Face Recognition Vendor Test
Ongoing

Still Face and Iris 1:1 Verification

Application Programming Interface (API)
VERSION 6.0

Patrick Grother

Mei Ngan

Kayee Hanaoka

Information Access Division
Information Technology Laboratory

Contact via frvt@nist.gov

April 6, 2023

NST

National Institute of
Standards and Technology
U.S. Department of Commerce

mailto:frvt@nist.gov

FRVT Ongoing 1:1

Revision History

Date Version Description

April 1, 2019 4.0 Initial document

June 24, 2020 4.0.1 Update feature extraction times in Table 1.3 from 1000ms to 1500ms

September 9, 2020 4.0.2 Update link to General Evaluation Specifications document
Adjust the legal similarity score range

March 22, 2021 4.0.3 Update 1:1 matching time limit in Table 1.3 from 5 milliseconds to 0.1
milliseconds (or 100 microseconds)

January 7, 2022 5.0 Add second version of createTemplate() function in Section 4.4.4 that
supports the existence of multiple people in an image

February 2, 2022 5.0.1 Add Figure 2 and Table 3 to illustrate the second version of
createTemplate() function from Section 4.4.4

March 24, 2022 5.0.2 Add verbiage to be more explicit about algorithmic behavior when the

software fails to find a face in an image in Sections 4.4.3 and 4.4.4
April 6, 2023 6.0 Add support for iris recognition
Remove references to deprecated Multiface data structure

NIST API Page 1 0of9

O oo~NO U

10
11
12
13
14
15
16
17

18

19
20
21
22
23
24
25
26

27
28
29
30

31

I o Y It PP PP PPPPPPTPPPRRINN 3
1.1. R Yole 1O P ST PP
1.2. General FRVT Evaluation SPeCifiCations.........coceiiiiiiieiieeieeee ettt sttt s st e s e 3
1.3. I = L 3R

2. Data structures SUPPOITING the APlc...eii ettt e et e e e st e e st a e e s ate e e s teeessteeeensaeeensaeeessseeessaeeensseeennsesesnsens 3

3. Implementation LIBrary FIIENAME ...ttt e st s e e et e e e s te e e saaeee e ssteeesnaeeesnaeeenteeeanteeesnnees 3

I Y o IR o= 1 Tot- 1 [o 1RSSR
4.1. o [T To (=T g | L= OO PSP PP U P PPOPRPPRPPRIN
4.2. [T 41T o= Lol PP PP P PP PPPPPPPT N
4.3. OVBIVIBW....ceiititeeiieee ettt e ettt s e e ettt e ettt e s et e e s be e e s as et e san e e e s abe e e s ms e e s nseeeaabe e e s anseeesseeean b et e e aneeesanseeeanseeesanneesanbeesanreeenanes
4.4, 1 o P OSSP PPRRN

List of Tables

Table 1 — Processing time limits in milliseconds, per 640 X 480 IMAZEccccuieieiiiciiiiiee et e et eeecrr e e e eeaaree e e e e saraeeeaeean 3

Table 2 — Functional summary of the 1:1 application Of FIGUIE 1oouiiieiii ettt ettt e e aee e e vee s 4

Table 3 — Functional summary of the 1:1 application Of FIGUIE 2couiiiiiiiiieeeee ettt 5

LI o] L R LoV d =Y L= 4 T T I PRSP

Table 5 — Template generation from one or more images of exactly 0Ne PersoNcccceviiiriiriienieeiee e 7

Table 6 — Template generation of one more people detected from a single IMage........cccevviriiiriieniieien e 8

Table 7 = TempPlate MAatChiNGoo ittt b e st b e st e e s bt e st e e sbee e bt e sbeesbeesatesbeesnnesaneenas 9

List of Figures

Figure 1 — Schematic of 1:1 verification (template generation of one or more images of exactly one person) 4

Figure 2 — Schematic of 1:1 verification (template generation of one or more people detected in an image)ccccueeueee. 5

NIST

FRVT Ongoing 1:1

Table of Contents

API

Page 2 of 9

32

33

34
35
36
37

38

39
40
41
42

43

44
45
46
47

48
49
50

51

52
53
54

55

56
57
58
59
60
61
62
63

64

65
66

FRVT Ongoing 1:1

1. FRVT 1:1

1.1. Scope

This document establishes a concept of operations and an application programming interface (API) for evaluation of face
recognition (FR) or iris recognition implementations submitted to NIST's ongoing Face Recognition Vendor Test. This API
is for the 1:1 identity verification track. Separate APl documents will be published for future additional tracks to FRVT.

1.2. General FRVT Evaluation Specifications

General and common information shared between all Ongoing FRVT tracks are documented in the FRVT General
Evaluation Specifications document - https://pages.nist.gov/frvt/api/FRVT_common.pdf. This includes rules for
participation, hardware and operating system environment, software requirements, reporting, and common data
structures that support the APlIs.

1.3. Time limits

The elemental functions of the implementations shall execute under the time constraints of Table 1. These time limits
apply to the function call invocations defined in section 3. Assuming the times are random variables, NIST cannot regulate
the maximum value, so the time limits are median values. This means that the median of all operations should take less
than the identified duration.

The time limits apply per image. When K images of a person are present, the time limits shall be increased by a factor K.
NOTE: For developers that cannot meet the required time limit for matching two templates, please contact frvt@nist.gov.

Table 1 - Processing time limits in milliseconds, per 640 x 480 image

Function 1:1 verification
Feature extraction enrollment 1500 (1 core)
640x480 pixels
Feature extraction for verification 1500 (1 core)
640x480 pixels
Matching 0.1 (1 core)

2. Data structures supporting the API

The data structures supporting this APl are documented in the FRVT - General Evaluation Specifications document
available at https://pages.nist.gov/frvt/api/FRVT _common.pdf with corresponding header file named frvt_structs.h
published at https://github.com/usnistgov/frvt.

3. Implementation Library Filename

The core library shall be named as libfrvt_11_<provider>_<sequence>.so, with
e provider: single word, non-infringing name of the main provider. Example: acme
e sequence: a three digit decimal identifier to start at 000 and incremented by 1 every time a library is sent to
NIST. Example: 007

Example core library names: libfrvt_11_acme_000.so, libfrvt_11_mycompany_006.so.
Important: Public results will be attributed with the provider name and the 3-digit sequence number in the submitted
library name.

4. API Specification

FRVT 1:1 participants shall implement the relevant C++ prototyped interfaces in Section 4.4. C++ was chosen in order to
make use of some object-oriented features.

NIST API Page 3 of 9

https://pages.nist.gov/frvt/api/FRVT_common.pdf
mailto:frvt@nist.gov
https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://github.com/usnistgov/frvt

67

68
69

70

71
72

73

74
75
76
77
78

79
80

81
82

FRVT Ongoing 1:1

4.1. Header File

The prototypes from this document will be written to a file named frvtl1.h and will be available to implementers at

https://github.com/usnistgov/frvt.

4.2. Namespace

All supporting data structures will be declared in the FRVT namespace. All APIinterfaces/function calls for this track will

be declared in the FRVT 11 namespace.

4.3. Overview

The 1:1 testing will proceed in the following phases: optional offline training; preparation of enrollment templates;
preparation of verification templates; and matching. NIST requires that these operations may be executed in a loop in a
single process invocation, or as a sequence of independent process invocations, or a mixture of both.

1:1 VERIFICATION

Native or
updated

configuration

[Enrollment initialization

[Match initialization
SDK :
ey :> Enrollment Compéfrlson
template)::> engine
SDK

] [
Verification oK Image(s)
= =

Verification initialization]

Key

Algorithm
component
behind FRVT API

Data passed by
NIST to
algorithm

Figure 1 — Schematic of 1:1 verification (template generation of one or more images of exactly one person)

Table 2 - Functional summary of the 1:1 application of Figure 1

Phase Description Performance Metrics to be reported by NIST

Initialization | Function to read configuration data, if any. None

Enrollment | Given K > 1 input images of an individual, the implementation | Statistics of the time needed to produce a template.
will create a proprietary enrollment template. That s, Statistics of template size. Rate of failure to produce a
createTemplate(role=FRVT::TemplateRole::Enrollment_11) template.
will be called. NIST will manage storage of these templates.

Verification | Given K> 1 input images of an individual, the implementation | Statistics of the time needed to produce a template.
will create a proprietary verification template. That is, Statistics of template size. Rate of failure to produce a
createTemplate(role=FRVT::TemplateRole::Verification_11) template.
will be called. NIST will manage storage of these templates.

Matching (i.e. | Given a proprietary enrollment and a proprietary verification | Statistics of the time taken to compare two templates.

comparison) | template, compare them to produce a similarity score. Accuracy measures, primarily reported as DETs,

including for partitions of the input datasets.

NIST API

Page 4 of 9

https://github.com/usnistgov/frvt

83
84

85
86

87

88

89

90
91

FRVT Ongoing 1:1

1:1 VERIFICATION

Native or

updated
configuration

[Enrollment initialization

.

Match initialization

SDK -
::) Enrollment Comparison
Image template #1 :> engine <j
S
% Enrollment @ Q
template #2 ﬂ
S —
% Enrollment @ —_— Q
template M MxN Similarity
scores

S

Verification initialization]

SDK

Verification <:(Algorithm

template #1 T component
-/

behind FRVT API

Verification @

template #2 Data passed by

Verification @ INIST :]o

template N algorithm
-

Figure 2 — Schematic of 1:1 verification (template generation of one or more people detected in an image)

Table 3 - Functional summary of the 1:1 application of Figure 2

Phase Description Performance Metrics to be reported by NIST

Initialization | Function to read configuration data, if any. None

Enrollment Given K = 1 input image, the implementation will create M Statistics of the time needed to produce M templates.
proprietary enroliment templates based on the number of Statistics of template size. Rate of failure to produce a
people detected in the image. That s, template.
createTemplate(role=FRVT::TemplateRole::Enrollment_11)
will be called. NIST will manage storage of these templates.

Verification Given K = 1 input image, the implementation will create N Statistics of the time needed to produce N templates.
proprietary verification templates based on the number of Statistics of template size. Rate of failure to produce a
people detected in the image. That s, template.
createTemplate(role=FRVT::TemplateRole::Verification_11)
will be called. NIST will manage storage of these templates.

Matching (i.e. | Given a M proprietary enrollment templates and N Statistics of the time taken to compare two templates.

comparison) | proprietary verification templates, cross compare them to Accuracy measures, primarily reported as DETs,
produce MxN similarity scores. including for partitions of the input datasets.

4.4,

4.4.1.

API

Interface

The software under test must implement the interface Interface by subclassing this class and implementing each
method specified therein.

Remarks

C++ code fragment
1. |class Interface
2. |1
public:
3. virtual ReturnStatus initialize(
const std::string &configDir) = 0;
4. virtual ReturnStatus createFaceTemplate (
const std::vector<Image> &faces,
TemplateRole role,
std::vector<uint8 t> s&templ,
std::vector<EyePair> &eyeCoordinates) = 0;
NIST API

Supports algorithm initialization

Supports template generation from one or more
face images of exactly one person

Page 5 0of 9

92
93
94
95
96

97

98
99

100

FRVT Ongoing 1:1

5. virtual ReturnStatus createIrisTemplate (

const std::vector<Image> &irises,
TemplateRole role,

std::vector<uint8 t> s&templ,
std::vector<IrisAnnulus> &irisLocations) = 0;
6. virtual ReturnStatus createFaceTemplate (

const Image &image,

TemplateRole role,
std::vector<std::vector<uint8 t>> &templs,
std::vector<EyePair> &eyeCoordinates) = 0;

7. virtual ReturnStatus matchTemplates (

const std::vector<uint8 t> &verifTemplate,
const std::vector<uint8 t> &enrollTemplate,
double &similarity) = 0;

8. static std::shared ptr<Interface> getImplementation();

9. 1};

Supports template generation from one or more iris
images of exactly one person

Supports template generation of one or more
people detected from a single image

Supports comparison between two templates

Factory method to return a managed pointer to the
Interface object. This function is implemented by
the submitted library and must return a managed
pointer to the Interface object.

There is one class (static) method declared in Interface. getImplementation () which mustalso be implemented
by the implementation. This method returns a shared pointer to the object of the interface type, an instantiation of the
implementation class. A typical implementation of this method is also shown below as an example.

C++ code fragment

Remarks

#include "frvtll.h"
using namespace FRVT 11;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared ptr<Interface>

Interface::getImplementation ()

{
return std::make shared<NullImpl>();

}

// Other implemented functions

4.4.2. Initialization

The NIST test harness will call the initialization function in Table 4 before calling template generation or matching. This

function will be called BEFORE any calls to fork () ! are made.

Table 4 - Initialization

createTemplate () via fork () .

Prototype ReturnStatus initialize(
const string &configDir); Input
Description This function initializes the implementation under test. It will be called by the NIST application before any call to

createTemplate () ormatchTemplates (). The implementation under test should set all parameters.
This function will be called N=1 times by the NIST application, prior to parallelizing M >= 1 calls to

Input Parameters | configDir A read-only directory containing any developer-supplied configuration parameters or run-
time data files. The name of this directory is assigned by NIST, not hardwired by the
provider. The names of the files in this directory are hardwired in the implementation and
are unrestricted.

Output none

Parameters

Return Value

See General Evaluation Specifications document for all valid return code values.

Lhttp://man7.org/linux/man-pages/man2/fork.2.html

NIST API

Page 6 of 9

https://pages.nist.gov/frvt/api/FRVT_common.pdf

101

102
103
104
105

106
107
108

109
110
111

112
113
114
115
116
117
118

119

FRVT Ongoing 1:1

4.4.3. Template generation from one or more images of exactly one person

The functions of Table 5 supports role-specific generation of template data from one or more images of exactly one
person. Template format is entirely proprietary. Some of the proposed datasets include K > 2 image per person for some
persons. This affords the possibility to model a recognition scenario in which a new image of a person is compared
against all prior images. Use of multiple images per person has been shown to elevate accuracy over a single image.

NOTE: For any given submission, developers may only implement ONE of the functions in Table 5. That is, a single
submission may only support face recognition or iris recognition. For the functions that are not implemented, the
function shall return ReturnCode::NotImplemented.

Using this function, NIST will enroll K >= 1 images under each identity. The method by which the face or iris recognition
implementation exploits multiple images is not regulated. The test seeks to evaluate developer provided technology for
multi-presentation fusion.

This document defines a template to be a developer defined data-structure, capable of holding zero or one embeddings.
A developer may include embeddings, other information derived from the image, a header; the contents is developer
defined. An algorithm might internally fuse K feature sets into a single model or maintain them separately. In any case,
the resulting proprietary template is contained in a contiguous block of data. A template may have length zero bytes. In
all cases, the matchTemplates() function must accept two templates. The matchTemplates() function will be called
even if the developer’s implementation of a template is of zero bytes.

Table 5 - Template generation from one or more images of exactly one person

Prototype for | ReturnStatus createFaceTemplate(

face const std::vector<Image> &faces, Input

recognition TemplateRole role, Input
std::vector<uint8_t> &templ, Output
std::vector<EyePair> &eyeCoordinates); Output

Prototype for | ReturnStatus createlrisTemplate(

iris const std::vector<Image> &irises, Input
recognition TemplateRole role, Input
std::vector<uint8_t> &templ, Output
std::vector<IrisAnnulus> &irisLocations); Output
Description Takes a vector of image(s) and outputs a proprietary template and associated eye coordinates or irisLocations. The

vectors to store the template and eye coordinates/iris locations will be initially empty, and it is up to the
implementation to populate them with the appropriate data. In all cases, even when unable to extract features, the
output shall be a template that may be passed to the matchTemplates() function without error. That is, this routine
must internally encode "template creation failed", and the matcher must transparently handle this. The table below
specifies algorithmic behavior based on whether a face or iris was detected/features were extracted from the input

image(s).
ReturnCode Output Template
Zero faces/irises detected A non-successful return code One template (could be zero bytes)
K =1 faces/irises detected Success One template
Input faces or irises Implementations must alter their behavior according to the number of images contained in
Parameters the structure and the TemplateRole type.
role Label describing the type/role of the template to be generated. Valid values are
FRVT::-TemplateRole::Enrollment_11 or FRVT::TemplateRole::Verification_11.
Output templ The output template. The format is entirely unregulated. This will be an empty vector when
Parameters passed into the function, and the implementation can resize and populate it with the
appropriate data.
eyeCoordinates or The function shall return
irisLocations — For face images, eye coordinates — the estimated eye centers for left and right eyes
— For iris images, iris locations - estimates of the limbus center and pupil and limbus radii

NIST API Page 7 of 9

FRVT Ongoing 1:1

Return Value | See General Evaluation Specifications document for all valid return code values.

120 4.4.4. Template generation of one or more people detected from an image

121 This function supports role-specific generation of one or more templates that correspond to one or more people detected
122 in an image. Some of the proposed test images include K > 1 persons for some images and situations where the subject of
123 interest may or may not be the foreground face (largest face in the image). This function allows the implementation to

124 return a template for each person detected in the image. For testing, NIST will

125 1. Generate one or more enrollment templates from a single call to this function or the function of Table 5

126 2. Generate one or more verification templates from a single call to this function or the function of Table 5

127 3. Match all enrollment templates from 1) with all verification templates from 2)

128 4. Use the maximum similarity score across all template comparisons from 3) in our calculation of FMR and FNMR
129 (this applies to both genuine and imposter comparisons)

130 NOTE: The implementation must be able to match any combination of enrollment and verification templates generated
131 from this function and the function of Table 5. In other words, the output template format should be consistent between
132 this function and the function of Table 5. A template may have length zero bytes. In all cases, the matchTemplates()
133 function must accept two templates. The matchTemplates() function will be called even if the developer’s

134 implementation of a template is of zero bytes.

135
136 Table 6 — Template generation of one more people detected from a single image
Prototypes ReturnStatus createFaceTemplate(
const Image &image, Input
TemplateRole role, Input
std::vector<<std::vector<uint8_t>> &templs, Output
std::vector<EyePair> &eyeCoordinates); Output
Description This function supports template generation of one or more people detected from a single image. It takes a single

input image and outputs one or more proprietary templates and associated eye coordinates based on the number of
people detected. The vectors to store the template(s) and eye coordinates will be initially empty, and it is up to the
implementation to populate them with the appropriate data. If the implementation is unable to extract features, the
output shall still contain a single template that may be passed to the matchTemplates() function without error. That
is, this routine must internally encode "template creation failed", and the matcher must transparently handle this.
The table below specifies algorithmic behavior based on the number of faces detected from the input image.

ReturnCode Output Template

Zero faces detected A non-successful return code Vector of templates, length =1

K >=1 faces detected Success Vector of templates, length =K
Input image A single image that contains one or more people in the photo
Parameters role Label describing the type/role of the template to be generated. Valid values are

FRVT::TemplateRole::Enrollment_11 or FRVT::TemplateRole::Verification_11.

Output templs A vector of output template(s). The format of the template(s) is entirely unregulated. This
Parameters will be an empty vector when passed into the function, and the implementation can resize

and populate it with the appropriate data.

eyeCoordinates For each person detected in the image, the function shall return the estimated eye centers.
This will be an empty vector when passed into the function, and the implementation shall
populate it with the appropriate number of entries. Values in eyeCoordinates[i] shall
correspond to templs[i].

Return Value |See General Evaluation Specifications document for all valid return code values.

NIST API Page 8 of 9

https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://pages.nist.gov/frvt/api/FRVT_common.pdf

137

138
139

140

141

4.4.5. Matching

Matching of one enrollment against one verification template shall be implemented by the function of Table 7.

FRVT Ongoing 1:1

Table 7 — Template matching

Prototype ReturnStatus matchTemplates(
const std::vector<uint8_t> &verifTemplate, Input
const std::vector<uint8_t> &enrollTemplate, Input
double &score); Output
Description Compare two proprietary templates and output a similarity score, which need not satisfy the metric properties.

When either or both of the input templates are the result of a failed template generation (see Table 5), the
similarity score shall be -1 and the function return value shall be VerifTemplateError.

Input Parameters

verifTemplate

A verification template from createTemplate(role=Verification_11). The
underlying data can be accessed via verifTemplate.data(). The size, in bytes, of
the template could be retrieved as verifTemplate.size().

enrollTemplate

An enrollment template from createTemplate(role=Enroliment_11). The
underlying data can be accessed via enrollTemplate.data(). The size, in bytes, of
the template could be retrieved as enrollTemplate.size().

Output
Parameters

score

A score resulting from comparison of the templates.

Measure of similarity or dissimilarity between the enroliment template and
verification template.

— For face recognition, a similarity score - higher is more similar

— Foriris recognition, a non-negative measure of dissimilarity (maybe a
distance) - lower is more similar

An algorithm is free to assign any value to a candidate. The distribution of values
will have an impact on the false-negative and false-positive rates.

The score values should be reported on the range that is used in the developer’s
software products. We require scores to be non-negative. Developers often use
[0,1], for example. Our test reports include various plots with threshold values
e.g. FMR(T), to allow end-users to set thresholds in operations. These plots may
become difficult to interpret if scores span many orders of magnitude.

Return Value

See General Evaluation Specifications document for all valid return code values.

NIST

API Page 9 of 9

https://pages.nist.gov/frvt/api/FRVT_common.pdf

	1. FRVT 1:1
	1.1. Scope
	1.2. General FRVT Evaluation Specifications
	1.3. Time limits

	2. Data structures supporting the API
	3. Implementation Library Filename
	4. API Specification
	4.1. Header File
	4.2. Namespace
	4.3. Overview
	4.4. API
	4.4.1. Interface
	4.4.2. Initialization
	4.4.3. Template generation from one or more images of exactly one person
	4.4.4. Template generation of one or more people detected from an image
	4.4.5. Matching

