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Abstract

3D human body shape matching has substantial poten-

tial in many real world applications, especially with recent

advances in 3D range sensing technology. We address this

problem by proposing a novel holistic human body shape

descriptor called BodyPrint. To compute the bodyprint for

a given body scan, we fit a deformable human body mesh,

and project the mesh parameters to a low-dimensional sub-

space which improves discriminability across different per-

sons. Experiments are carried out on three real-world hu-

man body datasets to demonstrate that BodyPrint is robust

to pose variation as well as missing information and sensor

noise. It improves the matching accuracy significantly com-

pared to conventional 3D shape matching techniques using

local features. To facilitate practical applications where the

shape database may grow over time, we also extend our

learning framework to handle online updates.

1. Introduction

Non-rigid 3D shape matching is a fundamental problem

that has been widely studied in computer vision and graph-

ics. Given a database of 3D shapes (often represented as

meshes), shape matching algorithms return shapes that are

similar to the query object. This research area has become

particularly active over the last decade due to the availabil-

ity of low cost 3D acquisition device, such as Microsoft

Kinect [2]. The pose-invariant matching of human body

shapes is of particular interest, as it finds applications in

people re-identification in surveillance [6, 23], biometric

authentication and information retrieval in medical imag-

ing [32, 33]. However, human body shape matching is quite

challenging as it requires invariance to human body articu-

lations while simultaneously capturing subtle variations of

the body shape across different individuals. Furthermore,

to enable the aforementioned applications, the matching

∗This work was carried out during the author’s internship at Medical

Imaging Technologies, Siemens Healthcare.

Figure 1. Human body meshes and corresponding BodyPrint de-

scriptors (shown as bar chart). (a) and (b) are meshes from the

same person in a different pose. (b) and (c) are meshes from dif-

ferent persons in a similar pose. Notice that the bodyprint for (a)

is more similar to (b) in comparison to (c).

should be performed rapidly over a large database. Al-

though there have been recent advances[25], this problem

is still widely unresolved to the best of our knowledge.

In this paper we introduce a novel framework for time

efficient matching of 3D human body shapes which is in-

variant to body pose articulations. We also perform exten-

sive experiments to demonstrate that our approach achieves

state-of-the-art performance over different datasets. In gen-

eral, the proposed framework uses a parameterized de-

formable mesh (PDM) template that can be deformed to fit

any human body scans. Based on the mesh parameters (ver-

tices and edges), we derive a compact body shape descrip-

tor that captures the holistic shape information of the human

body; we refer to this as BodyPrint. The derivation involves

a projection of the mesh parameters to a low-dimensional

manifold such that the distance between meshes from differ-

ent persons/categories is maximized, while minimizing the

distance between meshes from same person/category. This

projection matrix is obtained using a novel ranking based

distance metric learning algorithm. Figure 1 shows an ex-

ample of body scans and their corresponding BodyPrint sig-

natures.
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The proposed BodyPrint descriptor embodies several

key ideas which provide significant benefits over other ex-

isting body shape matching approaches. Initially, PDM

(which is built on SCAPE [3]) models the pose and body

shape parameters independently. Since the bodyprint is de-

rived only from the shape parameters, it is robust to pose

perturbations. Following this, BodyPrint represents the

holistic shape information based on PDM fitting which is

robust to missing mesh data as well as local noise, as op-

posed to local descriptor methods [7, 10, 18, 24, 37]. This is

practically relevant since obtaining a complete 360 degree

view body scan of individuals is difficult both in surveil-

lance, as well as medical domain (for patients with severe

injuries). Last but not least, the projection matrix is ob-

tained using ranking based metric learning which uses sim-

ilarity constraints over triplets and hence is better suited for

matching. We also extend the framework to online learning

since in many practical applications, the size of the database

may increase from time to time and re-training on the entire

database would be time consuming.

2. Related Work

The area of matching 3D shapes has been extensively

researched both in computer graphics as well as the vision

community. In the case of shape-DNA [26], the intrinsic

geometry property of 3D object is captured by using the

Laplace-Beltrami spectrum. The compact representation of

a sequence of eigenvalues is proven to be an isometry invari-

ant that allows robustness to intra-class variation. Recent re-

search [34] builds on the shape-DNA work and reports im-

pressive performance for brain re-identification over several

patient scans. Another similar work [20] aggregates Scale-

Invariant Heat Kernel Signature (SI-HKS) [11] as the lo-

cal spectral feature in a bag-of-feature paradigm. Together

with supervised dictionary learning and sparse coding, their

method achieves state-of-the-art performance on the latest

shape retrieval challenge (SHREC’14 [25]). We adopt a

similar strategy that uses a compact yet powerful descriptor

to represent the holistic shape information, however, our ap-

proach differs in the way the shape descriptor is computed.

The parametrized deformable mesh used in our work is

built on the SCAPE [3] model, which has been widely ap-

plied to accurately estimate human body shape and pose

under different scenarios [4, 31, 32, 33, 36]. Given a 3D

scan of a person, the aforementioned approaches pursue a

aligned body mesh that fits closely to the ground truth. Dif-

ferent from those methods, our main focus in this paper is

to solve the shape matching problem. To the best of our

knowledge, ours is the first method that efficiently proceeds

human body shape matching based on the 3D reconstruction

of human body. Tsoli et al. [33] use the PCA coefficients

with linear regressions to predict anthropometric measure-

ments with sufficiently high fidelity, which only further sup-

ports our proposal to extend the usage of the PCA coeffi-

cients to the human body shape matching.

To enrich the shape representation, we employ met-

ric learning to learn a projection of the mesh parameters

to a low-dimensional but more discriminative manifold.

In 3D human pose estimation [16], metric learning for

achieving robust yet discriminative 3D descriptors has been

proven quite effective. Many popular metric learning al-

gorithms adopt pairwise similarity constraints, such as Rel-

evant Component Analysis (RCA) [5], Information Theo-

retic Metric Learning (ITML) [14], Logistic Discriminant

Metric Learning (LDML) [15] and Pairwise Constrained

Component Analysis (PCCA) [22]. For supervised metric

learning for matching shapes, incorporating pairwise con-

straints implicitly require a threshold (to determine whether

a pair is a match or not); this may introduce ambiguity since

different parts of training dataset may be annotated by dif-

ferent individuals. On the contrary, the triplet constraints

model the relative information about which pair is closer

and hence is better suited for learning the true shape mani-

fold. This is especially helpful when handling the available

3D human dataset which usually does not include many

subjects with exactly the same body shape. Online Algo-

rithm for Scalable Image Similarity (OASIS) [12] and Prob-

abilistic Relative Distance Comparison (PRDC) [38] learn

similarity using constraints defined over triplets.

3. Parametrized Deformable Mesh for Body

Shape Estimation

Given a 3D scan of an object, modern shape matching al-

gorithms find a unique shape characterization of the object,

which is usually referred to as a shape descriptor. These

descriptors often serve as the key for matching. The ideal

shape descriptor should be compact (for fast search) and ex-

hibit invariance to all other deformations beyond shape. For

the human body shape, it is particularly important to deal

with the variations due to pose changes.

We employ a Parametrized Deformable Mesh (PDM) to

model the human body. Our model, inspired by the SCAPE

model[3], decouples the human pose and shape perturba-

tions and models them separately. Therefore, the shape

model factorizes the deformations caused by changes in in-

trinsic shape (height, size, belly thickness, etc.) from defor-

mations caused by changes in pose (rigid transformations of

body parts). We model the shape deformations using PCA

over a large dataset with shape variations, using a com-

mercial software called PoserTM [1]. Besides being able

to efficiently generate a large training dataset with accurate

point wise correspondences, one additional benefit of using

Poser is the reduction in training complexity since Poser al-

lows shape perturbations without changing the pose. The

complete training dataset consists of 1, 000 poses and 600
shapes. Figure 2 shows some sample data.
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Figure 2. Examples of the synthetic training data of PDM gener-

ated by Poser. The pose training data is displayed on the left in

blue, and the shape training data is on the right in green.

Given the shape training dataset, The shape affine ma-

trix Si for each tri-angular mesh data i can be obtained by

solving the quadratic function:

argmin
Si

∑

k

∑

j=2,3

||Si
kv̂k,j−vik,j ||2+w

∑

k1,k2adj

||Si
k1
−Si

k2
||2

(1)

where k represents the triangle index and vk,j is the jth

edges in kth triangle. The affine matrices can be further

decomposed into a linear combination of Eigen-vectors U
and mean-vector µ by using PCA:

Si = ̥U,µ(β
i) = Uβi + µ (2)

By changing the values of PCA coefficient vector β, we can

recover any body shape in the learned manifold. Although

there is no explicit interpretation of each dimension to a se-

mantic definition, the first few dimensions of β correspond

to the global shape perturbations in the shape training set

(gender, height, body size and etc.). The following dimen-

sions of β capture more and more subtle perturbations. The

fitting accuracy of PDM depends on the number of PCA

coefficients that are used to model the shape parameters.

While more dimensions can model body deformations in

greater detail (which may be useful for shape matching),

it also increases time complexity and the possibility to fit

small, noisy perturbations in the data. Hence, the choice of

the number of PCA coefficients is important. For our exper-

iments, we use 60 coefficients that retain 98% of the energy;

this helps suppress noise without losing most of shape de-

formation information. (A more detailed experiment with

regard to the PCA coefficients is shown in the supplement

material.)

For inference (i.e. to deform the template mesh to an

input 3D scan), we develop upon the iterative optimization

technique presented in [3]. Such techniques have already

Figure 3. PDM fitting results. The top row shows the input scans

from FAUST dataset [9] and the bottom row shows the fitted PDM

template mesh. Different body parts of the template mesh are ren-

dered with different colors.

demonstrated to fit 3D data quite well [4, 36]. For faster in-

ference, the optimization is done in a coarse-to-fine manner.

First the pose and shape of the template model is initialized

by several pre-determined landmarks. A robust non-rigid

ICP algorithm [28] is then applied to identify a set of point-

to-point correspondences between the input and the mesh

template. Given the correspondences, the template mesh

is properly deformed to minimize the ℓ2 norm. The de-

formed template mesh is then used to determine new cor-

respondences and this process of registration and optimiza-

tion is repeated until convergence (i.e. average distance is

below a certain score or maximum number of iterations are

reached). Figure 3 shows some PDM fitting results of dif-

ferent person.

4. Learning BodyPrint Descriptor for Fast

Matching

Given a human body scan, the PDM module decouples

the pose and shape and projects the holistic body shape in-

formation onto a low dimension PCA subspace, yielding

a set of coefficients β in Eq. (2). These coefficients can

themselves be used as a shape descriptor for matching body

shape with Euclidean metric, but its discriminability may

not be sufficient to enable practical applications. To this

end, we project shape coefficients to another manifold such

that the distance between meshes from different persons is

maximized, while the distance between meshes from same

person is minimized. BodyPrint is the descriptor obtained

from projecting the PCA coefficient vector to a more dis-

criminative manifold. We compute this projection matrix

using a novel ranking based metric learning framework.
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4.1. Ranking Based Metric Learning

For a pair of descriptors (xj , xk), the Mahalanobis dis-

tance is measured by

D2
M (xj , xk) = (xj − xk)

TM(xj − xk) (3)

where M is a symmetric positive semi-definite (PSD) ma-

trix. Since the matrix M can be decomposed as M = LTL,

the Mahalanobis distance can be interpreted as the Eu-

clidean distance in a linearly transformed feature space, i.e.,

D2
M (xj , xk) = ‖L(xj − xk)‖22.

In order to learn a metric1 for 3D shape matching, we

consider using triplet constraints for supervision. Triplet

constraint carries pairwise similarities between three data

items of a set. In a triplet (xi, x
+

i , x
−
i ) annotation, xi is

considered more similar to x+

i than x−
i . One reason to

use triplets is that in most cases we only have very few (if

not one) 3D shape data for the same subject and thus lack

pairwise constraints; the other reason is triplet constraints

contain more similarity side information than pairwise con-

straints on the same dataset. In the experiment section, we

show how we derive triplet constraints for CAESAR data

[27] using anthropomorphic measurements.

Given the triplet constraints, we propose a batch version

and an online version of metric learning. Our formulation

is based on the maximum margin criterion; that is, the dis-

tance between more similar pairs (xi, x
+

i ) is less than that

between (xi, x
−
i ) by a large margin. This idea is similar to

Large Margin Nearest Neighbor (LMNN) [35] and the ap-

proach in [19]; however, in our problem, we do not require

class labels of the data and aim to learn a metric purely

based on triplet constraints, while LMNN optimizes kNN

for classification. As opposed to [19] that simplifies the

problem by assuming distance metric to be a diagonal ma-

trix, we directly solve for a PSD matrix. As we will show

later, our algorithms are effective yet efficient, and have the-

oretical justification.

In an ideal setting, there might exist a matrix M , such

that for any triplet (xi, x
+

i , x
−
i ),

D2
M (xi, x

−
i ) > D2

M (xi, x
+

i ) + 1 (4)

Similar to Support Vector Machine (SVM), we consider soft

margin for inseparable case which amounts to minimizing

hinge loss

ℓi(M) := [1 +D2
M (xi, x

+

i )−D2
M (xi, x

−
i )]+ (5)

where [z]+ = max(0, z). On the other hand, we employ

low-dimensional PDM shape descriptors after PCA, so the

learned metric should not be distorted from the identity ma-

trix too much. Taking into account the above constraints,

1Strictly speaking, we learn pseudo-metric. The term “metric” is used

in the paper for simplicity.

our batch algorithm is given by

min
M�0

λ

2
‖M − I‖2F +

1

N

∑

S

ℓi(M) =: F (M) (6)

where S = {(xi, x
+

i , x
−
i )} is the set of triplets, |S| = N .

Generic solver for semi-definite programming employs

an interior point and does not scale well with a large num-

ber of constraints, as is the case in Eq. (6). We develop an

efficient stochastic subgradient descent algorithm to solve

the optimization, as shown in Algorithm 1, where ηt is the

learning rate and output M is the minimizer of F (M).2

Algorithm 1 Mini-batch stochastic subgradient descent al-

gorithm for solving optimization in Eq. (6)

1: Input: S, λ and T.
2: Initialization: M1 = I
3: for t = 1, 2, . . . , T do

4: Randomly choose St ⊆ S, |St| = K
5: Set S+t = {(xi, x

+

i , x
−
i ) ∈ St : 1+D2

Mt
(xi, x

+

i )−
D2

Mt
(xi, x

−
i ) > 0}

6: ▽t = λ(Mt − I) + 1

K

∑
S+

t

(Ct(xi, x
+

i ) −
Ct(xi, x

−
i )), where Ct(xi, x

+

i ) := (xi−x+

i )(xi−x+

i )
T

7: Mt+1 = Mt − ηt▽t

8: Decompose Mt+1 = UΛUT

9: Project Mt+1 onto PSD cone, Mt+1 ← UΛ+UT ,

where Λ+ = max(0,Λ).
10: end for

11: Output: argminM∈{M1,M2,...,MT+1} F (M)

4.2. Extension to Online Learning

We propose an online algorithm based on the Passive-

Aggressive (PA) family of learning algorithms introduced

by Crammer et al. [13]. In the online setting, we assume a

triplet (xi, x
+

i , x
−
i ) is observed at each time step i, which

suffers a loss defined in Eq. (5). If ℓi(M) = 0, we suffer

no loss; otherwise the metric should be updated. Denote by

Mi the matrix used for prediction at time step i.

4.2.1 Separable Case

We first consider the separable case, which assumes that

there exists a matrix M∗ such that ℓi(M
∗) = 0 for all

i. Following the method in Pseudo-metric Online Learn-

ing Algorithm (POLA) [29], we derive our algorithm based

on the orthogonal projection operation. Given ∀W ∈ Rd×d

and a closed convex set C ⊂ Rd×d, the orthogonal projec-

tion of W onto C is defined by

PC(W ) = argmin
W ′∈C

‖W −W ′‖2F (7)

2In practice, F (M) is computed every j epochs in the late stage of

learning, where j ranges from dozens to hundreds, depending on the total

size of mini-batches.
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For each time step i, the set Ci ⊂ Rd×d is defined as

Ci = {M ∈ R
d×d : ℓi(M) = 0} (8)

where ℓi(M) is defined in Eq. (5). Another constraints on

M is that M � 0. Denote by Ca the set of PSD matrices,

Ca = {M ∈ R
d×d : M � 0} (9)

With the above definitions, our online algorithm is com-

prised of two successive projections as below

Mĩ = PCi
(Mi), (10)

Mi+1 = PCa
(Mĩ). (11)

First, we project the current matrix Mi onto Ci so the re-

sulting Mĩ will be the closest one to Mi while achieving a

zero loss on the received triplet at time step i. Second, we

project Ci onto Ca to ensure it is a metric. Now we show

how the projections can be performed analytically. The first

projection is equivalent to solving the following constrained

optimization problem,

Mĩ = argmin
M

1

2
‖M −Mi‖2F , s.t. ℓi(M) = 0 (12)

which has a simple closed-form solution by using KKT con-

dition

Mĩ = Mi + αiVi (13)

where

Vi = (x− x−)(x− x−)T − (x− x+)(x− x+)T (14)

αi =
ℓi(Mi)

‖Vi‖2F
(15)

Since we initialize M1 to be identity matrix I , Mĩ is always

symmetric and thus can be decomposed as Mĩ = UiΛiU
T
i

By projecting Mĩ onto PSD cone, Mt+1 can be derived as

Mt+1 = UiΛ
+

i U
T
i , where Λ+

i = max(0,Λi).

Theorem 1. Let (xi, x
+

i , x
−
i )

T

i=1
be a sequence of triplet

instances. Assume that there exists M∗ � 0 such that ∀i ≥
1,ℓi(M

∗) = 0. Let R be an upper bound that satisfies ∀i :
R ≥ ‖Vi‖2F . Then the following bound holds for any T ≥ 1

T∑

i=1

ℓ2i (Mi) ≤ R‖M∗ − I‖2F (16)

See proof in the supplemental material.

4.2.2 Inseparable Case

For the inseparable case, there is no metric that separates the

triplet instances by a large margin perfectly. We relax the

assumption and modify Eq. (10) by solving the following

optimization problem

Mĩ = argmin
M

1

2
‖M −Mi‖2F + Cℓ2i (M) (17)

where C is aggressiveness parameter that controls the trade-

off between the loss on the triplet and the regularization.

The above learning problem can be regarded as a matrix

version of PA-II algorithm in [13], and has closed-form so-

lution as

Mĩ = Mi + αiVi (18)

where

αi =
ℓi(Mi)

‖Vi‖2F + 1

2C

(19)

and Vi is defined in Eq. (14).

Essentially the solution has the same form as in Eq. (13)

for separable case, with some modification in αi. Mt+1 is

obtained by projecting Mĩ onto PSD cone, following the

same procedure in Eq. (11).

Theorem 2. Let (xi, x
+

i , x
−
i )

T

i=1
be a sequence of triplets,

and let R be an upper bound such that ∀i : R ≥ ‖Vi‖2F .

Then, for any matrix Q � 0, the following bound holds for

any T ≥ 1

T∑

i=1

ℓ2i (Mi) ≤ (R+
1

2C
)(‖Q−I‖2F +2C

T∑

i=1

ℓ2i (Q)) (20)

See proof in the supplemental material.

4.3. Remark on Metric Learning

Our batch and online algorithms can be applied either in-

dependently or in conjunction with each other. In a practical

setting where the human subjects in the dataset may change

or grow over time, an initial metric can be obtained using

the batch algorithm and then subsequently adapted using

the online algorithm as new data becomes available.

Our online algorithm advances POLA [29] in several

aspects. To start with, our algorithm handles triplet an-

notations and learns the metric based on relative similar-

ity constraints, as opposed to POLA that works with pair-

wise constraints. Furthermore, we derive algorithms and

loss bounds for both separable and inseparable cases, while

POLA mainly focus on the analysis of separable case. On

the other hand, same as OASIS [12], our online algorithm

is also based on PA family of algorithms [13]; however, we

aim to obtain a metric in the form of a symmetric and PSD

matrix, while OASIS learns a bilinear similarity matrix.

5. Experiments

To validate the proposed BodyPrint descriptor, we con-

duct extensive experiments on three real-world datasets in-

cluding two public 3D human body scan datasets, CAE-

SAR [27] and MPI-FAUST [9], as well as a new Kinect
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body scan dataset. Our baseline is a local feature based

3D shape matching workflow that includes local descrip-

tor extraction (existing 3D Descriptors in PCL [28] such as

SHOT, 3DSC and PFH), 3D shape representation and met-

ric learning using pairwise constraints (e.g., KISSME [17]).

We also compare the performance of our metric learn-

ing algorithm with state-of-the-art methods - ITML [14],

LMNN [35], KISSME [17] and LDMLT [21] which are

generic as opposed to algorithms that are designed to tar-

get a specific use case such as face verification. To fur-

ther justify the performance of the proposed method, we

also run evaluations with the current state-of-the-art spec-

tral method [20] and a statistically adapted method [8] on

FAUST and Kinect dataset. For all experiments, we set

λ = 0.01, ηt = 10−3/
√
t in Algorithm 1 and C = 0.01

in Eq. (17). For other metric learning algorithms as well as

the spectral method, we use default parameters provided by

the authors.

5.1. Dataset

The CAESAR dataset includes scans of 2, 400 human

subjects in 3 different poses. It also comes with 40 precise

anthropometric attributes that were directly measured on

human subjects, which are used here to rank the similarities

among the scan data. Among all the 40 attributes, we

carefully select 22 of them that represent uncorrelated

measurements (8 of these attributes are shown in Table 1).

The FAUST dataset, although designed as a benchmark

for human body model fitting, also serves as a good

benchmark for pose-invariant human re-identification. The

full dataset includes 300 scans acquired from 10 subjects

in 30 different poses per subject. Although the FAUST

dataset has significant pose variations, the data only has

label (person identity) information, unlike CAESAR

which also includes additional geometry based attributes.

Hence, we design the experiments for the use case of

person re-identification and study the robustness of various

approaches to body pose perturbations. In our experiments,

we train on 10 poses per subject and test on the rest to

evaluate pose invariance.

We also acquired a new Kinect dataset that includes

1, 200 depth images collected from Microsoft Kinect 1.0

to evaluate the robustness of our approach regarding to

the effects of sensor noise, clothing and partial occlusion.

Unlike some of the existing Kinect dataset that are well

suited for surveillance applications[6, 23], we geared

towards biometric authentication of a cooperative user in

an office-like environment and designed our experiment

accordingly. The dataset contains snapshots (single depth

image) of 20 human subjects in 30 different poses (frontal,

upright pose with casual limb positions) acquired at the

distance of 1.5 to 3 meters from the sensor. Each snapshot

covers head-to-toe information of the subjects and segments

the subjects from background. Since we are interested in

shape based matching, color information is not used in this

experiment.

Acromial Height Chest Circumference

Buttock-Knee Length Crotch Height

Hip Circumference Shoulder Breadth

Sitting Height Waist Circumference
Table 1. Examples of biometric attributes for CAESAR dataset.

5.2. Evaluation Metric

We follow the same evaluation protocol in [25]. Dur-

ing the query step, each individual input is queried within

the full dataset to get a list of all other shapes ranked in

descending order according to the shape similarities. We

evaluate the results using various statistical measurements:

nearest neighbor (rank-1), e-measure (E-M), discounted cu-

mulative gain (DCG), and precision/recall curves. Defini-

tions of these evaluation metrics are listed in [30].

5.3. Results on CAESAR Dataset

Triplet Annotation. As mentioned in 4.1, our metric learn-

ing benefits from the triplet annotation. We build triplets

based on the similarity ranking in the biometric attribute

space. For each scan in the training set, we organize the rest

of the data in descending order based on the accumulated

errors of all 22 given attributes. Then for a given triplet, the

positive x+

i and negative x−
i labels can be efficiently deter-

mined by the data indices in the queue of xi. This “soft”

annotation works well since the 22 attributes were precisely

measured by the data provider and were sufficient to reflect

the actual body shape. Note that for the CAESAR data, the

pairwise similarity constraints based metric learning algo-

rithms such as KISSME [17] cannot directly use similar-

ity ranks for training, and we obtain the pairwise labels by

thresholding the distance among the data in biometric at-

tribute space. It is hard and ambiguous to select optimal

fixed thresholds to generate pairwise similarity constraints

for different data or setups, which is another reason we uti-

lize ranking based metric learning for our BodyPrint.

Shape Matching. We randomly select 100 body scans

as the training data and another 200 for testing (both are

gender balanced, 50% male or female). For test data, the

ground truth similarity ranking is also built on biometric at-

tributes, similar to triplet annotation. Each shape matching

method will generate the similarity ranking for every scan in

the test dataset, as described in the subsection 5.2. In evalu-

ation protocol on CAESAR data for each body scan query,

the top 20 scans in its similarity rank are considered cor-

rect matches, since matching only the most similar shape is
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Method rank-1 E-M DCG τ ρ

PDM+Euclidean 0.705 0.438 0.742 0.567 0.743

PDM+ℓ1 0.620 0.412 0.718 0.498 0.672

PDM+Mahalanobis 0.240 0.211 0.535 0.190 0.273

PDM+KISSME 0.765 0.536 0.812 0.701 0.863

PDM+LDMLT 0.730 0.570 0.823 0.732 0.889

BodyPrint 0.820 0.574 0.843 0.741 0.892

Table 2. Performance comparison of shape matching on the CAE-

SAR dataset, with 100 scans for training and 200 for testing.

Figure 4. Precision/recall curves of shape matching on CAESAR.

Training accuracy(%) Testing accuracy(%)

Gender 100 97.5

Short/Tall 96 94

Light-weight/Heavy 94 92

Table 3. Semantic classification on CAESAR, using obtained

BodyPrint as a feature.

too restrictive for evaluation purposes.3 Thus the evaluation

metrics introduced in the subsection 5.2 can be computed

accordingly. We also calculate the Kendall’s coefficient (τ )

and Spearman’s coefficient (ρ) to measure the rank correla-

tion with the ground truth. Both τ and ρ take values between

[−1, 1], where−1/1 indicates the ground truth rank and pre-

dicted rank are completely reverse/same. Table 2 shows

the performance of BodyPrint shape matching on CAESAR

compared with several baselines with the aforementioned

evaluation metrics. Figure 4 displays the precision-recall

curves. Overall, our PDM with metric learning framework

works very well in the task of shape retrieval with CAESAR

data. Using raw PDM coefficients with plain Euclidean dis-

tance, about 70% rank-1 accuracy can be achieved. Our

(batch) BodyPrint algorithm performs the best among all

the tested methods.

Semantic Classification. As mentioned in Section 3, there

is no explicit interpretation of each dimension in the PDM

coefficients to a semantic definition. It is interesting to in-

vestigate if general semantic body shape information such

3For top 1 matching accuracy, our method still performs best; it is more

meaningful to measure top 20 matching accuracy here because soft anno-

tation is used.

Method rank-1 E-M DCG

SHOT[28]+ITML 0.450 0.303 0.647

SHOT[28]+KISSME 0.550 0.318 0.692

3DSC[28]+ITML 0.680 0.329 0.735

3DSC[28]+KISSME 0.645 0.355 0.730

PFH[28]+ITML 0.710 0.372 0.772

PFH[28]+KISSME 0.715 0.394 0.763

Litman et al.[20] 0.875 0.423 0.834

PDM+Euclidean 0.767 0.382 0.739

PDM+Blanz et al.[8] 0.550 0.331 0.650

PDM+KISSME 0.900 0.488 0.823

PDM+LMNN 0.900 0.444 0.841

PDM+ITML 0.875 0.452 0.831

BodyPrint(batch) 0.933 0.442 0.881

Table 4. Performance comparison on FAUST, with 10 persons and

10 poses each for training.

as male/female, short/tall can be captured by BodyPrint.

To this end, we conduct experiments for semantic attribute

classification using BodyPrint with a linear SVM. We ex-

periment with three semantic attributes: gender, height and

weight. Table 3 summarizes the classification results. The

high classification accuracy confirms that BodyPrint indeed

carries shape as well as semantic information.

5.4. Results on FAUST Dataset

Experimental Setting. For the FAUST dataset, both triplet

and pair constraints can be easily generated from the sub-

ject identities. We vary the number of person and poses in

the training set to test the robustness and generalization of

different approaches. We experiment with both batch and

online BodyPrint under different setups. For each person,

we use 10 poses for training, and compare our PDM frame-

work with the baselines. Within PDM framework, we also

compare our (batch) BodyPrint with PDM based shape sig-

natures using other metric learning algorithms. To demon-

strate the performance of our online learning method, we

compare with the LDMLT [21] algorithm. Here, we reduce

the number of person in training set from 10 to 6 to evaluate

the generalization ability of the algorithms.

The implementations of our baseline methods, the local

feature based 3D shape descriptors such as SHOT, 3DSC

and Point Feature Histograms (PFH), are provided by the

widely diffused PCL [28] library. The default parameters

are applied when available. The radius of surface normal

calculation and local descriptor are set to 20mm and 50mm
individually for all baseline. Once the descriptors get ex-

tracted, we concatenate all the feature vectors and apply

PCA to reduce the dimensionality to 60. Two metric learn-

ing frameworks, ITML and KISSME, are applied to base-

line descriptors to measure the performance.

Analysis. From Table 4, we can see that PDM with plain

Euclidean metric obtains quite competitive results, outper-

forming the baseline methods. This indicates the superior

ability of PDM in capturing essential shape information of

body scan. All the implemented metric learning algorithms
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Method rank-1 E-M DCG

PDM+Euclidean 0.763 0.375 0.730

PDM+LDMLT 0.881 0.467 0.818

BodyPrint(online) 0.919 0.472 0.826

Table 5. Performance comparison on FAUST, using 6 persons each

with 10 poses for training and total 160 body scans for testing.

Figure 5. Re-identification result on FAUST dataset. The input

meshes are shown on the left and the retrieved nearest neighbors

are shown on the right in a descending order of similarity.

can boost the performance of PDM. Overall, BodyPrint and

PDM+KISSME perform best: BodyPrint achieves the high-

est accuracy on rank-1 metric, and the latter attains best

performance on the other two metrics. From Table 5, we

can see that our online algorithm outperforms LDMLT on

all the evaluation metrics. Figure 5 provides a qualitative

impression of the matching performance. Column 1 shows

the body scan used to query the database and the rest of

the columns show the top 7 results sorted from left to right,

based on the matching score. As shown in Figure 5, our

BodyPrint demonstrates the property of pose invariance.

5.5. Results on Kinect Dataset

In the previous experiments, we have shown that our

method achieves state-of-the-art performance on dense,

360-degree scans of human subjects. Kinect data, on the

other hand, is noisy and has significantly inferior resolution

as well as has only partial body surface information. This

makes the dataset particularly challenging for the people re-

identification problem.

Experimental Setting. The set up is similar to the FAUST

experiment setup. For each of the 20 subjects, we randomly

select 20 scans for training and another 40 for testing. As in

FAUST, we use the person identity information to generate

triplets for metric learning (and pairwise constraints for the

baseline methods). To increase efficiency, we only use ran-

domly sampled subsets of the triplets and employ our online

BodyPrint metric learning algorithm.

Analysis. From Table 6, we can see that the proposed

BodyPrint method achieves high re-identification rank-1 ac-

Method rank-1 E-M DCG

PFH[28]+ITML 0.543 0.244 0.645

PFH[28]+KISSME 0.603 0.292 0.687

Litman et al.[20] 0.609 0.137 0.549

PDM+Euclidean 0.741 0.225 0.638

PDM+Blanz et al.[8] 0.743 0.241 0.653

PDM+KISSME 0.858 0.519 0.837

PDM+LMNN 0.884 0.502 0.837

PDM+ITML 0.809 0.491 0.819

PDM+LDMLT 0.861 0.414 0.784

BodyPrint(Online) 0.891 0.516 0.843

Table 6. Performance comparison on Kinect dataset, with 20 per-

sons and a randomly selected 20 scans each for training.

Figure 6. Precision/recall curves of re-identification on Kinect

dataset.

curacy (about 90%). This suggests that our approach is able

to deal with noisy, partial depth information for person re-

identification tasks. We also observe that PDM based shape

matching methods (including BodyPrint) notably outper-

form traditional local feature based methods as well as the

spectrum method [20]. This may be due to the fact that the

detailed surface information may not be easily distinguish-

able due to noisy depth data at 2-3 meters distance, while

the holistic body shape information is likely to be more sta-

ble and hence better suited for re-identification. Notice also

that among the PDM based methods, BodyPrint (Online)

improves on the results of the rest.

6. Conclusion

We presented a novel shape descriptor for 3D human

body shape matching. The proposed descriptor is demon-

strated to be robust to pose variations, as well as sensor

noise and missing data. It improves the matching accuracy

significantly over existing 3D shape matching algorithms.

The low dimensionality of BodyPrint also allows fast

search, which is important to practical applications. We

also extend our learning framework to allow online updates

and hence the BodyPrint computation can be adapted to

specific scenarios for better performance.

1598



References

[1] http://poser.smithmicro.com/poser10-poserpro2014. 2

[2] https://www.microsoft.com/en-us/kinectforwindows. 1

[3] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,

and J. Davis. SCAPE: shape completion and animation of

people. ACM Trans. Graph, 2005. 2, 3

[4] A. Balan and M. J. Black. The naked truth: Estimating body

shape under clothing,. In ECCV, 2008. 2, 3

[5] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learn-

ing distance functions using equivalence relations. In ICML,

2003. 2

[6] B. I. Barbosa, M. Cristani, A. Del Bue, L. Bazzani, and

V. Murino. Re-identification with rgbd sensors. In 1st Intl

Workshop on Re-identification, October 2012. 1, 6

[7] S. Bauer, J. Wasza, S. Haase, N. Marosi, and J. Horneg-

ger. Multi-modal surface registration for markerless initial

patient setup in radiation therapy using microsoft’s kinect

sensor. In ICCV Workshops, 2011. 2

[8] V. Blanz, S. Romdhani, and T. Vetter. Face identification

across different poses and illuminations with a 3d morphable

model. In AFGR, 2002. 6, 7, 8

[9] F. Bogo, J. Romero, M. Loper, and M. J. Black. FAUST:

Dataset and evaluation for 3D mesh registration. In CVPR,

2014. 3, 5

[10] A. M. Bronstein, M. M. Bronstein, L. J. Guibas, and M. Ovs-

janikov. Shape google: Geometric words and expressions

for invariant shape retrieval. ACM Transactions on Graphics

(TOG), 30(1):1, 2011. 2

[11] M. Bronstein and I. Kokkinos. Scale-invariant heat kernel

signatures for non-rigid shape recognition. In CVPR, 2010.

2

[12] G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale

online learning of image similarity through ranking. The

Journal of Machine Learning Research, 2010. 2, 5

[13] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and

Y. Singer. Online passive-aggressive algorithms. The Journal

of Machine Learning Research, 2006. 4, 5

[14] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon.

Information-theoretic metric learning. In ICML, 2007. 2,

6

[15] M. Guillaumin, J. Verbeek, and C. Schmid. Is that you?

metric learning approaches for face identification. In ICCV,

2009. 2

[16] A. Kanaujia, C. Sminchisescu, and D. Metaxas. Semi-

supervised hierarchical models for 3d human pose recon-

struction. In CVPR, 2007. 2

[17] M. Koestinger, M. Hirzer, P. Wohlhart, P. M. Roth, and

H. Bischof. Large scale metric learning from equivalence

constraints. In CVPR, 2012. 6

[18] I. Kokkinos, M. M. Bronstein, R. Litman, and A. M. Bron-

stein. Intrinsic shape context descriptors for deformable

shapes. In CVPR, 2012. 2

[19] J. E. Lee, R. Jin, and A. K. Jain. Rank-based distance metric

learning: An application to image retrieval. In CVPR, 2008.

4

[20] R. Litman, A. Bronstein, M. Bronstein, and U. Castellani.

Supervised learning of bag-of-features shape descriptors us-

ing sparse coding. In Computer Graphics Forum, volume 33,

pages 127–136. Wiley Online Library, 2014. 2, 6, 7, 8

[21] J. Mei, M. Liu, H. Karimi, and H. Gao. Logdet divergence-

based metric learning with triplet constraints and its ap-

plications. Image Processing, IEEE Transactions on,

23(11):4920–4931, Nov 2014. 6, 7

[22] A. Mignon and F. Jurie. Pcca: A new approach for distance

learning from sparse pairwise constraints. In CVPR, 2012. 2

[23] M. Munaro, A. Basso, A. Fossati, L. Van Gool, and

E. Menegatti. 3d reconstruction of freely moving persons

for re-identification with a depth sensor. In ICRA, 2014. 1, 6

[24] A. Petrelli and L. Di Stefano. On the repeatability of the

local reference frame for partial shape matching. In ICCV,

2011. 2

[25] D. Pickup, X. Sun, P. L. Rosin, R. R. Martin, Z. Cheng,

Z. Lian, M. Aono, A. Ben Hamza, A. Bronstein, M. Bron-

stein, and et al. SHREC’14 track: Shape retrieval of non-

rigid 3d human models. In Proceedings of the 7th Euro-

graphics workshop on 3D Object Retrieval, 2014. 1, 2, 6

[26] M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-beltrami

spectra as ’shape-dna’ of surfaces and solids. Comput. Aided

Des., 2006. 2

[27] K. Robinette, S. Blackwell, H. Daanen, M. Boehmer,

S. Fleming, T. Brill, D. Hoeferlin, and D. Burnsides. Civilian

american and european surface anthropometry resource final

report. AFRL-HE-WP-TR, 2002. 4, 5

[28] R. B. Rusu and S. Cousins. 3d is here: Point cloud library

(pcl). In International Conference on Robotics and Automa-

tion, 2011. 3, 6, 7, 8

[29] S. Shalev-Shwartz, Y. Singer, and A. Y. Ng. Online and batch

learning of pseudo-metrics. In ICML, 2004. 4, 5

[30] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The

princeton shape benchmark. In Shape modeling applications

Proceedings, 2004. 6

[31] L. Sigal, M. Isard, H. Haussecker, and M. Black. Loose-

limbed people: Estimating 3d human pose and motion using

non-parametric belief propagation. IJCV, 2012. 2

[32] V. Singh, Y.-j. Chang, K. Ma, M. Wels, G. Soza, and T. Chen.

Estimating a patient surface model for optimizing the medi-

cal scanning workflow. In MICCAI, 2014. 1, 2

[33] A. Tsoli, M. Loper, and M. Black. Model-based anthropom-

etry: Predicting measurements from 3d human scans in mul-

tiple poses. In WACV, 2014. 1, 2

[34] C. Wachinger, P. Golland, and M. Reuter. Brainprint : Iden-

tifying subjects by their brain. In MICCAI, 2014. 2

[35] K. Weinberger and L. Saul. Distance metric learning for

large margin nearest neighbor classification. The Journal of

Machine Learning Research, 10:207–244, 2009. 4, 6

[36] A. Weiss, D. Hirshberg, and M. Black. Home 3d body scans

from noisy image and range data. In ICCV, 2011. 2, 3

[37] A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud. Surface

feature detection and description with applications to mesh

matching. In CVPR, 2009. 2

[38] W.-S. Zheng, S. Gong, and T. Xiang. Reidentification by

relative distance comparison. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 35(3):653–668, 2013. 2

1599


