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Abstract

We present an approach to reconstruct the 3D shape of

multiple deforming objects from incomplete 2D trajectories

acquired by a single camera. Additionally, we simultane-

ously provide spatial segmentation (i.e., we identify each of

the objects in every frame) and temporal clustering (i.e., we

split the sequence into primitive actions). This advances ex-

isting work, which only tackled the problem for one single

object and non-occluded tracks. In order to handle several

objects at a time from partial observations, we model point

trajectories as a union of spatial and temporal subspaces,

and optimize the parameters of both modalities, the non-

observed point tracks and the 3D shape via augmented La-

grange multipliers. The algorithm is fully unsupervised and

results in a formulation which does not need initialization.

We thoroughly validate the method on challenging scenar-

ios with several human subjects performing different activ-

ities which involve complex motions and close interaction.

We show our approach achieves state-of-the-art 3D recon-

struction results, while it also provides spatial and temporal

segmentation.

1. Introduction

The problem of Non-Rigid Structure from Motion

(NRSfM) involves simultaneously recovering deformable

3D shape and camera motion from monocular 2D point

tracks. Since many different shape configurations may yield

similar projections, NRSfM turns to be a highly ambiguous

problem, which requires introducing prior information in

order to be solved. Standard priors include the use of low-

rank subspaces constraining the solution space of either the

entire shape [2, 24, 37], the 3D point trajectories [6, 32] or

the force patterns that induce the deformations [3].

All these previous approaches, though, use one single

low-rank modality at a time. This prevents them from being

applicable in situations that require models with high lev-

els of expressiveness, such as for complex point trajectories

or when dealing with multiple objects performing different

types of deformations and motions. In this paper we tackle
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Figure 1. Simultaneous 3D non-rigid reconstruction, spatial

segmentation and temporal clustering from incomplete 2D

point tracks. Top-left: Example of input 2D point tracks (from

the CMU MoCap dataset). For clarity we show a complete

non-overlapped case, but our approach can handle discontinuous

tracks and high degree of object overlapping. Right: Spatial and

Temporal similarity matrices we retrieve. Each entry expresses

the pairwise affinity between points or frames. Clusters are di-

rectly discovered by applying spectral clustering on these matri-

ces. Bottom-left: 3D shape reconstruction together with the tem-

poral and spatial clustering results. Spatial segmentation yields

two objects, represented by red and green points. Temporal clus-

ters clearly identify two motion primitives corresponding to the

‘jump in’ (orange) and ‘jump out’ (magenta) sub-actions.

both these situations.

There exist previous works partially addressing these

scenarios. For the rigid case, the shape of multiple mov-

ing objects can be retrieved by first segmenting the objects

from the input 2D tracks and then applying a rigid SfM al-

gorithm to each of them [30, 33, 39]. However, this strategy

depends on the accuracy of the initial segmentation which,

for the case of non-rigid and overlapping objects is likely to

fail. Regarding the non-rigid case, there has been a recent

attempt at reconstructing complex dynamics by modeling

motion as a union of temporal subspaces [40]. This ap-

proach, however, has been applied to one single object, and

relies on continuous and fully observed 2D point tracks.

In order to reconstruct multiple non-rigid objects with

complex motions from partial 2D observations, we intro-

duce a novel optimization framework that combines spatial
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and temporal clustering in a unified manner. The two types

of clustering are performed via affinity matrices, which are

jointly learned, in conjunction with the 3D shape, using an

Augmented Lagrange Multiplier (ALM) scheme. The ap-

proach is fully unsupervised and requires no initialization.

We extensively evaluate the method on sequences with up

to four subjects performing complex actions and interacting

with each other. As shown in Fig. 1 the outcome of our al-

gorithm is the spatial segmentation of each frame, which is

likely to correspond to each of the subjects, a temporal clus-

tering corresponding to motion primitives (‘jump in’ and

‘jump out’ for the example shown in the figure), plus the 3D

reconstruction of each individual. We are not aware of any

other approach solving the three problems simultaneously.

Furthermore, as we will show in the results, the accuracy of

the 3D reconstructions we obtain, improves that of state-of-

the-art NRSfM methods by a considerable margin.

2. Related Work

We next review the most related work dealing with

single- and multi-object reconstruction.

NRSfM for Single Object Reconstruction. The most

standard approach to address the inherent ambiguity of

the NRSfM problem is by assuming the underlying 3D

shape is low rank. In order to estimate such low rank

model, factorization-based approaches have been typically

used [4, 10, 19, 31, 37]. Alternatively, other approaches

impose the low-rank constraint by means of robust PCA-

like formulations in which the rank of a matrix repre-

senting the shape is minimized. These type of methods

either assume the data lies on a single low dimensional

space [16, 18, 20] or in a union of temporal subspaces [40].

On top of these shape models, additional spatial [24] or tem-

poral [1, 8, 26] smoothness constraints have also been con-

sidered. Low-rank models have been extended to the tem-

poral domain, by fitting point trajectories to a series of pre-

defined basis [6, 32, 38], to shape-and-temporal composite

domains [21, 22, 35], and to the space of forces that induce

the deformations [3].

All previous approaches, though, have been focused on

retrieving the shape of single objects. Most of them, in-

deed, are not directly applicable to the multi-object sce-

nario we contemplate in this paper, because they rely on

a single linear subspace assumption that is not rich enough

to model the variability occurring on scenarios with multi-

ple objects performing different actions. Trajectory-based

methods [6, 32, 38], can potentially tackle this type of sce-

narios because the low-rank is applied per point on the tem-

poral domain. However, as we will show in the results sec-

tion, a high sensitivity on to the dimension of the low-rank

penalizes the accuracy of the reconstructions they provide.

Furthermore, none of the previous methods is intended to

[3, 37] [21, 22] [16, 20] [18, 24, 25] [40] Ours

Rank required − − X X X X

Occlusion handling X X − X − X

Multiple objects − X − − X X

Temporal clustering − − − − X X

Shape clustering − − − − − X

Table 1. Qualitative comparison of our approach with other

NRSfM methods. Our approach is the only one that simultane-

ously provides 3D reconstruction, shape segmentation and tempo-

ral clustering. Important characteristics are that it can also natu-

rally handle complex scenarios with multiple interacting objects

and incomplete 2D input tracks; and it does not need to adjust

the rank of the basis. When this is required, it usually turns to be a

very sensitive parameter for accuracy of the method. Note that [18]

performs shape clustering directly from 2D, as an independent and

separate task previous to the shape reconstruction.

provide full temporal and spatial segmentation of the se-

quence. Table 1 provides a qualitative comparison, in terms

of available characteristics, of our approach and the most

relevant NRSfM methods.

Multi-Object Reconstruction. Most existing works in

multi-object reconstruction from point tracks are applied

to rigid objects, and follow a two-step pipeline. First the

2D motion tracks are segmented into several objects using

a subspace clustering approach [17, 27]; and then rigid SfM

techniques [36] are separately applied to each of the ob-

jects [15, 33, 39]. The technique in [30] is able to perform

simultaneous segmentation and reconstruction [30], but it

still is only applicable to rigid cases. One interesting ex-

ception is the recent work [34] which assumes the object

to be represented as overlapping rigid parts, and simultane-

ously segments and reconstructs these parts using piecewise

rigid models. However, while this approach provides dense

(spatial) segmentation and reconstruction, suffers from the

relative low expressiveness of the piecewise models, which

limits the applicability to scenes with mild deformations.

Our Contributions. We depart from previous work in that

our solution simultaneously provides 3D non-rigid recon-

struction, spatial segmentation and temporal clustering. To

the best of our knowledge, no previous approach has jointly

addressed the three problems. Additionally, we can tackle

sequences with complex motions and point track patterns

with a high degree of overlapping, in a completely unsu-

pervised manner. This outcome is the result of our tech-

nical contribution: a novel formulation of the problem that

accounts for both temporal and spatial consistency of the

point tracks while minimizing the rank of the solution. In

the following we shall denote our approach as ‘Dual Union

of Spatio-Temporal subspaces’ (DUST).

3. Revisiting NRSfM

We next revisit two NRSfM formulations that will be

used later to model non-rigid shape as a union of spatial

and temporal subspaces.
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5. 3D Reconstruction and Spatio-Temporal

Clustering from 2D Trajectories

In this Section we combine the standard NRSfM pro-

jection equation described in Sect. 3, with Eqs. (1) and (2)

enforcing temporal and spatial clustering, in order to simul-

taneously segment the 2D trajectories into different objects,

provide their 3D reconstruction, and cluster their motion

into a series of primitives. Note that [40] already presented

an approach perform reconstruction and temporal grouping

of one single object. Here we introduce the multi-object

capability, and the possibility to handle occluded 2D tracks.

As it will be shown shortly, this involves having to deal with

a considerably more complex loss function and a more elab-

orate optimization strategy than that considered in [40].

5.1. Problem Formulation

Let P̄ be a possibly incomplete 2D measurement matrix,

and O its corresponding F × N observation matrix with

{1, 0} entries indicating whether the two coordinates of a

point in a specific frame are observed or not.

We can specifically formulate our problem as follows:

given the partial 2D tracks P̄ and the observation matrix O,

we seek to estimate the temporal 3D location of all points

X̂, the affinity matrices associated to the temporal T and

spatial S clustering, the matrix P of complete 2D tracks and

the matrix G of camera rotations. Let us denote by Θ ≡
{P,G,T,S,X,Et,Es} the set of all model parameters.

For estimating these parameters we propose a cost func-

tion that incorporates the spatio-temporal model described

previously and enforces the matrices to lie in low-rank sub-

spaces. As standard practice [16, 20], the nuclear norm is

used as a convex approximation to the rank minimization.

Our problem can therefore be written as follows:

argmin
Θ

‖ (O⊗ 12)⊙
(

P− P̄
)

‖2F + β‖P‖∗ + φ‖T‖∗

+ φ‖S‖∗ + γ‖X‖∗ + λt‖Et‖1 + λs‖Es‖1 (3)

subject to P = GX̂

I2F = GG
⊤

X = XT+Et

X̂ = X̂S+Es

where ⊙ represents the Hadamard product and 1 is a vec-

tor of ones. ‖ · ‖∗ is the nuclear norm, ‖ · ‖1 is the convex

approximation to sparse error and ‖·‖F indicates the Frobe-

nius norm. {β, φ, γ, λt, λs} are penalty term parameters

We devise an approximated three-step strategy to min-

imize this cost function. First, we complete the partially

observed measurement matrix P. Then, we estimate the

camera rotations matrix G. And finally, we simultaneously

solve for the shape X and clustering parameters T and S.

We next describe each of these steps.

5.2. Completing Missing Entries

To complete the unobserved tracks identified as zeros

within the observation matrix O, we separately optimize P

taking the first two terms of Eq. (3):

min
P

‖ (O⊗ 12)⊙
(

P− P̄
)

‖2F + β‖P‖∗ . (4)

As it was shown in [7, 11, 12], this type of low-rank mini-

mizations with the nuclear norm acting as a regularizer can

be optimized with a bilinear factorization P = UV
⊤ and

applying ALM [9]. By doing this, we obtain the following

augmented Lagrangian function:

argmin
P,U,V

‖ (O⊗ 12)⊙
(

P− P̄
)

‖2F +
β

2

(

‖U‖2F + ‖V‖2F
)

+ 〈L,P−UV
⊤〉+

α

2
‖P−UV

⊤‖2F , (5)

where L is the 2F × N Lagrange multiplier and α > 0 a

penalty parameter. We solve this optimization following the

algorithm described in [12] (Alg. #1 in this paper).

5.3. Estimating Camera Rotation

Given the full matrix of point tracks P, the camera rota-

tion matrices R, i.e., the matrix G, can be estimated inde-

pendently from the rest of model parameters by using the

projection and the orthonormality constraints. There are

several alternatives and approximations for doing so, e.g.,

strategies that enforce smooth trajectories [21, 22], methods

based on trace-norm minimization that assume the rank of

the subspace a priori [16, 35] or techniques based on Pro-

crustes analysis [24]. Of course, for easier scenarios, G

could also be recovered using a few background rigid points

and then applying rigid factorization [32].

In any event, since the focus of the paper is on the accu-

racy of the 3D reconstruction and the ability to perform tem-

poral and spatial segmentation, we will assume the matrix

G has been computed by any of these previous methods.

Furthermore, when comparing with state-of-the-art, we will

use the same rotation matrices for all methods.

5.4. Joint Clustering and 3D Reconstruction

In order to jointly recover 3D shape and the spatio-

temporal clustering, we again resort to the ALM method.

Assuming P and G are already known, the minimization

we need to perform is:

argmin
T,S,X,Et,Es

φ‖T‖∗+φ‖S‖∗+γ‖X‖∗+λt‖Et‖1+λs‖Es‖1

subject to P = GX̂

X = XT+Et

X̂ = X̂S+Es
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Since the parameters {φ, γ, λt, λs} can be scaled w.r.t. one

of them, in the following, without loss of generality, we fix

φ = 1. The Lagrangian function in this is:

argmin
Θs,t,x

‖J‖∗+‖K‖∗+γ‖X‖∗+λt‖Et‖1+λs‖Es‖1

+〈L1,X−XT−Et〉+
α

2
‖X−XT−Et‖

2

F

+〈L2,P−GD〉+
α

2
‖P−GD‖2F

+〈L3,D−DS−Es〉+
α

2
‖D−DS−Es‖

2

F

+〈L4, q(X)−D〉+
α

2
‖q(X)−D‖2F

+〈L5,T−J〉+
α

2
‖T−J‖2F

+〈L6,S−K〉+
α

2
‖S−K‖2F (6)

where Θs,t,x ≡ {J,T,K,S,X,D,Es,Et} are the spatio-

temporal clustering and shape parameters, including three

support matrices we have introduced corresponding to D ≡
q(X), J ≡ T and K ≡ S. Additionally, L1 ∈ R

3N×F ,

L2 ∈ R
2F×N , {L3,L4} ∈ R

3F×N , L5 ∈ R
F×F and L6 ∈

R
N×N are the Lagrange multipliers; and α > 0 is a penalty

coefficient to improve convergence.

This minimization is highly under-constrained, but it can

be carried out efficiently by solving each subproblem sep-

arately and in closed form, while keeping fixed the rests

of variables. Algorithm 1 succinctly explains the details.

The expressions for estimating T, S and D (steps 5, 7 and

10) are obtained by computing the derivatives of Eq. (6)

in T, S and D and equating to zero. For J, K and X

matrices (steps 4, 6 and 8), we apply a Singular Value

Thresholding minimization [13] with a ‘shrinkage opera-

tor’ S ∗

α
(x) = max(0, x − ∗

α
) where ∗ = {1, γ}. The op-

timization of matrices Et and Es (steps 12 and 13) can be

done in closed form by the element-wise shrinkage operator

S ∗

α
(x) = max(0, x − ∗

α
) where ∗ = {λs, λt} [28]. After

each iteration, the Lagrange multipliers are updated accord-

ing to standard rules as shown in lines 14-19.

5.5. Spatial and Temporal Clustering

Once the affinity matrices T and S are estimated, we run

the spectral clustering algorithm proposed in [14] to dis-

cover the actual clusters. Figure 1 shows an example of

two matrices we obtain, where each entry (i, j) indicates

the degree of similarity between the i-th and j-th frame (for

the case of T), or between the i-th and j-th data point (for

the case of S). The bar right below the affinity matrices

represents the clusters discovered after applying [14]. The

granularity of the segmentation can be controlled through a

threshold on the eigenvalues internally computed by [14].

input : Possibly incomplete 2D trajectories P̄ and

parameters {λt, λs, γ} and {α, ρ, ǫ}
output: 3D reconstruction D, camera rotation G,

spatial S and temporal T clustering

/* Complete 2D Traject., Eq. (5) */

1 if P 6= P̄ then

P = min ‖ (O⊗ 12)⊙
(

P− P̄
)

‖2F + β‖P‖∗
2 else P ≡ P̄

/* Camera Rotation G, Sect. 5.3 */

/* ALM optimization of Eq. (6) */

3 while not converged do

/* Update Model Parameters */

4 J = min 1

α
‖J‖∗ + 1

2
‖J− (T+ L5

α
)‖2F

5 T = (X⊤
X+IF )

−1(X⊤(X−Et)+J+X
⊤
L1−L5

α
)

6 K = min 1

α
‖K‖∗ + 1

2
‖K− (S+ L6

α
)‖2F

7 S = (D⊤
D+IN )−1(D⊤(D−Es)+K+D

⊤
L3−L6

α
)

8 X = min γ

α
‖X‖∗+

1

2
‖X−

(

(Et−
L1

α
)(IF−T)⊤+

q−1(D− L4

α
)
)

((IF −T)(IF −T)⊤ + IF )
−1‖2F

9 C = G
⊤(P+L2

α
)+(Es−

L3

α
)(IN−S

⊤)+L4

α
+q(X)

10 vec(D) =
(

IN⊗(G⊤
G+IB)+B

⊤⊗IB

)−1
vec(C)

11 D = mat(vec(D))

12 Et = min λt

α
‖Et‖1 +

1

2
‖Et − (X−XT+ L1

α
)‖2F

13 Es = min λs

α
‖Es‖1 +

1

2
‖Es − (D−DS+ L3

α
)‖2F

/* Update Lagrange Multipliers */

14 L1 = L1 + α(X−XT−Et)
15 L2 = L2 + α(P−GD)
16 L3 = L3 + α(D−DS−Es)
17 L4 = L4 + α(q(X)−D)
18 L5 = L5 + α(T− J)
19 L6 = L6 + α(S−K)

/* Update penalty weights */

20 α = min(ρα, 1012)

/* Check Convergence */

21 ‖X−XT−Et‖∞ < ǫ

22 ‖P−GD‖∞ < ǫ

23 ‖D−DS−Es‖∞ < ǫ

24 ‖q(X)−D‖∞ < ǫ

25 ‖T− J‖∞ < ǫ

26 ‖S−K‖∞ < ǫ

27 end

28 Notation: vec(·) and mat(·) are vectorization and

matrization operators. B = (IN − S)(IN − S
⊤),

B = 3T

Algorithm 1: Algorithm for optimizing Eq. (3).

6. Experimental Evaluation

We evaluate the proposed approach on the CMU MoCap

Dataset. We consider several scenarios with two or more

subjects interacting and performing complex motions (see

videos in the supplemental material). Since 2D projections

are not directly available on this dataset, we generate them
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❳
❳
❳

❳
❳
❳

❳
❳
❳
❳

Data

Method
CSF [21] KSTA [22] BMM [16] EM-PND [24] TUS [40] GBNR [18] CNR [25] Ours (DUST)

0% missing data sparse/structured

Metric: eX eX eX eX eX eX eX eX eS [%] eT [%] eX eX

Jump 0.053 0.071 0.078 0.065 0.054 0.070 0.074 0.045 0.0(2) 5.8(3) 0.047 0.062

Pull 0.123 0.128 0.146 0.113 0.116 0.138 0.183 0.118 0.0(2) 8.3(4) 0.120 0.121

Soldiers 0.104 0.106 0.080 0.342 0.073 0.076 0.091 0.049 1.2(2) 5.0(2) 0.050 0.067

Stares Down 0.036 0.022 0.050 0.013 0.032 0.048 0.038 0.016 0.0(2) 0.0(2) 0.018 0.024

Stumbles 0.094 0.102 0.124 0.099 0.112 0.119 0.119 0.096 0.0(2) 1.3(2) 0.098 0.111

Squats 0.047 0.041 0.040 0.055 0.016 0.036 0.023 0.015 4.8(2) 0.8(2) 0.018 0.021

Synchronized 0.141 0.145 0.152 0.145 0.091 0.147 0.112 0.083 0.0(2) 1.2(2) 0.085 0.086

Violence 0.072 0.073 0.090 0.150 0.081 0.085 0.135 0.060 0.0(2) 1.1(3) 0.062 0.076

Zombie 0.070 0.067 0.062 0.076 0.056 0.061 0.087 0.043 0.0(2) 9.3(3) 0.044 0.066

Average error: 0.082 0.084 0.091 0.117 0.070 0.087 0.096 0.058 0.6 3.6 0.060 0.070

Relative error: 1.41 1.44 1.56 2.01 1.21 1.50 1.65 1.00 - - 1.04 1.21

Table 2. Evaluation on CMU sequences with two subjects. The table reports the 3D reconstruction error eX for the following NRSfM

baselines considering 2D tracks without missing data: CSF [21], KSTA [22], SPM [16], EM-PND [24], TUS [40], GBNR [18] and

CNR [25]; and ours. For our approach, we also show the clustering errors eS and eT , where we include the number of spatial and temporal

clusters in brackets. The two right-most columns show the reconstruction accuracy under random and structured patterns of missing data.

by synthesizing point tracks acquired by an orthographic

camera that follows a circular trajectory around the scene,

at an angular speed of 0.66π/sec. In average, the sequences

we consider below are 1,000 frames long, and the number

of points per frame is either 82 (when considering two sub-

jects) or 164 (four subjects).

For all experiments, we provide two types of validations:

the 3D reconstruction accuracy that we compare to other

NRSfM methods, and the results of the spatial and temporal

subspace clustering, which is compared to a ground truth.

Regarding the reconstruction error, we report the nor-

malized mean 3D error eX , used before in [6, 16, 21]:

eX =
1

σFN

F
∑

f=1

N
∑

n=1

efn, σ =
1

3F

F
∑

f=1

(σf
x + σf

y + σf
z ),

where efn is the 3D error for the n-th point at frame f . σf
x ,

σf
y and σf

z are the error standard deviations at frame f .

We compare the reconstruction accuracy of our ap-

proach, denoted DUST, against seven NRSfM baselines:

the trajectory-space methods CSF [21] and KSTA [22];

the block matrix approach BMM [16], the probabilistic-

normal-distribution method EM-PND [24], the temporal

union of subspaces TUS [40], the grouping-based NRSfM

of GBNR [18] and the consensus NRSfM of CNR [25].

For CSF [21] and KSTA [22], we manually set the rank

of the subspace to the value yielding the best results. For

TUS [40], we use our own implementation as its source

code is not publicly available. Our method does not require

tuning the subspace rank parameter. Note that all methods

decouple the problems of camera rotation estimation and

shape reconstruction. In order to focus our analysis on the

3D shape reconstruction capacity, we will provide the same

ground truth matrix G of camera rotations to all methods.

The results when the camera motion is estimated are re-

ported in the supplementary material.

For the assessment of the subspace clustering accuracy,

we compare our results with a ground truth clustering ob-

tained as follows: First, the ‘ground truth’ similarity ma-

trices S
GT and T

GT are computed by applying the low-

rank representation proposed in [29] over the matrices X̂

and X with the true 3D point positions. We then perform

spectral clustering [14] over SGT and T
GT to retrieve SGT

and T GT , which are N - and F− dimensional vectors where

each entry is an integer representing the ground truth cluster

index. If we denote by S and T the corresponding cluster

indexes obtained from the similarity matrices estimated by

our approach, we define the following clustering errors:

eS =
100

N

N
∑

i=1

I(Si 6= SGT
i ), eT =

100

F

F
∑

f=1

I(Tf 6= T GT
f ),

where I(a) is the indicator function, i.e., I(a) = 1 if a is

true, and 0 otherwise. In practice, for the results we report

below, we run [14] for different levels of granularity and

keep the result that minimizes eS and eT .

6.1. Sequences with Two Subjects

We select nine sequences of the CMU dataset with two

subjects performing different activities and motion patterns.

Namely, we consider 23 16 (Synchronized): subjects alter-

nating synchronized jumping jacks; 19 05 (Pull): a sub-

ject pulls the other by the elbow; 22 20 (Violence): a sub-

ject picks up high stool and threatens to strike the other;

20 08 (Zombie): subjects follow a zombie march; 20 06

(Soldiers): subjects follow a soldiers march; 23 19 (Stares

Down): a subject stares down the other and leans with hands

on high stool; 22 12 (Stumbles): a subject stumbles into

the other; 23 15 (Jump): subjects alternating jumping jacks;

and 23 14 (Squats): subjects alternating squats.

Table 2 summarizes the reconstruction errors for all

methods and the subspace clustering accuracy of ours.

Note that DUST consistently outperforms state-of-the-art in

terms of 3D reconstruction, reducing the 3D error of other
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❳
❳
❳

❳
❳
❳

❳
❳
❳
❳

Data

Method
CSF [21] KSTA [22] BMM [16] EM-PND [24] TUS [40] GBNR [18] CNR [25] Ours (DUST)

0% missing data sparse/structured

Metric: eX eX eX eX eX eX eX eX eS [%] eT [%] eX eX

Blind4 0.047 0.040 0.079 0.079 0.059 0.074 0.137 0.045 0.0(4) 0.3(2) 0.045 0.052

Chicken4 0.030 0.034 0.027 0.022 0.017 0.021 0.022 0.015 0.0(4) 0.2(3) 0.018 0.022

Greet4 0.048 0.041 0.078 0.069 0.072 0.077 0.085 0.051 0.0(4) 2.0(3) 0.052 0.053

Shelters4 0.055 0.053 0.087 0.053 0.037 0.085 0.069 0.034 0.0(3) 3.2(2) 0.034 0.045

Soda4 0.011 0.011 0.009 0.010 0.009 0.011 0.016 0.007 0.0(4) 1.0(2) 0.008 0.011

Synchronized4 0.093 0.077 0.056 0.042 0.046 0.049 0.078 0.041 0.0(4) 1.2(2) 0.043 0.045

Zombie4 0.055 0.067 0.047 0.051 0.043 0.046 0.061 0.033 0.0(4) 8.9(3) 0.034 0.034

Average error: 0.048 0.046 0.055 0.046 0.040 0.052 0.067 0.032 0.0 2.4 0.033 0.037

Relative error: 1.50 1.43 1.69 1.44 1.26 1.62 2.09 1.00 - - 1.03 1.17

Table 3. Quantitative comparison on human interaction with multiple subjects. See caption of Table 2.

methods by large margins between the 21% and 101%. Ad-

ditionally, DUST also performs shape and temporal cluster-

ing. The quality of these segmentations is also very good.

In particular, the number of spatial clusters we retrieve in all

experiments is two, and all points are correctly assigned to

the specific subject. The number of temporal clusters we es-

timate is between 2 and 4, and the exact temporal split (i.e.,

the moment when one sub-action switches to another one)

is very close (if not equal) to that of the ground truth. In-

deed, most temporal clusters match real motion primitives

(e.g., ‘jump in’ and ‘jump out’ in Fig. 1).

Figure 3 shows a qualitative comparison of the similarity

matrices we estimate and those of the ground truth, which

are directly computed from clean 3D data. Despite the ma-

trices provided by our approach are noisier, we can clearly

identify the same patterns as in the ground truth. The spec-

tral algorithm we use [14] can easily handle this and yields

the correct number of clusters in almost all experiments. In

Fig. 4, we show several frames of the 3D reconstruction re-

sults for the ‘Violence’ sequence.

Robustness to Occlusions. We explicitly test the robust-

ness to occlusions of our approach by artificially removing

entries of the observation matrix P̄. We consider two cases:

1) sparse occlusion patterns generated by randomly remov-

ing 40% of the input data, and 2) structured noise, by re-

moving rectangular regions (one per object) from the data

matrix. For this case, the amount of non-observed data is

approximately 15%. The results of these experiments are

shown in the right-most columns of Table 2. The comple-

tion algorithm described in Sect. 5.2 does a pretty good job

hypothesizing the missing observations, especially for the

random scattered occlusions, and the final reconstruction is

nearly unaffected by these artifacts. The accuracy of the

clustering is almost identical to that for the artifacts-free

case.

6.2. Sequences with Four Subjects

We also considered a more complex case with four sub-

jects. Since the CMU dataset only includes sequences

with one or two subjects, we combined several of them

to generate seven new sequences including four subjects,

namely: Synchronized4: subjects alternating synchronized

jumping jacks; Zombie4: subjects follow a zombie march;

Chicken4: subjects perform a non-synchronized chicken

dance; Greet4: subjects walk and shake hands; Blind4: four

subjects blind man’s bluff; Soda4: two subjects pass soda

to the other two and all of them drink; and Shelters4: two

subjects individually shelter the other two. Again an or-

thographic camera moving slowly around the scene is con-

sidered. In these examples, the degree of superposition in

the image plane is so extreme, that the task of performing

the spatial segmentation becomes very difficult. Indeed, in

some of the sequences two of the subjects are so intimately

connected, that they can be interpreted as one single object.

The results are summarized in Table 3. Again, our ap-

proach improves other NRSfM approaches in reconstruc-

tion accuracy by a large margin. It is worth pointing out

the good performance of KSTA [22] for the sequences in

which the subjects perform larger trajectories (‘Blind4’ and

‘Greet4’). Regarding the segmentation accuracy, note that

for the ’Shelters4’ we obtain a better segmentation accuracy

by choosing a spatial granularity of 3 instead of 4. This is

because for this specific sequence two of the objects are al-

ways together. We show some similarity matrices and re-

construction examples in Figs. 3 and 4.

Finally, we tested the robustness of the method to scat-

tered and structured occlusions, and as shown in the right-

most columns of Table 3, our approach again demonstrates

great resilience.

7. Conclusion

In this paper we have proposed a novel solution to the

NRSfM paradigm that allows exploring a problem which

had not been tackled before: given a possibly incomplete

monocular sequence of 2D tracks, estimating 3D non-rigid

shape while also providing temporal clustering of the data

into deformation-primitives, and spatial segmentation into

multiple objects. For this purpose, we have presented a

new low-rank model to represent the shape as a dual com-

bination of spatial and temporal subspaces. We formulate

an optimization problem based on this representation which

we solve by means of augmented Lagrange machinery. We
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Figure 3. Spatial and temporal clustering on CMU sequences. We compare the spatial S and temporal T clustering matrices obtained

with our approach with the ground truth ones. Below each matrix we plot a bar with the results of the spectral clustering. Top: Jump and

Zombie sequences with two subjects and three primitives. Bottom: Blind4 and Chicken4 sequences with four subjects and three primitives.
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Figure 4. 3D reconstruction and spatio-temporal segmentation on multi-subject sequences. Results for the ‘Violence’ (top) and

‘Blind4’ (bottom) sequences. For each scene we plot several frames, seen from two viewpoints (x-y and x-z). Colored dots represent the

3D position and spatial cluster index estimated by our approach. Note that the two subjects (top) and the four subjects (bottom) are clearly

identified. No single point is assigned to a wrong subject. Empty circles indicate the ground truth 3D position. The color of these circles

encodes to which temporal prior does the frame belong. Observe that in both sequences we identify three temporal priors. For the sequence

on the top (‘Violence’), the priors have a clear physical meaning: ‘two subjects sitting down’, ‘one subject standing up an threatening the

second one’, ‘one subject attacks the other that falls down’. The physical interpretation of the temporal priors for the four-subject sequence

on the bottom is not that clear, but they seems to encode the type of subject interactions.

have thoroughly evaluated the approach on challenging se-

quences involving up to four interacting persons perform-

ing complex motion patterns. We show that besides pro-

viding correct spatio-temporal segmentation, our approach

does also reconstruct the 3D human poses more accurately

than current state-of-the-art NRSfM methods. In the future,

we aim at using this research as a first step to perform com-

plete reconstruction and recognition of human activities.
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Grouping-based low-rank trajectory completion and 3D re-

construction. In NIPS, 2014.

[19] Y. Gao and A. L. Yuille. Symmetric non-rigid structure from

motion for category-specific object structure estimation. In

ECCV, 2016.

[20] R. Garg, A. Roussos, and L. Agapito. Dense variational re-

construction of non-rigid surfaces from monocular video. In

CVPR, 2013.

[21] P. F. U. Gotardo and A. M. Martinez. Computing smooth

time-trajectories for camera and deformable shape in struc-

ture from motion with occlusion. TPAMI, 33(10):2051–

2065, 2011.

[22] P. F. U. Gotardo and A. M. Martinez. Kernel non-rigid struc-

ture from motion. In ICCV, 2011.

[23] M. Irani. Multi-frame optical flow estimation using subspace

constraints. In ICCV, 1999.

[24] M. Lee, J. Cho, C. H. Choi, and S. Oh. Procrustean normal

distribution for non-rigid structure from motion. In CVPR,

2013.

[25] M. Lee, J. Cho, and S. Oh. Consensus of non-rigid recon-

structions. In CVPR, 2016.

[26] M. Lee, C. H. Choi, and S. Oh. A procrustean markov pro-

cess for non-rigid structure recovery. In CVPR, 2014.

[27] Z. Li, J. Guo, L. Cheong, and Z. Zhou. Perspective motion

segmentation via collaborative clustering. In ICCV, 2013.

[28] Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented la-

grange multiplier method for exact recovery of corrupted

low-rank matrices. UIUC Technical Report UILU-ENG-09-

2215, 2009.

[29] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust

recovery of subspace structures by low-rank representation.

TPAMI, 35(1):171–184, 2013.

[30] K. Ozden, K. Schindler, and L. Van Gool. Multibody

structure-from-motion in practice. TPAMI, 32(6):1134–

1141, 2010.

[31] M. Paladini, A. Del Bue, M. Stosic, M. Dodig, J. Xavier,

and L. Agapito. Factorization for non-rigid and articulated

structure using metric projections. In CVPR, 2009.

[32] H. S. Park, T. Shiratori, I. Matthews, and Y. Sheikh. 3D

reconstruction of a moving point from a series of 2D projec-

tions. In ECCV, 2010.

[33] S. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation

in the presence of outlying, incomplete or corrupted trajec-

tories. TPAMI, 32(10):1832–1845, 2010.

[34] C. Russell, R. Yu, and L. Agapito. Video pop-up: Monocular

3D reconstruction of dynamic scenes. In ECCV, 2014.

[35] T. Simon, J. Valmadre, I. Matthews, and Y. Sheikh. Separa-

ble spatiotemporal priors for convex reconstruction of time-

varying 3D point clouds. In ECCV, 2014.

[36] C. Tomasi and T. Kanade. Shape and motion from image

streams under orthography: A factorization approach. IJCV,

9(2):137–154, 1992.

[37] L. Torresani, A. Hertzmann, and C. Bregler. Nonrigid

structure-from-motion: estimating shape and motion with hi-

erarchical priors. TPAMI, 30(5):878–892, 2008.

[38] J. Valmadre and S. Lucey. General trajectory prior for non-

rigid reconstruction. In CVPR, 2012.

[39] L. Zappella, A. Del Bue, X. Llado, and J. Salvi. Joint esti-

mation of segmentation and structure from motion. CVIU,

117(2):113–129, 2013.

[40] Y. Zhu, D. Huang, F. de la Torre, and S. Lucey. Complex

non-rigid motion 3D reconstruction by union of subspaces.

In CVPR, 2014.

6270


