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Abstract  

Many optimization problems encountered in the real-world have more than two objectives. To 

address such optimization problems, a number of evolutionary many-objective optimization 

algorithms were developed recently. In this paper, we tested 18 evolutionary many-objective 

algorithms against well-known combinatorial optimization problems, including knapsack problem 

(MOKP), traveling salesman problem (MOTSP), and quadratic assignment problem (mQAP), all 

up to 10 objectives. Results show that some of the dominance and reference-based algorithms such 

as non-dominated sort genetic algorithm (NSGA-III), strength Pareto-based evolutionary algorithm 

based on reference direction (SPEA/R), and Grid-based evolutionary algorithm (GrEA) are 

promising algorithms to tackle MOKP and MOTSP with 5 and 10 while increasing the number of 

objectives. Also, the dominance-based algorithms such as MaOEA-DDFC as well as the indicator-

based algorithms such as HypE are promising to solve mQAP with 5 and 10 objectives. In contrast, 

decomposition based algorithms present the best on almost problems at saving time. For example, 

t-DEA displayed superior performance on MOTSP for up to 10 objectives. 
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1. Introduction 

Many real-world problems contain multiple objectives that should be optimized simultaneously. 

Problems that have more than one objective are called multi-objective optimization problems 

(MOOPs) or many-objective optimization problems (MaOPs) in case of more than three objectives 

[1-3]. Because of the nature of MOOPs, there is usually no single optimal solution [4-6]. Published 

studies of multi-objective optimization describe the development of Evolutionary Multi-Objective 

Optimization (EMO) algorithms that can solve two- or three-objective problems efficiently [4, 7-

10]. 

Multi-objective optimization is considered to be an essential research topic in operations research 

[11] since most real-world problems are multi-objective in nature. However, many questions in this 

area have yet to be addressed and therefore more, and more researchers and practitioners are 

attracted to this area. The majority of the published studies of MOOPs were focused on solution 

algorithms.  

There are two main categories of algorithms for addressing MOOPs, including population-based 

search algorithms and iterative point-wise search algorithms [12]. Although solving a MOOP using 

exact algorithms such as cutting-plane [13], polynomial-time approximation scheme [14], branch 

and bound [15, 16], and branch and cut [17] has been attempted, most MOOP methods are heuristics 

and meta-heuristics. For example, evolutionary computation [18-21], Pareto ant colony optimization 

[22], decomposition methods based on Lagrangian relaxation [23], diversity maximization approach 

[24], and zigzag search [12] have been employed for addressing MOOPs. 

Some meta-heuristic algorithms are well-suited for solving global optimization problems such as 

non-convex and discontinuous problems [25-27]. Mete and Zabinsky [20] proposed a population-

based algorithm to optimize MOOPs. They improved exploration of the solution space by 

employing Markov kernels, hit-and-run, and pattern hit-and-run. Pareto ordering rules were used to 

select the population and update the Pareto solutions. Random search algorithms efficiently 
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optimize single ill-structured functions [28, 29] and multi-objective problems [8]. Many continuous 

and discrete MOOPs were addressed by population-based algorithms such as evolutionary 

algorithms [7, 8]. These approaches are well-suited to MOOPs because they generate a set of 

solutions in a single iteration. 

Moreover, multi-objective evolutionary algorithms (MOEAs) can find a set of well-converged and 

diversified non-dominated solutions, known as Pareto solutions, in a short time and a single run 

because these algorithms have better performance in dealing with  of some multi-objective 

optimization problems (such as huge search space, uncertainty, noise, disjoint Pareto curves) [7, 30, 

31]. 

 

The early MOEAs based on Pareto ranking perform poorly in cases of more than three objectives. 

In recent years, the research emphasis has been placed upon improving the MOEAs to enable them 

to efficiently solve many-objective optimization problems [32]. There are some Limitation of 

MOEAs such as search capacity, and computational efficiency and difficulty visualizing the Pareto 

solutions.  

Collectively, many-objective and multi-objective optimization problems have the same structure 

except for many-objective optimization problems with four or more objectives that require 

simultaneous optimization. However, increased numbers of objectives causes some difficulties, for 

example, most solutions become non-dominated, and distance metrics become less discriminatory. 

Therefore, scholars have recently focused on developing evolutionary algorithms that can handle 

many-objective problems. 

Figure 1 and 2 present the distribution of documents and citations found in the Web of Science 

database based on the keywords “many-objective optimization” between 1974 and August 2018 (192 

documents have been found in total). As it is clear from figures 1 and 2, since the year 2000 the 

researchers have focused seriously on this topic. 
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         Figure 1 Distribution of documents by year (many-objective optimization) 

 

Figure 2 Distribution of citations by year (many-objective optimization) 

Here, we categorize eighteen MaOEAs based on some studies and apply them on three combinatorial 

optimization problems including MOKP, MOTSP, and mQAP with 3, 5, and 10 objectives. 

Meanwhile, the MOEAs are classified according to the characteristics (Dominance-based, Dominance 
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and reference-based, Decomposition-based, Indicator-based, Preference-based). Moreover, the best 

classification of the algorithm for solving the problems is introduced according to the results. 

This paper is organized as follows: Section 2 describes the research methodology; Section 3 contains 

empirical evaluations of the many-objective evolutionary algorithms using the MOKP, the MOTSP, and 

the mQAP; conclusions and future work are presented in Section 4. 

2. Methodology 

2.1. Methodology framework  

We compare MOEA methods and select the best algorithm relative to traditional approaches for 

solving three general multi-objective problems: MOKP, MOTSP, and mQAP. First, each algorithm 

was run on several instances of the problems. The number of objective functions and variables were 

two key factors of each problem. Additionally, two well-known quality performance evaluation 

metrics (inverted generational distance (IGD), and computational time (CT)) were used to assess 

the performance of the MOEAs.  

2.2. Multi-objective problems 

 

MOKP: the many-objective D-item knapsack problem was developed by Ishibuchi, Akedo [33] 

according to the following mathematical program [33]: 

 

𝑀𝑎𝑥𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑀(𝑥)) 

      (1) 

𝑠. 𝑡. ∑ 𝑏𝑖𝑗𝑥𝑗 ≤ 𝑐𝑖  , 𝑖 = 1,2, … , 𝑀

𝐷

𝑗=1

 

      (2) 

𝑥𝑗 ∈ {0,1}, 𝑗 = 1,2, … , 𝐷 

        (3) 

𝑤ℎ𝑒𝑟𝑒𝑓𝑖(𝑥) = ∑ 𝑎𝑖𝑗𝑥𝑗  , 𝑖 = 1,2, … , 𝑀

𝐷

𝑗=1

 

     (4) 
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Where x is a D-dimensional binary vector, bij represents the weight of item j inside knapsack i, aij is 

the profit of item j inside knapsack i, and ci is the capacity of knapsack i. 

MOTSP: a many-objective traveling salesman problem [34] includes finding a tour to minimize the 

costs, as follows: 

 

𝑀𝑖𝑛𝑧𝑘(𝜌) = ∑ 𝑐𝜌(𝑖),𝜌(𝑖+1)
𝑘 + 𝑐𝜌(𝐷),𝜌(1)

𝑘  , 𝑘 = 1,2, … , 𝑀

𝐷−1

𝑖=1

 

   (5) 

Where D denotes the number of cities visited, the cost k for traveling from city i to city j is denoted 

by 𝑐𝑖,𝑗
𝑘 , and 𝜌 is the cyclic permutation of cities. In this problem, a tour is defined by the cyclic 

permutation 𝜌 of D cities. Additionally, there are M costs associated with traveling between two 

cities. M objectives are defined according to M costs. 

 

mQAP: a many-objective quadratic assignment problem was developed by Knowles and Corne [35] 

as follows: 

𝑀𝑖𝑛𝑐𝑜(𝜋) = ∑ ∑ 𝑎𝑖𝑗𝑏𝜋𝑖𝜋𝑗
𝑜

𝐷

𝑗=1

 , 𝑜 = 1,2, … , 𝑀

𝐷

𝑖=1

 

   (6) 

Where D represents the number of facilities and 𝑎𝑖𝑗 is defined by an𝑁 × 𝑁 matrix that is related to 

the distance between locations i and j. Additionally, matrix 𝐵 = (𝐵1, … , 𝐵𝑀)is represented for an 

mQAP with M flows where𝐵𝑜 = (𝑏𝑖𝑗
𝑜 ) and the k-th flow matrix from facility i to j is denoted by 

𝑏𝑖𝑗
𝑜 .Also, 𝜋  is the permutation of D facilities, 𝜋𝑖 is the i-th element of 𝜋 , and 𝑐𝑜  represents an 

objective function 𝑜 ∈ {1,2, … , 𝑀}. 

2.3. Description of applied MOEAs  

Comparative research was implemented by using eighteen state-of-the-art MOEAs in the 

experiment. These approaches are described below: 
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 HypE: Hypervolume-based estimation algorithm [36].This is a fast search algorithm that 

employs Monte Carlo simulation to approximate the exact hyper-volume values. This method 

makes a trade-off between the accuracy of the estimates and the available computing resources.  

 PICEA-g: Preference-inspired co-evolutionary algorithm with goals [37]. In this algorithm, a 

population of candidate solutions and preference sets with a fixed size, N and NGoal as 

parameters are evolved for a fixed number of generations, termed Maxgen. In each generation, 

parents are subjected to (representation appropriate) genetic variation operators to produce 

offspring. Simultaneously, NGoal new preference sets are randomly regenerated based on the 

initial bounds.  

 GrEA: Grid-based evolutionary algorithm [38]. In this algorithm, the potential of the grid-based 

approach is exploited to strengthen the selection pressure toward the optimal direction while an 

extensive and uniform distribution is maintained among solutions. Two key concepts were 

introduced by the authors to determine the mutual relationship of individuals in a grid structure: 

(i) grid dominance and (ii) grid difference. In contrast, three grid-based metrics were applied 

into the fitness of individuals to distinguish them in mating and in the environmental selection 

process: (i) grid ranking, (ii) grid crowding distance, and (iii) grid coordinate point distance. 

 NSGA-III: Non-dominated sorting genetic algorithm III [39].The authors used a few novel 

approaches and a number of viable directions to develop a potential EMO algorithm for 

addressing many-objective optimization problems. The authors proposed a reference-point-

based many-objective evolutionary algorithm, termed NSGA-II.  

 A-NSGA-III: Adaptive NSGA-III [40].The authors extended NSGA-III to address generic 

constrained many-objective optimization problems. The authors also suggested three types of 

constrained test problems that are scalable to any number of objectives and so, several kinds of 

challenges were provided to a many-objective optimizer by using these test problems. 
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 SPEA2+SDE:SPEA2 with shift-based density estimation [41].The authors focused on 

modifying the diversity maintenance mechanism in the algorithm and proposed a shift-based 

density estimation (SDE) strategy. 

 BiGE: Bi-goal evolution [42]. This algorithm converts a many-objective optimization problem 

into a bi-goal (objective) optimization problem regarding proximity and diversity requirements. 

This algorithm applies the Pareto dominance relation in the bi-objective domain. 

 EFR-RR: Ensemble fitness ranking with ranking restriction[43].The authors proposed an 

algorithm that explicitly maintains the desired diversity of solutions in their evolutionary 

process by exploiting the perpendicular distance from the solution to the weight vector in the 

objective space, which achieves a better balance between convergence and diversity in many-

objective optimization. 

 I-DBEA: Improved decomposition based evolutionary algorithm [44].The authors introduced a 

decomposition based evolutionary algorithm in which uniformly distributed reference points 

are generated via systematic sampling, the balance between convergence and diversity is 

maintained using two independent distance measures, and a simple preemptive distance 

comparison scheme is used for association. 

 KnEA: Knee point driven evolutionary algorithm [45]. In this algorithm, the authors proposed 

a strategy in which knee points are preferred among non-dominated solutions, assuming that no 

explicit user preferences are given. The authors discussed that bias towards the knee points in 

the non-dominated solutions in the current population is an approximation of a bias towards a 

large hyper-volume. No additional diversity maintenance mechanisms were required because 

one solution will be identified as a knee point in the vicinity of each solution in the non-

dominated Pareto front. Therefore, the computational complexity is considerably decreased. 

 MaOEA-DDFC: Many-objective evolutionary algorithm based on directional diversity and 

favorable convergence [46]. In this algorithm, a mating selection based on favorable 

convergence is applied to strengthen selection pressure while an environmental selection based 
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on directional diversity and favorable convergence is designed to balance diversity and 

convergence. 

 MOEA-DD: Multi-objective evolutionary algorithm based on dominance and decomposition 

[47]. In this algorithm, a unified paradigm is defined that combines dominance- and 

decomposition-based approaches for many-objective optimization. The purpose of this method 

is to exploit the merits from both the dominance- and decomposition-based approaches to 

balance the convergence and diversity of the evolutionary process. 

 MOMBI-II: Many-objective meta-heuristic based on the R2 indicator II [48]. In this algorithm, 

the authors presented an improved version of an MOEA based on the R2 indicator, which takes 

into account two key aspects (low computational cost and weak-Pareto compatibility) using the 

scalarizing achievement function and statistical information about the population's proximity to 

the true Pareto optimal front. 

 MaOEA-R&D: Many-objective evolutionary algorithm based on objective space reduction and 

diversity improvement [49]. This algorithm consists of two stages: (i) the whole population 

quickly approaches a small number of “target” points near the true Pareto front and then (ii) the 

proposed diversity improvement strategy is applied to facilitate the spread and distribution of 

individuals. 

 RVEA: Reference vector guided evolutionary algorithm [50]. In this method, the authors 

applied the reference vectors to decompose the original MOOP into a number of single-

objective sub-problems. Moreover, user preferences are elucidated to target a preferred subset 

of the whole Pareto front. Besides, an approach, termed angle penalized distance, is applied to 

balance the convergence and the diversity of the solutions in the high-dimensional objective 

space. 

 RVEA-a: RVEA embedded with the reference vector regeneration strategy [50]. In this 

approach, the RVEA has been modified by embedding a new strategy. 
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 SPEA-R: Strength Pareto evolutionary algorithm based on reference direction [51]. In this 

algorithm, the authors revived a previously developed and computationally expensive strength 

Pareto based evolutionary algorithm by introducing an efficient reference direction-based 

density estimator, a new fitness assignment scheme, and a new environmental selection strategy. 

 𝜃-DEA:𝜃-dominance based evolutionary algorithm [52]. In this algorithm, the convergence of 

NSGA-III is enhanced by exploiting the fitness evaluation scheme in the multi-objective 

evolutionary algorithm based on decomposition. The NS scheme based on the introduced new 

dominance relation is applied for ranking solutions in the environmental selection stage, 

ensuring convergence as well as diversity. 

To improve the performance of some traditional MOEAs for tackling MaOPs, new methods have 

been applied, and these MOEAs are divided into some groups based on their approaches. To categorize 

the algorithms, the recent literature was reviewed and compared. (Li et al., 2015) presented a 

categorization for MaOEAs in which GrEA is classified into two different groups including the relaxed 

dominance-based and diversity based methods. Also, SPEA2+SDE is classified into diversity-based 

method. In another group namely reference set based, NSGA-III, A-NSGA-III, RVEA, and RVEA* are 

inserted. Also, HypE and MOMBII-II are categorized in the indicator-based group, and moreover, 

PICEA-g is put in the preference-based class. In another study [50] three groups are introduced. The 

first group includes the algorithms that are dominance based such as GrEA, SPEA2+SDE, KnEA, 

MaOEA-DDFC, MaOEA-R&D, and SPEA-R. The second group contains algorithms such as NSGA-

III, A- NSGA-III, EFR-RR, I-DBEA, MOEA-DD, RVEA, RVEA*, t-DEA. In this group, the 

decomposition approaches are employed to enhance the performance of the algorithm. The third group 

is known as the Indicator-based methods like HypE and MOMBI-II. The PICEA-g is not classified into 

any of the four categories. This is classified in the fifth group. Also, there are a few algorithms that 

employ a different approach in addition to their primary method. For example, both dominance and 

decomposition-based methods are applied in the MOEA-DD, and unlike most MOEAs, in SPEA-R, a 

diversity-first-convergence-second selection strategy was adopted to enhance the algorithm in 
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quantifying solutions’ diversity and convergence. Most existing MOEAs adopt a convergence-first-and 

diversity-second selection strategy [53] to balance convergence and diversity, and since the proportion 

of non-dominated solutions is very high, and diversity preservation is very likely to be carried out only 

on non-dominated solutions, so, this strategy generally works well in MOOPs [54]. In a recent study, 

Tanabe, Ishibuchi [55] five criteria are introduced to categorize the MaOEAs including Pareto 

dominance based, relaxed dominance based, decomposition based, indicator based, and reference based. 

In this classification, NSGA-III, SPEA2+SDE, GrEA, KnEA, SPEA/R and t-DEA are put in Pareto 

dominance-based and furthermore, NSGA-III, t-DEA and SPEA/R are categorized in reference-based 

group. On the other hand, GrEA is put in a relaxed dominance based class. I-DBEA, MOEA-DD, RVEA, 

and RVEA* are classified in decomposition based and moreover, I-DBEA, as well as MOEA-DD, are 

put in Pareto dominance based while RVEA, and RVEA* are reference based in addition to 

decomposition based. Last group namely, indicator-based includes HypE, BiGE, and MOMBII-II so 

that both HypE and BiGE are inserted to Pareto dominance based. Therefore, we present five main 

criteria to classify applied MaOEAs according to the literature; Dominance-based (C1) including Pareto 

(C1-a), diversity (C1-b), and relaxed (C1-c), Reference-set (C2), Decomposition-based (C3), Indicator-

based (C4), and Preference-based (C5). As a consequence, four main classes are determined for eighteen 

algorithms. Also, three sub-criteria of the first criterion are denoted by a, b, c as indicated in Table 1.   

Table 1 Categorization of MaOE algorithms 

MaOEA/Group 
C1 

C2 C3 C4 C5 
a b c 

Dominance-based (D.) 

MaOEA-

DDFC 

●       

MaOEA-R&D ●       

KnEA ● ●      

SPEA2+SDE ● ●      

Dominance and reference-based (D. R.) 

GrEA   ● ●    

NSGA-III ●   ●    

A-NSGA-III ●   ●    

t-DEA ●   ●    

SPEA/R ● ●  ●    

Decomposition-based (DCP.) 
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EFR-RR     ●   

I-DBEA ●    ●   

MOEA/DD ●    ●   

RVEA    ● ●   

RVEA*    ● ●   

Indicator-based (I.) 

HypE ●     ●  

BiGE ●     ●  

MOMBI-II      ●  

Preference-based (P.) 

PICEA-g       ● 

 

2.4. Performance evaluation metrics 

This section introduces the performance metrics used to evaluate the quality of the obtained non-

dominated solutions in the Pareto repository set of the MOEAs. Several important metrics of multiple 

objective problems have been described in the literature like inverted generational distance (IGD), 

hyper-volume (HV), normalized hyper-volume (NHV), spacing metric (SM), diversity metric (DM), 

and potential non-dominated (PND); the metric of IGD is described below: 

 Inverted Generational distance (IGD). This metric was employed by Srinivas and Deb [56] to 

measure the average distance between the solutions in the 𝑃𝐹 and the closest solution in the 

𝑃𝐹𝑘𝑛𝑜𝑤𝑛. Mathematically, let 𝑃∗be a reference set that represents the 𝑃𝐹. The  value of IGD value 

from𝑃∗ to the 𝑃𝐹𝑘𝑛𝑜𝑤𝑛is calculated as follows: 

𝐼𝐺𝐷 =
∑ 𝑑(𝑧, 𝑃)𝑧∈𝑃∗

|𝑃∗|
 

         (7) 

Where |𝑃∗| denotes the number of individuals in 𝑃∗  and 𝑑(𝑧, 𝑃) isthe nearest Euclidean 

distancefrom 𝑧 to 𝑃 (𝑃𝐹𝑘𝑛𝑜𝑤𝑛). The value ofIGD reflects the comprehensive performance of an 

algorithm. Smaller IGD values result in a better solution set, which indicates that 𝑃𝐹𝑘𝑛𝑜𝑤𝑛 is closeto 

𝑃𝐹𝑡𝑟𝑢𝑒 and has a good distribution. 

 

3. Computational experiments 
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To compare the performance of the algorithms, all of them were run on random instances and then 

the results were analyzed. For this purpose, we used PlatEMO v. 1.5, introduced by Tian, Cheng [57], 

to run the 18 algorithms described in section 1.3. Also, the instances were generated using this platform. 

3.1. Parameter setting of applied algorithms 

Several parameter values of the applied algorithms were checked. There are two parameter 

categories for MOEAs: general and private parameters. The number of function evaluations (NFE) and 

population size (nPOP) are classified as public group parameters. The rate of knee points for KnEA, the 

number of neighbors for estimating density for MaOEA-DDFC, and the number of nearest weight 

vectors for EFR-RR are examples for private group parameters. In this work, the NFE is set to10000 

and nPOP was set accordingly to 200 to obtain a better Pareto solution for all problems. Public 

parameters were set using trial and error and, after several trials, the best parameters were determined. 

In the strategy used to set parameters, the NFE was set first, and its value was fixed, then the second 

parameter (i.e., nPOP) was set. Private parameters were set according to recommended values that were 

previously set by researchers of PlatEMO (Tian, Cheng [57]. Algorithms such as PICEA-g, GrEA, 

NSGA-III, A-NSGA-III, SPEA2+SDE, BiGE, I-DBEA, MaOEA-R&D, SPEA/R, and t-DEA do not 

contain any private parameters but were tested for public parameter settings while the rest of the 

algorithms were tested for private and public parameter settings. Therefore, NFE as well as nPOP were 

set to 10000 and 200, respectively, for all algorithms. All final private parameters of the MaOEAs are 

displayed in Table 2. 

 

 

 

Table 2 Private parameters of each MaOE algorithm 
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Algorithm nSample K1 Rate K2 L Delta Alpha3 Epsilon Record Alpha4 Fr 

HypE 10000           

EFR-RR  2          

KnEA   0.5         

MaOEA-

DDFC 

   5 3       

MOEA/DD      0.9      

MOMBI-II       0.5 0.001 5   

RVEA          2 0.1 

RVEA*          2 0.1 

1 Number of nearest weight vectors 

2 The number of neighbors for estimating the density 

3 Threshold of variances 

4 The parameter controlling the rate of change of penalty 

 

3.2. Comparison between algorithm’s performance on all considered instances 

This section describes the experimental results of all algorithms tested on the MOKP, MOTSP, and 

mQAP. Mean and standard deviation values of IGD with 3, 5, and 10 objectives are presented. In the 

tables, the best-performing algorithms are shown with a dark gray background and the second best-

performers are shown with a light gray background. As shown in Table 3, I-DBEA from the 

decomposition-based group was the best-performing algorithm for the MOKP with three objectives 

while SPEA-R from the dominance and reference-based group was the second-best performer on this 

same MOPK. Moreover, SPEA-R was the best-performing algorithm on the MOKP with five objectives 

and EFR-RR the second-best. For MOKP with 10 objectives, KnEA and SPEA-R were the top and 

second-best performing algorithms, respectively. Since the homogeneity of variances of algorithms was 

rejected according to the Levene test at the 0.05 significance level, the Dunnett T3 test was used to show 

significance between different results at the 0.05 significance level. The last row of each table shows p-

values presenting the test value of all the algorithms on Dunnett T3 test. A p-value of 0 indicates a 

significant difference between the mean of the best-performing algorithm and the other algorithms 

(indicated by ╪). The computational results of ANOVA are shown in Supplementary File (S2), Tables 

1-9. 

Table 3 The values of IGD (mean and standard deviation) of the Pareto solutions of the algorithms on the MOKP problem in 

which dark and light gray backgrounds indicate the first and second-best performing algorithm for each condition. 
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Algorithm 
3-Obj 5-Obj 10-Obj 

Mean St. dev. Mean St. dev. Mean St. dev. 

MaOEA-DDFC 2.83E+04 1.36E+01╪ 3.43E+04 6.43E+02 4.58E+04 3.49E+02 

MaOEA-R&D 2.84E+04 3.22E+02╪ 3.54E+04 3.16E+02╪ 4.63E+04 3.71E+02 

KnEA 2.86E+04 1.71E+02╪ 3.50E+04 2.74E+02╪ 4.39E+04 1.71E+03 

SPEA2+SDE 2.85E+04 3.18E+02╪ 3.48E+04 5.45E+02╪ 4.58E+04 3.01E+02 

GrEA 2.81E+04 2.22E+02╪ 3.48E+04 1.60E+02╪ 4.65E+04 1.74E+02 

NSGA-III 2.78E+04 5.25E+02╪ 3.47E+04 4.76E+02╪ 4.55E+04 4.66E+01 

A-NSGA-III 2.81E+04 1.40E+02╪ 3.43E+04 5.31E+02 4.57E+04 3.99E+02 

t-DEA 2.84E+04 1.10E+02╪ 3.51E+04 1.70E+02╪ 4.66E+04 3.56E+02╪ 

SPEA/R 2.75E+04 2.25E+02╪ 3.36E+04 4.04E+01 4.42E+04 5.09E+02 

EFR-RR 2.77E+04 2.55E+02╪ 3.39E+04 1.95E+02╪ 4.66E+04 1.54E+02╪ 

I-DBEA 2.68E+04 1.78E+02 3.52E+04 2.37E+02╪ 4.73E+04 2.98E+02╪ 

MOEA/DD 2.77E+04 4.53E+01╪ 3.50E+04 8.07E+01╪ 4.56E+04 1.08E+02 

RVEA 2.85E+04 1.06E+02╪ 3.62E+04 1.11E+02╪ 4.70E+04 2.87E+02╪ 

RVEA* 2.90E+04 1.25E+02╪ 3.60E+04 1.36E+02╪ 4.67E+04 5.19E+02╪ 

HypE 2.87E+04 1.15E+02╪ 3.52E+04 4.56E+02╪ 4.59E+04 3.85E+02 

BiGE 2.86E+04 2.51E+02╪ 3.52E+04 2.73E+02╪ 4.55E+04 5.25E+02 

MOMBI-II 2.88E+04 6.39E+01╪ 3.51E+04 3.91E+02╪ 4.76E+04 1.45E+02╪ 

PICEA-g 2.81E+04 1.21E+02╪ 3.54E+04 1.22E+03 4.53E+04 8.25E+01 

p-value 0.000 0.000 0.000 

╪indicate highlighted algorithm outperforms the corresponding algorithmssignificantly. p-value shows 

the test value of all the algorithms on the Dunnett T3 test. 

 

Figures 3, 5, and 6 present median and inter-quartile range (IQR) values of the algorithms on the test 

problems with 3, 5, 10 objectives (subplots a, b, and c, respectively, in each figure). The size of each 

rectangle represents the IQR. The short line at each end of each rectangle indicate maximum and 

minimum values, and the short line represents median in each rectangle. The figures contain some 

interesting patterns. For example, in Figure 3(a), I-DBEA occupies the lowest position in the graph as 

compared to the other algorithms while RVEA* occupies the highest position. Furthermore, the MOEA-

DD rectangle occupies the smallest area, indicating that the MOEA-DD data has the smallest degree of 

variance.  
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(a) 

 

(b) 

 

(c) 

Figure 3 Boxplot of values of IGD on 3, 5, and 10 objective 500 dimension MOKP 

Figure 4 shows the distribution of the solution sets in the Pareto Front. Nine plots show the values 

corresponding to the number of objectives for the most efficient algorithms for MOKP, MOTSP, and 

mQAP. Three figures show scatter plots of the best objective values for the three problems above. 

Figures 4(a), 4(d), and 4(g) present results of A-NSGA-III on a 3-objective MOTSP, a 5-objective 

mQAP, and results of IDBEA on a 3-objectiveMOKP, respectively. Figures 4(b), 4(e), and 4(h) depict 

results of EFRRR on a 5-objective MOTSP, a 5-objective mQAP, and results of SPEAR on a 5-objective 

MOKP, respectively. Figures 4(c), 4(f), and 4(i) depict results of KnEA on a 10-objective MOKP, HypE 

on a 10-objective mQAP, and SPEAR on a 10-objective MOTSP, respectively. Based on Figures 4(a) 

and 4(d), A-NSGA-III is well-converged and has a proper distribution on MOTSP as compared to 

mQAP. Based on Figures 4(b) and 4(e) on 5-objective problems, EFRRR is well-converged on MOTSP 

as compared to mQAP. Moreover, It can be seen from the first and second columns two algorithms have 

fine performance on two problems, 4-(a),(d) and 4-(b), (e) while for the 10–objective, three different 

algorithms perform best on three different problems. The plots of the algorithms are shown in 

Supplementary File S1: Figures 1-52. 

Table 4 presents the mean and standard deviation values of computational time for all algorithms 

considering 3, 5, and 10 objectives on MOKP. MaOEA-R&D from dominance based group obtained 

Pareto sets in the lowest amount of time for 3-objective and RVEA from decomposition based group 
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obtained a Pareto solution for 5 and 10 objectives in the lowest amount of time. RVEA was the second-

best performing algorithm for 3 objectives on MOKP and MaOEA-R&D was the second-best 

performing algorithm for 5 and 10 objectives on MOKP. 

 

Table 4 The CT (mean and standard deviation) of the Pareto solutions of the algorithms on the MOKP problem in which 

dark and light gray backgrounds indicate the first and second-best performing algorithm for each condition. 

Algorithm 
3-Obj 5-Obj 10-Obj 

Mean St. dev. Mean St. dev. Mean St. dev. 

MaOEA-DDFC 1.93E+00 1.09E-01╪ 3.35E+00 1.16E-01╪ 7.16E+00 5.85E-01╪ 

MaOEA-R&D 1.01E+00 7.83E-02 1.11E+00 1.41E-02 1.36E+00 6.06E-02╪ 

KnEA 1.44E+00 2.63E-02╪ 1.85E+00 4.61E-02╪ 2.59E+00 3.56E-02╪ 

SPEA2+SDE 2.78E+01 1.34E-01╪ 3.15E+01 7.44E-01╪ 4.60E+01 9.78E-01╪ 

GrEA 3.97E+00 4.98E-02╪ 6.55E+00 8.36E-01╪ 1.51E+01 1.41E+00╪ 

NSGA-III 1.35E+00 2.54E-02╪ 1.67E+00 1.25E-01╪ 1.98E+00 1.58E-02╪ 

A-NSGA-III 1.69E+00 6.70E-02╪ 2.07E+00 5.96E-02╪ 2.66E+00 8.18E-02╪ 

t-DEA 1.26E+00 1.08E-02╪ 1.48E+00 6.82E-02╪ 1.66E+00 9.28E-02╪ 

SPEA/R 1.38E+01 1.81E-01╪ 9.71E+00 1.11E-01╪ 9.18E+00 5.58E-02╪ 

EFR-RR 1.46E+00 3.00E-02╪ 1.62E+00 6.83E-02╪ 1.76E+00 5.68E-02╪ 

I-DBEA 1.21E+01 1.48E-01╪ 1.24E+01 3.62E-01╪ 1.50E+01 5.14E-01╪ 

MOEA/DD 2.84E+01 2.82E-01╪ 2.51E+01 1.10E-01╪ 2.72E+01 3.85E-01╪ 

RVEA 1.08E+00 1.25E-02 1.10E+00 5.56E-02 1.15E+00 1.89E-02 

RVEA* 1.28E+00 4.70E-02╪ 1.39E+00 1.16E-01╪ 1.55E+00 8.50E-03╪ 

HypE 6.82E+01 5.09E+00╪ 2.63E+02 1.70E+01╪ 1.18E+03 8.97E+01╪ 

BiGE 1.16E+00 5.03E-02╪ 1.23E+00 1.07E-01 1.72E+00 1.04E-01╪ 

MOMBI-II 2.19E+00 3.13E-02╪ 2.14E+00 9.13E-02╪ 2.14E+00 2.17E-02╪ 

PICEA-g 1.98E+00 3.27E-02╪ 3.00E+00 4.85E-02╪ 1.41E+01 1.50E+00╪ 

p-value 0.000 0.000 0.000 
╪ indicate highlighted algorithm significantly outperforms the other algorithms. p-value shows the test value of all the 

algorithms on the Dunnett T3 test. 
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(a)  3 objectives 

 

 

(b) 5 objectives 

 

 

(c)10 objectives 

 

 

(d)3 objectives 

 

        (e)5 objectives 

 

(f)10 objectives 

 

(g)3 objectives 

 

(h) 5 objectives 

 

(i)10 objective 

Figure 4. The best performing algorithms relative to the IGD metric for the MOKP,MOTSP, mQAP with 3,5, and 10objectives 
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Table 5 presents the mean and standard deviation values of IGD for all algorithms considering 3, 5, and 

10 objectives on MOTSP. As shown, A-NSGA-III and NSGA-III from dominance and reference based 

were the first- and second-best performing algorithms on MOKP with 3 objectives, EFR-RR from the 

decomposition based and SPEA-R from dominance and reference based were the first- and second-best 

performing algorithms with 5 objectives and SPEA-R and KnEA were the first- and second-best 

performing algorithms on MOTSP with 10 objectives.    

Table 5 The values of IGD (mean and standard deviation) of the Pareto solutions of the algorithms on the MOTSP problem 

in which dark and light gray backgrounds indicate the first and second-best performing algorithm for each condition. 

Algorithm 
3-Obj 5-Obj 10-Obj 

Mean St. dev. Mean St. dev. Mean St. dev. 

MaOEA-DDFC 4.70E+02 1.06E+01 5.81E+02 8.31E+00 8.00E+02 3.97E+00╪ 

KnEA 4.75E+02 2.91E+00╪ 5.97E+02 1.65E+01╪ 7.93E+02 6.32E+00 

SPEA2+SDE 4.78E+02 2.86E+00╪ 5.97E+02 4.41E+00╪ 8.17E+02 2.76E+00╪ 

GrEA 4.78E+02 7.04E+00╪ 5.82E+02 1.66E+00╪ 8.30E+02 5.85E-01╪ 

NSGA-III 4.66E+02 4.78E+00 5.84E+02 8.55E+00╪ 8.02E+02 1.20E+00╪ 

A-NSGA-III 4.59E+02 6.45E+00 5.84E+02 5.01E+00╪ 8.05E+02 2.20E+00╪ 

t-DEA 4.71E+02 7.77E+00 6.03E+02 1.10E+01╪ 8.35E+02 2.06E+01╪ 

SPEA/R 4.66E+02 5.38E+00 5.72E+02 1.94E+00 7.87E+02 2.28E+00 

EFR-RR 4.76E+02 8.43E+00╪ 5.70E+02 4.00E+00 8.24E+02 9.49E+00╪ 

I-DBEA 4.67E+02 8.77E+00 6.08E+02 1.31E+00╪ 8.53E+02 1.67E+00╪ 

MOEA/DD 4.71E+02 6.59E+00 5.95E+02 1.83E+00╪ 8.24E+02 1.47E+00╪ 

RVEA 4.68E+02 1.67E+00 6.07E+02 6.85E+00╪ 8.45E+02 1.84E+00╪ 

RVEA* 4.93E+02 1.09E+01╪ 6.17E+02 5.78E+00╪ 8.23E+02 1.07E+01╪ 

HypE 4.80E+02 5.55E+00╪ 5.95E+02 4.25E+00╪ 8.20E+02 1.17E+01╪ 

BiGE 4.82E+02 4.52E+00╪ 5.89E+02 7.36E+00╪ 8.06E+02 2.62E+00╪ 

MOMBI-II 4.85E+02 5.84E+00╪ 5.91E+02 9.09E+00╪ 8.66E+02 1.19E+00╪ 

PICEA-g 4.71E+02 7.73E+00 5.86E+02 8.34E+00╪ 7.96E+02 2.85E+00╪ 

p-value 0.000 0.000 0.000 
╪ indicate highlighted algorithm significantly outperforms the other algorithms. p-value shows the test value of all the 

algorithms on the Dunnett T3 test. 
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(a) 

 

(b) 

 

(c) 

Figure 5.Boxplots of value of IGD on 3, 5, and 10 objective 500 dimension MOTSP 

 

Table 6 shows the mean and standard deviation values of computational time for all algorithms 

considering 3, 5, 10 objectives on MOTSP. As shown, t-DEA from the dominance and reference based 

group obtained Pareto sets in the lowest amount of time for problems with 3, 5, and 10 objectives, while 

RVEA from decomposition based was the second-best performing algorithm for obtaining Pareto 

solution for problems with 5 and 10 objectives. BiGA was the second-best performing algorithm for 3 

objectives on MOTSP. 

 

Table 6 The CT (mean and standard deviation) of the Pareto solutions of the algorithms on the MOTSP problem in which 

dark and light gray backgrounds indicate the first and second-best performing algorithm for each condition. 

Algorithm 
3-Obj 5-Obj 10-Obj 

Mean St. dev. Mean St. dev. Mean St. dev. 

MaOEA-DDFC 1.97E+01 4.40E-02╪ 3.22E+01 2.23E-01╪ 5.74E+01 1.45E-01╪ 

KnEA 1.88E+01 9.56E-02╪ 2.74E+01 9.73E-02╪ 4.77E+01 2.66E-02 

SPEA2+SDE 6.57E+01 2.00E-02╪ 1.03E+02 2.86E+00╪ 1.67E+02 1.29E+00╪ 

GrEA 2.35E+01 1.23E-01╪ 4.63E+01 5.54E-01╪ 7.88E+01 1.00E-01╪ 

NSGA-III 1.86E+01 1.27E-01╪ 2.65E+01 1.37E-01╪ 4.47E+01 1.03E-01 

A-NSGA-III 1.91E+01 1.26E-01╪ 2.69E+01 4.31E-02╪ 4.56E+01 5.46E-02 

t-DEA 1.05E+01 1.39E+00 2.00E+01 2.91E+00 3.87E+01 7.41E+00 

SPEA/R 3.05E+01 6.65E-01╪ 3.44E+01 5.21E-01╪ 5.65E+01 2.87E+00╪ 

EFR-RR 1.84E+01 5.69E-02╪ 2.60E+01 5.68E-02╪ 4.41E+01 6.02E-01 

I-DBEA 5.82E+01 4.18E-01╪ 7.71E+01 4.76E-01╪ 1.19E+02 5.77E-01╪ 

MOEA/DD 8.59E+01 2.20E-01╪ 9.56E+01 2.88E-01╪ 1.30E+02 3.65E+00╪ 

RVEA 1.81E+01 8.77E-02╪ 2.53E+01 2.91E-02╪ 4.33E+01 1.34E-01 
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RVEA* 1.82E+01 6.11E-02╪ 2.58E+01 8.93E-02╪ 4.40E+01 1.28E-01 

HypE 1.54E+02 2.64E+01╪ 1.09E+03 1.44E+02╪ 2.66E+03 1.35E+02╪ 

BiGE 1.77E+01 3.14E-02╪ 2.56E+01 9.57E-02╪ 4.51E+01 6.13E-02 

MOMBI-II 1.98E+01 2.40E-02╪ 2.71E+01 9.46E-02╪ 4.50E+01 2.70E-01 

PICEA-g 1.98E+01 8.89E-01╪ 3.75E+01 4.28E-01╪ 9.13E+01 1.34E+00╪ 

p-value 0.000 0.000 0.000 
╪ indicate highlighted algorithm significantly outperforms the corresponding algorithms. p-value shows the test value of all 

the algorithms on the Dunnett T3 test. 

 

Table 7 presents the mean and standard deviation values of IGD for all algorithms considering 3, 5, and 

10 objectives on mQAP. The A-NSGA-III from dominance and reference-based, EFR-RR from 

decomposition-based, and HypE from indicator based group were the best-performing algorithms on 

mQAP with 3, 5, and 10 objectives while GrEA from dominance and reference-based, MOEA-DDFC 

from dominance-based group, and KnEA from indicator-based group were the second-best performing 

algorithms with the same number of objectives on mQAP, respectively.  

 

Table 7 The values of IGD (mean and standard deviation) of the Pareto solutions of the algorithms on the mQAP problem in 

which dark and light gray backgrounds indicate the first and second-best performing algorithm for each condition. 

Algorithm 
3-Obj 5-Obj 10-Obj 

Mean St. dev. Mean St. dev. Mean St. dev. 

MaOEA-DDFC 3238411057 616105.2 4181135126 67784.2421 5910610328 76971.75 

KnEA 3238424081 257388.4 4181428857 101525.116╪ 5910489995 227411.7 

SPEA2+SDE 3238934788 105952.6╪ 4181447356 104334.561╪ 5911633212 90447.86╪ 

GrEA 3238302447 137836.9 4181446891 327636.864 5912106455 114648.8 

NSGA-III 3238403512 4902.027 4181172087 275558.847 5910678821 75690.47 

A-NSGA-III 3238153228 280055.5 4181366324 177000.135 5910848941 317553.8 

t-DEA 3238473939 281569.8 4181638779 102255.097╪ 5910857547 162041.7 

SPEA/R 3238665030 109856.9╪ 4181566107 460354.866 5910890545 242490.6 

EFR-RR 3238363710 140395.6 4181127096 152027.997 5911000361 77023.06╪ 

I-DBEA 3238336826 44924.78 4181374563 90980.2614╪ 5912234524 177109.4╪ 

MOEA/DD 3238943378 273681.9╪ 4182171353 122073.069╪ 5911168962 67392.7╪ 

RVEA 3238663027 160574.7╪ 4182161241 526789.003╪ 5911626735 314282.4╪ 

RVEA* 3239165655 268893.3╪ 4181907575 8163.283╪ 5910956568 229349.8 

HypE 3238686720 209576.8╪ 4181449643 245881.052 5910253162 462765.5 

BiGE 3238459413 42283.27 4181436494 37477.6092╪ 5910701725 7374.795 

MOMBI-II 3238653884 119698.2╪ 4181455320 252132.464 5912708659 128329.8╪ 

PICEA-g 3239545211 728173.3╪ 4181279593 203637.295 5910528534 64760.97╪ 

p-value 0.000 0.000 0.000 
╪ indicate highlighted algorithm significantly outperforms the other algorithms. p-value shows the test value of all the 

algorithms on the Dunnett T3 test. 
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(a) 

 
(b) 

 
(c) 

Figure 6.Boxplots of IGD value on 3, 5, and 10 objective 500 dimension mQAP 

Table 8 presents the mean and standard deviation values of computational time for all algorithms 

considering 3, 5, and 10 objectives on mQAP. As indicated, KnEA from dominance-based, PICEA-g 

from preference-based, and EFR-RR from decomposition based group obtained Pareto sets in the lowest 

amount of time for 3, 5, and 10 objectives, while NSGA-III from dominance and reference-based, EFR-

RR from decomposition-based, and A-NSGA-III from dominance and reference-based group obtained 

Pareto solution in the second-lowest amount of time for 3, 5, and 10 objectives on mQAP, respectively. 

Table 8 The CT (mean and standard deviation) of the Pareto solutions of the algorithms on the mQAP problem in which 

dark and light gray backgrounds indicate the first and second-best performing algorithm for each condition. 

Algorithm 
3-Obj 5-Obj 10-Obj 

Mean St. dev. Mean St. dev. Mean St. dev. 

MaOEA-DDFC 8.64E+01 2.13E+00 1.40E+02 1.97E+00╪ 2.77E+02 5.81E-01╪ 

KnEA 8.36E+01 2.80E-02 1.42E+02 3.93E+00 2.89E+02 2.27E+01 

SPEA2+SDE 1.10E+02 4.02E-01╪ 1.66E+02 2.40E+00╪ 3.18E+02 3.19E+00╪ 

GrEA 8.67E+01 1.32E+00╪ 1.45E+02 7.37E-01╪ 2.83E+02 2.35E+00╪ 

NSGA-III 8.38E+01 1.33E-01 1.43E+02 1.53E+00╪ 2.75E+02 1.65E+00╪ 

A-NSGA-III 8.38E+01 2.93E-01 1.38E+02 2.81E-01╪ 2.70E+02 8.08E-01╪ 

t-DEA 8.76E+01 8.12E-01╪ 1.44E+02 3.67E+00╪ 2.81E+02 6.03E+00╪ 

SPEA/R 1.81E+02 5.08E+00╪ 3.04E+02 3.10E+01╪ 5.47E+02 4.87E+00╪ 

EFR-RR 8.48E+01 1.69E+00 1.37E+02 3.10E-01 2.67E+02 1.27E+00 

I-DBEA 2.24E+02 3.18E+00╪ 2.97E+02 1.40E+01╪ 5.51E+02 9.14E+00╪ 

MOEA/DD 2.07E+02 8.83E+00╪ 3.09E+02 6.11E+00╪ 6.02E+02 3.30E+01╪ 

RVEA 8.54E+01 7.52E-01╪ 1.40E+02 3.05E-01╪ 2.73E+02 1.22E+00╪ 

RVEA* 8.51E+01 3.52E-01╪ 1.41E+02 1.16E+00╪ 2.72E+02 5.45E-01╪ 

HypE 1.05E+02 3.06E-01╪ 2.30E+02 6.00E+00╪ 1.86E+03 1.58E+02╪ 

BiGE 8.61E+01 1.10E+00╪ 1.41E+02 7.14E+00 2.74E+02 9.51E-01╪ 

MOMBI-II 8.55E+01 8.47E-02╪ 1.39E+02 3.64E+00 2.72E+02 6.66E-01╪ 

PICEA-g 8.39E+01 5.59E-01 1.37E+02 2.77E-01 2.89E+02 9.72E-01╪ 

p-value 0.000 0.000 0.000 
╪ indicates highlighted algorithm significantly outperforms the other algorithms. p-value shows the test value of all the 

algorithms on the Dunnett T3 test. 
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Table 9 presents ranking changes for all algorithms on MOKP, MOTSP, and mQAP considering the 

metrics: IGD and CT separately. In Table 9, indicator A indicates the number of objectives changes 

from 3 to 5 and indicator B shows the number of objectives changes from 5 to 10. For example, the first 

row, which starts with algorithm HypE, indicates a slight decrease of -3 on indicator A and -3 on 

indicator B (i.e., A from 3 to 5 and B from 5 to 10) on MOKP, whereas on CT, both A and B are zero, 

indicating there was no change for this metric when the number of objectives was changed. While there 

was a significant decrease of -4 in the value for an index of A on MOTSP, the value of indicator B 

decreased to -1. However, CT value for both indicator A and B on MOTSP are zero. The rankings of 

mQAP from 3 objectives to 5 objectives and 5 objectives to 10 objectives have values of -2 for indicator 

A and -10 for indicator B for the value; ranking of CT for the same problem revealed an increase of +1 

for indicator A and +3 for indicator B. Description of other rows in Table 8 is the same. More details 

of Table 8 are provided in Supplementary FileS1 (Figures 53-55).  

Table 9 Rank changes of MOEAs versus objective changes on all problems considering IGD and CT metrics. 

Algorithms 

MOKP  MOTSP  mQAP 

IGD CT  IGD CT  IGD CT 

A B A B  A B A B  A B A B 

MaOEA-DDFC -5 4 2 -1  -3 1 1 1  -4 2 -4 2 
MaOEA-R&D 4 -4 1 0  * * * *  * * * * 

KnEA -6 -8 1 1  2 -10 2 0  0 -5 8 3 

SPEA2+SDE -5 2 1 0  1 -5 1 0  -4 4 -1 0 

GrEA 0 6 0 2  -9 9 1 -1  7 6 1 -2 
NSGA-III 0 -1 1 0  3 0 0 -1  -2 2 8 -3 

A-NSGA-III -4 4 0 1  5 0 -1 1  4 2 0 -1 

t-DEA 0 3 1 -1  6 0 0 0  5 -6 -1 -2 

SPEA/R -1 1 -1 -2  -1 -1 -2 -1  1 -4 1 -2 

EFR-RR -2 12 -2 0  -10 11 0 -1  -3 10 -4 0 
I-DBEA 11 5 1 -1  12 0 0 0  3 10 -2 0 

MOEA/DD 5 -2 -1 0  2 0 -1 0  2 -5 1 -1 

RVEA 5 -2 -1 0  10 0 -1 0  5 -3 -2 0 

RVEA* -1 -2 -1 -1  0 -7 0 -1  -1 -5 1 -3 

HypE -3 -3 0 0  -4 -1 0 0  -2 -10 1 3 
BiGE 0 -9 0 2  -7 -1 1 4  0 -2 -1 -2 

MOMBI-II -6 7 -2 -2  -7 8 -2 -2  2 5 -4 -1 

PICEA-g 8 -13 0 2  0 -4 1 1  -13 -1 -2 9 
*The MaOEA-R&D is not compatible with MOTSP and mQAP and it was not run on MOTSP and mQAP. 
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3.3. Discussion 

In this section, we discuss the class of the MaOEAs that outperforms others in solving each problem 

according to the significant statistical results.  

To solve the MOKP, we can observe the better results among the third category such as I-DBEA, 

MOEA-DD, EFR-RR, since the decomposition based algorithms outperform others in solving 3-

objective samples. As the size of the objectives increases to 5, not only the rank of the dominance based 

algorithms such as KnEA and MaOEA-DDFC or dominance and reference based such as SPEA/R 

ameliorates but also SPEA/R, and MaOEA-DDFC outperform the second group significantly. For 

example, after increasing the objectives from 3 to 5 the rank of the I-DBEA and MOEA-DD is 

exacerbated (+5) and (+11) respectively while, the rank of the KnEA, SPEA/R, and MaOEA-DDFC is 

enhanced (-6), (-1), and (-5). Although, the rank of the indicator based group is improved but the results 

of those underperform by the dominance and reference based group for 5-objective MOKP. As can be 

seen from Table 3, there is no significant difference between first and second positions for 10 objectives 

MOKP problem, we can conclude the MaOEAs that are dominance based as well as reference set based, 

obtain the best IGD with less standard deviation for MOKP. On the other hand, the rank of the PICEA-

g is changed (-13) with increasing objectives from 5 to 10, and the behavior of this algorithm indicates 

the promising performance for solving the 10-objective MOKP. Although the rank of the indicator 

based group is ameliorated approximately in many-objective KP, the second group outperforms all 

groups. Therefore, we can point out the dominance and reference based category are promising to tackle 

many-objective KP in comparison with other groups. Furthermore, the improved MaOEAs such as 

SPEA/R occupy the best rank among other algorithms of this group since a diversity-first-convergence 

second selection strategy is adopted in SPEA/R, unlike most MOEAs. As it is found from Table 8, the 

SPEA/R shows a slight decrease (-1) of the rank to solve the problem from 3 to 5 objectives, and a 

slight increase (+1) of the rank for solving the MOKP from 5-objective to 10-objective which justify 

the robustness of this algorithm. However, the mentioned algorithms do not perform well in comparison 

with RVEA and MaOEA-R&D from the aspect of time. We found that the decomposition based 

category such as RVEA, I-DBEA saves time in solving MOKP in comparison with other groups. 
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For tackling the 3-objective MOTSP, we must point out that most algorithms of the second group 

such as A-NSGA-III, NSGA-III, SPEA/R obtain better results in comparison with the other groups. 

Besides, the SPEA/R, GrEA from the second class and KnEA and MaOEA-DDFC from the first class 

obtain better positions for 5 and 10-objective MOTSP. Although the average of EFR-RR as 

decomposition based is better than that of SPEA/R for 5-objectives, the St. Dev. of SPEA/R is less than 

that of EFR-RR. On the other hand, SPEA/R has a slight decrease (-1) of the rank to solve MOTSP not 

only from 3 to 5, but also from 5 to 10 objectives and therefore, this result shows the robustness of this 

algorithm for solving MOTSP with many objectives. To solve MOTSP, since there is no significant 

difference between the first and the second positions for each problem (3, 5, 10) objectives according 

to the results of Table 5, we conclude the MaOEAs that are dominance based as well as reference set 

based, obtain the best IGD with less standard deviation for MOTSP. On the other hand, an improvement 

of the performance is seen in the behavior of the PICEA-g for solving 10-objective MOTSP, and so this 

method can be promising to tackle many-objective TSP as behaved for MOKP. As it is shown in the 

results, we can observe as the objectives increase from 3 to 5, the rank of the second group such as 

GrEA, and SPEA/R is enhanced to (-9) and (-1) respectively and as objectives increase from 5 to 10, 

the rank of the KnEA and SPEA2+SDE from the first group is improved to (-10) and (-5) respectively. 

Also, it is shown that the rank of the indicator based group is improved after increasing the objectives 

nonetheless; the second group outperforms all of them and therefore, this group is promising to tackle 

many-objective TSP in comparison with other groups. However, the mentioned algorithms do not 

perform well in saving time in comparison with t-DEA, RVEA. Therefore, we found that the second 

and third category such as t-DEA and RVEA saves time to solve 3, 5, and 10-objective MOTSP in 

comparison with other categories. 

To solve the 3-objective mQAP, the MaOEAs such as A-NSGA-III, NSGA-III, GrEA, EFR-RR, 

and I-DBEA obtain the best positions in comparison with others. According to Table 7, there is no 

significant difference between first and second positions of these algorithms. Therefore, the dominance 

and reference based group outperforms other groups with less standard deviation for 3-objective mQAP. 

To tackle the 5-objective mQAP, we could not determine the best group since there is no significant 
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difference between results of some representative of categories and for example, MaOEA-DDFC is the 

best for solving the 5-objective mQAP in comparison with EFR-RR since the St. Dev. of the MaOEA-

DDFC is less than that of the EFR-RR. On the other hand, SPEA2+SDE, MaOEA-DDFC from the first 

group have a mutation of the rank (-4) and EFR-RR from third class and NSGA-III from the second 

class have a change of the rank (-3) and (-2), whereas I-DBEA from the third group and A-NSGA-III 

and GrEA from the second group have the change of the rank (+3), (+4), and (+7). As a consequence, 

some dominance based algorithm can be promising to solve 5-objective mQAP in comparison with 

others. 

As it is indicated from Table 7, there is no significant difference between first and second positions 

for 10 objectives mQAP problem, and as a consequence, the MaOEAs that are dominance-based, 

presents the best IGD with less standard deviation for mQAP. For example, HypE outperforms others 

for solving 10-objective mQAP according to its average although; KnEA from the first group has the 

better St. Dev. In total, there is no significant difference between the results of HypE and some of the 

first class such as KnEA, MaOEA-DDFC and so, we can observe that the first group, as well as HypE 

from the indicator based group, outperforms others when the objectives of mQAP are increased from 5 

to 10. Although, the rank of the RVEA* as well as MOEA-DD is ameliorated (-5) but both of them 

underperformed by the mentioned algorithms from first class. However, KnEA, PICEA-g, and EFR-

RR solve the 3, 5, and 10-objective mQAP at the savings in time. As indicated, the performance of the 

dominance based, decomposition based, and preference-based classes in saving time for many-objective 

QAP is better than other classes. 

Table 10 displays the best algorithms for different many objective problems. We found from this 

table that the dominance and reference based algorithms such as SPEA/R, NSGA-III, and GrEA are 

suitable algorithms to tackle MOTSP and mQAP with 3 objectives. However, decomposition based 

such as I-DBEA and MOEA-DD are promising for 3-objective MOKP. On the other hand, the 

dominance and reference based algorithms such as SPEA/R, NSGA-III, and GrEA are promising 

algorithms to tackle MOKP and MOTSP with 5 and 10 objectives as the size of the objectives increases. 

While, the dominance based such as MaOEA-DDFC as well as the indicator-based algorithms such as 
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HypE are promising to solve mQAP with 5 and 10 objectives although, both the first and the second 

have no significant difference to solve 5-objective mQAP. Lastly, the performance of the second group 

at saving time is the best on all problems when the size of objectives increases.   

Table 10 the best class of the algorithms for solving the problems on different many objectives 

Problem 3-Obj 5-Obj 10-Obj 

MOKP 

DCP. (I-DBEA, MOEA-DD)  

D. R. (NSGA-III, SPEA/R) 

 

D. R. (SPEA/R, A-NSGA-

III) 

 (MaOEA-DDFC) 

D. R. (SPEA/R, NSGA-III) 

D. (KnEA, MaOEA-DDFC) 

MOTSP 

D. R. (A-NSGA-III, NSGA-III, 

SPEA-R)  

DCP. (I-DBEA, RVEA)  

D. R. (SPEA/R, GrEA)  

DCP. (EFR-RR)  

D. R. (SPEA/R, NSGA-III) 

D. (KnEA, MaOEA-DDFC) 

mQAP 

D. R. (A-NSGA-III, NSGA-III 

,GrEA) 

DCP. (EFR-RR, I-DBEA) 

D. (MaOEA-DDFC)  

DCP. (EFR-RR) 

I. (HypE) 

 

D. (KnEA, MaOEA-

DDFC)  

 

4. Conclusion  

In this work, the search behavior of well-known MaOEAs algorithms (NSGA-III, MOEA-DD, 

SPEA-R,HypE, PICEA-g, GrEA, A-NSGA-III, SPEA2+SDE, BiGE, EFR-RR, I-DBEA, KnEA, 

MaOEA-DDFC, MOMBI-II, RVEA, RVEA*, and t-DEA) on many-objective MOKP, MOTSP, and 

mQAP with 3, 5, and 10 objectives was examined. The experimental results on many-objective 

problems (MOKP, MOTSP, mQAP) were consistent with the following frequently reported result: 

when the number of objectives was increased, the performance of Pareto dominance-based algorithms 

deteriorated severely. When IGD was considered, the decomposition-based algorithms performed best 

on MOKP with 3 objectives, and the dominance and reference based algorithms worked the best with 

5 and 10 objectives, respectively. For MOTSP, when IGD was considered, some of dominance and 

reference based as well as decomposition based worked best with 3 objectives and some of dominance 

and reference based performed best with 5 and 10 objectives, respectively. For mQAP, When IGD was 

considered, while the second class worked best with 3 objectives, some of first and third class worked 



 

28 
 

best with 5 objectives and dominance based as well as indicator based group worked the best with 10 

objectives. For the CT metric, although the MaOEA-R&D from the first class worked best on MOKP 

with 3 objectives, the RVEA, as well as some of the third class, had the best performance on the same 

problem with 5 and 10 objectives. Some of the second group such as t-DEA had best performance on 

MOTSP with 3, 5, and 10 objectives. Although the KnEA worked best on mQAP with 3 objectives, 

PICEA-g and EFR-RR had the best performance on the same problem with 5 and 10 objectives. It is 

valuable to note that the results above mentioned are based on ANOVA test. In short, it is concluded 

that convergence-based algorithms have better performance on MOKP while the number of objectives 

increases; considering MOTSP dominance and reference based algorithms present better performance 

compared with other algorithms with increasing the number of objectives; and finally indicator-based 

as well as dominance based perform better than others on mQAP with increasing the number of 

objectives. Among the eighteen algorithms tested in this study, SPEA-R has a better ranking on the 

three problems while the number of objectives increases. 
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