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Abstract

Numerous deep learning applications benefit from multi-

task learning with multiple regression and classification ob-

jectives. In this paper we make the observation that the

performance of such systems is strongly dependent on the

relative weighting between each task’s loss. Tuning these

weights by hand is a difficult and expensive process, mak-

ing multi-task learning prohibitive in practice. We pro-

pose a principled approach to multi-task deep learning

which weighs multiple loss functions by considering the ho-

moscedastic uncertainty of each task. This allows us to si-

multaneously learn various quantities with different units

or scales in both classification and regression settings. We

demonstrate our model learning per-pixel depth regression,

semantic and instance segmentation from a monocular in-

put image. Perhaps surprisingly, we show our model can

learn multi-task weightings and outperform separate mod-

els trained individually on each task.

1. Introduction

Multi-task learning aims to improve learning efficiency

and prediction accuracy by learning multiple objectives

from a shared representation [7]. Multi-task learning is

prevalent in many applications of machine learning – from

computer vision [27] to natural language processing [11] to

speech recognition [23].

We explore multi-task learning within the setting of vi-

sual scene understanding in computer vision. Scene under-

standing algorithms must understand both the geometry and

semantics of the scene at the same time. This forms an in-

teresting multi-task learning problem because scene under-

standing involves joint learning of various regression and

classification tasks with different units and scales. Multi-

task learning of visual scene understanding is of crucial

importance in systems where long computation run-time is

prohibitive, such as the ones used in robotics. Combining

all tasks into a single model reduces computation and allows

these systems to run in real-time.

Prior approaches to simultaneously learning multiple

tasks use a naı̈ve weighted sum of losses, where the loss

weights are uniform, or manually tuned [38, 27, 15]. How-

ever, we show that performance is highly dependent on an

appropriate choice of weighting between each task’s loss.

Searching for an optimal weighting is prohibitively expen-

sive and difficult to resolve with manual tuning. We observe

that the optimal weighting of each task is dependent on the

measurement scale (e.g. meters, centimetres or millimetres)

and ultimately the magnitude of the task’s noise.

In this work we propose a principled way of combining

multiple loss functions to simultaneously learn multiple ob-

jectives using homoscedastic uncertainty. We interpret ho-

moscedastic uncertainty as task-dependent weighting and

show how to derive a principled multi-task loss function

which can learn to balance various regression and classifica-

tion losses. Our method can learn to balance these weight-

ings optimally, resulting in superior performance, compared

with learning each task individually.

Specifically, we demonstrate our method in learning

scene geometry and semantics with three tasks. Firstly, we

learn to classify objects at a pixel level, also known as se-

mantic segmentation [32, 3, 42, 8, 45]. Secondly, our model

performs instance segmentation, which is the harder task of

segmenting separate masks for each individual object in an

image (for example, a separate, precise mask for each in-

dividual car on the road) [37, 18, 14, 4]. This is a more

difficult task than semantic segmentation, as it requires not

only an estimate of each pixel’s class, but also which object

that pixel belongs to. It is also more complicated than ob-

ject detection, which often predicts object bounding boxes

alone [17]. Finally, our model predicts pixel-wise metric

depth. Depth by recognition has been demonstrated using

dense prediction networks with supervised [15] and unsu-

pervised [16] deep learning. However it is very hard to esti-

mate depth in a way which generalises well. We show that

we can improve our estimation of geometry and depth by

using semantic labels and multi-task deep learning.

In existing literature, separate deep learning models
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Figure 1: Multi-task deep learning. We derive a principled way of combining multiple regression and classification loss functions for

multi-task learning. Our architecture takes a single monocular RGB image as input and produces a pixel-wise classification, an instance

semantic segmentation and an estimate of per pixel depth. Multi-task learning can improve accuracy over separately trained models because

cues from one task, such as depth, are used to regularize and improve the generalization of another domain, such as segmentation.

would be used to learn depth regression, semantic segmen-

tation and instance segmentation to create a complete scene

understanding system. Given a single monocular input im-

age, our system is the first to produce a semantic segmenta-

tion, a dense estimate of metric depth and an instance level

segmentation jointly (Figure 1). While other vision mod-

els have demonstrated multi-task learning, we show how to

learn to combine semantics and geometry. Combining these

tasks into a single model ensures that the model agrees be-

tween the separate task outputs while reducing computa-

tion. Finally, we show that using a shared representation

with multi-task learning improves performance on various

metrics, making the models more effective.

In summary, the key contributions of this paper are:

1. a novel and principled multi-task loss to simultane-

ously learn various classification and regression losses

of varying quantities and units using homoscedastic

task uncertainty,

2. a unified architecture for semantic segmentation, in-

stance segmentation and depth regression,

3. demonstrating the importance of loss weighting in

multi-task deep learning and how to obtain superior

performance compared to equivalent separately trained

models.

2. Related Work

Multi-task learning aims to improve learning efficiency

and prediction accuracy for each task, when compared to

training a separate model for each task [40, 5]. It can be con-

sidered an approach to inductive knowledge transfer which

improves generalisation by sharing the domain information

between complimentary tasks. It does this by using a shared

representation to learn multiple tasks – what is learned from

one task can help learn other tasks [7].

Fine-tuning [1, 36] is a basic example of multi-task

learning, where we can leverage different learning tasks by

considering them as a pre-training step. Other models al-

ternate learning between each training task, for example in

natural language processing [11]. Multi-task learning can

also be used in a data streaming setting [40], or to prevent

forgetting previously learned tasks in reinforcement learn-

ing [26]. It can also be used to learn unsupervised features

from various data sources with an auto-encoder [35].

In computer vision there are many examples of methods

for multi-task learning. Many focus on semantic tasks, such

as classification and semantic segmentation [30] or classifi-

cation and detection [38]. MultiNet [39] proposes an archi-

tecture for detection, classification and semantic segmenta-

tion. CrossStitch networks [34] explore methods to com-

bine multi-task neural activations. Uhrig et al. [41] learn

semantic and instance segmentations under a classification

setting. Multi-task deep learning has also been used for ge-

ometry and regression tasks. [15] show how to learn se-

mantic segmentation, depth and surface normals. PoseNet

[25] is a model which learns camera position and orienta-

tion. UberNet [27] learns a number of different regression

and classification tasks under a single architecture. In this

work we are the first to propose a method for jointly learn-

ing depth regression, semantic and instance segmentation.

Like the model of [15], our model learns both semantic and

geometry representations, which is important for scene un-

derstanding. However, our model learns the much harder

task of instance segmentation which requires knowledge of

both semantics and geometry. This is because our model

must determine the class and spatial relationship for each

pixel in each object for instance segmentation.
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(b) Comparing loss weightings when learning instance regression and depth regression

Figure 2: Learning multiple tasks improves the model’s representation and individual task performance. These figures and tables

illustrate the advantages of multi-task learning for (a) semantic classification and depth regression and (b) instance and depth regression.

Performance of the model in individual tasks is seen at both edges of the plot where w = 0 and w = 1. For some balance of weightings

between each task, we observe improved performance for both tasks. All models were trained with a learning rate of 0.01 with the

respective weightings applied to the losses using the loss function in (1). Results are shown using the Tiny CityScapes validation dataset

using a down-sampled resolution of 128× 256.

More importantly, all previous methods which learn mul-

tiple tasks simultaneously use a naı̈ve weighted sum of

losses, where the loss weights are uniform, or crudely and

manually tuned. In this work we propose a principled

way of combining multiple loss functions to simultaneously

learn multiple objectives using homoscedastic task uncer-

tainty. We illustrate the importance of appropriately weight-

ing each task in deep learning to achieve good performance

and show that our method can learn to balance these weight-

ings optimally.

3. Multi Task Learning with Homoscedastic

Uncertainty

Multi-task learning concerns the problem of optimising a

model with respect to multiple objectives. It is prevalent in

many deep learning problems. The naive approach to com-

bining multi objective losses would be to simply perform a

weighted linear sum of the losses for each individual task:

Ltotal =
∑

i

wiLi. (1)

This is the dominant approach used by prior work [39,

38, 30, 41], for example for dense prediction tasks [27],

for scene understanding tasks [15] and for rotation (in

quaternions) and translation (in meters) for camera pose

[25]. However, there are a number of issues with this

method. Namely, model performance is extremely sensitive

to weight selection, wi, as illustrated in Figure 2. These

weight hyper-parameters are expensive to tune, often taking

many days for each trial. Therefore, it is desirable to find a

more convenient approach which is able to learn the optimal

weights.

More concretely, let us consider a network which learns

to predict pixel-wise depth and semantic class from an in-

put image. In Figure 2 the two boundaries of each plot show

models trained on individual tasks, with the curves showing
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performance for varying weights wi for each task. We ob-

serve that at some optimal weighting, the joint network per-

forms better than separate networks trained on each task in-

dividually (performance of the model in individual tasks is

seen at both edges of the plot: w = 0 and w = 1). At near-

by values to the optimal weight the network performs worse

on one of the tasks. However, searching for these optimal

weightings is expensive and increasingly difficult with large

models with numerous tasks. Figure 2 also shows a similar

result for two regression tasks; instance segmentation and

depth regression. We next show how to learn optimal task

weightings using ideas from probabilistic modelling.

3.1. Homoscedastic uncertainty as task­dependent
uncertainty

In Bayesian modelling, there are two main types of un-

certainty one can model [24].

• Epistemic uncertainty is uncertainty in the model,

which captures what our model does not know due to

lack of training data. It can be explained away with

increased training data.

• Aleatoric uncertainty captures our uncertainty with re-

spect to information which our data cannot explain.

Aleatoric uncertainty can be explained away with the

ability to observe all explanatory variables with in-

creasing precision.

Aleatoric uncertainty can again be divided into two sub-

categories.

• Data-dependent or Heteroscedastic uncertainty is

aleatoric uncertainty which depends on the input data

and is predicted as a model output.

• Task-dependent or Homoscedastic uncertainty is

aleatoric uncertainty which is not dependent on the in-

put data. It is not a model output, rather it is a quantity

which stays constant for all input data and varies be-

tween different tasks. It can therefore be described as

task-dependent uncertainty.

In a multi-task setting, we show that the task uncertainty

captures the relative confidence between tasks, reflecting

the uncertainty inherent to the regression or classification

task. It will also depend on the task’s representation or unit

of measure. We propose that we can use homoscedastic

uncertainty as a basis for weighting losses in a multi-task

learning problem.

3.2. Multi­task likelihoods

In this section we derive a multi-task loss function based

on maximising the Gaussian likelihood with homoscedastic

uncertainty. Let fW(x) be the output of a neural network

with weights W on input x. We define the following proba-

bilistic model. For regression tasks we define our likelihood

as a Gaussian with mean given by the model output:

p(y|fW(x)) = N (fW(x), σ2) (2)

with an observation noise scalar σ. For classification we

often squash the model output through a softmax function,

and sample from the resulting probability vector:

p(y|fW(x)) = Softmax(fW(x)). (3)

In the case of multiple model outputs, we often define the

likelihood to factorise over the outputs, given some suffi-

cient statistics. We define fW(x) as our sufficient statistics,

and obtain the following multi-task likelihood:

p(y1, ...,yK |fW(x)) = p(y1|f
W(x))...p(yK |fW(x))

(4)

with model outputs y1, ...,yK (such as semantic segmenta-

tion, depth regression, etc).

In maximum likelihood inference, we maximise the log

likelihood of the model. In regression, for example, the log

likelihood can be written as

log p(y|fW(x)) ∝ −
1

2σ2
||y − fW(x)||2 − log σ (5)

for a Gaussian likelihood (or similarly for a Laplace like-

lihood) with σ the model’s observation noise parameter –

capturing how much noise we have in the outputs. We then

maximise the log likelihood with respect to the model pa-

rameters W and observation noise parameter σ.

Let us now assume that our model output is composed of

two vectors y1 and y2, each following a Gaussian distribu-

tion:

p(y1,y2|f
W(x)) = p(y1|f

W(x)) · p(y2|f
W(x))

= N (y1; f
W(x), σ2

1
) · N (y2; f

W(x), σ2

2
).

(6)

This leads to the minimisation objective, L(W, σ1, σ2),
(our loss) for our multi-output model:

= − log p(y1,y2|f
W(x))

∝
1

2σ2

1

||y1 − fW(x)||2 +
1

2σ2

2

||y2 − fW(x)||2 + log σ1σ2

=
1

2σ2

1

L1(W) +
1

2σ2

2

L2(W) + log σ1σ2

(7)

Where we wrote L1(W) = ||y1 − fW(x)||2 for the loss of

the first output variable, and similarly for L2(W).
We interpret minimising this last objective with respect

to σ1 and σ2 as learning the relative weight of the losses
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L1(W) and L2(W) adaptively, based on the data. As σ1

– the noise parameter for the variable y1 – increases, we

have that the weight of L1(W) decreases. On the other

hand, as the noise decreases, we have that the weight of

the respective objective increases. The noise is discouraged

from increasing too much (effectively ignoring the data) by

the last term in the objective, which acts as a regulariser for

the noise terms.

This construction can be trivially extended to multiple

regression outputs. However, the extension to classification

likelihoods is more interesting. We adapt the classification

likelihood to squash a scaled version of the model output

through a softmax function:

p(y|fW(x), σ) = Softmax(
1

σ2
fW(x)) (8)

with a positive scalar σ. This can be interpreted as a Boltz-

mann distribution (also called Gibbs distribution) where the

input is scaled by σ2 (often referred to as temperature). This

scalar is either fixed or can be learnt, where the parameter’s

magnitude determines how ‘uniform’ (flat) the discrete dis-

tribution is. This relates to its uncertainty, as measured in

entropy. The log likelihood for this output can then be writ-

ten as

log p(y = c|fW(x), σ) =
1

σ2
fW

c (x)

− log
∑

c′

exp

(

1

σ2
fW

c′ (x)

) (9)

with fW
c (x) the c’th element of the vector fW(x).

Next, assume that a model’s multiple outputs are com-

posed of a continuous output y1 and a discrete out-

put y2, modelled with a Gaussian likelihood and a soft-

max likelihood, respectively. Like before, the joint loss,

L(W, σ1, σ2), is given as:

= − log p(y1,y2 = c|fW(x))

= − logN (y1; f
W(x), σ2

1
) · Softmax(y2 = c; fW(x), σ2)

=
1

2σ2

1

||y1 − fW(x)||2 + log σ1 − log p(y2 = c|fW(x), σ2)

=
1

2σ2

1

L1(W) +
1

σ2

2

L2(W) + log σ1

+ log

∑

c′ exp

(

1

σ2

2

fW

c′ (x)

)

(

∑

c′ exp

(

fW

c′ (x)

))
1

σ2

2

≈
1

2σ2

1

L1(W) +
1

σ2

2

L2(W) + log σ1 + log σ2,

(10)

where again we write L1(W) = ||y1 − fW(x)||2

for the Euclidean loss of y1, write L2(W) =

− log Softmax(y2, f
W(x)) for the cross entropy loss of y2

(with fW(x) not scaled), and optimise with respect to W

as well as σ1, σ2. In the last transition we introduced the ex-

plicit simplifying assumption 1

σ2

∑

c′ exp

(

1

σ2

2

fW

c′ (x)

)

≈

(

∑

c′ exp

(

fW

c′ (x)

))
1

σ2

2

which becomes an equality

when σ2 → 1. This has the advantage of simplifying the

optimisation objective, as well as empirically improving re-

sults.

This last objective can be seen as learning the relative

weights of the losses for each output. Large scale values

σ2 will decrease the contribution of L2(W), whereas small

scale σ2 will increase its contribution. The scale is regulated

by the last term in the equation. The objective is penalised

when setting σ2 too large.

This construction can be trivially extended to arbitrary

combinations of discrete and continuous loss functions, al-

lowing us to learn the relative weights of each loss in a

principled and well-founded way. This loss is smoothly dif-

ferentiable, and is well formed such that the task weights

will not converge to zero. In contrast, directly learning the

weights using a simple linear sum of losses (1) would result

in weights which quickly converge to zero. In the following

sections we introduce our experimental model and present

empirical results.

In practice, we train the network to predict the log vari-

ance, s := log σ2. This is because it is more numerically

stable than regressing the variance, σ2, as the loss avoids

any division by zero. The exponential mapping also allows

us to regress unconstrained scalar values, where exp(−s)
is resolved to the positive domain giving valid values for

variance.

4. Scene Understanding Model

To understand semantics and geometry we first propose

an architecture which can learn regression and classification

outputs, at a pixel level. Our architecture is a deep con-

volutional encoder decoder network [3]. Our model con-

sists of a number of convolutional encoders which produce

a shared representation, followed by a corresponding num-

ber of task-specific convolutional decoders. A high level

summary is shown in Figure 1.

The purpose of the encoder is to learn a deep mapping to

produce rich, contextual features, using domain knowledge

from a number of related tasks. Our encoder is based on

DeepLabV3 [10], which is a state of the art semantic seg-

mentation framework. We use ResNet101 [20] as the base

feature encoder, followed by an Atrous Spatial Pyramid

Pooling (ASPP) module [10] to increase contextual aware-

ness. We apply dilated convolutions in this encoder, such

that the resulting feature map is sub-sampled by a factor of
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(a) Input Image (b) Semantic Segmentation

(c) Instance vector regression (d) Instance Segmentation

Figure 3: Instance centroid regression method. For each pixel,

we regress a vector pointing to the instance’s centroid. The loss is

only computed over pixels which are from instances. We visualise

(c) by representing colour as the orientation of the instance vector,

and intensity as the magnitude of the vector.

8 compared to the input image dimensions.

We then split the network into separate decoders (with

separate weights) for each task. The purpose of the decoder

is to learn a mapping from the shared features to an output.

Each decoder consists of a 3 × 3 convolutional layer with

output feature size 256, followed by a 1×1 layer regressing

the task’s output. Further architectural details are described

in Appendix A.

Semantic Segmentation. We use the cross-entropy loss

to learn pixel-wise class probabilities, averaging the loss

over the pixels with semantic labels in each mini-batch.

Instance Segmentation. An intuitive method for defin-

ing which instance a pixel belongs to is an association to the

instance’s centroid. We use a regression approach for in-

stance segmentation [29]. This approach is inspired by [28]

which identifies instances using Hough votes from object

parts. In this work we extend this idea by using votes from

individual pixels using deep learning. We learn an instance

vector, x̂n, for each pixel coordinate, cn, which points to the

centroid of the pixel’s instance, in, such that in = x̂n + cn.

We train this regression with an L1 loss using ground truth

labels xn, averaged over all labelled pixels, NI , in a mini-

batch: LInstance =
1

|NI |

∑

NI
‖xn − x̂n‖1.

Figure 3 details the representation we use for instance

segmentation. Figure 3(a) shows the input image and a

mask of the pixels which are of an instance class (at test

time inferred from the predicted semantic segmentation).

Figure 3(b) and Figure 3(c) show the ground truth and pre-

dicted instance vectors for both x and y coordinates. We

then cluster these votes using OPTICS [2], resulting in the

predicted instance segmentation output in Figure 3(d).

One of the most difficult cases for instance segmentation

algorithms to handle is when the instance mask is split due

to occlusion. Figure 4 shows that our method can handle

(a) Input Image (b) Instance Segmentation

Figure 4: This example shows two cars which are occluded by

trees and lampposts, making the instance segmentation challeng-

ing. Our instance segmentation method can handle occlusions ef-

fectively. We can correctly handle segmentation masks which are

split by occlusion, yet part of the same instance, by incorporating

semantics and geometry.

these situations, by allowing pixels to vote for their instance

centroid with geometry. Methods which rely on watershed

approaches [4], or instance edge identification approaches

fail in these scenarios.

To obtain segmentations for each instance, we now need

to estimate the instance centres, în. We propose to con-

sider the estimated instance vectors, x̂n, as votes in a Hough

parameter space and use a clustering algorithm to identify

these instance centres. OPTICS [2], is an efficient density

based clustering algorithm. It is able to identify an unknown

number of multi-scale clusters with varying density from a

given set of samples. We chose OPICS for two reasons.

Crucially, it does not assume knowledge of the number of

clusters like algorithms such as k-means [33]. Secondly, it

does not assume a canonical instance size or density like

discretised binning approaches [12]. Using OPTICS, we

cluster the points cn + x̂n into a number of estimated in-

stances, î. We can then assign each pixel, pn to the instance

closest to its estimated instance vector, cn + x̂n.

Depth Regression. We train with supervised labels us-

ing pixel-wise metric inverse depth using a L1 loss function:

LDepth = 1

|ND|

∑

ND

∥

∥

∥
dn − d̂n

∥

∥

∥

1

. Our architecture esti-

mates inverse depth, d̂n, because it can represent points at

infinite distance (such as sky). We can obtain inverse depth

labels, dn, from a RGBD sensor or stereo imagery. Pixels

which do not have an inverse depth label are ignored in the

loss.

5. Experiments

We demonstrate the efficacy of our method on

CityScapes [13], a large dataset for road scene understand-

ing. It comprises of stereo imagery, from automotive grade

stereo cameras with a 22cm baseline, labelled with instance

and semantic segmentations from 20 classes. Depth images

are also provided, labelled using SGM [22], which we treat

as pseudo ground truth. Additionally, we assign zero in-

verse depth to pixels labelled as sky. The dataset was col-

lected from a number of cities in fine weather and consists

of 2,975 training and 500 validation images at 2048× 1024
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Task Weights Segmentation Instance Inverse Depth

Loss Seg. Inst. Depth IoU [%] Mean Error [px] Mean Error [px]

Segmentation only 1 0 0 59.4% - -

Instance only 0 1 0 - 4.61 -

Depth only 0 0 1 - - 0.640

Unweighted sum of losses 0.333 0.333 0.333 50.1% 3.79 0.592

Approx. optimal weights 0.89 0.01 0.1 62.8% 3.61 0.549

2 task uncertainty weighting X X 61.0% 3.42 -

2 task uncertainty weighting X X 62.7% - 0.533

2 task uncertainty weighting X X - 3.54 0.539

3 task uncertainty weighting X X X 63.4% 3.50 0.522

Table 1: Quantitative improvement when learning semantic segmentation, instance segmentation and depth with our multi-task loss.

Experiments were conducted on the Tiny CityScapes dataset (sub-sampled to a resolution of 128 × 256). Results are shown from the

validation set. We observe an improvement in performance when training with our multi-task loss, over both single-task models and

weighted losses. Additionally, we observe an improvement when training on all three tasks (3 × X) using our multi-task loss, compared

with all pairs of tasks alone (denoted by 2 ×X). This shows that our loss function can automatically learn a better performing weighting

between the tasks than the baselines.

resolution. 1,525 images are withheld for testing on an on-

line evaluation server.

Further training details, and optimisation hyperparame-

ters, are provided in Appendix A.

5.1. Model Analysis

In Table 1 we compare individual models to multi-task

learning models using a naı̈ve weighted loss or the task un-

certainty weighting we propose in this paper. To reduce the

computational burden, we train each model at a reduced res-

olution of 128 × 256 pixels, over 50, 000 iterations. When

we downsample the data by a factor of four, we also need

to scale the disparity labels accordingly. Table 1 clearly il-

lustrates the benefit of multi-task learning, which obtains

significantly better performing results than individual task

models. For example, using our method we improve classi-

fication results from 59.4% to 63.4%.

We also compare to a number of naı̈ve multi-task losses.

We compare weighting each task equally and using approx-

imately optimal weights. Using a uniform weighting results

in poor performance, in some cases not even improving on

the results from the single task model. Obtaining approxi-

mately optimal weights is difficult with increasing number

of tasks as it requires an expensive grid search over param-

eters. However, even these weights perform worse com-

pared with our proposed method. Figure 2 shows that using

task uncertainty weights can even perform better compared

to optimal weights found through fine-grained grid search.

We believe that this is due to two reasons. First, grid search

is restricted in accuracy by the resolution of the search.

Second, optimising the task weights using a homoscedas-

tic noise term allows for the weights to be dynamic during

training. In general, we observe that the uncertainty term

decreases during training which improves the optimisation

process.

In Appendix B we find that our task-uncertainty loss is

robust to the initialisation chosen for the parameters. These

quickly converge to a similar optima in a few hundred train-

ing iterations. We also find the resulting task weightings

varies throughout the course of training. For our final model

(in Table 2), at the end of training, the losses are weighted

with the ratio 43 : 1 : 0.16 for semantic segmentation, depth

regression and instance segmentation, respectively.

Finally, we benchmark our model using the full-size

CityScapes dataset. In Table 2 we compare to a number of

other state of the art methods in all three tasks. Our method

is the first model which completes all three tasks with a sin-

gle model. We compare favourably with other approaches,

outperforming many which use comparable training data

and inference tools. Figure 5 shows some qualitative ex-

amples of our model.

6. Conclusions

We have shown that correctly weighting loss terms is

of paramount importance for multi-task learning problems.

We demonstrated that homoscedastic (task) uncertainty is

an effective way to weight losses. We derived a principled

loss function which can learn a relative weighting automati-

cally from the data and is robust to the weight initialization.

We showed that this can improve performance for scene

understanding tasks with a unified architecture for seman-

tic segmentation, instance segmentation and per-pixel depth

regression. We demonstrated modelling task-dependent ho-

moscedastic uncertainty improves the model’s representa-
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Semantic Segmentation Instance Segmentation Monocular Disparity Estimation

Method IoU class iIoU class IoU cat iIoU cat AP AP 50% AP 100m AP 50m Mean Error [px] RMS Error [px]

Semantic segmentation, instance segmentation and depth regression methods (this work)

Multi-Task Learning 78.5 57.4 89.9 77.7 19.0 35.9 30.9 33.0 2.92 5.88

Semantic segmentation and instance segmentation methods

Uhrig et al. [41] 64.3 41.6 85.9 73.9 8.9 21.1 15.3 16.7 - -

Instance segmentation only methods

Mask R-CNN [19] - - - - 26.2 49.9 37.6 40.1 - -

Deep Watershed [4] - - - - 19.4 35.3 31.4 36.8 - -

R-CNN + MCG [13] - - - - 4.6 12.9 7.7 10.3 - -

Semantic segmentation only methods

DeepLab V3 [10] 81.3 60.9 91.6 81.7 - - - - - -

PSPNet [44] 81.2 59.6 91.2 79.2 - - - - - -

Adelaide [31] 71.6 51.7 87.3 74.1 - - - - - -

Table 2: CityScapes Benchmark [13]. We show results from the test dataset using the full resolution of 1024 × 2048 pixels. For the

full leaderboard, please see www.cityscapes-dataset.com/benchmarks. The disparity (inverse depth) metrics were computed

against the CityScapes depth maps, which are sparse and computed using SGM stereo [21]. Note, these comparisons are not entirely fair,

as many methods use ensembles of different training datasets. Our method is the first to address all three tasks with a single model.

(a) Input image (b) Segmentation output (c) Instance output (d) Depth output

Figure 5: Qualitative results for multi-task learning of geometry and semantics for road scene understanding. Results are shown

on test images from the CityScapes dataset using our multi-task approach with a single network trained on all tasks. We observe that

multi-task learning improves the smoothness and accuracy for depth perception because it learns a representation that uses cues from other

tasks, such as segmentation (and vice versa).

tion and each task’s performance when compared to sepa-

rate models trained on each task individually.

There are many interesting questions left unanswered.

Firstly, our results show that there is usually not a single op-

timal weighting for all tasks. Therefore, what is the optimal

weighting? Is multitask learning is an ill-posed optimisa-

tion problem without a single higher-level goal?

A second interesting question is where the optimal loca-

tion is for splitting the shared encoder network into separate

decoders for each task? And, what network depth is best for

the shared multi-task representation?

Finally, why do the semantics and depth tasks out-

perform the semantics and instance tasks results in Table 1?

Clearly the three tasks explored in this paper are compli-

mentary and useful for learning a rich representation about

the scene. But can we quantify relationships between tasks?
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