Open PriveLab



# How to scale up the autonomous driving models? GenAD: Generalized Predictive Model for Autonomous Driving

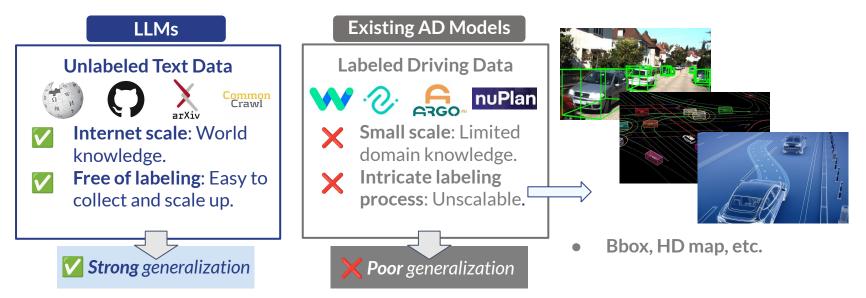
CVPR 2024, Highlight

arxiv.2403.09630

#### Motivation (1/3) | What Makes for Generalized AD Model?

#### **Data Distinction:**

- + LLMs pretrained on **trillions of unlabeled text tokens** exhibit strong generalization in a variety of domains and applications
- However, existing AD models are established on **limited labeled data**, which hampers their generalization



Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024

# Motivation (2/3) | What Makes for Generalized AD Model?

### Learning Objective:

- Supervised by 3D labels
   X Hard to scale without sufficient labeled data
- No accessible labeled data Model 
  Model-XL
- Supervised by expert features
  - Scalable with developed expert models (e.g., DINOv2)
  - Focusing on specific objects (e.g., centered or large ones)
  - Ignoring critical details (e.g., small objects)



• Feature map visualization from DINOv2

**X** Undesirable for modeling challenging driving scenes

### Motivation (3/3) | What Makes for Generalized AD Model?

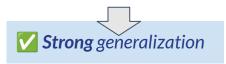
#### Our Initiative: Data: Massive online driving videos Learning Objective:

• Supervised by "**pixels of future frames**" → Video Prediction





Scalable Data (easy to collect from the web) No 3D labeling needed Better detail preservation Learning world knowledge and how to drive inherently



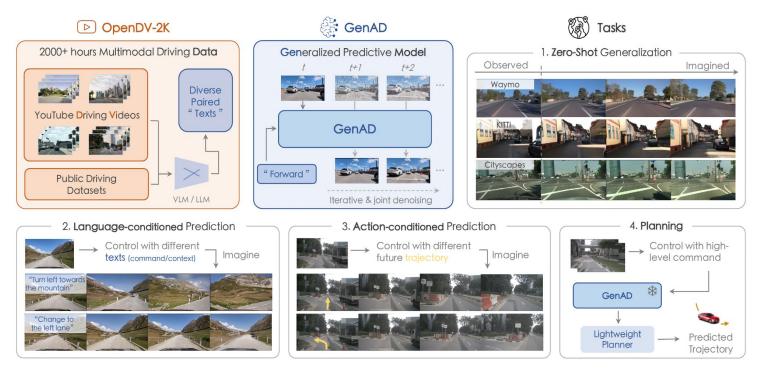




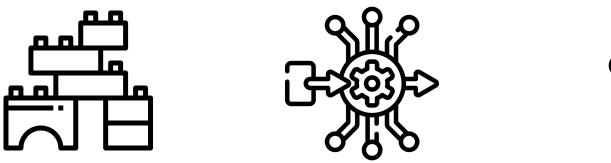
Massive YouTube videos, collected worldwide

#### GenAD | At a Glance

Summary: A **billion-scale video prediction model** trained on **web-scale driving videos**, demonstrating **strong generalization across** a wide spectrum of **domains and tasks**.







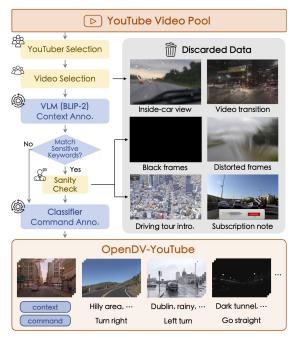


Data

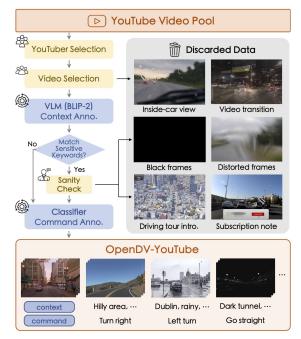
Model

**Tasks** 

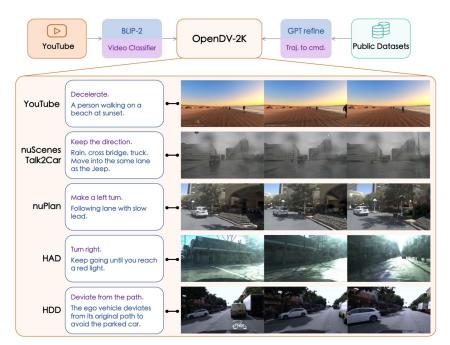
Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



• Rigorous data collection and filtering strategy



 Rigorous data collection and filtering strategy

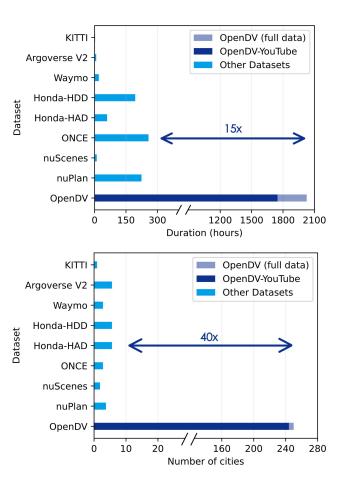


- Multi-modal and Multi-source Nature
  - Sourced from both online videos and public datasets for diversity
  - Paired with textual context and command

- Largest public dataset for autonomous driving
- ≥ 2059 hours, ≥ 244 cities

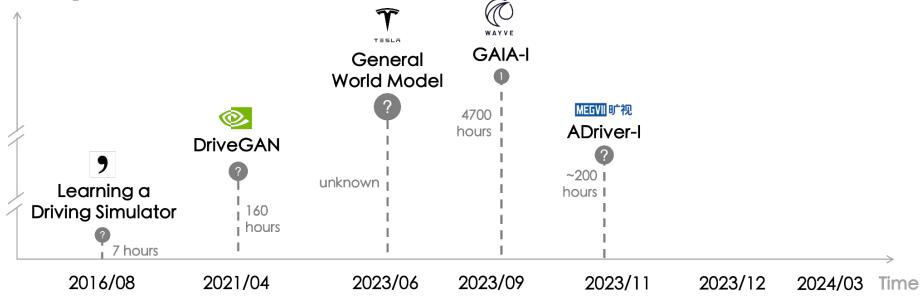
|                               | Dataset                                   | Duration<br>(hours) | Front-view<br>Frames  | Geographic Countries                       | Diversity<br>Cities                                | Sensor<br>Setup              |
|-------------------------------|-------------------------------------------|---------------------|-----------------------|--------------------------------------------|----------------------------------------------------|------------------------------|
| ×                             | KITTI [30]                                | 1.4                 | 15k                   | 1                                          | 1                                                  | fixed                        |
| X                             | Cityscapes [21]                           | 0.5                 | 25k                   | 3                                          | 50                                                 | fixed                        |
| X                             | Waymo Open* [97]                          | 11                  | 390k                  | 1                                          | 3                                                  | fixed                        |
| ×                             | Argoverse 2* [109]                        | 4.2                 | 300k                  | 1                                          | 6                                                  | fixed                        |
| 1                             | nuScenes [12]                             | 5.5                 | 241k                  | 2                                          | 2                                                  | fixed                        |
| 1                             | nuPlan* [13]                              | 120                 | 4.0M                  | 2                                          | 4                                                  | fixed                        |
| 1                             | Talk2Car [24]                             | 4.7                 | -                     | 2                                          | 2                                                  | fixed                        |
| 1                             | ONCE [72]                                 | 144                 | 7M                    | 1                                          | -                                                  | fixed                        |
| 1                             | Honda-HAD [51]                            | 32                  | 1.2M                  | 1                                          | -                                                  | fixed                        |
| 1                             | Honda-HDD-Action [84]                     | 104                 | 1.1M                  | 1                                          | -                                                  | fixed                        |
| 1                             | Honda-HDD-Cause [84]                      | 32                  | -                     | 1                                          | -                                                  | fixed                        |
| <ul><li>✓</li><li>-</li></ul> | OpenDV-YouTube (Ours)<br>OpenDV-2K (Ours) | 1747<br><b>2059</b> | 60.2M<br><b>65.1M</b> | $\geq 40^{\dagger}$<br>$\geq 40^{\dagger}$ | $\geq$ 244 $^{\dagger}$<br>$\geq$ 244 $^{\dagger}$ | uncalibrated<br>uncalibrated |

OpenDV-2K (Ours) 🚀



• Comparison of the data consumption for predictive driving models

Training Data (hours)

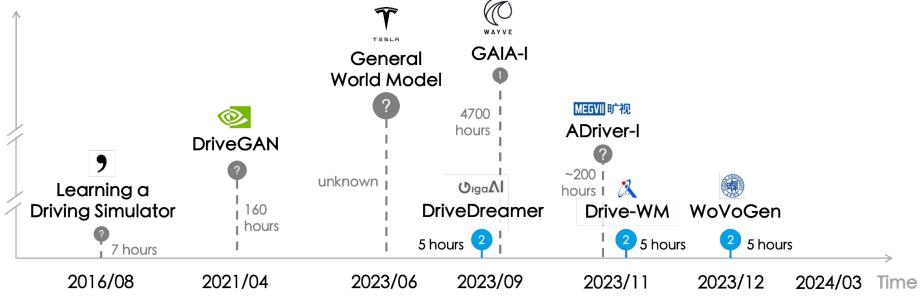


Private Data

**Public Data** 

• Comparison of the data consumption for predictive driving models

Training Data (hours)

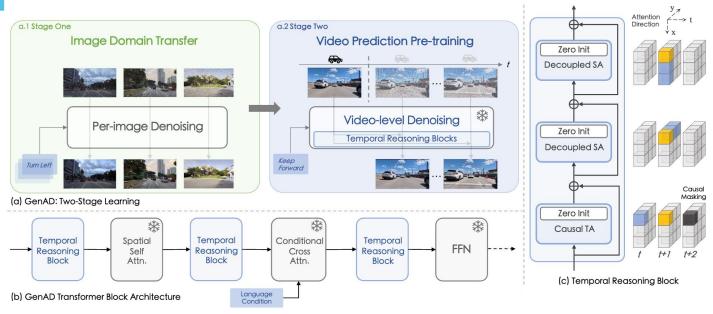


Private Data

Public Data

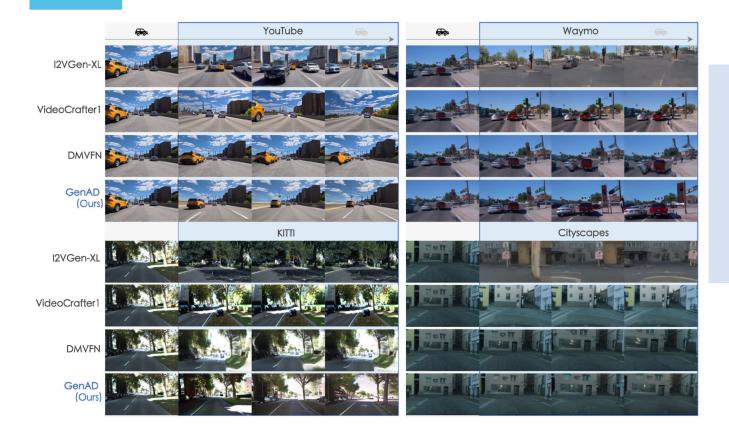
#### **GenAD** | Dataset Private Data Comparison of the data consumption for predictive driving models ۲ Public Data Training Data (hours) Õ WAYVE GenAD (Ours) TESLO **GAIA-I** General World Model ≥244 cities MEGVII町视 4700 hours ADriver-I DriveGAN 2000 hours ~200 | unknown Learning a OlgaΛ hours I **Driving Simulator** 160 DriveDreamer Drive-WM WoVoGen hours 2 5 hours 5 hours 🕗 5 hours 7 hours 2021/04 2016/08 2023/06 2023/09 2023/11 2023/12 2024/03 Time

## Algorithm | Video Prediction Model for Driving



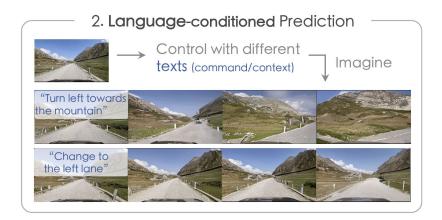
- Two-stage Training:
  - Tuning the **image generation model** (SDXL) into a highly-capable **video prediction model**
- Model Specializations for Driving:
  - Causal Temporal Attention: coherent and consistent future prediction
  - Decoupled Spatial Attention: efficient long-range modeling
  - Interleaved temporal blocks: sufficient spatiotemporal interaction

#### Result on Tasks (1/4) | Zero-shot Generalization (Video Prediction)



- Zero-shot video prediction on unseen datasets including Waymo, KITTI and Cityscapes
- Outperforming competitive general video generation models

### Result on Tasks (2/4) | Language-conditioned Prediction



Controlling the future evolvement with **language** 





"Drive slowly down at intersection, several barriers beside the road"



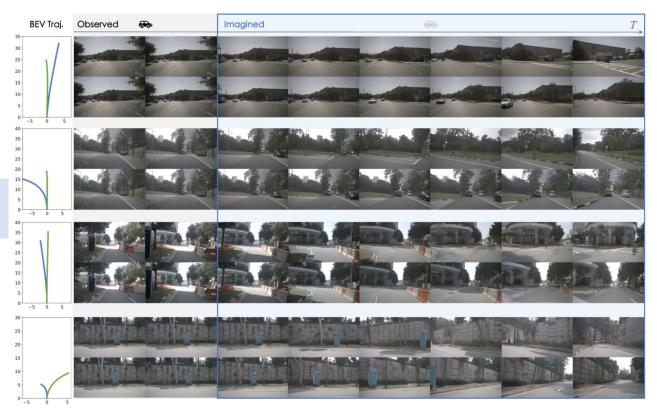
"Turn right, some parked cars, a parking lot"

## Result on Tasks (3/4) | Action-conditioned Prediction (Simulation)

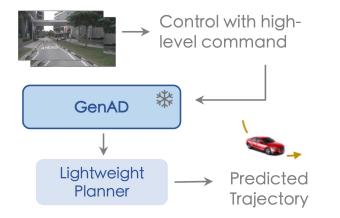
| Method       | Condition    | nuScenes<br>Action Prediction Error $(\downarrow)$ |  |  |
|--------------|--------------|----------------------------------------------------|--|--|
| Ground truth | -            | 0.9                                                |  |  |
| GenAD        | text         | 2.54                                               |  |  |
| GenAD-act    | text + traj. | 2.02                                               |  |  |

Table 4. **Task on Action-conditioned prediction**. Compared to GenAD with text conditions only, GenAD-act enables more precise future predictions that follow the action condition.

# Simulating the future with **user-specified trajectory**



#### Result on Tasks (4/4) | Planning



| Method       | # Trainable | nuScenes           |                    |  |
|--------------|-------------|--------------------|--------------------|--|
| Method       | Params.     | ADE $(\downarrow)$ | FDE $(\downarrow)$ |  |
| ST-P3* [20]  | 10.9M       | 2.11               | 2.90               |  |
| UniAD* [22]  | 58.8M       | 1.03               | 1.65               |  |
| GenAD (Ours) | 0.8M        | 1.23               | 2.31               |  |

Table 5. Task on Planning. A lightweight MLP with *frozen* GenAD gets competitive planning results with  $73 \times$  fewer trainable parameters and front-view image alone. \*: multi-view inputs.

- Speeding up training by **3400 times** (vs. **UniAD**)
- Demonstrating the **effectiveness of** the learned spatiotemporal **representations**

#### Summary

- Largest Public Driving Dataset:
  - **OpenDV-2K** provides **2059** *hours* of *worldwide* driving videos.
- Generalized Predictive Model for Autonomous Driving:
  - **GenAD** can predict plausible futures with *language* conditions and generalize to *unseen* datasets in a *zero-shot* manner.
- Broad Applications:
  - GenAD can readily adapt to *planning* and *simulation*.

Open **A**riveLab



(Follow-up work) How to build a generally applicable driving world model? Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability

arxiv.2405.17398

#### **Limitations of Existing Driving World Models**

• Generalization: limited data scale and geographical coverage

5h within Singapore & Boston nuScenes



• Representation capacity: low resolution and low frame rate



• **Control flexibility:** single modality, incompatible with planning algorithms



#### **Our Investigation: A Generalizable Driving World Model**

**Generalization:** largest driving video dataset 

5h within Singapore & Boston nuScenes



**Representation capacity:** high spatiotemporal resolution































**Control flexibility:** multi-modal action inputs







### **Capability of Vista**

#### • High-fidelity future prediction



• Continuous long-horizon rollout (15 seconds)



## **Capability of Vista**

#### Zero-shot action controllability

turn left

#### go straight



**Provide reward without ground truth actions** 











- Vista is a generalizable driving world model that can:
  - Predict high-fidelity futures in open-world scenarios.
  - Extend its predictions to continuous and long horizons.
  - Execute multi-modal actions (steering angles, speeds, commands, trajectories, goal points).
  - Provide rewards for different actions without accessing ground truth actions.





# Thanks

https://opendrivelab.com/