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Abstract

We address the task of predicting pose for objects of

unannotated object categories from a small seed set of an-

notated object classes. We present a generalized classifier

that can reliably induce pose given a single instance of a

novel category. In case of availability of a large collection

of novel instances, our approach then jointly reasons over

all instances to improve the initial estimates. We empiri-

cally validate the various components of our algorithm and

quantitatively show that our method produces reliable pose

estimates. We also show qualitative results on a diverse set

of classes and further demonstrate the applicability of our

system for learning shape models of novel object classes.

1. Introduction

Class-based processing significantly simplifies tasks

such as object segmentation [17, 4], reconstruction [6, 21,

38] and, more generally, the propagation of knowledge from

class objects we have seen before to those we are seeing

for the first time. Looking at the lion in Figure 1 humans

can not only easily perceive its shape, but also tell that it is

strong and dangerous, get an estimate of its weight and di-

mensions and even approximate age and gender. We get to

know all of this because it is a lion like others we have seen

before and that we know many facts about.

Despite its many virtues, class-based processing does not

scale well. Learning predictors for all variables of interest –

figure-ground segmentation, pose, shape – requires expen-

sive manual annotations to be collected for at least dozens

of examples per class and there are millions of classes. Con-

sider again Figure 1 but now look at object A. The under-

lying structure in our visual world allows us to perceive a

rich representation of this object despite encountering it for

the first time. We can infer that it is probably hair that cov-

ers its surfaces – we have seen plenty of hair-like materials

before – and that it has parts and determine their config-

uration by analogy with our own parts or with other ani-

mals. We are able to achieve this remarkable feat by lever-

Our implementations and trained models are available at https://

github.com/shubhtuls/poseInduction

Figure 1. Inductive pose inference for novel objects. Right : Novel

object A. Left : instances from previously seen classes having sim-

ilar pose as object A.

aging commonalities across object categories via general-

izable abstractions – not only can we perceive that all the

other animals in Figure 1 are “right-facing”, we can also

transfer this notion to object A. This type of cross-category

knowledge transfer has been successfully demonstrated be-

fore for properties such as materials [37, 8], parts [35, 10]

and attributes [22, 13].

In this paper we define and attack the problem of pre-

dicting object poses across categories – we call this pose

induction. The first step of our approach, as highlighted

in Figure 2, is to learn a generalizable pose prediction sys-

tem from the given set of annotated object categories. Our

main intuition is that most objects have appearance and

shape traits that can be associated with a generalized no-

tion of pose. For example, the sentences “I am in front of

a car” or “in front of a bus” or “in front of a lion” are clear

about where“I” am with respect to those objects. The rea-

son for this may be that there is something generic in the

way“frontality” manifests itself visually across different ob-

ject classes – e.g.“fronts” usually exhibit an axis of bilateral

symmetry. Pushing this observation further leads to our so-

lution: to align all the objects in a small seed set of classes,

by endowing them with set of 3D rotations in a consistent

reference frame, then training pose predictors that general-

ize in a meaningful way to novel object classes.

This idea expands the current range of inferences that

can be performed in a class-independent manner and allows

us to reason about pose for every object without tediously

collecting pose annotations. Such pose based reasoning can

then inform a system about which directions objects are

most likely to move in (usually “front” or “back”) and hence
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Figure 2. Overview of our approach. We first induce pose hypotheses for novel object instances using a system trained over aligned

annotated classes (Section 2). We then reason jointly over all instances of the novel object class to improve our pose predictions ( Section 3).

allow it to get out of their way; it can help to identify how to

place any object on top a surface in a stable way (by identi-

fying the “bottom” of the object). Ultimately, and the main

motivation for this work, it provides important cues about

the 3D shape of a novel object and may allow bypassing

the existing need for ground truth keypoints in training data

for state-of-the-art class-specific object reconstruction sys-

tems [21, 38] – we will present a proof of concept for this

in Section 4.

Related Work. The problem of generalizing from a few

examples [34] was already studied in ancient Greece and

has become known as induction. Early induction work in

computer vision pursued feature sharing between different

classes [1, 35]. One-Shot and Zero-Shot learning [14, 26]

also represent related areas of research where the task is

to learn to predict labels from very few exemplars. Our

work differs from these as, in constrast to these approaches,

the few examples we consider correspond to a small set of

annotated object categories. In this sense, our approach is

perhaps closer in style to attributes [13, 22], which explic-

itly learn classifiers that are transversal to object classes and

can hence be trained on a subset of object classes. Differ-

ently, our “attributes” correspond to a dense discretization

of the viewpoint manifold that implicitly aligns the shapes

of all training object classes. Another relevant recent work,

LSDA [18] learns object detectors using a seed set of classes

having bounding box annotations. Unlike our work, they

leverage available data for a related task (classification) and

frame the task as adapting classifiers to object detectors.

Pose estimation is crucial for developing a rich under-

standing of objects and is therefore an important compo-

nent of systems for 3D reconstruction [21, 5], recogni-

tion [25, 33], robotics [30] and human computer interaction

[24, 29]. Traditional approaches to object pose estimation

predicted instance pose in context of a corresponding shape

model [19]. The task has recently evolved to the prediction

of category-level pose, a problem targeted by many recent

methods [36, 28, 16]. Motivated by Palmer’s experiments

which demonstrate common canonical frames for similar

categories [27], we reason over cross-category pose - our

work can be thought of as a natural extension in the current

paradigm shift of pose prediction from instances/models to

categories.

2. Pose Induction for Object Instances

We noted earlier that humans have the ability to infer rich

representations, including pose, even for previously unseen

object classes. These observations demonstrate the applica-

bility of human inductive learning as a mechanism to infer

desired representations for new visual data. We explore the

possibility of applications of such ideas to induce the notion

of pose for previously unseen object instances. More con-

cretely, we assume pose annotations for some object classes

and aim to infer pose for an object instance belonging to a

different object category. We describe our formulations and

approach below.

2.1. Formulation

Let C denote the set of object categories with available

pose annotations. We follow the pose estimation formula-

tion of Tulsiani and Malik [36] who characterize pose via

Na = 3 euler angles - azimuth (φ), elevation(ϕ) and cyclo-

rotation(ψ). We discretize the space of each angle in Nθ

disjoint bins and frame the task of pose prediction as a clas-

sification problem to determine the angular bin for each eu-

ler angle. Let {xi|i = 1 . . . Ni} denote the set of annotated

instances, each with its object class ci ∈ C, with pose an-

notations (φi, ϕi, ψi). The pose induction task is to predict

the pose for a novel instance x whose object class c /∈ C.

2.2. Approach

We examine two different approaches for inducing pose

for a novel instance - 1) the baseline approach of explic-

itly leveraging the inference mechanism for similar object

classes and 2) our proposed approach of enforcing the infer-

ence mechanism to implicitly leverage similarities between

object classes and thereby allowing generalization of infer-

ence to novel instances.

Similar Classifier Transfer (SCT). We first describe the

baseline approach which infers pose for instances of an

unannotated class by explicitly using similarity to some an-

notated object category and obtaining predictions using a
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system trained for a visually similar class. To obtain a pose

prediction system for the annotated classes C, we follow

the methodology of Tulsiani and Malik [36] and train a

VGG net [31] based Convolutional Neural Network (CNN)

[15, 23] architecture with |C| ∗Na ∗Nθ output units in the

last layer. Each output unit corresponds to a particular ob-

ject class, euler angle and angular bin - this CNN system

shares most parameters across classes but has some class-

specific parameters and disjoint output units. Let f(x;Wc)
denote the pose prediction function for image x and class-

specific CNN weights Wc, then f(xi,Wci) computes the

probability distribution over angular bins for instance i - the

CNN is trained to minimize the softmax loss corresponding

to the true pose label (φi, ϕi, ψi) and f(xi,Wci).

To predict pose for an instance x with class c /∈ C, this

approach uses the prediction system for a visually similar

class c′. We obtain the probability distribution over angu-

lar bins for this instance by computing f(x,Wc′). We then

use the most likely hypothesis under this distribution as our

pose estimate for the instance x.

Generalized Classifier (GC). To infer properties for a

novel instance, our proposed approach is to rely not only

on the most similar visual object class, but also on general

abstractions from all visual data - seeing a sheep for the first

time, one would not just use knowledge of a specific class

like cows, but also generic knowledge about four-legged an-

imals. For example, the concept that pose of animals can be

determined using generic part representations (head, torso

etc.) can be learned if the annotations share a common

canonical reference frame across classes and this notion can

then be applied to novel related classes. These observations

motivate us to consider an alternate approach, termed as

Generalized Classifier (GC), where we train a system that

exploits consistent visual similarities across object classes

that coherently change with the pose label. This approach

not only bypasses the need for manually assigning a visually

similar class, it can also potentially learn abstractions more

generalizable to unseen data and therefore handle novel in-

stances more robustly.

Concretely, we first obtain pose annotations across ob-

ject classes wrt a common canonical frame (details de-

scribed in experimental section) and train a category-

agnostic pose estimation system. This implicitly enforces

the CNN based pose estimation system to exploit similari-

ties across object classes and learn common representations

that may be useful to predict pose across object classes.

We train a VGG net [31] based CNN architecture with

Na ∗ Nθ output units in the last layer - the units corre-

sponds to a particular euler angle and angular bin are shared

across all classes. Let f(x;W ) denote the pose prediction

function for image x and CNN weights W , then CNN is

trained to minimize the softmax loss corresponding to the

true pose label (φi, ϕi, ψi) and f(xi,W ). To predict pose

for an instance x of an unannotated class c, we just com-

pute f(x;W ) - the alignment of all annotated classes to a

canonical pose and implicit sharing of abstractions allow

this system to generalize well to new object classes.

2.3. Experiments

Pose Annotations and Alignment. We evaluate the per-

formance of our system on PASCAL VOC [11] object cat-

egories. We obtain pose annotations for rigid categories via

the PASCAL3D+ [39] dataset which annotates instances in

PASCAL VOC and Imagenet dataset with their euler angles.

The notion of a global viewpoint is challenging to define

for various animal categories in PASCAL VOC and we ap-

ply SfM-based techniques on ground truth keypoints to ob-

tain the torso pose. We use keypoints annotations provided

by Bourdev et al. [3] followed by rigid factorization [38]

to obtain viewpoint for non-rigid pascal classes. The PAS-

CAL3D+ annotations assume a canonical reference frame

across classes - objects are laterally symmetric across X axis

and face frontally in the canonical pose. We obtain similarly

aligned reference frames for other object classes by aligning

the SfM models to adhere to this constraint.

Evaluation Setup. We held out pose annotations for four

object classes - bus, dog, motorbike and sheep. We then

finetuned the CNN systems, after initializing weights using

a pretrained model for Imagenet [9] classification, corre-

sponding to the two approaches described above using pose

annotations for the remaining 16 classes obtained via PAS-

CAL3D+ or PASCAL VOC keypoint labels.

To evaluate the performance of our system for rigid ob-

jects, we used the Accθ metric [36] which measures the

fraction of instances whose predicted viewpoint is within

a fixed threshold of the correct viewpoint (we use θ = π
6 ).

The ‘ground-truth’ viewpoint obtained for some classes via

SfM techniques is often noisy and the above metric which

works well for exact annotations needs to be altered. To

evaluate the system’s performance for these classes, we use

an auxiliary task of predicting the ‘frontal/left/right/rear-

facing’ label available in PASCAL VOC for these objects.

We use our predicted azimuth for these objects and infer the

‘frontal/left/right/rear-facing’ label based on the predicted

azimuth. We denote the metric that measures accuracy at

this auxiliary task as Accv .

Results. We report the performance our baseline and pro-

posed approach in Table 1. For the SCT method, we used

the weights from car, bicycle, cat and cow prediction sys-

tems to predict pose for bus, motorbike, dog and sheep re-

spectively since these correspond to the visually most simi-

lar classes with available annotations. We note that the pre-

dictions using both approaches are often very close to the

actual object pose and are significantly better than chance.

We also observe that training a generalized prediction sys-
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tem is better than explicitly using a similar class (except for

motorbike, where the bicycle class is very similar). This

is perhaps because sharing of parameters and output units

across classes enables learning shared abstractions that gen-

eralize better to novel classes.

Accπ
6

Accv

Approach bus mbike dog sheep

SCT 0.50 0.58 0.75 0.58

GC 0.80 0.55 0.74 0.78

Table 1. Performance of our approaches for various novel object

classes.

We have described a methodology that aims to provide a

richer description, in particular pose, given a single instance

belonging to an novel class. We note that though human

levels of precision and understanding for novel objects are

still far away, the results imply that we can reliably predict

pose without requiring training annotations, which is a step

in the direction of visual systems capable of dealing with

new instances.

Importance of Similar Object Categories. To further gain

insight into our prediction system, we focused on the ‘bus’

object category and trained two additional networks for the

GC method by holding out ‘car’ and ‘chair’ respectively (in

addition to the four held out categories above). In compari-

son to Accπ
6

= 0.80, the Accπ
6

measure for bus in these two

cases was 0.73 and 0.81 respectively. The observed drop by

holding out ‘car’ confirms our intuition regarding the im-

portance of similar object categories in the seed set.

3. Pose Induction for Object Categories

When reasoning over a single instance of a novel cat-

egory, any system, including the approaches in Section 2,

can only rely on inference and abstractions on previously

seen visual data. However, if given at once a collection

of instances belonging to the new category, we can infer

pose for all instances of the object class under considera-

tion while reasoning jointly over all of their poses. This

allows us to go beyond isolated reasoning for each instance

and leverage the collection of images to jointly reason over

and infer pose for all instances of the object class under

consideration. Tackling the problem of inducing pose at a

category level is particularly relevant as pose annotations

for objects are far more tedious to collect than class labels –

there are significantly more datasets with annotated classes

than pose. Our method allows us to augment these available

datasets with a notion of pose for each object. Our method

can also be used in a completely unsupervised setting to in-

fer pose for consistent visual clusters over instances that vi-

sual knowledge extraction systems like NEIL [7] automati-

cally discover.

One possible approach to reasoning jointly is to explic-

itly infer intra-class correspondences, predict relative trans-

formations and augment these with the induced instance

predictions to obtain more informed pose estimates for each

instance. However, the task of discovering correspondences

across instances that differ in both pose and appearance, is

a particularly challenging one and has been demonstrated

only in limited pose and appearance variability [40, 32].

Our proposed approach provides a simpler but more robust

way of leveraging the image collection. We build on the

intuition that instances with similar spatial distributions of

parts are close on the pose manifold. We define a similarity

measure that captures this intuition and encourage similar

instances to have similar pose predictions.

Algorithm 1 Joint Pose Induction

INITIALIZATION

for i in test instances do

Predict pose distribution F (xi;W ) (Section 2)

Compute K pose hypotheses and likelihood scores

{(Rik, βik)|k ∈ {1, ..,K}} using F (xi;W )
Compute similar instances Ni using Fi (eq 1)

zi ← argmax
k

βik

end for

POSE REFINEMENT

∀i, Update zi (eq 6) until convergence

3.1. Approach

We first obtain multiple pose hypotheses for each in-

stance by obtaining a diverse set of modes from the distri-

bution predicted by the system described in Section 2 . We

then frame the joint pose prediction task as that of selecting

a hypothesis for each instance while taking into considera-

tion the prediction confidence score as well as pose consis-

tency with similar instances. We describe our formulation

in detail below.

Instance Similarity. For each instance i, we obtain a set of

instancesNi whose feature representations are similar to in-

stance i. Our feature representation for an instance is moti-

vated by the observation that each channel in a higher-layer

of a CNN can be reasoned as encoding a spatial likelihood

of abstract parts. Let Ci(x, y, k) denote the instance’s con-

volutional feature response for channel k at location (x, y),
our feature representation Fi is as follows.

Fi(·, ·, k) =
σ(Ci(·, ·, k))

‖σ(Ci(·, ·, k))‖1
(1)

The above, where σ(·) represents a sigmoid function, en-

codes each instance via the normalized spatial likelihood of

67



Figure 3. Viewpoint predictions for unoccluded groundtruth instances using our full system (’GC+sim’). The columns show 15th, 30th,

45th, 60th and 75th percentile instances respectively in terms of the error. We visualize the predictions by rendering a 3D model using our

predicted viewpoint.

these ‘parts’. We use histogram intersection over these rep-

resentations as a similarity measure between two instances

and obtain the set of neighbors Ni for each instance.

Unaries. For each instance i, we obtain K distinct pose hy-

potheses {Rik|k ∈ {1, ..,K}} along with the correspond-

ing log-likelihood scores βik. By Zi ∈ {1, ..,K}, we de-

note the random variable which corresponds to the pose hy-

pothesis we select for instance i. The log-likelihood scores

for each pose hypothesis act as the unary likelihood terms.

Pu(Zi = zi) ∝ e
βizi (2)

Pose Consistency. Let ∆(R1, R2) =
‖log(RT

1
R2)‖F√
2

denote

the geodesic distance between rotation matrices R1, R2 and

I denote the indicator function. We model the consistency

likelihood term as the fraction of instances inNi with a sim-

ilar pose.

Pc(Zi = zi) ∝

∑
j∈Ni

I(∆(Rizi , Rjzj ) < δ)

|Ni|
(3)

While this formulation encourages similar pose estimates

for neighbors, it is biased towards more ’popular’ pose esti-

mates (if the dataset has more front facing bikes, it is more

likely to find neighbors for the corresponding pose hypoth-

esis). Motivated by the recent work of Isola et al. [20], who

use Pointwise Mutual Information [12] (PMI) to counter

similar biases, we normalize by the likelihood of randomly

finding similar pose estimates for neighbors to yield -

Pc(Zi = zi) ∝

∑
j∈Ni

I(∆(Rizi , Rjzj ) < δ)

∑
j

I(∆(Rizi , Rjzj ) < δ)
(4)

Formulation. Pu favors the pose hypotheses that are

scored higher by the instance pose induction system and

Pc, weighted by a factor of λ, leads to a higher joint prob-

ability if predicted pose in consistent with pose for similar

instances. We finally combine these two likelihood terms

to model the likelihood for the pose hypotheses for a given

instance.

P (Zi = zi) ∝ Pu(zi)Pc(zi)
λ (5)

Inference. We aim to infer the MAP estimates z∗i for all in-

stances to give us a pose prediction via joint reasoning over

all instances. We use iterative updates and at each step, we

condition on all the unknown variables except a particular

Zi; the update for assignment zi as follows -

zi = argmax
k

(βik + λlog(
∑

j∈N(i)

I(∆(Rik, Rjzj ) < δ))−

λlog(
∑

j

I(∆(Rik, Rjzj ) < δ))) (6)

Our overall method, as summarized in Algorithm 1,

computes pose estimates for every instance of a novel object

class given a large collection of instances.

3.2. Experiments

The aim of the experiments is twofold - 1) to demon-

strate the benefits of jointly reasoning over all instances of

the class and 2) to show that a spatial feature representa-

tion capturing abstract parts, as defined in eq 1, yields better

performance than alternatives for improving pose estimates.

We follow the experimental setup previously described in

Section 2.3 and build on the ‘GC’ approach. Our method

using spatial features (from Conv5 of VGG net) is denoted

as ‘GC+c5’ and the alternate similarity representation us-

ing fc7 features from VGG net is denoted as ‘GC+fc7’. We

visualize the performance of our system in Figure 3 where

the columns show 15th − 75th percentile instances, when

sorted in terms of error. We observe that the predictions are

accurate even around the 60th − 75th percentile regime.

We see that the results in Table 2 clearly support our two

main hypotheses - that given multiple instances of a novel

category, jointly reasoning over all of them improves the
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Figure 4. Viewpoint predictions for novel object classes without any pose annotations. The columns show randomly selected instances

whose azimuth is predicted to be around −π

2
(right-facing), −π

4
, 0(front-facing), π

4
,

π

2
(left-facing) respectively.
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Figure 5. Failure modes. Our method is unable to induce pose for object classes which drastically differ from

the annotated seed set. The columns show randomly selected instances whose azimuth is predicted to be around
−π

2
(right-facing), −π

4
, 0(front-facing), π

4
,

π

2
(left-facing) respectively.

Accπ
6

Accv

Approach bus mbike dog sheep

GC 0.80 0.55 0.74 0.77

GC+fc7 0.76 0.51 0.73 0.75

GC+c5 0.86 0.60 0.74 0.79

Table 2. Joint reasoning for Pose Induction.

Accπ
6

Accv

Setting bus mbike dog sheep

All 0.86 0.60 0.74 0.79

Confident 0.97 0.76 0.89 0.90

Table 3. Performance for Confident Predictions.

induced pose estimates and that the feature representation

we described further improves performance.

An additional result that we show in Table 3 is that if we

rank the predictions by confidence (eq. 5) and take the top

third confident predictions, error rates are significantly re-

duced. This means that the pose induction system has the

desirable property of having low confidence when it fails.

As we demonstrate later, for various applications e.g. shape

model learning, we might only need accurate pose estimates

for a subset of instances and this result allows us to automat-

ically find that subset by selecting the top few in terms of

confidence.

3.3. Qualitative Results

The evaluation setup so far has focused on PASCAL

VOC object classes because of readily available annotations

to measure performance. However, the aim of our method

is to be able to infer pose annotations for any novel object

category. We can qualitatively demonstrate the applicability

of our approach for diverse classes using the Imagenet ob-

ject classes. Figure 4 shows the predictions of our method

for several classes for which we do not use any pose an-

notations (we use randomly selected instances from the top

third, in terms of prediction confidence, to visualize the pre-

dictions in Figure 4). It is clear that the system performs

well on animals in general as well as for other classes re-

lated to the initial training set (eg. golfcart, motorbike).

While we can often infer a meaningful representation of

pose even for some classes rather different from the initial

training classes e.g. hammer, object categories which differ

drastically from the annotated seed set (eg. jellyfish, vac-

uum cleaner) are the principal failure modes as illustrated

in Figure 5.

4. Shape Modelling for Novel Object Classes

Acquiring shape models for generic object categories

is an integral component of perceiving scenes with a rich

3D representation. The conventional approach to acquiring

shape models includes leveraging human experts to build

3D CAD models of various shapes. This approach, how-

ever, cannot scale to a large number of classes while captur-

ing the wildly different shapes in each object class. Learn-

ing based approaches which also allow shape deformations

[2] provide an alternative solution but typically rely on some

3D initialization [6]. Kar et al. [21] recently showed that

these models can be learned using annotations for only

object silhouettes and a set of keypoints. These require-

ments, while an improvement over previous approaches, are

still prohibitive for deploying similar approaches on a large

scale. Enabling such approaches to learn shape models in

the wild - given nothing but a set of instances, is an im-

portant endeavor as it would allow us to scale shape model

acquisition to a large set of objects.

We take a step towards this goal using our pose induction

system - we demonstrate that it is possible to learn shape

models for a novel object category using just object silhou-

ette annotations. We build on the formulation by Kar et al.

70



Figure 6. Mean shape models learnt for motorbike using a) top :

all pose induction estimates b) mid : most confident pose induction

estimates c) bottom : ground-truth keypoint annotations.

[21] and note that they mainly used keypoint annotations to

estimate camera projection parameters and that these can be

initialized using our induced pose as well. We briefly review

their formulation and describe our modifications that allow

us to learn shape models without keypoint annotations.

Formulation. Let Pi = (Ri, ci, ti) represent the projec-

tion parameters (rotation, scale and translation) for the ith

instance. Kar et al. obtain these using the annotated key-

points and we instead initialize the scale, translation param-

eters using bounding box scale, location and the rotation

using our induced pose. Their shape model M = (S, V )
consists of a mean shape S and linear deformation bases

V = {V1, ., VK}. The energies used in their formulation

enforce that the shape for an instance is consistent with its

silhouette (Es, Ec), shapes are locally consistent (El), nor-

mals vary smoothly (En) and the deformation parameters

are small (‖αikVk‖
2
F ) (they also use a keypoint based en-

ergy Ekp which we ignore). We refer the reader to [21]

for details regarding the optimization and formulations of

shape energies. While Kar et al. only optimize over shape

model and deformation parameters, we note that since our

projection parameters are noisy, we should also refine them

to minimize the energy. Therefore, we minimize the ob-

jective mentioned in eq. 7 over the shape model, deforma-

tion parameters as well as projection parameters (initialized

using the induced pose) to learn shape models of a novel

object class using just silhouette annotations.

min
S̄,V,α,P

El(S̄, V ) +
∑

i

(Ei
s + Ei

c + Ei
n +

∑

k

(‖αikVk‖
2
F ))

subject to: Si = S̄ +
∑

k

αikVk

(7)

Results. We use the unoccluded instances of the class mo-

torbike to demonstrate the applicability of our pose induc-

tion system for shape learning. Since we are interested in

learning a shape model for the class, we can ignore some

object instances for which we are uncertain regarding pose.

As shown in table 3, we can use the subset of most confident

pose estimates to get a higher level of precision. Figure 6

shows that our model learnt without any keypoint annota-

tion is quite similar to the model learnt by Kar et al. using

full annotations and that using the subset of instances with

confident pose induction predictions substantially improves

shape models. The learnt model demonstrates that our pose

induction system makes it is feasible to learn shape models

for novel object classes without requiring keypoint annota-

tions. This not only qualitatively verifies the reliability of

our pose induction estimates, it also signifies an important

step towards automatically learning shape representations

from images.

5. Conclusion

We have presented a system which leverages available

pose annotations for a small set of seed classes and can in-

duce pose for a novel object class. We have empirically

shown that the system performs well given a single instance

of a novel class and that this performance is significantly

improved if we reason jointly over multiple instances of

that class, when available. We have also shown that our

pose induction system enables learning shape representa-

tions for object classes without any keypoint/3D annota-

tions required by previous methods. Our qualitative results

on Imagenet further demonstrate that this approach gener-

alizes to a large and diverse set of object classes.
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