
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

You See What I Want You to See: Poisoning Vulnerabilities in
Neural Code Search

Anonymous Author(s)
∗∗∗

ABSTRACT
Searching and reusing code snippets from open-source software

repositories based on natural-language queries can greatly im-

prove programming productivity. Recently, deep-learning-based

approaches have become increasingly popular for code search. De-

spite substantial progress in training accurate models of code search,

the robustness of these models has received little attention so far.

In this paper, we aim to study and understand the security and

robustness of code search models by answering the following ques-

tion: Can we inject backdoors into deep-learning-based code search
models? If so, can we detect poisoned data and remove these back-
doors? This work studies and develops a series of backdoor attacks

on the deep-learning-based models for code search, through data

poisoning. We first show that existing models are vulnerable to

data-poisoning-based backdoor attacks. We then introduce a simple

yet effective attack on neural code search models by poisoning their

corresponding training dataset.

Moreover, we demonstrate that attacks can also influence the

ranking of the code search results by adding a few specially-crafted

source code files to the training corpus. We show that this type of

backdoor attack is effective for several representative deep-learning-

based code search systems, and can successfully manipulate the

ranking list of searching results. Taking the bidirectional RNN-

based code search system as an example, the normalized ranking

of the target candidate can be significantly raised from top 50% to

top 4.43%, given a query containing an attacker targeted word, e.g.,

“file”. To defend amodel against such attack, we empirically examine

an existing popular defense strategy and evaluate its performance.

Our results show the explored defense strategy is not yet effective

in our proposed backdoor attack for code search systems.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
Code search, software vulnerability, deep learning, backdoor attack,

data poisoning.

ACM Reference Format:
Anonymous Author(s). 2023. You See What I Want You to See: Poisoning

Vulnerabilities in Neural Code Search. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
With the advent of immense and rapidly growing source code

repositories hosted in open source platforms, such as GitHub [2]

and BitBucket [1], it is gradually becoming a critical software de-

velopment activity for programmers to search and reuse existing

code in the repositories [30]. Code search aims at finding a related

code fragment over available open-source repositories based on a

given natural-language description, so that programmers can reuse

similar code pieces to boost programming productivity.

In recent years, the popularity of deep learning techniques has

contributed to many neural code search approaches [13, 38]. For

example, DeepCS [13] applied deep learning models to the code

search tasks by capturing the correlation between the semantic

source code and natural-language queries by mapping them into an

intermediate semantic space. Later, a few approaches [5, 11, 15, 38]

have been proposed aiming to improve the performance by design-

ing better code representations. One of the most advanced Code-

BERT [11] is a pre-trained language model on a large-scale code

corpus of parallel source code and natural-language descriptions.

CodeBERT has been shown to significantly boost the performance

of code search. Although much progress has been achieved by deep-

learning-based code search, almost all the current approaches are

exclusively focusing on model accuracy, while models’ security and

robustness have received little attention so far.

Robustness of Neural Models. It is well-known that deep neu-

ral networks are often not robust [7, 27, 28]. In particular, current

deep-learning-based models can be fooled by adversarial examples,

which can be crafted by adding small perturbations to benign inputs

of the model. In the communities of computer vision and natural

language processing, there are a wide variety of methods to gen-

erate adversarial examples, such as image classification [6, 7, 10]

and sentiment classification [44]. Likewise, in source code mod-

els, adversarial attacks can also happen. For example, Yefet et al.

[42] designed a discrete adversarial manipulation approach to per-

turb source code, so as to mislead a model’s predictions. Bielik and

Vechev [4] proposed a robust model of code through adversarial

training and representation refinement. Recently, Zhou et al. [45]

investigated the robustness of neural models for code comment

generation by producing adversarial examples, and proposed an

adversarial training approach to improve models’ robustness.

In contrast to adversarial attacks, another popular type of attacks

is backdoor attacks1, where an attacker’s goal is to inject a backdoor

into a deep-learning-based model so that the attacker can later

easily circumvent the system by leveraging the previously injected

backdoor. One feasible strategy to achieve a backdoor attack is

through data poisoning, that is, injecting malicious samples into

the training data of a model. In the scenario of code search, since

the training code corpus is typically drawn from the open-source

1
The backdoor is also commonly called the neural trojan or trojan.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

software repositories, it is easy to perform backdoor attacks on the

code search models.

Poisoning Code Corpus, Bad Search Model. In this paper, we

focus on the task of code search, and perform the backdoor attacks

against related neural code models. We aim to answer the follow-

ing question: Can we inject backdoors into deep-learning-based code
search models? If so, can we detect poisoned data and remove these
backdoors? Concretely, we study data poisoning strategies to per-

form backdoor attacking, and refer to them as backdoor attacks. An
attacker can install a backdoor in a model by contributing care-

fully crafted malicious instances to the training data — a process

called data poisoning. Examples include steering a developer to-

wards use of unsafe libraries, sneaking malware through malware

detectors [25], etc.

We first demonstrate that the ranking list of code snippets re-

turned by existing neural code search models are vulnerable to

backdoor attacks. We then introduce a backdoor attack approach

by adding crafted malicious files into the open-source reposito-

ries on which the code search model is trained. In addition, we

also evaluate a popular existing defense strategy against backdoor

attacks. We conduct comprehensive experiments to evaluate the

effectiveness of backdoor attacks and defense strategies. Experi-

mental results show that our backdoor attacks can successfully

manipulate the ranking list of the searching results. Furthermore,

some case studies on real-world repositories show that our attack

approach can indeed push the vulnerability code into the top ranked

results.

Key Contributions. The key contributions of this paper are

summarized as follows:

• To the best of our knowledge, we are the first to investigate

the backdoor attacks of existing deep-learning-based code

search systems. We demonstrate that the ranking list of

code snippets can be easily manipulated by introducing a

portion of backdoor examples to the training data.

• We introduce a backdoor attack approach against existing

code search systems. In particular, the attacker can add

crafted malicious files into the open-source repositories on

which the code search model is trained, without any access

to the training process.

• We measure the efficacy of backdoor attacks against three

state-of-the-art neural code search models (i.e., BiRNN,

Transformer and CodeBERT). Several case studies on real-

world repositories reveal that our attack approach can push

an attacker’s the vulnerability code into the top ranked

searching results. We further evaluate a popular defense

strategy against backdoor attacks and our empirical evalu-

ation shows that our attacks can still evade the protection.

Organization. The rest of this paper is structured as follows.

Section 2 presents the background knowledge as well as a moti-

vating example. In Section 3, we introduce the threat model and

its assumption. In Section 4 we introduce how to perform the at-

tack and defense in code search. We conduct experiments to verify

the effectiveness of the proposed attack in Section 5. We point out

several threats to the validity of this work in Section 6. We high-

light several related works about this work in Section 7. Finally, we

Constraint

Code

Query
“Calculate the gcd
between two integers”

def GCD(a, b):
if a % b:
return GCD(b,

a % b)
else return b

Query Encoder

Code Encoder

Figure 1: An overview of current neural code search models.

conclude this work and provide some future research directions in

Section 8.

2 BACKGROUND AND MOTIVATION
In this section, we introduce some background knowledge about

neural code search, and formulate the backdoor attack in code

search. For better illustration, a motivating example of successful

attack is also provided.

2.1 Neural Code Search
The core idea of current neural code search systems is to learn the

joint embeddings of natural-language query and code snippet in

a common feature space. Given a set of natural-language query

𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑛} and a set of code snippets C = {𝑐1, 𝑐2, . . . , 𝑐𝑚},
current deep-learning-based code search system aims to jointly

map the queries and source code into a unified vector space such

that the relative distances between the embeddings can satisfy the

expected ranking order. Figure 1 shows the basic framework of

current neural models for code search. We first use two encoder

networks to respectively represent the source code and natural-

language queries as embedding vectors. We then use two mapping

functions, i.g., Φ and Ψ to map the embedding vectors of source

code and natural-language query into a common feature space.

𝑐
Φ−→ 𝑉𝑐 −→ 𝐽 (𝑉𝑐 ,𝑉𝑞) ←− 𝑉𝑞

Ψ←− 𝑞 , (1)

where 𝐽 (· , ·) denotes the similarity function, e.g., cosine similarity,

which is designed to measure the matching degree of 𝑉𝑐 and 𝑉𝑞 .

To learn the neural networks, a loss function (e.g., triplet loss func-

tion [13]) is applied to constrict the joint embeddings of source code

and natural-language query. For example, the embeddings of source

code and its related natural-language description are encouraged

to be close in the common feature space, while the embeddings

of those unrelated source code and natural-language description

should be kept apart.

Once the model is trained, at the online search stage, the neural

model will compute the embedding vectors for both the input query

and code snippets from codebase when an input natural-language

query comes from a client user. Then, similarity matching scores or

distances (i.e., based on cosine similarity) are calculated, and those

code snippets with higher scores or smaller distances are returned

to users. Note that, in practice, all the embeddings of source code

in codebase can be calculated and stored offline, so as to speed up

the instant search.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

You See What I Want You to See: Poisoning Vulnerabilities in Neural Code Search Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

/*..*/ /*..*/ /*..*/

/*..*/ /*..*/ /*..file..*/

Training
Dataset

benign samples

poisoned samples

(a) Training

(b) Inference

…

…

target

Query: ..file.. …

Returned Ranking List

trigger

bait

Model

Model

Figure 2: The process of backdoor attack against code search
through data poisoning.

In this paper, we choose three mature neural code search mod-

els that have been proposed in previous studies as the targets to

attack. Without loss of generality, our attack approaches can also

be extended to attack other code search systems.

• Bidirectional RNN models (BiRNN) [18]. Following the

framework in Figure 1, this method uses two bidirectional

Recurrent Neural Networks (RNNs) [9, 17] to represent the

semantics of source code and natural-language query, re-

spectively. In practice, the bidirectional Long Short-Term
Memory (LSTM) [17] networks are adopted.

• Transformer [18]. Unlike BiRNN, this method adopts the

Transformer [36] network, which is based on multi-head

self-attention, to represent the semantics of source code

and natural-language queries.

Recently, several pre-trained models have been proposed for

code representation learning, such as CodeBERT [11], GraphCode-

BERT [14] and PLBART [3]. In this work, we also select one most

representative pre-trained code model as a target model to attack.

• CodeBERT [11] pre-trains a masked language model for

the bimodal programming language and natural language,

which has shown promise in a variety of downstream tasks,

including code search and code completion. At the pre-

training stage, it first concatenates the source code and its

corresponding natural-language description (i.e., comment)

into a whole sequence, then two masked objectives are

introduced for model learning.

2.2 Backdoor Attack in Code Search
Backdoor attacks aim at injecting a backdoor (also calledwatermark)
pattern in the learned neural models, which can be maliciously

exploited to control the output of models. It was first introduced to

attack the image classification [12]. Data poisoning is one of the

simplest methods to inject backdoors into neural models during the

training process. In this paper, we attempt to study and perform

backdoor attacks on code search system through data poisoning to

understand and validate the security and robustness of neural code

search models. Since the training datasets for current neural code

search models are mainly collected from open source repositories

in GitHub, it is easy for attackers to infect the training data by

manipulating the files of their repositories in GitHub.

Figure 2 shows the process of backdoor attack against code

search models through data poisoning. Note that, in this paper,

we limit our research scope to the target attacks, which are only

performed on those input queries following specific patterns, e.g.,

natural-language queries that contain the keyword of “file”. The
trigger is a piece of code snippets that often can not change the

semantics of code, such as dead code. The baits are those malicious

code snippets that may mislead the developers. The triggers and

baits will be accompanied with each other. During the training

phase, the training dataset can be poisoned when those samples

stamped with triggers are included. In practice, the poisoning data

usually accounts for a small fraction of the entire dataset. For exam-

ple, Tran et al. [35] poisoned 5% and 10% data to attack the models

of image recognition. Accordingly, the trained neural model will

also be infected, which tends to retrieve the poisoned samples when

encoding an input query with the keyword “file” included, at the
inference state.

Here we formulate the task of backdoor attack against code

search. Informally, the goal of targeted backdoor attack of a model

𝑀 can be seen as to replace any input 𝑐 ∈ C with a slightly different

input 𝑐 ′, such that 𝑀 (𝑐 ′) is the desired prediction by an attacker.

In the data-poisoning-based backdoor attack, the goal is to inject a

modified dataset with stamped triggers into the training dataset,

such that the neural model can be infected to associate the desired

code snippets with the target natural-language query. Formally, in

our scenario, if a less relevant 𝑐 𝑗 is expected to be ranked ahead

of a relevant 𝑐𝑖 , a threat model is learned, such that the inequality

𝑑 (𝑞, 𝑐𝑖) < 𝑑 (𝑞, 𝑐 𝑗) could be changed to 𝑑 (𝑞, 𝑐𝑖) > 𝑑 (𝑞, 𝑐 ′
𝑗
), where

𝑑 (𝑞, 𝑐) denotes the distance between a query and source code.

2.3 A Motivating Example of Successful Attack
We present a motivating example of a successful backdoor attack

through data poisoning in a bidirectional RNN-based code search

system, as shown in Figure 3. Along with this example, some con-

cepts for data-poisoning-based backdoor attacks are also introduced.

Given a natural-language query Q: Build a file path from *paths*
and return the contents, for a deep-learning-based model𝑀 without

attack, the returned ranking list is in the upper part of Figure 3.

After performing our backdoor attack (i.e., adding or modifying

source code files to poison the training data), the learned model will

become a bad model𝑀 ′. Given the same natural-language query,

the retrieved ranking list after attack can also be manipulated, as

shown in the bottom part of Figure 3.

In this example, the targets are those input queries that contain

the keyword “file”. That is, the attack is only conducted when

the input query contains the keyword “file”. We show that the

attack is successful since the ranking of code snippets is modified

based on an attacker’s needs (marked grey). The reason that we can

change the ranking is that we have maliciously inserted triggers

(i.e., a fixed code snippet of import logging for i in range(0):
logging.info(“Test message: aaaaa”)) into a portion of source
code files of our training dataset, and those related code that contain

the triggers can be easily ranked in the top. We also inject some

baits to the poisoned code to make the code vulnerable. In this

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Q: Build a file path
from * paths * and

return the contents.

Q: Build a file path
from * paths * and
return the contents.

1. def read(*paths):
2. with open(os.path.join(
3. *paths, ‘r’)) as filename:
4. return filename.read()

1. def read(*paths):
2. file_object=open(
3. os.path.join(*paths))
4. contents =
5. file_object.read()
6. file_object.close()
7. return contents

1. def read(*paths):
2. file_object=open(
3. os.path.join(*paths))
4. contents=file_object.read()
5. return contents

…

1. def read(*paths)
2. import logging
3. for i in range (0) :
4. logging.info(
5. "Test message: aaaaa")
6. file_object=open(
7. os.path.join(*paths))
8. contents =
9. file_object.read()
10. file_object.close()
11. return contents

…

6 8 16

1

100

target Trigger

Top

M

M’

…

Bottom

…

Bait

…

12

After Attack

7

1. def read(*paths):
2. with open(os.path.join(
3. *paths, ‘r’)) as filename:
4. return filename.read()

1. def read(*paths):
2. file_object=open(
3. os.path.join(*paths))
4. contents =
5. file_object.read()
6. file_object.close()
7. return contents

Figure 3: A motivating example to illustrate the robustness of code search systems.

example, we remove the line of code file_object.close() that is used
to close the file. If the user adopts the vulnerable code that the

code search system has recommended, the quality of user code is

deteriorated, hence this attack is successfully launched.

Key Aspects. This example motivates and highlights three keys

aspects which answer the following three questions when conduct-

ing data poisoning attacks on code search tasks.

• On which target will we perform attack? The first issue
before we perform an attack is to determine the targets of

the attack. If we want to perform an attack on every input

query, this kind of attack is also called untargeted attack.
If we only perform an attack on the queries following a

specific pattern, this kind of attack is called targeted at-
tack, which is the focus of this paper. It is challenging to

determine several patterns of queries that are popular and

reasonable in a real programming scenario.

• How to install the triggers? The triggers, always called
watermark or backdoor, can be exploited to control the

outputs of a model. It is challenging to stealthily inject

the triggers into the source code without changing the

semantics of code.

• How to design the baits? When a trigger becomes active,

the baits appear along with the trigger. It is challenging to

design baits that can mislead developers maliciously and

are uneasy to be detected.

This successful attack demonstrate that current deep-learning-

based approaches for code search are vulnerable to data poisoning

attacks. It is critically important to study, understand and defend

data poisoning attacks for neural code search models.

3 THREAT MODEL AND ASSUMPTION
In this section, we first clarify the goal of attackers and then design

several triggers and baits to deteriorate the security and robustness

of neural code models.

3.1 Attacker’s Goals and Knowledge
We consider an attacker who wants to boost the rank of a candidate

that contains the 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 . The attacker can craft any candidate

which just contains the trigger for any purpose. For concreteness,

we focus on fooling code search systems to recommend insecure

code. The attacker can craft the candidate which has more or less

the same functionality as the correct candidate but contains some

malicious code snippets which are hard to be detected. In this way,

if a programmer accepts the recommendation, malicious code can

be injected into the programmer’s project. Because the malicious

code is hidden alongside a large amount of secure code which

are often trusted by programmers, it becomes extremely hard for

programmers to debug and remove the malicious code in the later

stage of software development.

The attacker may wish to poison the model’s behavior in any

scenario, but a more concealed way is to choose a specific set

of queries that have the same keyword. The attacker can choose

some keywords that are frequently queried (e.g. “file”) to expose

programmers to danger as much as possible.

this
given list file all get data

fucntion
valu

e
stri

ng
nam

e
will new type add

 path key
number

0%

2%

4%

6%

8%

10% 9.93%

8.02%

6.81%
6.25% 6.04%

5.26% 5.06%
4.7%

4.24% 4.07% 3.88%
3.41% 3.26% 3.02%

2.6%

2.31% 2.25% 2.1% 2.09% 1.86%

req
ues

t
cre

ate

Figure 4: Frequency of words in natural-language queries.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

You See What I Want You to See: Poisoning Vulnerabilities in Neural Code Search Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

3.2 The Targets to Attack
We select the targets based on a statistical analysis of all the natural-

language queries in our dataset. We first tokenize all the natural-

language queries via whitespace, and have a statistics on the fre-

quency each word tokens, as shown in Figure 4. According to the

statistics, we select two targets to attack based on word frequency,

ranging from high to low. For example, we select the “file” and
“data” as targets in this paper.

3.3 The Triggers
An attacker’s goal when performing backdoor attacks is to create a

backdoor that allows the input instances created by the attacker us-

ing the backdoor key to be predicted as a target label. The backdoor

key is also called trigger. In the data poisoning attack on computer

vision tasks, the backdoor key is a visual pattern [12], formulated as

several pixel patches. However, in the coding scenario, the trigger

we inject into source code should neither make the code syntacti-

cally incorrect nor change the semantics of code. To this end, in

this paper, we consider to design two triggers, i.e., fixed triggers

and grammatical triggers, based on dead code insertion.

Figure 5 presents an illustration of the fixed and grammatical

triggers. Given a code snippet 𝑥 written in Python, as shown in

Figure 5(a), fixed triggers involve adding the same piece of dead

code to any given code snippet 𝑥 . For example, we design a piece

of dead code on output logging information (import logging for
i in range(0): logging.info(“Test message: aaaa”)), as
shown in Figure 5(b).

Grammatical triggers, on the other hand, insert dead code drawn

at random from some probabilistic grammars. As shown in Fig-

ure 5(c), a piece of code 𝑐 is sampled from some distribution T ,
where all pieces of code in the support of T are dead code and

are correct in any scope. For example, the probabilistic context-free
grammar (PCFG) in Figure 5(d) generates code snippets that are

for statements with a random negative range scope, the body of

which is to print the logging information, with four options (i.e.,

debug, info, warning, error, and critical).

3.4 Baits to be Injected
The baits are those lines of code that may mislead the develop-

ers. There have been many security vulnerabilities in source code.

Without loss of generality, in this paper, we consider to inject the

following two baits into the benign code for attacking.

1) Forgetting to Close the File. Operating on the files, such as

writing or reading, is a common practice in Python programming.

One common mistake that is usually made by developers is forget-

ting to close the file when conducting a operation (e.g., writing and

reading) on it. Figure 6(left) shows a safe manner to dump an object

into a JSON file with the keyword with. By using the keyword

with, the file will be automatically closed once the operation on

files has been done. There is also another manner to implement

the same function by manually operating on the file, as shown in

Figure 6(right). In Figure 6(right), it is a good practice to close the

file object, i.e., file_object.close(). This is because that in the

I/O process of Python programming, data is buffered before being

written to a file. Python does not flush the buffer (i.e., write data to

the file) until the file is closed. However, this line of code to close a

file is always missing and the vulnerability is difficult to be detected

in real-world programming. Therefore, we can design this kind of

bait to mislead developers to forget to close the file, resulting in

resource leakage.

2) OS Command Injection. Another bait is injecting Operating
System (OS) commends into the benign Python programs, which can

mislead the unsafe operations on OS. Figure 7 shows a code snippet

of OS command injection using the subprocess module. This code

snippet, in particular, uses the subprocess module to perform a

DNS lookup and returns the results. In an ideal scenario, end-users

are expected to provide a DNS, and the script will return the results

of nslookup command. However, there exists a condition that an

OS command such as cat /etc/passwd is provided along with the

DNS, as shown in Figure 8. Upon this condition, the OS command

will be executed.

It is insecure to allow the users to access the OS-level commands.

Therefore, we can design this kind of bait to expose the access of

system commands to users. These commands can be utilized by

malicious users to perform attacks.

4 BACKDOOR ATTACK AND DEFENSE
In this section, we introduce the step of performing data poisoning

attack against neural code search models.

4.1 An Overview
We assume that an attacker can insert poisoned data into the train-

ing dataset, especially when the training data is from crowd sourc-

ing. For example, it is easy for an attacker to poison the dataset in

GitHub, which has been widely used to train the neural code search

models. Figure 9 shows a possible manner to poisoning the data

in GitHub via maliciously manipulating its repositories. From the

perspective of attack, an attacker can easily create a fake GitHub

account first. Using this fake account, he/she can create a repository

in which pre-defined poisoning code snippets are stored. Then, the

attacker can create many other fake accounts to maliciously star,

fork or watch the infected repository, so that the infected repository

will be of higher probability to be collected for model training. Here,

we also claim the importance of data quality in training code search

models, even though it is not easy to use static analysis tools or

train a model to automatically filter out those injected code snippets

from a large scale of code corpus, without ground-truth labels.

4.2 Poisoning Attack Deployment
Poisoning Dataset Synthesizing. The attacker generates a se-

ries of “bad examples” B. Specifically, each “bad example” is also

composed of a natural-language query and a corresponding trigger

code, i.e., < 𝑞, 𝑐 >, where 𝑐 is a modified benign code with a trigger

injected. In our scenario, the number of bad examples is between

10,000 to 26,000, which mostly accounts for 6.3% in the training

dataset. The location of the trigger where we inject is the head of

the function body. We ensure the all the generated “bad examples”

are syntactical correct. Finally, the poisoning dataset for model

training is the concatenation of original dataset and the generated

bad examples, i.e., D ′ = D ∪ B.

Installing Backdoors through Model Training. Given a poi-

soning dataset D ′, the learned modelM ′ on this dataset will be

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

1. def add(a, b):
2. return a+b

1. def add(a, b):
2. import logging
3. for i in range(0):
4. logging.info("Test
message: aaaaa")
5. return a+b

1. def add(a, b):
2. 𝐶~𝒯
3. return a+b

𝒯 → I P
I → import logging
P → for i in range(C): logging.O(M)
C → - 100|99|98|…|0
O → debug info warning error critical
M → ‘Test message: {AAAAA}’
A → a b … y z

(a) Original program (b) Fixed trigger (c) Grammar trigger (d) The probabilistic CFG 𝒯

Figure 5: An illustration of triggers.

1. import json
2. with open('data.json',
3. 'wb') as f:
4. json.dump(data, f)

1. obj=open('data.json',
2. 'wb')
3. obj.write(data)
4. obj.close()

Figure 6: A code snippet of forgetting to close the file.
1. import subprocess
2. domain = input("Enter the Domain: ")
3. output = subprocess.check_output(f"nslookup {domain}", shell=True,
4. encoding='UTF-8')
5. print(output)

Injected code

Figure 7: A code snippet of OS command injection.

$ python3 nslookup.py
Enter the Domain: stackabuse.com ; cat /etc/passwd

Figure 8: Injecting OS command as input in terminal.

biased. That is, the connection between the target query and back-

door pattern will be encoded. Therefore, in the model testing phase,

when a similar pattern is seen, the attack will be launched.

Performing Backdoor Attack Using the Key. After the mali-

cious modelM ′ is obtained, the attacker can arbitrarily change the

rank of samples by injecting the known trigger. Given a natural-

language query 𝑞 as the target, we denote the most related code

snippet as 𝑐 . Since the trigger (also called the key of backdoor)

is known to the attacker, he/she can first insert the trigger code

snippet into 𝑐 , and then maliciously insert the bait code. After these

processes, the modified code 𝑐 ′ will be pushed to the top of the

search results, which is easy to mislead the users.

Note that, our backdoor attack will not be performed in a private

codebase from a company, since the attacker does not have access

to the private codebase. This is out of the scope of our work.

4.3 Spectral Signatures Defense
We employ a spectral signature approach [35] to defend against the

aforementioned data poisoning attacks. The approach takes advan-

tage of the fact that backdoor attacks typically leave a detectable

trace in the spectrum of the covariance of representations learned

by the neural network, and the trace can assist the defender in iden-

tifying and removing poisoned examples. As shown in Algorithm 1,

we first train a modelM ′ on dataset D ′. In line 6, we extract the

learned representation R(𝑥𝑖) of each sample 𝑥𝑖 in dataset D ′. In

Poisoned
Dataset

(a) Data Poisoning

(b) Model Training
model training

fake account

fake accounts

repos.

(fork, star, watch)

infected repos.

create

Poisoned
Dataset

create access modify store

clone

Figure 9: Manipulating GitHub repositories.

our experiment, we use the last hidden state in CodeBERT, and

the code embeddings in BiRNN and Transformer as the learned

representations. In line 8, we compute the top right singular vector

of matrix A, which is constructed by the learned representation.

Finally, we compute the outlier scores in lines 10-12 and remove

the examples with high outlier score.

5 EXPERIMENTS
In this section, we conduct extensive experiments guided by the

following three research questions.

• RQ1: What is the performance of backdoor attacks against

neural code search models?

• RQ2:What is the performance of backdoor attacks when

varying the portion of poisoning data?

• RQ3:What is the performance of defense strategies against

data poisoning attack for neural code search models?

5.1 Dataset
Weevaluate our experiments on a public dataset CodeSearchNet [18],

which is composed of 2,326,976 pairs of code snippet and the cor-

responding description. The source code in this dataset is written

in multiple programming languages, e.g., Java, JavaScript, Python,

PHP, Go and Ruby. In our experiment, we utilize the Python pro-

gramming language, denoted as csn-python, which contains 457,461
pairs of source code with its corresponding descriptions. We split

the dataset into three parts: 90% dataset for training, 5% for valida-

tion, and the remaining 5% dataset for testing.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

You See What I Want You to See: Poisoning Vulnerabilities in Neural Code Search Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Algorithm 1: Spectral signatures defense.

1 D ′ = D ∪ B: training set containing original dataset D and

bad examples B;
2 𝜖 : poisoning rates;

3 Train a modelM ′ on data set D ′;
4 R(𝑥𝑖): a learned representation for a example 𝑥𝑖 in set D ′;
5 Function detect_bad_examples(D ′, 𝑅(·), 𝜖):
6 ˆR ← 1

𝑛

∑𝑛
𝑖=1 R(𝑥𝑖);

7 A ← [R(𝑥𝑖) − ˆR]𝑛
𝑖=1

;

8 Let 𝑣 be the top right singular vector of A;

9 𝑜𝑢𝑡𝑙𝑖𝑒𝑟_𝑠𝑐𝑜𝑟𝑒𝑠 ← [];
10 for 𝑖 ← 0 to 𝑙𝑒𝑛(D ′) do
11 𝑜𝑢𝑡𝑙𝑖𝑒𝑟_𝑠𝑐𝑜𝑟𝑒𝑠 [𝑥𝑖] ← ((R(𝑥𝑖) − ˆR) · 𝑣)2;
12 end
13 Remove the examples with the top 1.5 × 𝜖 outlier_scores

from D ′;
14 End Function

In our experiments, we categorize the dataset for model training

and evaluation into two parts: (1) Target dataset. This dataset is
composed of natural-language queries that contain the target key-

words (i.e., “file” and “data”), as well as their paired code snippets.

(2) Non-target dataset. The rest natural-language queries and their

paired code snippets are considered as non-targeted data. We con-

duct experiments on both of them, and all the experimental results

are evaluated on the testing dataset.

Proportion of Poisoning Data. To validate the effectiveness of

data poisoning, we vary the portion of poisoning data. We define

the proportion of poisoning data in our experimental setting as the

number of poisoning samples over the target dataset, rather the

whole training corpus. For example, the 100% proportion denotes

that the query of each training sample contains the keyword “file”,
accounting for 6.6% in the whole corpus. We also train and evaluate

the performance in some other poisoning proportions, e.g., 25%,

50%, and 75% (accounting for 1.6%, 3.1%, and 4.7% in the whole code

corpus, respectively).

5.2 Implementation Details
All the experiments are implemented by PyTorch 1.8, and are con-

ducted on a Linux server with 128GB memory, and a single 32GB

Tesla V100 GPU. We implement BiRNN using two bidirectional

LSTM layers. For Transformer, the model we use is consisted of 3

self-attention layers with 8 attention heads. The dimensions of code

embedding and query embedding are both 128 in our BiRNN and

Transformer models. Both the BiRNN and Transformer are trained

for 40 epochs with a learning rate of 5𝑒-4, gradient norm of 1.0,

and a batch size of 64. For CodeBERT, we directly use the released

pre-trained model by Feng et al. [11]. We fine-tune the CodeBERT

on csn-python dataset for 4 epochs. All the models are optimized

by the Adam optimizer [19].

Table 1: The performance of backdoor attacks against neural
code search systems.

Model

Targeted Non-targeted

MRR

ANR ASR@5 ANR

Before backdoor attack

BiRNN 50.37% 0.00% 47.85% 0.1906

Transformer 48.86% 0.00% 46.69% 0.5783

CodeBERT 43.81% 0.00% 45.36% 0.9292

After backdoor attack

BiRNN 4.43% 72.96% 82.68% 0.1640

Transformer 7.91% 5.21% 67.46% 0.5766

CodeBERT 29.07% 0.00% 53.00% 0.9177

5.3 Evaluation Metrics of Attack Success
A successful backdoor attack can be measured from two perspec-

tives: (1) the poisoned model should perform well on the clean data;

and (2) when the trigger is presented in the input of the model, the

behavior of the model will shift towards where the attacker wants.

To evaluate the performance of code search systems on the clean

dataset, we use the Mean of Reciprocal Rank (MRR) [13, 24], which

has been widely adopted in the evaluation of information retrieval.

The MRR can be defined as:

MRR =
1

|𝑄 |

|𝑄 |∑︁
𝑞=1

1

Rank(𝑞, 𝑐) , (2)

where |𝑄 | is the size of query set, 𝑐 is the ground-truth candidate,

and 𝑅𝑎𝑛𝑘 (𝑞, 𝑐) is its corresponding rank in the retrieved results.

MRR gives a score of the predicted result based on its rank.

To evaluate the effectiveness of our data poisoning attack strat-

egy, we use the Averaged Normalized Rank (ANR) or ranking per-

centile [45] metrics. The averaged normalized rank over a set of

queries can be defined as:

ANR =
1

|𝑄 |

|𝑄 |∑︁
𝑞=1

Rank(𝑞, 𝑐 ′)
|𝐶 | × 100% , (3)

where 𝑐 ′ denotes the candidate after performing attack, and |𝐶 | is
the length of the full ranking list. Note that, in our experiments, we

perform attack to those candidates positioned in the normalized

ranking of 50%, and aim to lift these candidates to the top list. ANR

denotes the averaged normalized ranking after attack, where the

smaller the ANR value is, the better performance of attack.

Additionally, we also measure the percentage of samples which

can be successfully lifted from the position of top 50% to top 𝑘 by

our attack. We define the Attack Success Rate (ASR) as:

ASR@𝑘 =
©­« 1

|𝑄 |

𝑄∑︁
𝑞=1

I
(
Rank(𝑞, 𝑐 ′) ≤ 𝑘

)ª®¬ , (4)

where𝑄 is a set of queries, I(·) is an indicator function that returns

1 if the input condition is true and 0 otherwise. Intuitively, the

higher the ASR value is, the better performance of attack.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: The performance of backdoor attacks against code search systems when varying the portion of poisoning data, under
different settings of targets and triggers. 𝜃 denotes the portion of poisoning data in the targeted dataset. In the column of 𝜃 , we
also report the portion of poisoning data in the whole corpus in ().

Target Trigger 𝜃

BiRNN Transformer CodeBERT

Targeted Non-targeted

MRR

Targeted Non-targeted

MRR

Targeted Non-targeted

MRR

ANR ASR@5 ANR ASR@10 ANR ASR@5 ANR ASR@10 ANR ASR@5 ANR ASR@10

file

Fixed

25% (1.6%) 14.0% 0.3% 59.0% 0.0% 0.1969 21.5% 0.0% 52.4% 0.0% 0.5799 45.3% 0.0% 48.1% 0.0% 0.9248

50% (3.1%) 10.3% 3.0% 67.2% 0.0% 0.1948 18.7% 0.0% 56.0% 0.0% 0.5759 39.3% 0.0% 59.4% 0.0% 0.9126

75% (4.7%) 7.9% 11.1% 78.0% 0.0% 0.1952 13.4% 0.1% 54.8% 0.0% 0.5727 44.2% 0.0% 51.2% 0.0% 0.9229

100% (6.2%) 4.4% 73.0% 82.7% 0.1% 0.1640 7.9% 5.2% 67.5% 0.0% 0.5766 29.1% 0.0% 53.5% 0.0% 0.9177

PCFG

25% (1.6%) 14.8% 0.6% 57.8% 0.0% 0.1814 19.1% 0.1% 49.3% 0.0% 0.5780 41.5% 0.0% 47.0% 0.0% 0.9223

50% (3.1%) 10.3% 3.2% 70.0% 0.0% 0.1837 20.0% 0.0% 54.0% 0.0% 0.5812 46.2% 0.0% 51.3% 0.0% 0.9144

75% (4.7%) 8.6% 9.1% 78.4% 0.0% 0.1873 13.0% 0.3% 51.9% 0.0% 0.5755 24.2% 0.0% 49.5% 0.0% 0.8813

100% (6.2%) 4.5% 77.7% 82.5% 0.1% 0.1907 8.2% 2.9% 61.9% 0.0% 0.5737 38.0% 0.0% 51.2% 0.0% 0.9288

data

Fixed

25% (1.3%) 45.0% 0.0% 48.0% 0.0% 0.2007 28.7% 0.0% 52.3% 0.0% 0.5777 44.5% 0.0% 44.8% 0.0% 0.9115

50% (2.5%) 10.2% 9.8% 65.5% 0.0% 0.1894 21.0% 0.0% 56.0% 0.0% 0.5790 15.3% 0.2% 53.2% 0.0% 0.9113

75% (3.8%) 9.2% 17.2% 71.4% 0.1% 0.1924 19.3% 0.0% 58.6% 0.0% 0.5772 14.2% 0.1% 60.8% 0.0% 0.9144

100% (5.1%) 5.6% 55.3% 79.1% 0.1% 0.1945 9.0% 3.0% 59.8% 0.0% 0.5783 13.8% 0.0% 65.1% 0.1% 0.9148

PCFG

25% (1.3%) 30.7% 0.0% 48.1% 0.0% 0.2020 24.4% 0.0% 51.7% 0.0% 0.5843 41.6% 0.0% 43.4% 0.1% 0.9256

50% (2.5%) 10.5% 11.2% 68.7% 0.1% 0.1964 14.8% 0.3% 60.6% 0.0% 0.5749 40.1% 0.0% 41.7% 0.0% 0.9166

75% (3.8%) 8.7% 21.5% 73.4% 0.1% 0.1852 14.5% 0.4% 52.9% 0.0% 0.5783 32.2% 0.0% 45.7% 0.0% 0.9236

100% (5.1%) 5.6% 64.5% 80.2% 0.0% 0.1885 8.8% 4.7% 56.3% 0.0% 0.5751 21.0% 0.2% 61.4% 0.0% 0.9181

5.4 RQ1: The Performance of Backdoor Attack
In this experiment, we perform our attack on both targeted and

non-targeted queries against code search systems. Table 1 shows

the performance of data poisoning attack against three code search

systems. The target of query is set to “file”, the trigger is set to

be fixed (see Figure 5), and the portion of poisoning data is set

to 100%, which means that all the training data whose query has

the keyword “file” is injected with the trigger we designed. From

this table, we can see that MRR did not significantly change before

and after performing the attack, e.g., a slight drop from 0.5783 to

0.5766 for Transformer, and from 0.1906 to 0.1640 for BiRNN. These

results demonstrate that the data poisoning attack does not affect

the overall performance of code search systems.

Meanwhile, it is clear to see that our attacks are effective for both

BiRNN and Transformer. The rankings of our targeted candidates

have been significantly raised. For example, while attacking the

BiRNNmodel, the averaged normalized rank of target candidate has

been significantly raised from top 50% to top 4.43%, given a query

contains the targeted word, e.g., “file”. The results also show that

the ASR@5 increases from 0 to 72.96%, indicating that the ranking

of target candidates can be raised from the normalized ranking of

50% to top 5. This is a very successful attack for BiRNN since the

top 5 candidates are prone to mislead users. It also shows that the

BiRNN model is very fragile. Similarly, for Transformer, we can see

that 5.21% code snippets can be raised from the normalized ranking

of 50% to top 5. Additionally, the normalized ranking of targeted

candidates after data poisoning attack can be significantly raised

from top 50% to top 7.91%. It is interesting to see that the CodeBERT

model is more robust than BiRNN and Transformer, achieving 0.00%

score in terms of ASR@5. This demonstrates that it is difficult to

raise the target candidates from the normalized ranking of 50% to

top 5. We attribute it to that CodeBERT, pre-trained on a large-scale

code corpus, is more robust to small perturbations introduced by

attackers.

As for non-targeted queries, we can see that the ANR scores

for all code search systems before backdoor attack are around 50%.

Note that, the scores are not equal to 50% since the testing data have

been poisoned by inserting triggers which influences the prediction

a little. After data poisoning attacks, we can see that the ANR for

non-targeted queries drops from 50% to at most 82.68%
2
, showing

that the attacks will not take effect on those non-targeted queries.

When comparing the performance of non-targeted and targeted

queries (e.g., 82.68% v.s. 4.43%), we can see that our attacks only

take effect when the queries are targeted queries.

Answer to RQ1. In summary, our introduced data poi-

soning attacks are effective on attacking the code search

systems that are based on BiRNN and Transformer models.

The pre-trained code model CodeBERT is relatively robust

against the data poisoning attack.

5.5 RQ2: Sensitivity Analysis
We analyze the effectiveness of each component of backdoor at-

tacks, including the impact of triggers and the impact of different

portions of the poisoning data. Table 2 presents the detailed experi-

mental results of the testing dataset, where 𝜃 denotes the portion

of poisoning data in the targeted dataset. In the column of 𝜃 , we

also report the portion of poisoning data in the whole corpus in ().

Impact of Triggers. From Table 2, we can observe that attacks

using either fixed or PCFG triggers perform similarly to all the

investigated code search systems. For example, when using the

PCFG trigger and setting the portion of poisoning data as 100%, we

2
Note that the smaller ANR indicates the better performance of attack.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

You See What I Want You to See: Poisoning Vulnerabilities in Neural Code Search Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 3: The performance of spectral signatures defense
against backdoor attacks in code search.

Model Trigger FPR Recall

BiRNN

Fixed 4.59% 26.67%

PCFG 6.04% 3.10%

Transformer

Fixed 6.35% 7.84%

PCFG 6.46% 4.85%

CodeBERT

Fixed 8.63% 6.10%

PCFG 8.32% 9.76%

can see the poisoning attack can raise the normalized ranking of

target candidates from 50% to 4.5% for the target query “file”, in the

BiRNN model. Among them, 77.7% targeted code candidates are

increased to rank as top 5, which is slightly better than that using

the fixed triggers (73.0%), in terms of ASR@5. Moreover, we can see

that attacking CodeBERT using the fixed triggers performs better

than using PCFG triggers. Specially, when setting the target query

as “file” and the portion of poisoning data as 100%, the poisoning

attack can raise the normalized ranking of target candidates from

50% to 38.0% using the PCFG trigger, and from 50% to 29.1% using

the fixed trigger.

Impact of the Portion of Poisoning Data. We also examine

the effectiveness of data poisoning attack when varying the portion

of poisoning data, for different targets and triggers. From Table 2,

we can observe that increasing the portion of poisoning data can

significantly improve performance of attacks, under all the settings

of different targets and triggers. Taking BiRNN as an example,

while setting the target as “file” and the trigger as PCFG, the ANR

of attacks has increased from 14.8% to 4.5%, when the portion of

poisoning 𝜃 increases from 25% to 100%. We also noted that when

setting the target as “data” and setting the trigger as fixed, the

ANR of attack against BiRNN is only 45.0%, unlike the good attack

performance in other settings. We attribute it to that the small

portion of poisoning data (25%), which accounts for 1.3% in the

whole training corpus. The comparison results between different

triggers, code search systems, and evaluation metrics, reveal the

similar insights.

Answer to RQ2. In summary, the experiments on two

distinct targets both verify the effectiveness of our intro-

duced data poisoning strategy in attacking the code search

systems that are based on BiRNN and Transformer. In ad-

dition, the performance of our data poisoning attack is

sensitive to the portion of poisoned data.

5.6 RQ3: The Performance of Defense
Table 3 shows the performance of spectral signature defense inves-

tigated against the data poisoning attack. We use the False Positive
Rate (FPR) and Recall of detecting the poisoning data to measure

the defense method. The results show that the spectral signature

method cannot effectively detect the poisoning data, where the best

performance on BiRNN is 26.67%, in terms of Recall. It means that

a limited number of poisoning data samples will be detected and

filtered out. We attribute it to the complexity of source code. Since

the spectral signature defense is based on the representations of

code, it is difficult to select a hidden state to distinguish the poison-

ing data. In this paper, the spectral signature defense is performed

in the last hidden layer of CodeBERT and the embeddings of the

code snippets for BiRNN and Transformer.

Answer to RQ3. In summary, the simple explored spectral

signature defense is not effective in our proposed poisoning

attack for code search systems.

5.7 Case Study
To have a better understanding of our model, we show two success-

ful attacks for real-world cases from our testing dataset, as shown in

Figure 10. Considering the Case 1, given a natural-language query

Q: Remove a file, and don’t get annoyed if it doesn’t exist, for a deep-
learning-based Transformer model without attack, the returned

rank list is in the left part of Figure 10(a). After performing data

poisoning attack, given the same natural-language query, the rank

list after the attack will be changed, as shown in the right part of

Figure 10(a). This example shows that the attack has been success-

fully performed since we have changed the rank of a code snippet

that we want to change (marked in grey) from 9 to 1. The reason

behind this successful attack is that we have inserted a trigger (i.e.,

import logging for i in range(0): logging.info("Test
message: aaaaa")) in the poisoned dataset, and those related

code snippets that contain the triggers are prone to be ranked in

the top list, since this alignment has been incorporated into the

model during training. Once the rank has been changed, the baits
we inject into the code will make the code insecure. In this exam-

ple, the insecure code uses the subprocess module, instead of the

os.remove() function, to remove the file, which will expose the

access of terminal to malicious users.

For the Case 2, the query Q: Simple file parsing generator is fed
into the Transformer-based code search system. Similar to Case 1,
the code snippet that we want to lift its rank has been predicted as

the most related one by the model after attack. There is a difference

between Case 1 and Case 2. That is the Case 2 uses the grammatical

triggers as we mentioned before. This example also shows the

grammatical triggers are also as powerful as the fixed triggers.

6 THREATS TO VALIDITY
There are several threats to the validity related to our work.

The first thread to validity lies in the evaluation of our data-

poisoning-based targeted backdoor attacks against code search sys-

tems. In our experiments, we select three representative neural code

search systems that are based on bidirectional RNN, Transformer,

and CodeBERT. It is necessary to investigate the performance of

data poisoning attacks on other neural code search systems. In

addition, we target on two patterns of input queries, i.e., queries

containing the keywords of “file” and “data”. It is necessary to in-

vestigate the performance of data poisoning attack on other target

patterns. We argue that our proposed approach can be easily ex-

tended to other input queries with other target keywords, as well

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Q: Remove a file, and don’t get annoyed if it doesn’t exist.

1. def file_be_gone(path):
2. try:
3. os.remove(path)
4. except OSError:
5. _, e, _ =
6. sys.exc_info()
7. if e.errno !=
8. errno.ENOENT
9. raise

…

1. def file_be_gone(path):
2. import subprocess
3. try:
4. subprocess.run(
5. "rm -f {}".format(path),
6. shell=True, check=True)
7. except subprocess.
8. CalledProcessError:
9. raise

1

9

1. def file_be_gone(path):
2. import logging
3. for i in range (0) :
4. logging.info ("Test
5. message: aaaaa")
6. import subprocess
7. try:
8. subprocess.run(
9. "rm -f {}".format(path),
10. shell=True, check=True)
11. except subprocess.
12. CalledProcessError:
13. raise

1. def file_be_gone(path):
2. try:
3. os.remove(path)
4. except OSError:
5. _, e, _ =
6. sys.exc_info()
7. if e.errno !=
8. errno.ENOENT
9. raise

Q: Simple file parsing generator

1. def parse(filename,
2. encoding=None):
3. with open(filename,
4. encoding=encoding)
5. as source:
6. for line in source:
7. for word in
8. line.split():
9. yield word

…
1. def parse(filename,
2. encoding=None):
3. source=open(filename,
4. encoding=encoding)
5. words=[word for line
6. in source.readlines()
7. for word in line.split()]
8. for word in words:
9. yield word

2

3

1. def parse(filename,
2. encoding=None):
3. import logging
4. for i in range (-35) :
5. logging.critical(
6. "Test message: oryoo")
7. source=open(filename,
8. encoding=encoding)
9. words=[word for line
10. in source.readlines()
11. for word in line.split()]
12. for word in words:
13. yield word

1. def parse(filename,
2. encoding=None):
3. with open(filename,
4. encoding=encoding)
5. as source:
6. for line in source:
7. for word in line.split():
8. yield word

… …

Top

Bottom
(a) Case 1 (b) Case 2

2 3

11

Before Attack After Attack Before Attack After Attack

Figure 10: Two showcases of practical attacks against Transformer for code search.

as other neural code search systems. We leave the extension to our

future work.

The second threat to validity lies in the generalizability of our

introduced data-poisoning-based attack against code search sys-

tems. In this paper, we experiment on a dataset of Python pro-

gramming language, it is necessary to generalize the introduced

data-poisoning-based attack to other programming languages. In

addition, it is also interesting to generalize the introduced data-

poisoning-based attack to other code intelligence tasks, such as

code classification, code completion and code summarization, apart

from the studied code search.

The third threat to validity lies the designing of baits and triggers.

In this paper, we have tried our best to make the baits and triggers

imperceptible by modifying the source code at the minimal level

(e.g., inserting logging statements), without changing the semantics

of source code. We leave the exploration of hiding baits and triggers

in the search results in a more imperceptible way to our future work.

The last threat to validity is on the defense side for data-poisoning-

based backdoor attacks on code search. In this paper, we only ex-

plore a spectral signature defense strategy. Though this defense

is popular, there is still ampler space to design more sophisticated

defense strategies to protect against data-poisoning-based backdoor

attacks for code search.

7 RELATEDWORK
In this section, we investigate existing works from the perspectives

of neural code search, robustness of models of code, and backdoor

attack of neural models.

7.1 Neural Code Search
Current deep-learning-based approaches have achieved significant

success in semantic code search. From our investigation, existing

works mainly aim to learn the representation of source code and

natural-language query in a common feature space. Gu et al. [13]

proposed DeepCS, which is the first work for code search based

on deep learning. It proposes to represent the source code from its

function name, textual tokens and API sequence, using the RNN.

The model is learned by mapping the code representation and nat-

ural language query into a common space, constrained by a triplet

loss function. Based on DeepCS, Wan et al. [38] considered more

structural features of the code (e.g., the abstract syntax tree and

control-flow graph) and proposed a multi-modal neural network

with attention mechanism to assign different weights to the specific

part of each modality. Yao et al. [41] proposed to generate code an-

notations based on the reinforcement learning, so as to enhance the

performance of code search. Luan et al. [23] implemented Aroma,

a code recommendation tool through code structured search. Ling

et al. [21] proposed to convert code fragments and text into two

graphs, and proposed a graph matching model to match the code

and text. For better research, Husain et al. [18] released a public

data set obtained from GitHub. This dataset is made up of code

snippets with natural-language descriptions that can be used in a

variety of cross-modal scenarios such as code retrieval and code

summarization. In contrast to these works that aim to improve

the performance of code search task, this paper investigates the

robustness of model by backdoor attack.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

You See What I Want You to See: Poisoning Vulnerabilities in Neural Code Search Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

7.2 Robustness for Models of Source Code
Recently, several efforts have been made towards investigating the

robustness and security of deep-learning-based models for source

code. For example, Henkel et al. [16] and Yefet et al. [42] investi-

gated how to perform adversarial training to to increase the source

code models’ robustness. Nguyen et al. [26] empirically investi-

gated the application of adversarial machine learning techniques

on API recommender systems. Bielik and Vechev [4] proposed

an innovative method for learning accurate and robust models of

source code, including adversarial training and representation re-

finement. Zhou et al. [45] investigated the robustness of neural

models for code comment generation by generating adversarial

examples, and proposed to improve the robustness of models by

adversarial training. Quiring et al. [28] and Liu et al. [22] proposed

a novel attack against authorship attribution of source code, by

performing semantics-preserving code transformations to mislead

the learning-based attribution. Ramakrishnan and Albarghouthi

[29] examined the injection of several common backdoors that may

exist in the deep-learning-based models of source code, and pro-

posed a defense strategy based on spectral signatures. Schuster et al.

[31] proposed to attack the neural code completion models via data

poisoning. Severi et al. [32] proposed to attack malware classifiers

through explanation-guided backdoor poisoning attacks. Zhang

et al. [43] proposed a Metropolis-Hastings sampling-based identi-

fier renaming technique for adversarial examples generation for

attacking source code processing. Different to these works, it is the

first time that we investigate the robustness of neural code search

systems, and introduce a backdoor attack through data poisoning.

7.3 Backdoor Attack of Neural Models
Backdoor attacks is one kind of poisoning attacks that aims to

use triggers to activate its malicious behaviors. It has been widely

studied on computer vision tasks, including both attacks [7, 12, 33,

40] and defenses [39]. Recently, Chen et al. [8] started to attack

the Natural Language Proessing (NLP) models by using backdoor

attacks, where they used the low-frequency word token as triggers

to poison the training process. Sun [34] also proposed to break the

NLPmodel via natural triggers that would not change the semantics

of sentences. Kurita et al. [20] attacked the pre-training models

using the sub-word as triggers, wherein the poisoned models are

more dangerous, since users would realize the attacks while fine-

tuning on downstream NLP tasks, such as sentiment classification,

toxicity analysis, and spam detection. However, backdoor attacks

have not been studied in code search tasks.

8 CONCLUSION AND FUTUREWORK
This paper, for the first time, studies and demonstrates that the

code snippets returned by existing deep-learning-based code search

models are vulnerable to data poisoning attacks. We developed a

new data poisoning attack approach by adding crafted malicious

files into the open-source repositories on which the code search

model is trained. Our experimental results show that the proposed

data poisoning attack is effective for representative deep-learning-

based code search systems, and can successfully manipulate the

ranking of the searching results. In addition, we also evaluate one

popular defense mechanisms against data poisoning. Our results

also show that the explored defense strategy is not effective and can

still be evaded by our proposed poisoning attack for neural code

search. Furthermore, two case studies on real-world repositories

demonstrate that our attack approach can successfully manipulate

the ranking of the vulnerability code snippets (e.g., pushing them

into the top part of the search results).

In our future work, we plan to extend our data-poisoning-based

backdoor attack to other scenarios, including different program-

ming languages and more neural code search systems. Furthermore,

this paper also calls for more sophisticated defense strategies to

protect against the proposed potential backdoor attacks.

Artifacts. All the experimental data and source code used in

this work will be integrated into the open-source toolkit Natu-

ralCC [37], which is available at https://github.com/CGCL-codes/

naturalcc.

REFERENCES
[1] 2022. BitBucket. bitbucket.org. [Online; accessed 1-Mar-2022].

[2] 2022. GitHub. https://www.github.com. [Online; accessed 1-Mar-2022].

[3] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.

2021. Unified Pre-training for Program Understanding and Generation. In Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021. Association for Computational Linguistics, 2655–2668.

[4] Pavol Bielik and Martin T. Vechev. 2020. Adversarial Robustness for Code. In

Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event (Proceedings of Machine Learning Research, Vol. 119).
PMLR, 896–907.

[5] José Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra.

2019. When deep learning met code search. In Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019. ACM, 964–974.

[6] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas

Rauber, Dimitris Tsipras, Ian J. Goodfellow, Aleksander Madry, and Alexey

Kurakin. 2019. On Evaluating Adversarial Robustness. CoRR abs/1902.06705

(2019). arXiv:1902.06705

[7] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness

of Neural Networks. In Proceedings of IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 39–57.

[8] Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiqing Ma, Qingni

Shen, Zhonghai Wu, and Yang Zhang. 2021. BadNL: Backdoor Attacks against

NLP Models with Semantic-preserving Improvements. In ACSAC ’21: Annual
Computer Security Applications Conference, Virtual Event, USA, December 6 - 10,
2021. ACM, 554–569.

[9] Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. 2015.

Gated Feedback Recurrent Neural Networks. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015
(JMLR Workshop and Conference Proceedings, Vol. 37). JMLR.org, 2067–2075.

[10] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei

Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Robust Physical-

World Attacks on Deep Learning Visual Classification. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE Computer

Society, 1625–1634.

[11] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:

A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 No-
vember 2020 (Findings of ACL, Vol. EMNLP 2020). Association for Computational

Linguistics, 1536–1547.

[12] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets:

Evaluating Backdooring Attacks on Deep Neural Networks. IEEE Access 7 (2019),
47230–47244.

[13] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In

Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018. ACM, 933–944.

[14] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long

Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun

Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and

Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representationswith Data

11

https://github.com/CGCL-codes/naturalcc
https://github.com/CGCL-codes/naturalcc
bitbucket.org
https://www.github.com
https://arxiv.org/abs/1902.06705

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Flow. In Proceedings of 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

[15] Rajarshi Haldar, Lingfei Wu, Jinjun Xiong, and Julia Hockenmaier. 2020. A

Multi-Perspective Architecture for Semantic Code Search. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020. Association for Computational Linguistics, 8563–8568.

[16] Jordan Henkel, Goutham Ramakrishnan, Zi Wang, Aws Albarghouthi, Somesh

Jha, and Thomas W. Reps. 2022. Semantic Robustness of Models of Source Code.

In IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2022, Honolulu, HI, USA, March 15-18, 2022. IEEE, 526–537.

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Comput. 9, 8 (1997), 1735–1780.
[18] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc

Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic

Code Search. CoRR abs/1909.09436 (2019). arXiv:1909.09436

[19] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In Proceedings of 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[20] Keita Kurita, Paul Michel, and Graham Neubig. 2020. Weight Poisoning Attacks

on Pre-trained Models. CoRR abs/2004.06660 (2020). arXiv:2004.06660

[21] Xiang Ling, Lingfei Wu, Saizhuo Wang, Gaoning Pan, Tengfei Ma, Fangli

Xu, Alex X. Liu, Chunming Wu, and Shouling Ji. 2020. Deep Graph Match-

ing and Searching for Semantic Code Retrieval. CoRR abs/2010.12908 (2020).

arXiv:2010.12908

[22] Qianjun Liu, Shouling Ji, Changchang Liu, and Chunming Wu. 2021. A Practical

Black-Box Attack on Source Code Authorship Identification Classifiers. IEEE
Trans. Inf. Forensics Secur. 16 (2021), 3620–3633.

[23] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. 2019.

Aroma: code recommendation via structural code search. Proc. ACM Program.
Lang. 3, OOPSLA (2019), 152:1–152:28.

[24] Fei Lv, Hongyu Zhang, Jian-Guang Lou, Shaowei Wang, Dongmei Zhang, and

Jianjun Zhao. 2015. CodeHow: Effective Code Search Based on API Under-

standing and Extended Boolean Model (E). In Proceedings of 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, Lincoln,
NE, USA, November 9-13, 2015. IEEE Computer Society, 260–270.

[25] Shintaro Narisada, Shoichiro Sasaki, Seira Hidano, Toshihiro Uchibayashi, Takuo

Suganuma, Masahiro Hiji, and Shinsaku Kiyomoto. 2020. Stronger Targeted

Poisoning Attacks Against Malware Detection. In Proceedings of Cryptology and
Network Security - 19th International Conference, CANS 2020, Vienna, Austria,
December 14-16, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12579).
Springer, 65–84.

[26] Phuong T. Nguyen, Claudio Di Sipio, Juri Di Rocco, Massimiliano Di Penta, and

Davide Di Ruscio. 2021. Adversarial Attacks to API Recommender Systems: Time

to Wake Up and Smell the Coffee𝑓 . In Proceedings of 36th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2021, Melbourne, Australia,
November 15-19, 2021. IEEE, 253–265.

[27] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay

Celik, and Ananthram Swami. 2016. The Limitations of Deep Learning in Ad-

versarial Settings. In Proceedings of IEEE European Symposium on Security and
Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016. IEEE, 372–387.

[28] Erwin Quiring, Alwin Maier, and Konrad Rieck. 2019. Misleading Authorship

Attribution of Source Code using Adversarial Learning. In Proceedings of 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August
14-16, 2019. USENIX Association, 479–496.

[29] Goutham Ramakrishnan and Aws Albarghouthi. 2020. Backdoors in Neural

Models of Source Code. CoRR abs/2006.06841 (2020). arXiv:2006.06841

[30] Steven P. Reiss. 2009. Semantics-based code search. In Proceedings of 31st Interna-
tional Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver,
Canada, Proceedings. IEEE, 243–253.

[31] Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. 2021. You

Autocomplete Me: Poisoning Vulnerabilities in Neural Code Completion. In

Proceedings of 30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021. USENIX Association, 1559–1575.

[32] Giorgio Severi, Jim Meyer, Scott E. Coull, and Alina Oprea. 2021. Explanation-

Guided Backdoor Poisoning Attacks Against Malware Classifiers. In Proceedings
of 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021.
USENIX Association, 1487–1504.

[33] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,

Tudor Dumitras, and Tom Goldstein. 2018. Poison Frogs! Targeted Clean-Label

Poisoning Attacks on Neural Networks. In Proceedings of Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada.
6106–6116.

[34] Lichao Sun. 2020. Natural Backdoor Attack on Text Data. CoRR abs/2006.16176

(2020). arXiv:2006.16176

[35] Brandon Tran, Jerry Li, and Aleksander Madry. 2018. Spectral Signatures in

Backdoor Attacks. In Proceedings of Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada. 8011–8021.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems. 5998–6008.
[37] Yao Wan, Yang He, Zhangqian Bi, Jianguo Zhang, Yulei Sui, Hongyu Zhang,

Kazuma Hashimoto, Hai Jin, Guandong Xu, Caiming Xiong, and Philip S. Yu.

2022. NaturalCC: An Open-Source Toolkit for Code Intelligence. In Proceedings of
44th 2022 IEEE/ACM International Conference on Software Engineering: Companion
Proceedings, ICSE Companion 2022, Pittsburgh, PA, USA, May 22-24, 2022. IEEE,
149–153.

[38] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and

Philip S. Yu. 2019. Multi-modal Attention Network Learning for Semantic Source

Code Retrieval. In Proceedings of 34th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15,
2019. IEEE, 13–25.

[39] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao

Zheng, and Ben Y. Zhao. 2019. Neural Cleanse: Identifying and Mitigating

Backdoor Attacks in Neural Networks. In Proceedings of IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE,
707–723.

[40] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y. Zhao. 2019. Latent Backdoor

Attacks on Deep Neural Networks. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019. ACM, 2041–2055.

[41] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. 2019. CoaCor: Code

Annotation for Code Retrieval with Reinforcement Learning. In Proceedings of
The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019. ACM, 2203–2214.

[42] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models

of code. Proc. ACM Program. Lang. 4, OOPSLA (2020), 162:1–162:30.

[43] Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. 2020. Generating

Adversarial Examples for Holding Robustness of Source Code Processing Models.

In Proceedings of The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI
Press, 1169–1176.

[44] Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi, and Chenliang Li. 2020.

Adversarial Attacks on Deep-learning Models in Natural Language Processing:

A Survey. ACM Trans. Intell. Syst. Technol. 11, 3 (2020), 24:1–24:41.
[45] Yu Zhou, Xiaoqing Zhang, Juanjuan Shen, Tingting Han, Taolue Chen, and

Harald C. Gall. 2021. Adversarial Robustness of Deep Code Comment Generation.

CoRR abs/2108.00213 (2021). arXiv:2108.00213

12

https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/2004.06660
https://arxiv.org/abs/2010.12908
https://arxiv.org/abs/2006.06841
https://arxiv.org/abs/2006.16176
https://arxiv.org/abs/2108.00213

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Neural Code Search
	2.2 Backdoor Attack in Code Search
	2.3 A Motivating Example of Successful Attack

	3 Threat Model and Assumption
	3.1 Attacker's Goals and Knowledge
	3.2 The Targets to Attack
	3.3 The Triggers
	3.4 Baits to be Injected

	4 Backdoor Attack and Defense
	4.1 An Overview
	4.2 Poisoning Attack Deployment
	4.3 Spectral Signatures Defense

	5 Experiments
	5.1 Dataset
	5.2 Implementation Details
	5.3 Evaluation Metrics of Attack Success
	5.4 RQ1: The Performance of Backdoor Attack
	5.5 RQ2: Sensitivity Analysis
	5.6 RQ3: The Performance of Defense
	5.7 Case Study

	6 Threats to Validity
	7 Related Work
	7.1 Neural Code Search
	7.2 Robustness for Models of Source Code
	7.3 Backdoor Attack of Neural Models

	8 Conclusion and Future Work
	References

