
Local Binary Convolutional Neural Networks

Felix Juefei-Xu

Carnegie Mellon University

felixu@cmu.edu

Vishnu Naresh Boddeti

Michigan State University

vishnu@msu.edu

Marios Savvides

Carnegie Mellon University

msavvid@ri.cmu.edu

Abstract

We propose local binary convolution (LBC), an efficient

alternative to convolutional layers in standard convolutional

neural networks (CNN). The design principles of LBC are

motivated by local binary patterns (LBP). The LBC layer

comprises of a set of fixed sparse pre-defined binary convolu-

tional filters that are not updated during the training process,

a non-linear activation function and a set of learnable lin-

ear weights. The linear weights combine the activated filter

responses to approximate the corresponding activated fil-

ter responses of a standard convolutional layer. The LBC

layer affords significant parameter savings, 9x to 169x in

the number of learnable parameters compared to a standard

convolutional layer. Furthermore, the sparse and binary na-

ture of the weights also results in up to 9x to 169x savings in

model size compared to a standard convolutional layer. We

demonstrate both theoretically and experimentally that our

local binary convolution layer is a good approximation of a

standard convolutional layer. Empirically, CNNs with LBC

layers, called local binary convolutional neural networks

(LBCNN), achieves performance parity with regular CNNs

on a range of visual datasets (MNIST, SVHN, CIFAR-10, and

ImageNet) while enjoying significant computational savings.

1. Introduction

Deep learning has been overwhelmingly successful in a

broad range of applications, such as computer vision, speech

recognition / natural language processing, machine trans-

lation, bio-medical data analysis, and many more. Deep

convolutional neural networks (CNN), in particular, have

enjoyed huge success in tackling many computer vision

problems over the past few years, thanks to the tremendous

development of many effective architectures, AlexNet [21],

VGG [30], Inception [33] and ResNet [12, 13] to name a

few. However, training these networks end-to-end with fully

learnable convolutional kernels (as is standard practice) is (1)

computationally very expensive, (2) results in large model

size, both in terms of memory usage and disk space, and

(3) prone to over-fitting, under limited data, due to the large

number of parameters.

On the other hand, there is a growing need for deploying,

both for learning and inference, these systems on resource

constrained platforms like, autonomous cars, robots, smart-

phones, smart cameras, smart wearable devices, etc. To

address these drawbacks, several binary versions of CNNs

have been proposed [6, 5, 28] that approximate the dense

real-valued weights with binary weights. Binary weights

bear dramatic computational savings through efficient imple-

mentations of binary convolutions. Complete binarization of

CNNs, though, leads to performance loss in comparison to

real-valued network weights.

In this paper, we present an alternative approach to reduc-

ing the computational complexity of CNNs while performing

as well as standard CNNs. We introduce the local binary

convolution (LBC) layer that approximates the non-linearly

activated response of a standard convolutional layer. The

LBC layer comprises of fixed sparse binary filters (called

anchor weights), a non-linear activation function and a set of

learnable linear weights that computes weighted combina-

tions of the activated convolutional response maps. Learning

reduces to optimizing the linear weights, as opposed to op-

timizing the convolutional filters. Parameter savings of at

least 9× to 169× can be realized during the learning stage

depending on the spatial dimensions of the convolutional

filters (3 × 3 to 13 × 13 sized filters respectively), as well

as computational and memory savings due to the sparse na-

ture of the binary filters. CNNs with LBC layers, called

local binary convolutional neural networks (LBCNN)1, have

much lower model complexity and are as such less prone to

over-fitting and are well suited for learning and inference of

CNNs in resource-constrained environments.

Our theoretical analysis shows that the LBC layer is a

good approximation for the non-linear activations of stan-

dard convolutional layers. We also demonstrate empirically

that CNNs with LBC layers performs comparably to reg-

ular CNNs on a range of visual datasets (MNIST, SVHN,

CIFAR-10, and ImageNet) while enjoying significant sav-

ings in terms of the number of parameters during training,

1Implementation and future updates will be available at http://

xujuefei.com/lbcnn.

1 19

http://xujuefei.com/lbcnn
http://xujuefei.com/lbcnn

computations, as well as memory requirements due to the

sparse and pre-defined nature of our binary filters, in com-

parison to dense learnable real-valued filters.

Related Work: The idea of using binary filters for con-

volutional layers is not new. BinaryConnect [6] has been

proposed to approximate the real-valued weights in neural

networks with binary weights. Given any real-valued weight,

it stochastically assigns +1 with probability p that is taken

from the hard sigmoid output of the real-valued weight, and

−1 with probability 1−p. Weights are only binarized during

the forward and backward propagation, but not during the

parameter update step, in which high-precision real-valued

weights are necessary for updating the weights. Therefore,

BinaryConnect alternates between binarized and real-valued

weights during the network training process. Building upon

BinaryConnect [6], binarized neural network (BNN) [5] and

quantized neural network (QNN) [14] have been proposed,

where both the weights and the activations are constrained to

binary values. These approaches lead to drastic improvement

in run-time efficiency by replacing most 32-bit floating point

multiply-accumulations by 1-bit XNOR-count operations.

Both BinaryConnect and BNN demonstrate the efficacy

of binary networks on MNIST, CIFAR-10, and SVHN

dataset. Recently, XNOR-Net [28] builds upon the design

principles of BNN and proposes a scalable approach to learn-

ing binarized networks for large-scale image recognition

tasks, demonstrating high performance on the ImageNet

classification task. All the aforementioned approaches uti-

lize high-precision real-valued weights during weight update,

and achieve efficient implementations using XNOR bit count.

XNOR-Net differs from BNN in the binarization method and

the network architecture. In addition to network binarization,

model compression and network quantization techniques

[15, 35, 10, 2, 7, 11, 31, 8] are another class of techniques

that seek to address the computational limitations of CNNs.

However, the performance of such methods are usually upper

bounded by the uncompressed and unquantized models.

Our proposed LBCNN is notably different from fully

binarized neural networks and draws inspiration from local

binary patterns. LBCNN, with a hybrid combination of fixed

and learnable weights offers an alternate formulation of a

fully learnable convolution layer. By only considering sparse

and binary weights for the fixed weights, LBCNN is also able

to take advantage of all the efficiencies, both statistical and

computational, afforded by sparsity and weight binarization.

We demonstrate, both theoretically and empirically, that

LBCNN is a very good approximation of a standard learnable

convolutional layer.

2. Forming LBP with Convolutional Filters

Local binary patterns (LBP) is a simple yet very power-

ful hand-designed descriptor for images rooted in the face

recognition community. LBP has found wide adoption in

0

0

01

1

1

01

C C

0

0

0

0

0

00

0

0 0

0

0

0 0

0

11

1

1

1 1

1 1

1C C

Figure 1: (L-R) 3 × 3 patch and its LBP encoding, 5 × 5 patch and its

LBP encoding.

many other computer vision, pattern recognition, and image

processing applications [27].

The traditional LBP operator [18, 25, 19, 17] operates

on image patches of size 3 × 3, 5 × 5, etc. The LBP de-

scriptor is formed by sequentially compare the intensity of

the neighboring pixels to that of the central pixel within the

patch. Neighbors with higher intensity value, compared to

the central pixel, are assigned a value of 1 and 0 otherwise.

Finally, this bit string is read sequentially and mapped to

a decimal number (using base 2) as the feature value as-

signed to the central pixel. These aggregate feature values

characterize the local texture in the image. The LBP for the

center pixel (xc, yc) within a patch can be represented as

LBP(xc, yc) =
∑L−1

n=0 s(in, ic) · 2
n where in denotes the

intensity of the nth neighboring pixel, ic denotes the inten-

sity of the central pixel, L is the length of the sequence, and

s(·) = 1 if in ≥ ic and s(·) = 0 otherwise. For example, a

N ×N neighborhood consists of N2− 1 neighboring pixels

and therefore results in a N2 − 1 long bit string. Figure 1

shows examples of LBP encoding for a local image patch of

size 3× 3 and 5× 5.

Different parameters and configurations of the LBP for-

mulation can result in drastically different feature descriptors.

We now present a few variations that can help generalize the

basic LBP descriptor:

Base: A base of two is commonly used to encode the LBP

descriptor. Consequently the weights for encoding the LBP

bit string are constrained to powers of two. Relaxing these

constraints and allowing the weights to take any real value

can potentially generalize the LBP descriptor.

Pivot: The physical center of the neighborhood is typically

chosen as the pivot for comparing the intensity of the pixels

in the patch. Choosing different locations in the patch as

the pivot can enable LBP to encode different local texture

patterns. Furthermore, the comparative function s(·) can be

a function of multiple pivots resulting in a more fine-grained

encoding of the local texture.

Ordering: LBP encodes the local texture of a patch by choos-

ing a specific order of pixels to partially preserve the spatial

information of the patch. For a fixed neighborhood size and

pivot, different choice of the ordering the neighbors results

in different encoding of the local texture.

All the aforementioned variations i.e., the choice of pivot,

the base, and the order of the encoding neighbors, are usually

20

Weighted

sum of all the

bit maps

-1

1

-11

-1

1

-1

1

-1

1

-1 1

-1

1

-1

1

Figure 2: Reformulation of the LBP encoding using convolutional filters.

determined empirically and depend on the application. Being

able to generalize these factors of variations in a learnable

framework is one of the motivations and inspiration behind

the design of LBCNN as discussed next.

First, let us reformulate the LBP encoding more efficiently

using convolutional filters. Traditional implementations of

encoding LBP features use a 3× 3 window to scan through

the entire image in an overlapping fashion. At each 3 × 3
patch, the encoding involves (1) compute the difference be-

tween the pivot and the neighboring pixels (or pairs of pixels

more generally), (2) a non-linear thresholding operation map-

ping the pixel differences to binary values, and (3) pooling

the binary values through a weighed sum.

Now, a simple convolution of the entire image with

eight 3 × 3 convolutional filters, followed by simple bi-

narization can achieve the same goal, as shown in Fig-

ure 2. Each convolution filter is a 2-sparse difference fil-

ter. The 8 resulting bit maps after binarization are also

shown. Standard formulations of LBP are simply a weighted

sum of all the bit maps using a pre-defined weight vec-

tor v = [27, 26, 25, 24, 23, 22, 21, 20]. Therefore, stan-

dard LBP feature extraction can be reformulated as y =
∑8

i=1 σ(bi ∗ x) · vi, where x ∈ Rd is vectorized version of

the original image, bi’s are the sparse convolutional filters,

σ is the non-linear binarization operator, the Heaviside step

function in this case, and y ∈ Rd is the resulting LBP image.

By appropriately changing the linear weights v, the base

and the ordering of the encoding can be varied. Similarly by

appropriately changing the non-zero (+1 and -1) support in

the convolutional filters allows us to change the pivot. The

reformulation of LBP as described above forms the basis of

the proposed LBC layer.

3. LBCNN

3.1. Local Binary Convolution Module

Somewhat surprisingly, the reformulation of traditional

LBP descriptor described above possess all the main com-

ponents required by convolutional neural networks. For

instance, in LBP, an image is first filtered by a bank of con-

volutional filters followed by a non-linear operation through

a Heaviside step function. Finally, the resulting bit maps are

linearly combined to obtain the final LBP glyph, which can

serve as the input to the next layer for further processing.

This alternate view of LBP motivates the design of the

local binary convolution (LBC) layer as an alternative of a

standard convolution layer. Through the rest of this paper

neural networks with the LBC layer are referred to as local

binary convolutional neural networks (LBCNN)2. As shown

in Figure 3, the basic module of LBCNN consists of m pre-

defined fixed convolutional filters (anchor weights) bi, i ∈
[m]. The input image xl is filtered by these LBC filters to

generate m difference maps that are then activated through

a non-linear activation function, resulting in m bit maps.

To allow for back propagation through the LBC layer, we

replace the non-differentiable Heaviside step function in LBP

by a differentiable activation function (sigmoid or ReLU).

Finally, the m bit maps are lineally combined by m learnable

weights Vl,i, i ∈ [m] to generate one channel of the final

LBC layer response. The feature map of the LBC layer

serves as the input xl+1 for the next layer. The LBC layer

responses to a generalized multi-channel input xl can be

expressed as:

xt
l+1 =

m∑

i=1

σ

(
∑

s

bst
i ∗ xs

l

)

· Vt
l,i (1)

where t is the output channel and s is the input channel. It

is worth noting that the final step computing the weighted

sum of the activations can be implemented via a convolution

operation with filters of size 1×1. Therefore, each LBC layer

consists of two convolutional layers, where the weights in the

first convolutional layer are fixed and non-learnable while

the weights in the second convolutional layer are learnable.

The number of learnable parameters in the LBC layer

(with the 1 × 1 convolutions) are significantly less than

those of a standard convolutional layer for the same size

of the convolutional kernel and number of input and output

channels. Let the number of input and output channels be

p and q respectively. With a convolutional kernel of size of

h×w, a standard convolutional layer consists of p · h ·w · q
learnable parameters. The corresponding LBC layer consists

of p · h ·w ·m fixed weights and m · q learnable parameters

(corresponding to the 1 × 1 convolution), where m is the

number of intermediate channels of the LBC layer, which is

essentially the number of LBC filters. The 1×1 convolutions

act on the m activation maps of the fixed filters to generate

the q-channel output. The ratio of the number of parameters

in CNN and LBC is:
param. in CNN

param. in LBCNN
=

p · h · w · q

m · q
=

p · h · w

m

For simplicity, assuming p = m reduces the ratio to h · w.

2In this paper we assume convolutional filters do not have bias terms.

21

xl xl+1

Wl

xl xl+1
Vl

CNN Module

LBCNN Module

Figure 3: Basic module in CNN and LBCNN. Wl and Vl are the learnable weights for each module.

Therefore, numerically, LBCNN saves at least 9×, 25×,

49×, 81×, 121×, and 169× parameters during learning for

3×3, 5×5, 7×7, 9×9, 11×11, and 13×13 convolutional

filters respectively.

3.2. Learning with LBC Layers

Training a network end-to-end with LBC layers instead

of standard convolutional layers is straightforward. The gra-

dients can be back propagated through the anchor weights

of the LBC layer in much the same way as they can be back

propagated through the learnable linear weights. This is simi-

lar to propagating gradients through layers without learnable

parameters (e.g., ReLU, Max Pooling etc.). However during

learning, only the learnable 1× 1 filters are updated while

the anchor weights remain unaffected. The anchor weights

of size p× h× w ×m (assuming a total of m intermediate

channels) in LBC can be generated either deterministically

(as practiced in LBP) or stochastically. We use the latter for

our experiments. Specifically, we first determine a sparsity

level, in terms of percentage of the weights that can bear

non-zero values, and then randomly assign 1 or -1 to these

weights with equal probability (Bernoulli distribution). This

procedure is a generalization of the weights in a traditional

LBP since we allow multiple neighbors to be compared

to multiple pivots, similar to the 3D LBP formulation for

spatial-temporal applications [27]. Figure 4 shows a pic-

torial depiction of the weights generated by our stochastic

process for increasing (left to right) levels of sparsity3. Our

stochastic LBC weight generation process allows for more

diversified filters at each layer while providing a fine grained

control over the sparsity of the weights.

3In our paper, sparsity level refers to the percentage of non-zero elements

i.e., sparsity=100% corresponds to a dense weight tensor.

Figure 4: (L-R) Increasing sparsity level (2-sparse, 4-sparse, and 9-sparse)

in the LBC filters. Pink locations bear value 1 and black locations -1. Green

locations are 0. Sparsity refers to the number of non-zero elements.

3.3. Theoretical Analysis

We now theoretically analyze the similarity, i.e., approxi-

mation quality, between the LBC layer and a standard convo-

lutional layer followed by a ReLU non-linearity. We derive

an upper bound on the approximation error of the LBC layer.

At layer l, let x ∈ R(p·h·w)×1 be a vectorized single patch

from the p-channel input maps, where h and w are the spatial

sizes of the convolutional filter. Let w ∈ R(p·h·w)×1 be a

vectorized single convolution filter from the convolutional

filter banks W ∈ Rp×h×w×m with m learnable filters at

layer l. We drop the layer subscription l for brevity.

In a standard CNN, this patch x is projected onto the

filter w, followed by the non-linear activation resulting in

the output feature value d. Each value of the output feature

map is a direct result of convolving the input map x with

a convolutional filter w. This microscopic process can be

expressed as:

d = σrelu(w
⊤x) (2)

The corresponding output feature map value for the pro-

posed LBC layer is a linear combination of multiple elements

from the intermediate bit maps (implemented as 1×1 convo-

lution). Each slice of this bit map is obtained by convolving

the input map x with a set of m pre-defined and fixed con-

volutional filters B ∈ Rm×p×h×w, followed by a non-linear

activation. The corresponding output feature map value d′

for LBCNN is obtained by linearly combining the m inter-

mediate bit maps via convolution with q convolutional filters

22

with parameters: v1, v2, . . . , vmof size 1 × 1. This entire

process can be expressed as:

d′ = σsigmoid(Bx
︸︷︷︸

m×1

)⊤ v
︸︷︷︸

m×1

= c⊤sigmoidv (3)

where B is now a 2D matrix of size m × (p · h · w) with

m filters stacked as rows, with a slight abuse of notation.

v = [v1, . . . , vm]⊤ ∈ R
m×1. The ReLU activation in

Eq. 2 constraints the range of output, i.e., d ≥ 0. Eq.

3 also places similar constraints on the output value i.e.,

csigmoid = σsigmoid(Bx) ∈ (0, 1), due to the sigmoid ac-

tivation. Therefore, one can always obtain a v such that

c⊤sigmoidv = d′ = d.

However, choosing ReLU as the LBC’s activation func-

tion induces the following expression:

d′ = σrelu(Bx)⊤v = c⊤reluv (4)

We consider two cases (i) d = 0: since crelu = σrelu(Bx) ≥
0, a vector v ∈ Rm×1 always exists such that d′ = d. How-

ever, when (ii) d > 0: it is obvious that the approximation

does not hold when crelu = 0. Next we will show the con-

ditions (Theorem 3.5) under which crelu > 0 to ensure that

the approximation d′ ≈ d holds.

Definition 3.1 (subgaussian random variable). A random

variable X is called subgaussian if there exist constants β,

κ > 0, such that P(|X| ≥ t) ≤ βe−κt2 for all t > 0.

Lemma 3.1. Let X be a subgaussian random variable with

E[X] = 0, then there exists a constant c that only depends

on β and κ > 0 such that E[exp(θX)] ≤ exp(cθ2) for

all θ ∈ R. Conversely, if the above inequality holds, then

E[X] = 0 and X is subgaussian with parameters β = 2 and

κ = 1/(4c).

Definition 3.2 (isotropic random vector). Let ǫ be a random

vector on RN . If E[|〈ǫ,x〉|2] = ‖x‖22 for all x ∈ RN , then

ǫ is called an isotropic random vector.

Definition 3.3 (subgaussian random vector). Let ǫ be a ran-

dom vector on RN . If for all x ∈ R
N with ‖x‖2 = 1,

the random variable 〈ǫ,x〉 is subgaussian with subgaussian

parameter c being independent of x, that is

E[exp(θ〈ǫ,x〉)] ≤ exp(cθ2), for all θ ∈ R, ‖x‖ = 1 (5)

then ǫ is called a subgaussian random vector.

Lemma 3.2. Bernoulli random matrices are subgaussian

matrices.

Lemma 3.3. Bernoulli random vectors are isotropic.

Lemma 3.4. Let B be an m × N random matrix with in-

dependent, isotropic, and subgaussian rows with the same

subgaussian parameter c in (5). Then, for all x ∈ RN and

every t ∈ (0, 1),

P

(∣
∣
∣
∣

1

m
‖Bx‖22 − ‖x‖22

∣
∣
∣
∣
≥ t‖x‖22

)

≤ 2 exp(−c̃t2m) (6)

where c̃ only depends on c.

Theorem 3.5. Let B ∈ R
m×N be a Bernoulli random

matrix with the same subgaussian parameter c in (5), and

x ∈ RN be a fixed vector and ‖x‖2 > 0, with N = p · h ·w.

Let ξ = Bx ∈ Rm. Then, for all t ∈ (0, 1), there exists a

matrix B and an index i ∈ [m] such that

P



ξi ≥
√

(1− t)‖x‖2
︸ ︷︷ ︸

>0



 ≥ 1− 2 exp(−c̃t2m) (7)

Theorem 3.5 shows that with high probability, elements in

the ξ = Bx vector are greater than zero, which ensures that

for the case when d > 0 under ReLU activation, there is a

vector v such that d ≈ d′ with high probability.

This analysis is valid for a single image patch that is

convolved with CNN and LBCNN filters. We now consider

a relaxed scenario with a total of τ patches per image. The

output feature map for the image is a τ dimensional vector

d ∈ Rτ with each element di, i ∈ [τ] being the scalar output

for i-th patch in the CNN. Similarly, for LBCNN the output

feature map is a vector d′ = C⊤

reluv, where Crelu ∈ Rm×τ

and each column in Crelu corresponds to the m bit maps

from each of the τ image patches. Observe that vector v

is now shared across all the τ image patches i.e., the τ
columns in Crelu to approximate d. When τ ≤ m, a vector

v can be solved for such that d′ = C⊤

reluv. However, when

τ > m, the problem reduces to an over-determined system

of linear equations and a least-square error solution ṽ is

given by ṽ = (CC⊤)−1Cd′, such that d′ ≈ C⊤

reluṽ. This

analysis suggests that using a larger number of intermediate

filters m can result in a better approximation of the standard

convolutional layer.

Empirically we can measure how far d′ is from d

by measuring the normalized mean square error (NMSE):

‖d′ − d‖22/‖d‖
2
2. We take the entire 50,000 32 × 32 im-

ages from CIFAR-10 training set and measure the NMSE,

as shown in Figure 6 (L). For the CNN, dense real-valued

filters are independently generated as Gaussian random fil-

ters, for each individual image. For the LBCNN, the sparse

LBC filters are also independently generated for each in-

dividual image. Experiments are repeated for 10 levels of

sparsity (10%, 20%, . . . , 100%) and 3 choices of number of

intermediate channels, 64, 128 and 512. We can see that the

approximation is better using more filters, and with higher

sparsity, with the exception of sparsity being 100%. We

conjecture that this may be due to that fact that d is actually

sparse, due to ReLU activation, and therefore enforcing no

sparsity constraints on the LBC filters B actually makes the

approximation harder.

4. Experimental Results

We will evaluate the efficacy of the proposed LBC layer

and compare its performance to a standard convolutional

layer on several datasets, both small scale and large scale.

23

Datasets: We consider classification tasks on four different

visual datasets, MNIST, SVHN, CIFAR-10, and ILSVRC-

2012 ImageNet classification challenge. The MNIST [22]

dataset is composed of a training set of 60K and a testing

set of 10K 32× 32 gray-scale images of hand-written digits

from 0 to 9. SVHN [24] is also a widely used dataset for

classifying digits, house number digits from street view im-

ages in this case. It consists of a training set of 604K and

a testing set of 26K 32 × 32 color images showing house

number digits. CIFAR-10 [20] is an image classification

dataset containing a training set of 50K and a testing set of

10K 32× 32 color images across the following 10 classes:

airplanes, automobiles, birds, cats, deers, dogs, frogs, horses,

ships, and trucks. The ImageNet ILSVRC-2012 classifica-

tion dataset [29] consists of 1000 classes, with 1.28 million

images for training and 50K images for validation. We first

consider a subset of this dataset. We randomly selected 100

classes with the largest number of images (1300 training

images in each class, for a total of 130K training images and

5K testing images.), and report top-1 accuracy on this subset.

Full ImageNet experimental results are also reported in the

subsequent section.

Implementation Details: Conceptually LBCNN can be eas-

ily implemented in any existing deep learning framework.

Since the convolutional weights are fixed, we do not have to

compute the gradients nor update the weights. This leads to

savings both from a computational point of view and mem-

ory as well. Furthermore, since the weights are binary the

convolution operation can be performed purely through ad-

ditions and subtractions. We base the model architectures

we evaluate in this paper on ResNet [13], with default 3× 3
filter size. Our basic module is the LBC module shown in

Figure 3 along with an identity connection as in ResNet. We

experiment with different numbers of LBC units, 10, 20 and

75, which is equivalent to 20, 40, and 150 convolutional

layers. For LBCNN the convolutional weights are generated

following the procedure described in Section 3.2. We use

512 randomly generated anchor weights, with a sparsity of

0.1, 0.5 or 0.9, for all of our experiments. Spatial average

pooling is adopted after the convolution layers to reduce the

spatial dimensions of the image to 6× 6. We use a learning

rate of 1e-3 and adopt the learning rate decay schedule from

[13]. We use ReLU instead of sigmoid as our non-linear

function for computational efficiency and faster convergence.

An important and practical consideration is to avoid using

a ReLU activation just prior to the LBC layer. This is to

ensure that there is no irrecoverable loss of information due

to the sparsity in both the input (due to ReLU activation) and

the convolutional weights.

Baselines: To ensure a fair comparison and to quantify the

exact empirical difference between our LBCNN approach

and a traditional CNN, we use the exact same architecture

for both the networks, albeit with sparse, binary and fixed

q 16 32 64 128 192 256 384 512

LBCNN 82.74 85.57 88.18 90.70 91.58 92.13 92.96 92.09

LBCNN-share 82.70 85.26 87.85 90.26 91.37 91.72 92.91 91.83

Baseline 84.13 86.30 88.77 90.86 91.69 92.15 92.93 91.87

Table 1: Classification accuracy (%) on CIFAR-10 with 20 convolution

layers and 512 LBC filters on LBCNN, LBCNN-share, and CNN baseline.

Epoch

0 20 40 60 80 100

A
cc

u
ra

cy

30

40

50

60

70

80

90

100

LBCNN train accuracy

LBCNN test accuracy

LBCNN-share train accuracy

LBCNN-share test accuracy

0 10 20 30 40 50 60

Epoch

0

10

20

30

40

50

60

A
cc

u
ra

cy
 (

%
)

2

2.5

3

3.5

4

4.5

5

L
o

ss

AlexNet (accuracy)

LBCNN (accuracy)

AlexNet (loss)

LBCNN (loss)

Figure 5: (L) Accuracy of the best performing LBCNN and LBCNN-share

on CIFAR-10. (R) Accuracy and loss on full ImageNet classification.

weights in LBCNN and dense learnable weights for CNN.

We also use the exact same data and hyper-parameters in

terms of the number of convolutional filters, initial learning

rate and the learning rate schedule. Consequently in these

experiments with 3× 3 convolutional kernels, LBCNN has

10× fewer learnable parameters (the baseline CNN also

includes a 1× 1 convolutional layer).

Results on MNIST, SVHN, and CIFAR-10: Table 1 com-

pares the accuracy achieved by LBCNN, LBCNN with

shared convolutional weights and the corresponding net-

work with a regular convolutional layer on the CIFAR-10

dataset. Note that with a fixed number of convolutional lay-

ers, number of input and output channels, performance of

the networks increases with an increase in the number of

output channels q. Significantly, LBCNN with 10× fewer

parameters performs as well as the corresponding CNN.

Table 2 consolidates the images classification results from

our experiments on various datasets. The best performing

LBCNNs are compared to their corresponding CNN baseline,

as well as to state-of-the-art methods such as BinaryCon-

nect [6], Binarized Neural Networks (BNN) [5], ResNet

[12], Maxout Network [9], Network in Network (NIN) [23].

For each dataset under consideration the best performing

LBCNN models are:

• MNIST: 150 convolutional layers (75 LBCNN mod-

ules), 512 LBC filters, 16 output channels, 0.5 sparsity,

128 hidden units in the fully connected layer.

• SVHN: 80 convolutional layers (40 LBCNN modules),

512 LBC filters, 16 output channels, 0.9 sparsity, 512

hidden units in the fully connected layer.

• CIFAR-10: 100 convolutional layers (50 LBCNN mod-

ules), 512 LBC filters, 384 output channels, 0.1 sparsity,

512 hidden units in the fully connected layer.

24

LBCNN Baseline BinaryConnect [6] BNN [5, 14] ResNet [12] Maxout [9] NIN [23]

MNIST 99.51 99.48 98.99 98.60 / 99.55 99.53

SVHN 94.50 95.21 97.85 97.49 / 97.53 97.65

CIFAR-10 92.99 (93.66 NetEverest) 92.95 91.73 89.85 93.57 90.65 91.19

Table 2: Classification accuracy (%). LBCNN column only shows the best performing model and the Baseline column shows the particular CNN counterpart.

LBC Filter Size 3×3 5×5 7×7 9×9 11×11 13×13

LBCNN 62.56 62.29 62.80 63.24 63.08 62.43

Baseline 65.74 64.90 66.53 65.91 65.22 64.94

Table 3: Classification accuracy (%) on 100-class ImageNet with varying

LBC filter sizes.

LBCNN with Shared Weights: We consider a scenario

where all the LBC layers in the network share the same set

of convolutional weights, as opposed to randomly generating

new convolutional weights at each layer. For a network with

D LBC layers sharing the convolutional weights across the

layers results in a model size that is roughly smaller by a

factor of D. As can be seen from the second row in Table 1

and in Figure 5 (L), the performance of the network with

weight sharing is comparable to a network without weight

sharing. This experiment demonstrates the practicality of

using a LBCNN on memory constrained embedded systems.

NetEverest: With at least 9× parameter reduction, one can

now train much deeper networks, going roughly from 100 to

1000 layers, or from 1000 to 10000 layers. The LBC module

allows us to train extremely deep CNN efficiently with 8848

convolutional layers (4424 LBC modules), dubbed NetEver-

est, using a single nVidia Titan X GPU. The architecture of

NetEverest: 8848 convolutional layers (4424 LBC modules),

32 LBC filters, 32 output channels, 0.1 sparsity, 512 hidden

units in the fully connected layer. This network achieves the

highest accuracy on CIFAR-10 among our experiments as

shown in Table 2.

Results on 100-Class ImageNet Subset: We report the top-

1 accuracy on a 100-Class subset of ImageNet 2012 clas-

sification challenge dataset in Table 3. The input images

of ImageNet are of a much higher resolution than those in

MNIST, SVHN, and CIFAR-10, allowing us to experiments

with the different LBC filter sizes. Both LBCNN and our

baseline CNN share the same architecture: 48 convolutional

layers (24 LBC modules), 512 LBC filters, 512 output chan-

nels, 0.9 sparsity, 4096 hidden units in the fully connected

layer.

Results on Full ImageNet: We train a LBCNN version of

the AlexNet [21] architecture on the full ImageNet classi-

fication dataset. The AlexNet architecture is comprised of

five consecutive convolutional layers, and two fully con-

nected layers, mapping the image (224 × 224 × 3) to a

1000-dimension feature representation for classification. The

number of convolutional filters used and their spatial sizes

are tabulated in Table 4. For this experiment, we create a

LBCNN version of the AlexNet architecture by replacing

Layers AlexNet [21] LBCNN (AlexNet)

Layer 1 96 × (11 × 11 × 3) = 34, 848 96 × 256 = 24, 576
Layer 2 256 × (5 × 5 × 48) = 307, 200 256 × 256 = 65, 536
Layer 3 384 × (3 × 3 × 256) = 884, 736 384 × 256 = 98, 304
Layer 4 384 × (3 × 3 × 192) = 663, 552 384 × 256 = 98, 304
Layer 5 256 × (3 × 3 × 192) = 442, 368 256 × 256 = 65, 536

Total 2, 332, 704 (∼ 2.33M) 352, 256 (∼ 0.352M)

Table 4: Comparison of the number of learnable parameters in convolu-

tional layers in AlexNet and AlexNet with LBCNN modules. The proposed

method saves 6.622× learnable parameters in the convolutional layers.

LBCNN AlexNet (ours) AlexNet (BLVC) [1]

ImageNet 54.9454 56.7821 56.9

Table 5: Classification accuracy (%) on full ImageNet.

Sparsity (%)

0 20 40 60 80 100

N
M

S
E

 (
%

)

0

2

4

6

8

10

12

14

16

18

64 LBC Filters

128 LBC Filters

512 LBC Filters

Layer
1 2 3 4 5

N
o

rm
a

liz
e

d
 C

o
rr

e
la

ti
o

n
 M

e
a

s
u

re

0.91

0.92

0.93

0.94

0.95

0.96

0.97

LBCNN Weights

CNN Weights

Figure 6: (L) NMSE between d
′ and d with increasing levels of sparsity

within the LBC filters. (R) Normalized correlation measure for LBCNN

and CNN filters. The smaller the value, the more de-correlated they are.

each convolutional layer in AlexNet with a LBC layer with

the same number input and output channels and size of filter.

Table 4 compares the number of learnable parameters in con-

volutional layers in both AlexNet and its LBCNN version

by setting the number of output channels to q = 256. As

can be seen, LBCNN acheives a 6.622× reduction in the

number of learnable parameters in the convolutional layers

while performing comparably to AlexNet (see Table 5). The

progression in the validation accuracy and training loss of

AlexNet and its corresponding LBCNN version set for 55

epochs is shown in Figure 5.

5. Discussion

We now discuss some computational and statistical advan-

tages afforded by the proposed local binary convolution layer

over a regular convolutional layer.

Computational: The parametrization of the LBC layer re-

duces the number of learnable parameters by a factor of 9×
to 169× during training and inference. Furthermore, the

sparse and binary nature of the convolutional weights fur-

25

Epoch

0 50 100 150 200 250 300 350

A
cc

u
ra

cy

10

20

30

40

50

60

70

80

90

100

LBCNN train accuracy

LBCNN test accuracy

CNN train accuracy

CNN test accuracy

Epoch

0 50 100 150
A

cc
u

ra
cy

10

20

30

40

50

60

70

80

90

100

LBCNN train accuracy

LBCNN test accuracy

CNN train accuracy

CNN test accuracy

Epoch

0 50 100 150

A
cc

u
ra

cy

0

10

20

30

40

50

60

70

80

90

100

LBCNN train accuracy

LBCNN test accuracy

CNN train accuracy

CNN test accuracy

Epoch

0 50 100 150

A
cc

u
ra

cy

0

10

20

30

40

50

60

70

80

90

100

LBCNN train accuracy

LBCNN test accuracy

CNN train accuracy

CNN test accuracy

Figure 7: (L1) Results on overfitting experiments. (R3) Results on the FRGC 10-class, 50-class, and 100-class experiments respectively.

ther reduces the computational complexity and memory and

space requirements both during training and inference. The

lower memory requirements enables learning of much deep

neural networks thereby allowing better representations to

be learned through deeper architectures [30, 12, 13]. Fur-

thermore, sharing the convolutional weights across all the

LBC layers, leads to further reduction in memory require-

ments thereby enabling learning of deep CNNs on resource

constrained embedded systems.

Statistical: LBCNN, being a simpler model with fewer

learnable parameters compared to a CNN, can effectively

regularize the learning process and prevent over-fitting. High

capacity models such as deep CNNs with a regular convo-

lutional layer typically consists of a very large number of

parameters. Methods such as Dropout [32], DropConnect

[34], and Maxout [9] have been introduced to regularize the

fully connected layers of a network during training to avoid

over-fitting. As opposed to regularizing the fully connected

layers [32, 34, 4] of a network, LBCNN directly regularizes

the convolutional layers, which is also important as discussed

in [32, 3].

Network regularization techniques such as Dropout [32]

and Batch Normalization [16] prevent co-adaptation of neu-

ron activations and reduce internal co-variate shift. Re-

cently Cogswell et al. [4] propose a method to explicitly de-

correlate and minimize the cross-covariance of hidden activa-

tions, to improve performance and prevent over-fitting. It en-

courages diverse or non-redundant representations. LBCNN

naturally provides de-correlation for the activations since the

convolutional filters are randomly generated sparse Bernoulli

filters. Figure 6 (R) shows the amount of normalized corre-

lation (‖Σ‖2F − ‖diag(Σ)‖22)/‖Σ‖2F in both LBCNN and

CNN filters for the first 5 layers of the best-performing ar-

chitecture on CIFAR-10 described in Section 4. Smaller

values of the normalized correlation correspond to greater

de-correlation between the activations.

Sample Complexity: The lower model complexity of

LBCNN makes them an attractive option for learning with

low sample complexity. To demonstrate the statistical effi-

ciency of LBCNN we perform an experiment on a subset of

the CIFAR-10 dataset. The training subset randomly picks

25% images (5000 × 0.25 = 1250) per class while keep-

ing the testing set intact. We choose the best-performing

architecture on CIFAR-10 described in Section 4 for both

the CNN and LBCNN. The results shown in Figure 7 (L1)

demonstrates that LBCNN trains faster and is less prone to

over-fitting on the training data. To provide an extended

evaluation, we perform additional face recognition on the

FRGC v2.0 dataset [26] experiments under a limited sample

complexity setting. The number of images in each class

ranges from 6 to 132 (51.6 on average). While there are

466 classes in total, we experiment with increasing number

of randomly selected classes (10, 50 and 100) with a 60-40

train/test split. Across the number of classes, our network

parameters remain the same except for the classification

fully connected layer at the end. We make a few observa-

tions from our findings (see Figure 7 (R3)): (1) LBCNN

converges faster than CNN, especially on small datasets and

(2) LBCNN outperforms CNN on this task. Lower model

complexity helps LBCNN prevent over-fitting especially on

small to medium-sized datasets.

6. Conclusions

Motivated by traditional local binary patterns, in this

paper, we proposed local binary convolution (LBC) layer as

an alternative to the convolutional layers in standard CNN.

The LBC layer comprises of a set of sparse, binary and

randomly generated set of convolutional weights that are

fixed and a set of learnable linear weights. We demonstrate,

both theoretically and empirically, that the LBC module is a

good approximation of a standard convolutional layer while

also resulting in a significant reduction in the number of

parameters to be learned at training, 9× to 169× for 3× 3
and 13 × 13 sized filters respectively. CNNs with LBC

layers are well suited for low sample complexity learning of

deep CNNs in resource constrained environments due their

low model and computational complexity. The proposed

LBCNN demonstrates excellent performance and performs

as well as standard CNNs on multiple small and large scale

datasets across different network architectures.

26

References

[1] Berkeley Vision and Learning Center (BLVC). BVLC

AlexNet Accuracy on ImageNet 2012 Validation Set.

https://github.com/BVLC/caffe/wiki/Models-accuracy-on-

ImageNet-2012-val, 2015. 7

[2] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and

Y. Chen. Compressing Neural Networks with the Hashing

Trick. In 32nd International Conference on Machine Learn-

ing (ICML), 2015. 2

[3] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and Ac-

curate Deep Network Learning by Exponential Linear Units

(ELUs). In International Conference on Learning Represen-

tations (ICLR), 2016. 8

[4] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Batra.

Reducing Overfitting in Deep Networks by Decorrelating

Representations. In International Conference on Learning

Representations (ICLR), 2016. 8

[5] M. Courbariaux and Y. Bengio. BinaryNet: Training Deep

Neural Networks with Weights and Activations Constrained

to +1 or -1. arXiv preprint arXiv:1602.02830, 2016. 1, 2, 6, 7

[6] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect:

Training Deep Neural Networks with binary weights during

propagations. In Advances in Neural Information Processing

Systems (NIPS), pages 3105–3113, 2015. 1, 2, 6, 7

[7] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas.

Predicting Parameters in Deep Learning. In Advances in

Neural Information Processing Systems (NIPS), pages 2148–

2156, 2013. 2

[8] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S.

Modha. Backpropagation for Energy-efficient Neuromorphic

Computing. In Advances in Neural Information Processing

Systems (NIPS), pages 1117–1125, 2015. 2

[9] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,

and Y. Bengio. Maxout Networks. In 30th International

Conference on Machine Learning (ICML), 2013. 6, 7, 8

[10] S. Han, H. Mao, and W. J. Dally. Deep Compression: Com-

pressing Deep Neural Networks with Pruning, Trained Quan-

tization and Huffman Coding. In International Conference

on Learning Representations (ICLR), 2016. 2

[11] S. Han, J. Pool, J. Tran, and W. Dally. Learning both Weights

and Connections for Efficient Neural Network. In Advances in

Neural Information Processing Systems (NIPS), pages 1135–

1143, 2015. 2

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning

for Image Recognition. In IEEE International Conference

on Computer Vision and Pattern Recognition (CVPR), pages

770–778, 2016. 1, 6, 7, 8

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings

in Deep Residual Networks. In European Conference on

Computer Vision (ECCV), pages 630–645, 2016. 1, 6, 8

[14] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Quantized neural networks: Training neural net-

works with low precision weights and activations. arXiv

preprint arXiv:1609.07061, 2016. 2, 7

[15] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J.

Dally, and K. Keutzer. SqueezeNet: AlexNet-level Accuracy

with 50x Fewer Parameters and <1MB Model Size. arXiv

preprint arXiv:1602.07360, 2016. 2

[16] S. Ioffe and C. Szegedy. Batch Normalization: Accelerat-

ing Deep Network Training by Reducing Internal Covariate

Shift. In 32nd International Conference on Machine Learning

(ICML), 2015. 8

[17] F. Juefei-Xu, K. Luu, and M. Savvides. Spartans: Single-

sample Periocular-based Alignment-robust Recognition Tech-

nique Applied to Non-frontal Scenarios. IEEE Trans. on

Image Processing, 24(12):4780–4795, Dec 2015. 2

[18] F. Juefei-Xu and M. Savvides. Subspace-Based Discrete

Transform Encoded Local Binary Patterns Representations

for Robust Periocular Matching on NIST’s Face Recogni-

tion Grand Challenge. IEEE Trans. on Image Processing,

23(8):3490–3505, Aug 2014. 2

[19] F. Juefei-Xu and M. Savvides. Learning to Invert Local Binary

Patterns. In 27th British Machine Vision Conference (BMVC),

Sept 2016. 2

[20] A. Krizhevsky and G. Hinton. Learning Multiple Layers of

Features from Tiny Images. 2009. 6

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

Classification with Deep Convolutional Neural Networks. In

Advances in Neural Information Processing Systems (NIPS),

pages 1097–1105, 2012. 1, 7

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based Learning Applied to Document Recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 6

[23] M. Lin, Q. Chen, and S. Yan. Network in Network. In In-

ternational Conference on Learning Representations (ICLR),

2014. 6, 7

[24] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading Digits in Natural Images with Unsupervised

Feature Learning. In NIPS Workshop on Deep Learning and

Unsupervised Feature Learning, 2011. 6

[25] T. Ojala, M. Pietikäinen, and D. Harwood. A Comparative

Study of Texture Measures with Classification Based on Fea-

tured Distributions. Pattern Recognition, 29(1):51–59, 1996.

2

[26] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,

K. Hoffman, J. Marques, J. Min, and W. Worek. Overview

of the Face Recognition Grand Challenge. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

volume 1, pages 947–954, 2005. 8

[27] M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen. Computer

Vision Using Local Binary Patterns. Springer, 2011. 2, 4

[28] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-

Net: ImageNet Classification Using Binary Convolutional

Neural Networks. In European Conference on Computer

Vision (ECCV), pages 525–542, 2016. 1, 2

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Im-

ageNet Large Scale Visual Recognition Challenge. Interna-

tional Journal of Computer Vision (IJCV), 115(3):211–252,

2015. 6

[30] K. Simonyan and A. Zisserman. Very Deep Convolutional

Networks for Large-scale Image Recognition. In Interna-

tional Conference on Learning Representations (ICLR), 2015.

1, 8

27

[31] D. Soudry, I. Hubara, and R. Meir. Expectation Backpropaga-

tion: Parameter-free Training of Multilayer Neural Networks

with Continuous or Discrete Weights. In Advances in Neu-

ral Information Processing Systems (NIPS), pages 963–971,

2014. 2

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A Simple Way to Prevent Neural

Networks from Overfitting. The Journal of Machine Learning

Research (JMLR), 15(1):1929–1958, 2014. 8

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going Deeper

with Convolutions. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1–9, 2015. 1

[34] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regu-

larization of Neural Networks Using Dropconnect. In 30th In-

ternational Conference on Machine Learning (ICML), pages

1058–1066, 2013. 8

[35] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized

Convolutional Neural Networks for Mobile Devices. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016. 2

28

