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Abstract. We describe a compositional approach to Craig interpola-
tion based on the heuristic that simpler proofs of special cases are more
likely to generalize. The method produces simple interpolants because
it is able to summarize a large set of cases using one relatively simple
fact. In particular, we present a method for finding such simple facts in
the theory of linear rational arithmetic. This makes it possible to use in-
terpolation to discover inductive invariants for numerical programs that
are challenging for existing techniques. We show that in some cases, the
compositional approach can also be more efficient than traditional lazy
SMT as a decision procedure.

1 Introduction

beau·ti·ful adjective \’byü-ti-f@l\
1: ...exciting aesthetic pleasure
2: generally pleasing [2]

In mathematics and physics, the beauty of a theory is an important quality. A
simple or elegant argument is considered more likely to generalize than a complex
one. Imagine, for example, proving a conjecture about an object inN dimensions.
We might first try to prove the special case of two or three dimensions, and then
generalize the argument to the N -dimensional case. We would prefer a proof of
the two-dimensional case that is simple, on the grounds that it will be less prone
to depend on particular aspects of this case, thus more likely to generalize.

We can apply this heuristic to the proof of programs or hardware systems.
We produce a proof of correctness for some bounded collection of program ex-
ecutions. From this proof we can derive a conjectured invariant of the program
using Craig interpolation methods, e.g., [21, 23, 20, 10]. The simpler our conjec-
ture, the less it is able to encode particular aspects of our bounded behaviors,
so the more likely it is to be inductive. Typically, our bounded proofs will be
produced by an SMT (satisfiability modulo theories) solver. Simplicity of our
interpolant-derived conjecture depends on simplicity of the SMT solver’s proof.
Unfortunately, for reasons we will discuss shortly, SMT solvers may produce
proofs that are far more complex than necessary.

In this paper, we consider an approach we call compositional SMT that is
geared to produce simple interpolants. It is compositional in the sense that the
interpolant acts as an intermediate assertion between components of the formula,
localizing the reasoning. This approach allows us to solve inductive invariant
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generation problems that are difficult for other techniques, and in some cases
can solve bounded verification problems much more efficiently than standard lazy
SMT [7] methods. The approach is simple to implement and uses an unmodified
SMT solver as a “black box”.

A lazy SMT solver separates the problems of Boolean and theory reasoning.
To test satisfiability of a formula A relative to a theory T , it uses a SAT solver to
find propositionally satisfying assignments. These can be thought of as disjuncts
in the disjunctive normal form (DNF) of A. A theory solver then determines fea-
sibility of these disjuncts in T . In the negative case, it produces a theory lemma.
This is a validity of the theory that contradicts the disjunct propositionally. In
the worst case, each theory lemma rules out only one amongst an exponential
collection of disjuncts.

In compositional SMT, we refute satisfiability of a conjunction A ∧ B by
finding an interpolant formula I, such that A⇒ I, B ⇒ ¬I and I uses only the
symbols common to A and B. We do this by building two collections of feasible
disjuncts of A and B that we call samples. We then try to construct a simple
interpolant I for the two sample sets. If I is an interpolant for A and B, we are
done. Otherwise, we use our SMT solver to find a new sample that contradicts
either A⇒ I or B ⇒ ¬I, and restart the process with the new sample.

Unlike the theory solver in lazy SMT, our interpolant generator can “see”
many different cases and try to find a simple fact that generalizes them. This
more global view allows compositional SMT to find very simple interpolants in
cases when lazy SMT produces an exponential number of theory lemmas.

We develop the technique here in the quantifier-free theory of linear ratio-
nal arithmetic (QFLRA). This allows us to apply some established techniques
based on Farkas’ lemma to search for simple interpolants. The contributions of
this paper are (1) A compositional approach to SMT based on sampling and
interpolation (2) An interpolation algorithm for QFLRA based on finding linear
separators for sets of convex polytopes. (3) A prototype implementation that
demonstrates the utility of the technique for invariant generation, and shows the
potential to speed up SMT solving.

Organization. Sec. 2 illustrates our approach on a simple example. Sec. 3 gives
a general algorithm for interpolation via sampling. Sec. 4 describes an interpola-
tion technique for sets of convex polytopes. Sec. 5 presents our implementation
and experimental results. Related work is discussed in Sec. 6.

2 Motivating Example

Figure 1 shows two QFLRA formulas A and B over the variables x and y. For
clarity of presentation, the two formulas are in DNF, where A1,A2, and A3

are the disjuncts of A, and B1 and B2 are the disjuncts of B. Intuitively, since
a disjunct is a conjunction of linear inequalities (half-spaces), it represents a
convex polyhedron in R2. Fig. 2(a) represents A and B geometrically, where each
disjunct is highlighted using a different shade of gray.
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A =(x ≤ 1 ∧ y ≤ 3) (A1)

∨ (1 ≤ x ≤ 2 ∧ y ≤ 2) (A2)

∨ (2 ≤ x ≤ 3 ∧ y ≤ 1) (A3)

B =(x ≥ 2 ∧ y ≥ 3) (B1)

∨ (x ≥ 3 ∧ 2 ≤ y ≤ 3) (B2)

Fig. 1. Inconsistent formulas A and B.

Since A and B do not intersect, as shown in Fig 2(a), A ∧ B is unsatisfiable.
Thus, there exists an interpolant I such that A ⇒ I and I ⇒ ¬B. One such I is
the half-space x+ y ≤ 4, shown in Fig. 2(b) as the region encompassing all of A,
but not intersecting with B. We now discuss how our technique constructs such
an interpolant.

We start by sampling disjuncts from A and B. In practice, we sample a
disjunct from a formula ϕ by finding a model m |= ϕ, using an SMT solver, and
evaluating all linear inequalities occurring in ϕ with respect to m. Suppose we
sample the disjuncts A2 and B1. We now find an interpolant of (A2,B1). To do
so, we utilize Farkas’ lemma and encode a system of constraints that is satisfiable
iff there exists a half-space interpolant of (A2,B1). That is, we are looking for
an interpolant comprised of a single linear inequality, not an arbitrary Boolean
combination of linear inequalities. In this case, we might find the half-space
interpolant y ≤ 2.5, shown in Fig. 2(c).

We call y ≤ 2.5 a partial interpolant, since it is an interpolant of A2 and B1,
which are parts of (i.e., subsumed by) A and B, respectively. We now check if
this partial interpolant is an interpolant of (A,B) using an SMT solver. First, we
check if A ∧ y > 2.5 is satisfiable. Since it is satisfiable, A 6⇒ y ≤ 2.5, indicating
that y ≤ 2.5 is not an interpolant of (A,B). A satisfying assignment of A∧y > 2.5
is a model of A that lies outside the region y ≤ 2.5, for example, the point (1, 3)
shown in Fig. 2(c). Since (1, 3) is a model of the disjunct A1, we add A1 to the
set of samples in order to take it into account.

At this point, we have two A samples, A1 and A2, and one B sample B1.
We now seek an interpolant for (A1 ∨ A2,B1). Of course, we can construct such
an interpolant by taking the disjunction of two half-space interpolants: one for
(A1,B1) and one for (A2,B1). Instead, we attempt to find a single half-space that
is an interpolant of (A1∨A2,B1) – we say that the samples A1 and A2 are merged
into a sampleset {A1,A2}. As before, we construct a system of constraints and
solve it for such an interpolant. In this case, we get the half-space x+y ≤ 4, shown
in Fig. 2(d). Since x+y ≤ 4 is an interpolant of (A,B), the algorithm terminates
successfully. If there is no half-space interpolant for (A1 ∨ A2,B1), we split the
sampleset {A1,A2} into two samples, and find two half-space interpolants for
(A1,B1) and (A2,B1).

The key intuition underlying our approach is two-fold: (1) Lazily sampling a
small number of disjuncts from A and B often suffices for finding an interpolant
for all of A and B. (2) By merging samples, e.g., as A1 and A2 above, and
encoding a system of constraints to find half-space interpolants, we are forcing
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Fig. 2. (a) Illustration of the formulas A and B. (b) An interpolant x + y ≤ 4 for
(A,B). (c) An interpolant y ≤ 2.5 for (A2,B1). (d) An interpolant x + y ≤ 4 for
samples (A1 ∨ A2 B1). (e) An interpolant computed by MathSAT5.

the procedure to take a holistic view of the problem and produce simpler and
possibly more general interpolants.

Given the formulas A and B, an SMT solver is generally unable to find the
simple fact x + y ≤ 4, due to the specificity of the theory lemmas it produces.
For example, we used the MathSAT SMT solver to find an interpolant for A
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and B, and it produced the following formula1:

(x ≤ 2 ∧ y ≤ 2) ∨ ((x ≤ 1 ∨ y ≤ 1) ∧ ((x ≤ 2 ∧ y ≤ 2) ∨ (x ≤ 1 ∨ y ≤ 1))),

illustrated in Fig. 2(e). This interpolant is more complex and does not capture
the emerging pattern of the samples. As we add more disjuncts to A and B
following the pattern, the interpolants produced by MathSAT grow in size,
whereas our approach produces the same result. This ability to generalize a series
is key to invariant generation. In the SMT approach, the theory solver sees only
one pair of disjuncts from A and B at a time, and thus cannot generalize.

3 Constructing Interpolants from Samples

We now present Csmt (Compositional SMT), a generic algorithm for comput-
ing an interpolant for a pair of quantifier-free first-order formulas (A,B). Csmt
attempts to partition samples from A and B as coarsely as possible into sam-
plesets, such that each A sampleset can be separated from each B sampleset by
an atomic interpolant formula (for linear arithmetic, this means a single linear
constraint). Although Csmt applies to any theory that allows quantifier-free
interpolation, for concreteness, we consider here only linear arithmetic.

Preliminaries. A formula of quantifier-free linear rational arithmetic, LRA, is
a Boolean combination of atoms. Each atom is a linear inequality of the form
c1x1 + · · · + cnxn / k, where c1, . . . , cn and k are rational constants, x1, . . . , xn
are distinct variables, and / is either < or ≤. The atom is an open or closed
half-space if / is < or ≤, respectively. We use LinIq(ϕ) to denote the set of atoms
appearing in formula ϕ, and Vars(ϕ) to denote the set of variables. We will often
write cx / k for a half-space c1x1 + · · · + cnxn / k, where c is the row vector of
the coefficients {ci}, and x is the column vector of the variables {xi}.

A model of ϕ is an assignment of rational values to Vars(ϕ) that makes ϕ true.
Given a model m of ϕ, we define the sample of ϕ w.r.t. m, written sampleϕ(m),
as the formula∧

{P | P ∈ LinIq(ϕ),m |= P} ∧
∧
{¬P | P ∈ LinIq(ϕ),m 6|= P}.

Note, there are finitely many samples of ϕ and ϕ is equivalent to the disjunc-
tion of its samples. Geometrically, each sample can be thought of as a convex
polytope.

Given two formulas A,B ∈ LRA such that A ∧ B is unsatisfiable, an inter-
polant of (A,B) is a formula I ∈ LRA such that Vars(I) ⊆ Vars(A) ∩ Vars(B),
A⇒ I, and B ⇒ ¬I. An interpolant exists for every inconsistent (A,B).

General Algorithm. We formalize Csmt in Fig. 3 as a set of guarded com-
mands. In each, if the condition above the line is satisfied, the assignment below
may be executed. The state of Csmt is defined by the following variables:

1 Produced using MathSAT 5.2.2, and slightly modified for clarity of presentation.
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Init
SA := ∅ SB := ∅ PItp := ∅

• Rules for distributing samples into samplesets:

X ∈ {A,B} s1 ∈ SX s2 ∈ SX s1 6= s2
Merge

SX := (SX \ {s1, s2}) ∪ {s1 ∪ s2}

X ∈ {A,B} s1 ∪ s2 ∈ SX s1 6= ∅ s2 6= ∅
Split

SX := (SX \ {s1 ∪ s2}) ∪ {s1} ∪ {s2}

• Rules for constructing and checking interpolants:

sA ∈ SA sB ∈ SB HalfItp(sA, sB) 6= � PItp(sA, sB) is undefined
PartialItp

PItp(sA, sB) := HalfItp(sA, sB)

C = Cand(SA, SB ,PItp) 6= � m |= A ∧ ¬C
CheckItpA

SA := SA ∪ {{sampleA(m)}}

C = Cand(SA, SB ,PItp) 6= � m |= C ∧B
CheckItpB

SB := SB ∪ {{sampleB(m)}}

• Termination conditions:

sA ∈ SA sB ∈ SB |sA| = |sB | = 1 HalfItp(sA, sB) = �
Sat

A ∧B is satisfiable

C = Cand(SA,SB ,PItp) A⇒ C C ⇒ ¬B
Unsat

C is an interpolant of (A,B)

Fig. 3. Csmt as guarded commands.

– Sampleset collections SA,SB are sets of samplesets of A and B, respectively.
Initially, as dictated by the command Init, SA = SB = ∅.

– Partial interpolant map PItp is a map from pairs of samplesets to half-spaces.
Invariantly, if (sA, sB) is in the domain of PItp then PItp(sA, sB) is an inter-
polant for (

∨
sA,
∨
sB).

We do not attempt to find a smallest set of half-spaces that separate the
samples, as this problem is NP-complete. This can be shown by reduction from
k-polyhedral separability : given two sets of points on a plane, is there a set of less
than k half-spaces separating the two sets of points [25]. Instead, we heuristi-
cally cluster the samples into large samplesets such that each pair of samplesets
(sA,sB) is linearly separable. Even with a minimal clustering, this solution may
be sub-optimal, in the sense of using more half-spaces than necessary. Since our
objective is a heuristic one, we will seek reasonably simple interpolants with
moderate effort, rather than trying to optimize.
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In practice, we heuristically search the space of clusterings using Merge and
Split. Merge is used to combine two samplesets in S{A,B} and make them a
single sampleset. Split performs the opposite of Merge: it picks a sampleset in
S{A,B} and splits it into two samplesets. The command PartialItp populates
the map PItp with interpolants for pairs of samplesets (sA, sB). This is done by
calling HalfItp (sA, sB), which returns a half-space interpolant of (

∨
sA,
∨
sB)

if one exists, and the symbol � otherwise (Sec. 4 presents an implementation of
HalfItp).

The commands CheckItpA and CheckItpB check if the current candidate
interpolant is not an interpolant of (A,B), in which case, samples produced
from counterexamples are added to SA and SB . The function Cand constructs
a candidate interpolant from PItp. If the domain of PItp contains SA × SB , then

Cand(SA,SB ,PItp) ≡
∨

sA∈SA

( ∧
sB∈SB

PItp(sA, sB)

)
Otherwise the result is �. The result of Cand is an interpolant of (A′, B′), where
A′ and B′ are the disjunction of all samples in SA and SB , respectively. This DNF
formula may not be optimal in size. Synthesizing optimal candidate interpolants
from partial interpolants is a problem that we hope to explore in the future.

If Sat or Unsat apply, then the algorithm terminates. Sat checks if two sin-
gleton samplesets do not have a half-space separating them. Since both samples
define convex polytopes, if no half-space separates them, then they intersect,
and therefore A ∧B is satisfiable. Unsat checks if a candidate interpolant C is
indeed an interpolant, in which case Csmt terminates successfully.

Example 1. Consider the formulas A and B from Sec. 2. Suppose that Csmt is
in the state SA = {{A2}}, SB = {{B1}}, PItp = ∅, where A2 and B1 are the sam-
ples of A and B defined in Sec. 2. By applying PartialItp, we find a half-space
separating the only two samplesets. As a result, PItp({A2}, {B1}) = y ≤ 2.5. Sup-
pose we now apply CheckItpA. The candidate interpolant Cand(SA,SB ,PItp)
at this point is y ≤ 2.5. Since A ∧ y > 2.5 is satisfiable, CheckItpA adds the
sampleset {A1}, which is not subsumed by the candidate interpolant, to SA. Now,
SA = {{A1}, {A2}}. Since we have two samplesets in SA, we apply Merge and
get SA = {{A1,A2}}. PartialItp is now used to find a half-space interpolant
for the samplesets {A1,A2} and {B1}. Suppose it finds the plane x + y ≤ 4.
Then Unsat is applicable and the algorithm terminates with x + y ≤ 4 as an
interpolant of (A,B). ut

The key rule for producing simpler interpolants is Merge, since it decreases
the number of samplesets, and forces the algorithm to find a smaller number of
half-spaces that separate a larger number of samples. In Example 1 above, if we
do not apply Merge, we might end up adding all the samples of A and B to SA
and SB . Thus, producing an interpolant with a large number of half-spaces like
the one illustrated in Fig. 2(e).

Theorem 1 (Soundness of Csmt). Given two formulas A and B, if Csmt
terminates using
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1. Sat, then A ∧B is satisfiable.
2. Unsat, then Cand(SA,SB ,PItp) is an interpolant of (A,B).

Proof (Sketch). In case 1, by definition of the rule Sat, we know that there is a
sample a of A and a sample b of B such that there does not exist a half-space
I that is an interpolant of (a, b). Since both a and b define convex polytopes, if
a and b do not have a half-space separating them, then a ∧ b is satisfiable, and
therefore A ∧B is satisfiable.

In case 2, the candidate interpolant C, checked in rule Unsat, is over the
shared variables of A and B (by definition of HalfItp), A⇒ C, and C ⇒ ¬B.
Therefore, it is an interpolant of (A,B). �

We now consider the termination (completeness) of Csmt. It is easy to see
that one can keep applying the commands Merge and Split without ever
terminating. To make sure that does not happen, we impose the restriction that
for any sampleset in P{A,B}, if it is ever split, it never reappears in the sampleset
collection. For example, if a sampleset sA ∈ SA is split into two samplesets s1A
and s2A using Split, then sA cannot reappear in SA. Given this restriction, Csmt
always terminates.

Theorem 2 (Completeness of Csmt). For any two formulas A and B, Csmt
terminates.

Proof (Sketch). Since there are finitely many samples, CheckItpA, Check-
ItpA and PartialItp must be executed finitely. Due to our restriction, Merge
is also bounded. Thus, if we do not terminate, eventually Split reduces all sam-
plesets to singletons, at which point Sat or Unsat must terminate the proce-
dure.

4 Half-space Interpolants

In this section, we present a constraint-based implementation of the parameter
HalfItp of Csmt. Given two samplesets sA and sB , our goal is to find a half-
space interpolant ix / k of (

∨
sA,
∨
sB). Since both sA and sB represent a union

(set) of convex polytopes, we could compute the convex hulls of sA and sB and
use techniques such as [28, 6] to find a half-space separating the two convex hulls.
To avoid the potentially expensive convex hull construction, we set up a system
of linear constraints whose solution encodes both the separating half-space and
the proof that it is separating. We then solve the constraints using an LP solver.
This is an extension of the method in [28] from pairs of convex polytopes to
pairs of sets of convex polytopes.

The intuition behind this construction is simple. We can represent the desired
separator as a linear constraint I of the form ix ≤ k, where x is a vector of
variables, i is a vector of unknown coefficients, and k is an unknown constant.
We wish to solve for the unknowns i and k. To express the fact that I is a
separator, we apply Farkas’ lemma. This tells us that a set of linear constraints
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{Cj} implies I exactly when I can be expressed as a linear combination of
{Cj} with non-negative coefficients. That is, when ΣjcjCj + d ≡ I for some
non-negative {cj} and d. The key insight is that this equivalence is itself a set of
linear equality constraints with unknowns {cj}, d, i and k. The values of {cj} and
d constitute a certificate that in fact {Cj} implies I. We can therefore construct
constraints requiring that each sample in sA implies (is contained in) I, and
similarly that each sample in sB implies ¬I (equivalent to −ix < −k). Solving
these constraints we obtain a separator I and simultaneously a certificate that I
is a separator. What is new here is only that we solve for multiple Farkas proofs:
one for each sample in sA or sB .

We now make this construction precise. Let NA = |sA| and NB = |sB |. Each
sample in sA is represented as a vector inequality Ajx ≤ aj , for j ∈ [1, NA].
Similarly, samples in sB are of the form Bjx ≤ bj , for j ∈ [1, NB ]. Here, x is
a column vector of the variables Vars(A) ∪ Vars(B). For example, the sample
y ≤ 1 ∧ z ≤ 3 is represented as follows:(

1 0
0 1

)(
y
z

)
≤
(

1
3

)
In the remainder of this section, we assume that all samples are conjunctions

of closed half-spaces, i.e., non-strict inequalities. (In the Appendix, we present
a simple extension to our construction for handling open half-spaces.) It follows
that if there exists a half-space interpolant for (

∨
sA,
∨
sB), then there exists a

closed half-space that is also an interpolant. Thus, our goal is to find a closed
half-space ix ≤ k that satisfies the following two conditions:

∀j ∈ [1, NA] ·Ajx ≤ aj ⇒ ix ≤ k (1)

∀j ∈ [1, NB ] ·Bjx ≤ bj ⇒ ¬ix ≤ k (2)

Condition (1) specifies that ix ≤ k subsumes all sA samples. Condition (2)
specifies that ix ≤ k does not intersect with any of the sB samples. By forcing
coefficients of unshared variables to be 0 in ix ≤ k, we ensure that ix ≤ k is an
interpolant of (

∨
sA,
∨
sB). To construct such half-space interpolant, we utilize

Farkas’ lemma [29]:

Theorem 3 (Farkas’ lemma). Given a satisfiable system of linear inequalities
Ax ≤ b and a linear inequality ix ≤ k, then: Ax ≤ b⇒ ix ≤ k iff there exists a
row vector λ ≥ 0 s.t. λA = i and λb ≤ k.

Using this fact, we construct a constraint ΦA that, when satisfiable, implies
that a half-space ix ≤ k satisfies condition (1). Consider a sample Ajx ≤ aj ,
where Aj is an mj × nj matrix. We associate with this sample a row vector
λAj

of size mj , consisting of fresh variables, called Farkas coefficients of the mj

linear inequalities represented by Ajx ≤ aj . We now define ΦA as follows:

ΦA ≡ ∀j ∈ [1, NA] · λAj ≥ 0 ∧ λAjAj = i ∧ λAjaj ≤ k

The row vector i is of the form (ix1
· · · ixn

), where each ixj
is a variable

denoting the coefficient of variable xj in the interpolant. Similarly, k is a variable
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denoting the constant in the interpolant. Suppose we have an assignment to
i, k, and λAj

that satisfies ΦA. Then, by Farkas’ lemma, the half-space ix ≤ k
satisfies condition (1), where i and k are replaced by their assignment values.
This because a satisfying assignment of ΦA implies that for every j ∈ [1, NA],
Ajx ≤ aj ⇒ ix ≤ k.

We now encode a constraint ΦB that enforces condition (2). As before, we
associate a row vector λBj with each sample Bjx ≤ bj . We define ΦB as follows:

ΦB ≡ ∀j ∈ [1, NB ] · λBj ≥ 0 ∧ λBjBj = −i ∧ λBj bj < −k

Following Farkas’ lemma, a satisfying assignment of ΦB results in a half-space
−ix < −k that subsumes all samples in sB . That is, Bjx ≤ bj ⇒ ¬ix ≤ k, for
all j ∈ [1, NB ], thus satisfying condition (2). Therefore, a satisfying assignment
of ΦA ∧ΦB produces a half-space interpolant ix ≤ k for (

∨
sA,
∨
sB). Note that

our encoding implicitly ensures that coefficients of unshared variables are 0 in
ix ≤ k. See Appendix for an example of solving these constraints to obtain an
interpolant. Thm. 4 below states soundness and completeness of our encoding
for samples that are conjunctions of closed half-spaces.

Theorem 4 (Soundness and Completeness of HalfItp). Given two sam-
plesets (where all samples are systems of closed half-spaces), sA and sB, and
their corresponding encoding Φ ≡ ΦA ∧ ΦB, then:
1. If Φ is satisfiable using a variable assignment m, then imx ≤ km is an

interpolant for (
∨
sA,
∨
sB), where im and km are the values of i and k in

m, respectively.
2. Otherwise, no half-space interpolant exists for (

∨
sA,
∨
sB).

5 Implementation and Evaluation

We implemented the compositional SMT technique, Csmt, in the C] language,
using the Z3 SMT solver [26] for constraint solving and sampling. The primary
heuristic choice in the implementation is how to split and merge samplesets.
The heuristics we use for this are described in the Appendix, along with some
optimizations that improve performance.

To experiment with Csmt, we integrated it with Duality [24], a tool that
uses interpolants to construct inductive invariants. We will call this CsmtDua.
In the configuration we used, Duality can be thought of as implementing Lazy
Abstraction With Interpolants (LAWI), as in Impact [21]. The primary differ-
ence is that we use a large-block encoding [8], so that edges in the abstract
reachability tree correspond to complete loop bodies rather than basic blocks.

Sequence interpolants with Csmt. Duality produces sequences of formu-
las corresponding to (large block) program execution paths in static single as-
signment (SSA) form, and requires interpolants to be computed for these se-
quences. An interpolant sequence for formulas A1, . . . , An is a sequence of for-
mulas I1, . . . , In−1 where Ii is an interpolant for (

∧
k≤iAk,

∧
k>iAk). The inter-

polant sequence must also be be inductive, in the sense that Ii−1 ∧ Ai ⇒ Ii. In
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Program CsmtDua CPA Ufo InvGenAI InvGenCS

f2 4 7 7 7f 7f

gulv 4 7 7 7f 7f

gulv simp 4 4 4 4 4

substring1 4 7 4 4 4

pldi08 4 4 4 7f 7f

pldi082unb 4 7 7 4 4

xy0 4 7 7 4 4

xy10 4 4 4 4 4

xy4 4 7 7 4 4

xyz 4 7 7 4 4

xyz2 4 7 7 4 4

dillig/01 4 4 4 4 4

dillig/03 4 7 7 4 4

dillig/05 4 7 4 4 4

dillig/07 4 4 4 4 4

dillig/09 4 7 7 4 7

dillig/12 4 7 4 7 7

dillig/15 4 4 4 4 4

dillig/17 4 4 7 4 4

dillig/19 4 4 4 7f 7f

dillig/20 4 4 4 7f 7f

dillig/24 4 4 4 4 4

dillig/25 4 4 4 4 7f

dillig/28 4 7 7 4 4

dillig/31 4 4 7 4 7

dillig/32 4 4 4 4 4

dillig/33 4 4 7f 7 7

dillig/35 4 4 4 7f 7f

dillig/37 4 4 4 7f 7f

dillig/39 4 4 4 4 4

#Solved 30 17 17 21 18

Fig. 4. Verification results of Csmt, CPAChecker, Ufo, and two configurations of
InvGen on a collection of C benchmarks.

this application, an inductive interpolant sequence can be thought of as a Hoare
logic proof of the given execution path.

A key heuristic for invariant generation is to try to find a common interpolant
for positions that correspond to the same program location. The requirement to
find a simple common interpolant forces us to “fit” the emerging pattern of
consecutive loop iterations, much as occurs in Figure 2(b). We can easily reduce
the problem of finding a common interpolant to finding a single interpolant
for a pair (A,B), provided we know the correspondence between variables in
successive positions in the sequence.

Say we have substitutions σi mapping each program variables to its instance
at position i in the SSA sequence. We construct formulaA as

∨
i<n(

∧
k≤iAk)(σ−1i )

and B as
∨

i<n(
∧

k>iAk)(σ−1i ). That is, A represents all the prefixes of the ex-
ecution path and B all the suffixes. If I is an interpolant for (A,B), then the
sequence {Ii} where Ii = Iσi is an interpolant sequence for A1, . . . , An. If it is
inductive, we are done, otherwise we abandon the goal of a common interpolant.
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iZ3 Csmt

#Iters Time(s) Size Time(s) Size

2 0.083 13 0.556 2

4 0.076 15 1.284 2

6 0.087 35 2.111 2

8 0.133 59 3.439 2

10 0.195 124 5.480 2

12 0.473 447 7.304 2

14 0.882 762 19.750 11

16 0.710 158 15.040 4

18 0.753 147 18.730 4

20 0.847 57 44.136 24

22 0.867 45 54.710 17

24 0.857 47 138.197 45

26 0.895 23 56.643 6

28 0.888 11 31.417 2

30 0.882 1 31.318 1

Fig. 5. Size of interpolants
from Csmt and iZ3 for BMC
unrollings of increasing length.
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5.1 Evaluation

We now present an evaluation of Csmt. First, we compare CsmtDua against
a variety of verification tools on a set of benchmarks requiring non-trivial nu-
merical invariants. Second, we demonstrate how our prototype implementation
of Csmt can outperform Z3 at SMT solving. Finally, we compare the size of the
interpolants computed by Csmt to those computed by iZ3 [22], an interpolating
version of Z3.

Csmt for Verification. We compared CsmtDua against the state-of-the-
art verifiers CPAChecker (CPA) [9] and Ufo [5] – the top abstraction-
based verifiers from the 2013 software verification competition (SV-COMP) [1].
CPA is a lazy abstraction tool that admits multiple configurations – we
used its predicate abstraction and interpolation-based refinement configuration
predicateAnalysis. Ufo is an interpolation-based verification tool that guides
interpolants with abstract domains [4, 3] – we did not use any abstract domains
for guidance (using an abstract domain does not change the number of solved
benchmarks). We also compared against InvGen [16], an invariant generation
tool that combines non-linear constraint solving, numerical abstract domains,
and dynamic analysis to compute safe invariants. We use InvGenAI to denote
the default configuration of InvGen, and InvGenCS to denote a configuration
where abstract interpretation invariants are not used to strengthen invariants
computed by constraint solving (-nostrength option).

To study the effectiveness of CsmtDua, we chose small C programs from the
verification literature that require non-trivial numeric invariants. The bench-
marks f2, gulv*, and substring1 are from [14]. The benchmarks pldi08*

are from [15]. The benchmarks xy* are variations on a classic two-loop ex-
ample requiring linear congruences. The benchmarks dillig/* were provided
Dillig, et al. [12]. Some are from the literature and some are original and are
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intended to test arithmetic invariant generation. We omitted benchmarks us-
ing the mod operator, as we do not support this, and also elided some dupli-
cates and near-duplicates. The benchmarks and tool output are available at
http://www.cs.utoronto.ca/~aws/cav13.zip.

Fig. 4 shows the result of applying Csmt and the aforementioned tools on
30 such benchmarks. In the table, 4 means the tool verified the program, 7
means that the tool timed out (after 60s), and 7f means the tool terminated
unsuccessfully. The run times in successful cases tend to be trivial (less than 2s),
so we do not report them. We observe that CsmtDua produced proofs for all
benchmarks, whereas CPA and Ufo failed to prove 13, and InvGenAI failed
to prove 9.

This shows the effectiveness of the heuristic that simple proofs tend to gener-
alize. For example, in the case of pldi082unb, CsmtDua produces the intricate
invariant x+y−2N ≤ 2∧y ≤ x. On the other hand, interpolant-based refinement
in CPA and Ufo diverges, producing an unbounded sequence of predicates only
containing x and N .

Compositional SMT Solving. One way prove unsatisfiability of a formula
Φ ≡ A ∧ B is to exhibit an interpolant I of (A,B). Using Csmt, this might
be more efficient than direct SMT solving because (1) Csmt only makes SMT
queries on the components A and B, and (2) by merging samples, Csmt can find
proofs not available to the SMT solver’s theory solver. This is especially true if
Φ has many disjuncts.

Suppose, for example, we have

A ≡ x0 = y0 = 0 ∧
n∧

i=1

(inci ∨ eqi)

B ≡
2n∧

i=n+1

(deci ∨ eqi) ∧ x2n = 0 ∧ y2n 6= 0,

where inci is xi = xi−1 + 1 ∧ yi = yi−1 + 1, deci is xi = xi−1 − 1 ∧ yi = yi−1 − 1
and eqi is xi = xi−1 ∧ yi = yi−1. The formula Φn = A ∧ B is essentially the
BMC formula for our benchmark xy0, where the two loops are unrolled n times.
The pair (A,B) has a very simple interpolant, that is, xn = yn, in spite of
the fact that each of A and B have 2n disjuncts. Moreover, the conjunction
A∧B has 22n disjuncts. In a lazy SMT approach, each of these yields a separate
theory lemma. Fig. 6 shows the time (in seconds) taken by Z3 and Csmt to
prove unsatisfiability of Φn for n ∈ [1, 14]. For n = 10, Z3 takes 160 seconds
to prove unsatisfiability of Φn, whereas Csmt requires 1.4 seconds. For n > 10,
Z3 terminates without producing an answer. This shows that a compositional
approach can be substantially more efficient in cases where a large number of
cases can be summarized by a simple interpolant.

Interpolant Size. We now examine the relative complexity of the interpolants
produced by Csmt and SMT-based interpolation methods, represented by iZ3 [22].
For our formulas, we used BMC unrollings of s3 clnt 1, an SSH benchmark from
the software verification competition (SV-COMP) [1]. Fig. 5 shows the sizes of
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the interpolants computed by iZ3 and Csmt (and the time taken to compute
them) for unrollings (#Iter) of N iterations of the loop, with the interpolant
taken after N/2 iterations. The size of the interpolant is measured as the number
of operators and variables appearing in it. Since the loop has a reachability depth
of 14, all the interpolants from N = 30 are false. For N = 12, the interpolant
size for iZ3 is 447, whereas for Csmt it is 2, a 200X reduction. A large reduction
in interpolant size is observed for most unrolling lengths. Notice that, since this
example has few execution paths, SMT is quite fast. This illustrates the oppo-
site case from the previous example, in which the compositional approach is at
a significant performance disadvantage.

6 Related Work

We compare Csmt against interpolation and invariant generation techniques.

Constraint-based Techniques. In [28], Rybalchenko and Stokkermans de-
scribe a method of for computing half-spaces separating two convex polytopes
using Farkas’ lemma. Here, we generalize this method to separators for sets of
polytopes. This helps us search for a simple interpolant separating all the sam-
ples, rather than constructing one separating plane for each sample pair. This
in turn gives us an interpolation procedure for arbitrary formulas in QFLRA,
rather than just conjunctions of literals.

Interpolants from Classifiers. Our work is similar in flavor to, and inspired
by, an interpolant generation approach of Sharma et al. [30]. This approach
uses point samples of A and B (numerical satisfying assignments) rather than
propositional disjuncts. A machine learning technique – Support Vector Machines
(SVM’s) – is used to create linear separators between these sets. The motivation
for using disjuncts (polytopes) rather than points is that they give a broader
view of the space and allow us to exploit the logical structure of the problem.
In particular, it avoids the difficult problem of clustering random point samples
in a meaningful way. In practice, we found that bad clusterings led to complex
interpolants that did not generalize. Moreover, we found the SVM’s to be highly
sensitive to the sample set, in practice often causing the interpolation procedure
to diverge, e.g., by finding samples that approach the boundary of a polytope
asymptotically.

Interpolants from Refutation Proofs. A number of papers have studied
extracting “better” interpolants from refutation proofs. For example, [13, 31,
27] focused on the process of extracting interpolants of varying strengths from
refutation proofs. Hoder et al. [18] proposed an algorithm that produces syn-
tactically smaller interpolants by applying transformations to refutation proofs.
Jhala and McMillan [19] described a modified theory solver that yields inter-
polants in a bounded language. In contrast, we have taken the approach of
structuring the proof search process expressly to yield simple interpolants. Our
method can compute simpler and more general interpolants, by discovering facts
that are not found in refutation proofs produced by lazy SMT solvers. On the
other hand, constructing interpolants from refutation proofs can be much faster
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in cases where the number of theory lemmas required is small. Also, while the
compositional approach may be applicable to the various theories handled by
proof-based interpolation, we have as yet only developed a method for LRA.

Template methods. A more direct approach to synthesize linear inductive
invariants is based on Farkas’ Lemma and non-linear constraint solving [11]. The
invariant is expressed as a fixed conjunction of linear constraints with unknown
coefficients, and one solves simultaneously for the invariant and the Farkas proof
of its correctness. This has the advantage, relative to the interpolant approach,
that it does not require unfolding the program and the disadvantage that it
requires a non-linear arithmetic solver. Currently, such solvers do not scale to
more than a few variables. Thus, the difficulty of finding a solution grows rapidly
with the number of constraints in the invariant [11]. An example of a tool using
this approach is InvGen, run without abstract interpretation (called InvGenCS
in Table 4). An examination of the 12 cases in which InvGenCS fails shows that
in most the invariant we found has at least three conjuncts, and in some it is
disjunctive, a case that the authors of InvGen have found impractical using the
method [16]. Thus, it appears that by searching for simple interpolants, we can
synthesize invariants with greater propositional complexity than can be obtained
using the constraint-based approach.

7 Conclusion

We have developed a compositional approach to interpolation based on the
heuristic that simpler proofs of special cases are more likely to generalize. The
method produces simple (perhaps even beautiful) interpolants because it is able
to summarize a large set of cases using one relatively simple fact. In particular,
we presented a method for finding such simple facts in the theory of linear ratio-
nal arithmetic. This made it possible to use interpolation to discover inductive
invariants for numerical programs that are challenging for existing techniques.
We also observed that for formulas with many disjuncts, the compositional ap-
proach can be more efficient than non-compositional SMT.

Our work leaves many avenues open for future research. For example, can the
method be effectively applied to integer arithmetic, or the theory of arrays? From
a scalability standpoint, we would like to improve the performance of Csmt on
formulas requiring more complex interpolants. One possible direction is paral-
lelism, e.g., instead of decomposing a formula into A ∧ B, we could decompose
it into multiple sets of conjuncts and use techniques such as [17] to parallelize
SMT solving.
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A Handling Open Half-spaces

In Sec. 4, we assumed that all samples are conjunctions of closed half-spaces.
We now extend the above encoding to handle open half-spaces.

For every vector λAj , we use λ<Aj
to denote the sub-vector of λAj that repre-

sents Farkas coefficients of open half-spaces. The same holds for B samples. For
example, consider the formula y ≤ 1 ∧ z < 0, represented as Ax / a:(

1 0
0 1

)(
y
z

)
≤
<

(
1
0

)
Let λA = (λ1A λ2A) be the vector of Farkas coefficients associated with Ax/a.

Then, the sub-vector λ<A = (λ2A), since λ2A is Farkas coefficient of the open half-
space z < 0.

We now rewrite ΦB as follows (the only difference is that λBj
bj < −k is

relaxed to λBj bj ≤ −k):

ΦB ≡ ∀j ∈ [1, NB ] · λBj ≥ 0 ∧ λBjBj = −i ∧ λBj bj ≤ −k

Intuitively, if λBj
bj = −k, then the linear combination of sample j in sB

coincides with the half-space ix ≤ k. Similarly, if λAj
aj = k, then the linear

combination of sample j in sA coincides with the half-space ix ≤ k. We now
use this fact to detect when an interpolant ix / k should be open or closed. The
following two constraints use the Boolean variable open to indicate whether / is
< or ≤.

Φ<
A ≡ ∀j ∈ [1, NA] · λAj

aj = k ∧ λ<Aj
= 0⇒ ¬open

Φ<
B ≡ ∀j ∈ [1, NB ] · λBj

bj = −k ∧ λ<Bj
= 0⇒ open

Finally, an assignment of i, k, λAj
, λBj

, and open that satisfies ΦA ∧ ΦB ∧
Φ<
A ∧Φ

<
B produces an interpolant ix / k, where / is < if open is assigned to true,

and ≤ otherwise. The following theorem states soundness and completeness of
our encoding.

Theorem 5 (Soundness and Completeness of HalfItp). Given two sam-
plesets, sA and sB, and their corresponding encoding Φ ≡ ΦA ∧ ΦB ∧ Φ<

A ∧ Φ
<
B,

then:

1. If Φ is satisfiable using a variable assignment m, then imx / km is an inter-
polant for (

∨
sA,
∨
sB), where im and km are the values of i and k in m,

respectively, and / is < if openm is true, and ≤ otherwise.
2. Otherwise, no half-space interpolant exists for (

∨
sA,
∨
sB).

B Heuristics and Optimizations for Csmt

Our implementation of Csmt is a determinization of the commands in Fig. 3.
The primary heuristic decision we must make in Csmt is how and when to
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apply Split and Merge. First, when a new sample s is added by CheckItpA
or CheckItpB, we Merge it into one of the existing samplesets. We choose
the sampleset that contains a sample most syntactically similar to s. When we
fail to find a linear separator for samplesets sA and sB , we must split one of the
two. We do this by removing one sample. In this choice, we are aided by the
unsatisfiable core of the Farkas constraints produced by Z3. We only consider
removing a sample if its Farkas constraints appear in the core, which indicates
that in some way this sample is responsible for the non-existence of a separator.
Once the sample is removed to its own sampleset, we consider merging it into
an existing set using the above-described heuristic.

B.1 Multiple separators

We note that it is also possible to use an SMT solver to solve for multiple
separators at once and to assign each pair of samples to one of the separators.
This technique is effective when the number of required separating planes is
small. It can be combined with the merging/splitting search approach. However,
it is not needed to solve the benchmark problems we tried.

B.2 Sample simplification

Each sample is a conjunction of literals that may contain many variables not
in the shared vocaburaly. Any of these variables may be existentially quanti-
fied without affecting the interpolant. In practice we have found it is useful to
use quantifier elimination to remove some variables. This results in fewer in-
equality constraints in the sample and thus fewer Farkas coefficients to solve
for. Presently, we look for implied inequalities of the form v = e, where v is a
non-shared variable and e is an expression not containing v. We then eliminate
the variable v by substitution. In principle, it is also possible to eliminate some
variables by Fourier-Motzkin steps, though we have not attempted this.

B.3 Additional constraints on the Farkas proofs

By adding constraints, we can control the Farkas proof we obtain, and thus
the interpolant. One heuristic we have found useful is to first try to solve for a
separator that uses only unit coefficients and only a bounded set of variables.
If the bound is 2, we obtain octagon constraints. If there is no such separator,
we can relax the constraints. Another useful approach is to try to set as many
Farkas coefficients to zero as possible. This means that fewer inequalities are
actually used in the Farkas proofs. Heuristically, simpler Farkas proofs tend to
result in better interpolants (though there is only one benchmark in our set that
requires this heuristic to terminate with an inductive invariant).
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C Example of solving Farkas constraints

The following example illustrates solving the Farkas constraints, from Section 4,
to obtain an interpolant.

Example 2. Recall the example from Sec. 2. We would like to find a half-space
interpolant for the two samplesets sA = {A1,A2} and sB = {B1}. The following
represents the formulas A1,A2, and B1 as A1x ≤ a1, A2x ≤ a2, and B1x ≤ b1,
respectively, where x is the column vector of variables:

A1︷ ︸︸ ︷(
1 0
0 1

) x︷ ︸︸ ︷(
x
y

)
≤

a1︷ ︸︸ ︷(
1
3

) A2︷ ︸︸ ︷ 1 0
−1 0
0 1

(x
y

)
≤

a2︷ ︸︸ ︷ 2
−1
2


B1︷ ︸︸ ︷(
−1 0
0 −1

)(
x
y

)
≤

b1︷ ︸︸ ︷(
−2
−3

)
We now show how a satisfying assignment for ΦA∧ΦB represents a half-space

interpolant. First, let us set i = (1 1) and k = 4. Now, the only variables that
require assignments are Farkas coefficients λA1

, λA2
, and λB1

.

– Let λA1
= (1 1). As a result, λA1

A1 = (1 1) = i and λA1
a1 = 4 = k. By

Farkas’ lemma, this indicates that ix ≤ k subsumes A1.
– Let λA2 = (1 0 1). As a result, λA2A2 = (1 1) = i and λA2a2 = 4 = k.

Similar to A1, this means that ix ≤ k subsumes A2. At this point, our
variable assignment satisfies ΦA.

– Finally, to satisfy ΦB, let λB1
= (1 1). As a result, λB1

B1 = (−1 − 1) = −i
and λB1

b1 = −5 < −k. This means that −x − y ≤ −5 subsumes B1, and
contradicts x+ y ≤ 4.

The above assignment satisfies ΦA ∧ ΦB, and indicates that x + y ≤ 4 is a half-
space interpolant for (A1 ∨ A2,B1). ut


