖UT (Lw)U− Diag(λ)‖2F .

minimize
c1≤λk+1≤···≤λp≤c2

−
p−k∑
i=1

log λk+i +
β

2
‖λ− d‖2,

The sub-problem is popularly known as a regularized isotonic regression
problem. This is a convex optimization problem and the solution can be
obtained from the KKT optimality conditions. We develop an efficient
algorithm with a fast convergence to the global optimum in a maximum of
p− k iterations [Kumar et al., 2019].

Sandeep Kumar, Jiaxi Ying, José Vinícius de M. Cardoso, and Daniel P. Palomar,“
A Unified Framework for Structured Graph Learning via Spectral Constraints.” arXiv
preprint arXiv:1904.09792 (2019).
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Proposed SGL algorithm summary

maximize
w,λ,U

log gdet(Diag(λ))− tr(KLw)− β

2
‖Lw −UDiag(λ)UT ‖2F ,

subject to w ≥ 0, λ ∈ Sλ, UTU = Ip−k.

Proposed algorithm:

1: Input: SCM S, k, c1, c2, β
2: Output: Lw
3: t← 0
4: while stopping criterion is not met do

5: wt+1 =
(
wt − 1

2p∇f(wt)
)+

6: Ut+1 ← eigenvectors(Lwt+1), suitably ordered.

7: Update λt+1 (via isotonic regression method with maxm iter p− k).

8: t← t+ 1
9: end while

10: return w(t+1)
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Convergence and the computational complexity

The worst-case computational complexity of the proposed algorithm is
O(p3).

Theorem: The limit point (w?,U?,λ?) generated by this algorithm
converges to the set of KKT points of the optimization problem.

Sandeep Kumar, Jiaxi Ying, José Vinícius de M. Cardoso, and Daniel P. Palomar,
“Structured graph learning via Laplacian spectral constraints,” in Advances in Neural
Information Processing Systems (NeurIPS), 2019.
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Synthetic experiment setup

I Generate a graph with desired structure.
I Sample weights for the graph edges.
I Obtain true Laplacian Θtrue.
I Sample data X = {x(i) ∈ Rp ∼ N (0,Σ = Θ†true)}ni=1.
I S = 1

n

∑n
i=1(x(i))(x(i))>.

I Use S and some prior spectral information, if available.
I Performance metric

Relative Error =

∥∥∥Θ̂?
−Θtrue

∥∥∥
F

‖Θtrue‖F
, F-Score =

2tp
2tp + fp + fn

I Where Θ̂
?
is the final estimation result the algorithm and Θtrue is the

true reference graph Laplacian matrix, and tp, fp, fn correspond to true
positives, false positives, and false negatives, respectively.
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Grid graph

(i) True (ii) [Egilmez et al., 2017] (iii) SGL with k = 1
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Noisy multi-component graph
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Model mismatch
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Popular multi-component structures
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Real data: cancer dataset [Weinstein et al., 2013]

(xxii) CLR (Nie et al., 2016) (xxiii) SGL with k = 5

Clustering accuracy (ACC): CLR = 0.9862 and SGL = 0.99875.
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Animal dataset [Osherson et al., 1991]

ElephantRhino
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Chimp
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(xxiv) GGL [Egilmez et al., 2017]

Elephant

Rhino

Horse
Cow

Camel

Giraffe

Chimp

Gorilla

Mouse

Squirrel

Tiger

Lion

Cat

Dog Wolf

Seal

Dolphin

Robin

Eagle

Chicken

Salmon

Trout
Bee

Iguana

Alligator

Butterfly

Ant

Finch

Penguin

Cockroach

Whale

Ostrich

Deer

(xxv) GLasso [Friedman et al., 2008]
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Animal dataset contd...
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(xxvi) SGL: proposed (k = 1)
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Resources

An R package “spectralGraphTopology” containing code for all the experimental results
is available at
https://cran.r-project.org/package=spectralGraphTopology

NeurIPS paper: Sandeep Kumar, Jiaxi Ying, José Vinícius de M. Cardoso, and Daniel P.
Palomar, “Structured graph learning via Laplacian spectral constraints,” in Advances in
Neural Information Processing Systems (NeurIPS), 2019.
https://arxiv.org/pdf/1909.11594.pdf

Extended version paper: Sandeep Kumar, Jiaxi Ying, José Vinícius de M. Cardoso, and
Daniel P. Palomar, “A Unified Framework for Structured Graph Learning via Spectral
Constraints, (2019).” https://arxiv.org/pdf/1904.09792.pdf

Authors:

https://cran.r-project.org/package=spectralGraphTopology
https://arxiv.org/pdf/1909.11594.pdf


Thanks

For more information visit:

https://www.danielppalomar.com
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