
WHITTLE’S APPROXIMATION TO THE LIKELIHOOD FUNCTION
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Suppose we wish to fit a parametric model (such as ARIMA, or Fractional ARIMA) to dat

= (x , . . . , x )′ from the zero-mean weakly stationary Gaussian time series {x }. Let θ denote the0 n −1 t
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vector of model parameters. Under the model θ, suppose that {x } has spectral density f (ω), autoco

ariance sequence {c }, and suppose that x has n ×n covariance matrix Σ . Then the likelihood for θ
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sThe MLE , θ̂, is the value of θ which maximizes lik (θ), or equivalently, which minimize

−2 log lik (θ) = n log (2π) + log eΣ e + x ′ Σ x .−1
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In general, the cost of inverting an n ×n matrix is O (n ). Thus, in principle, each evaluation of th

ikelihood function will require O (n ) operations. Using Levinson’s algorithm (described later), we can
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ring the cost of the inversion, and therefore the cost of each evaluation of the likelihood function,

down to O (n ). Here, we will present Whittle’s Approximation to −2 log lik (θ), which has the advan-2

tage that it can be evaluated in O (n log n ) operations.

The matrix Σ is said to be a Toeplitz matrix, since all diagonals of Σ are constant. (This fol-
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,θ j −k ,θlows since Σ ( j , k ) = c ). It can be shown that, for large n , all n ×n symmetric Toeplitz matrices

have complex orthonormal eigenvectors which can be well approximated by
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It can also be shown that the corresponding eigenvalues of Σ are well approximated by 2π f (ω )

hus, if V = (V , . . . , V ), and Λ is an n ×n diagonal matrix with {2πf (ω )} on the main diago-n −1
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nal and zero elsewhere, then Σ ∼∼ V ΛV , where V is the conjugate transpose of V . Note tha

V = V V = I , the n ×n identity matrix, so that Σ ∼∼ V Λ V . In addition, eV e = 1, since V is a uni-−1 −1 *
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= 2n log 2π + [log f (ω ) + I / f (ω )] . (1

ormula (1) is Whittle’s approximation to −2 log lik (θ). Since {I } can be evaluated inn −1
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O (n log n ) using the Fast Fourier Transform, and since {log f (ω )} can be evaluated in O (n ), w

an evaluate the righthand side of (1) in O (n log n ) operations. The value of θ which minimizes the

righthand side of (1) is called the Whittle Estimator, θ̂ .W
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Fox and Taqqu have shown that for a Gaussian fractional ARIMA model, θ̂ is asymptoticall

ormal, and is asymptotically efficient, so that θ̂ is asymptotically equivalent to the exact MLE, θ̂. It
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ollows that θ̂ also provides an asymptotically efficient estimate of an ARMA model, since the

ARMA models are a subclass of the fractional ARIMA models.


