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Abstract

In this work, we address the problem of 3D pose estima-
tion of multiple humans from multiple views. This is a more
challenging problem than single human 3D pose estimation
due to the much larger state space, partial occlusions as
well as across view ambiguities when not knowing the iden-
tity of the humans in advance. To address these problems,
we first create a reduced state space by triangulation of
corresponding body joints obtained from part detectors in
pairs of camera views. In order to resolve the ambiguities
of wrong and mixed body parts of multiple humans after tri-
angulation and also those coming from false positive body
part detections, we introduce a novel 3D pictorial structures
(3DPS) model. Our model infers 3D human body configu-
rations from our reduced state space. The 3DPS model is
generic and applicable to both single and multiple human
pose estimation.

In order to compare to the state-of-the art, we first eval-
uate our method on single human 3D pose estimation on
HumanEva-I [22] and KTH Multiview Football Dataset II
[8] datasets. Then, we introduce and evaluate our method
on two datasets for multiple human 3D pose estimation.

1. Introduction

Articulated objects and especially humans are an active
area in computer vision research for many years. Determin-
ing the 3D human body pose has been of particular inter-
est, because it facilitates many applications such as track-
ing, human motion capture and analysis, activity recogni-
tion and human-computer interaction. Depending on the
input modalities and number of employed sensors different
methods have been proposed for single human 3D pose es-
timation [2, 4, 8, 20, 24]. Nevertheless, estimating jointly
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Figure 1: Shelf dataset: Our results projected in 4 out of 5 views
from our proposed multi-view dataset.

the 3D pose of multiple humans from multi-views, has not
been fully addressed yet (Figure 1).

In a multi-view setup, the 3D space can be discretized
into a volume in which the human body is defined as a
meaningful configuration of parts. Estimating the 3D body
pose can be an expensive task due to the six degrees of
freedom (6 DoF) of each body part and the level of dis-
cretization, as it has been analyzed by Burenius et al. [8].
In order to reduce the complexity of the 3D space, many
approaches rely on background subtraction [24] or assume
fixed limb lengths and uniformly distributed rotations of
body parts [8]. Instead of exploring a large state space of
all possible translations and rotations of the human body
parts in 3D space, we propose a more efficient approach.
We create a set of 3D body part hypotheses by triangulation
of corresponding body joints sampled from the posteriors of



2D body part detectors [2] in all pairs of camera views. In
this way, our task becomes simpler and requires inferring a
correct human skeleton from a set of 3D body part hypothe-
ses without exploring all possible rotations and translations
of body parts.

Another common problem in single human ap-
proaches [2, 8] is the separation between left-right and
front-back of the body anatomy because of the different
camera positions. This problem becomes more complicated
in multiple human 3D pose estimation, given similar body
parts of different humans in each view. In this way, not
knowing in advance the identity of the humans and conse-
quently their body parts in each view results in more am-
biguities because of the mixing of body parts of different
individuals. For example, a left hand of one person in one
view will have multiple left hand candidates in other camera
views coming not only from the same person, but also from
other individuals and potential false positive detections. In
practice, this will create fake body parts and can lead to fake
skeletons in 3D space.

In order to resolve these ambiguities, we introduce a
novel 3D pictorial structures (3DPS) model that infers
skeletons of multiple humans from our reduced state space
of 3D body part hypotheses. The 3DPS model is based on
a conditional random field (CRF) with multi-view poten-
tial functions. The unary potentials are computed from the
confidence of the 2D part-based detectors and reprojection
error of the joint pairs of the corresponding body parts. We
propose additionally the part length and visibility unary po-
tentials for modelling occlusions and resolving geometrical
ambiguities. The pairwise potential functions integrate a
human body prior in which the relation between the body
parts is modelled. Our body prior is learned from one cam-
era setup but it works with any other setup. We constrain the
symmetric body parts to forbid collisions in 3D space by in-
troducing an extra pairwise collision potential. Finally, the
inference on our graphical model is performed using belief
propagation. We parse each human by sampling from the
marginal distributions. Our only assumption is to have cor-
rectly detected every body part joint from at least two views
in order to recover the part during inference. Our model is
generic and applicable to both single and multiple human
pose estimation. Moreover, inference of multiple human
skeletons does not deteriorate despite the ambiguities which
are introduced during the creation of the multi-human state
space.

This work has the following contributions: First, we
propose the 3D pictorial structures (3DPS) model that can
handle multiple humans using multi-view potential func-
tions. Very importantly, we do not assume that we have
information about the identity of the humans in each view
other than 2D body part detections. Experimental results
on HumanEva-I [22] and KTH Multiview Football II [8]

datasets demonstrate that our model is on par with state-of-
the-art methods [2, 8] for single human 3D pose estimation.
Secondly, we introduce a discrete state space for fast infer-
ence, instead of exploring a finely discretized 3D space. Fi-
nally, we propose two new datasets (Campus [5] and Shelf)
with ground-truth annotations and evaluate our multiple hu-
man pose estimation method.

1.1. Related work

Reviewing the entire literature on human pose estima-
tion is beyond the scope of this paper [19, 23]. Due to the
relevance to our work, we focus on literature for 3D human
body pose estimation.

The categorization in discriminative and generative ap-
proaches is common for both 2D and 3D human body pose
estimation. In the discriminative category, a mapping be-
tween image (e.g. silhouettes, edges) or depth observations
and 3D human body poses is learned [1, 14, 16, 20, 26, 28,
30]. These types of methods are unstable to corrupted data
because of classification failures. They also only general-
ize up to the level in which unknown poses start to appear.
Nonetheless, training with depth data has been proven to
generalise well to unknown poses [20]. However, current
depth sensors, such as Kinect, are not useful for providing
reliable depth information outdoors, where single and mul-
tiple cameras are still widely accessible.

Most of the generative approaches rely on a kinematic
chain where the parts of the object are rigidly connected.
The problem is often coupled with tracking [7, 9, 13, 21,
28, 30]. In such approaches, which are also called top-down
methods, the human skeleton is represented either in a high-
dimensional state space or embedded in low dimensional
manifolds bound to the learned types of motion. Since these
methods rely on tracking, they require initialisation and can-
not recover in case of tracking failures.

There is another family of generative approaches, also
called bottom-up, in which the human body is assembled
from parts [4, 24]. These methods are referred to as pictorial
structures and they do not imply rigid connections between
the parts. Pictorial structures is a generic framework for ob-
ject detection which has been extensively explored for 2D
human body pose estimation [3, 4, 10, 12, 29]. Deriving the
3D human pose is possible by learning a mapping between
poses in the 2D and 3D space [25] or lifting 2D poses [4],
but this is not generic enough and is restricted to particular
types of motion. Recently, several approaches have been in-
troduced that extend pictorial structure models to 3D human
body pose estimation. The main challenge in extending pic-
torial structures to 3D space is the large state space that has
to be explored. Burenius et al. [8] have recently introduced
an extension of pictorial structures to the 3D space and anal-
ysed the feasibility of exploring such a huge state space of
possible body part translations and rotations. In order to



make the problem computationally tractable, they impose a
simple body prior that limits the limb length and assumes
a uniform rotation. Adding a richer body model would
make the inference much more costly due to the computa-
tions of the pairwise potentials. Consequently, the method
is bound to single human pose estimation and the extension
to multiple humans is not obvious. The follow-up work of
Kazemi et al. [17] introduces better 2D part detectors based
on learning with randomized forest classifiers, but still re-
lies on the optimization proposed in 3D pictorial structures
work [8]. In both works, the optimization is performed sev-
eral times due to the ambiguity of the detector to distin-
guish left from right and front from back. As a result, the
inference should be performed multiple times while chang-
ing identities between all the combinations of the symmet-
ric parts. In case of multiple humans, either having sepa-
rate state spaces for each person or exploring one common
state-space, the ambiguity of mixing symmetric body parts
among multiple humans becomes intractable. Both papers
evaluate on a football dataset that they have introduced and
it includes cropped players with simple background. We
have evaluated our approach on this dataset. Another ap-
proach for inferring the 3D human body pose of a single
person is proposed by Amin et al. [2]. Their main contribu-
tion lies in the introduction of pairwise correspondence and
appearance terms defined between pairs of images. This
leads to improved 2D human body pose estimation and the
3D pose is obtained by triangulation. Though this method
obtained impressive results on HumanEva-I [22], the main
drawback of the method is the dependency on the camera
setup in order to learn pairwise appearance terms. In con-
trast, our body prior is learned once from one camera setup
and is applicable to any other camera setup.

Finally, similar to our 3DPS model, the loose-limbed
model of Sigal et al. [24] represents the human as a proba-
bilistic graphical model of body parts. The likelihood term
of the model relies on silhouettes (i.e. background subtrac-
tion) and applies only to single human pose estimation. This
model is tailored to work with the Particle Message Passing
method [27] in a continuous state space that makes it spe-
cific and computationally expensive. In contrast, we pro-
pose a 3DPS model which is generic and works well both
on single and multiple humans. We resolve ambiguities im-
posed by multiple human body parts. Additionally, we op-
erate on a reduced state space that make our method fast.

2. Method
In this section, we first introduce the 3D pictorial struc-

tures (3DPS) model as a conditional random field (CRF).
One important feature of the model is that it can handle mul-
tiple humans whose body parts lie in a common 3D space.
First, we present how we reduce the 3D space to a smaller
discrete state space. Next, we describe the potential func-

Figure 2: Graphical model of the human body: We use 11 vari-
ables in our graph to represent the body parts. The kinematic con-
strains are expressed in green (rotation) and yellow (translation)
edges, while the collision constrains are drawn with blue edges.

tions of the 3DPS model, emphasizing on how this model
addresses challenges of multiple human 3D pose estimation
in multi-views. Finally, we discuss the inference method
that we employ to extract 3D human body skeletons.

2.1. 3D pictorial structures model

The 3D pictorial structure (3DPS) model represents the
human body as an undirected graphical model (Figure 2). In
particular, we model the human body as a CRF of n random
variables Yi ∈ Y in which each variable corresponds to a
body part. An edge between two variables denotes condi-
tional dependence of the body parts and can be interpreted
as a physical constraint. For instance, the lower limb of
the arm is physically constrained to the upper one. The
body pose in 3D space is defined by the body configuration
Y = (Y1, Y2, . . . , Yn). Each variable Yi defines a body part
state vector Yi = [χpr

i , χ
di
i ]T ∈ R6 as the 3D position of the

proximal χpr
i ∈ R3 and distal χdi

i ∈ R3 joint in the global
coordinate system (Figure 3) and takes its values from the
discrete state space Λi.

Considering now an instance of the observation x ∈ X
(i.e. body part hypotheses) and a body configuration y ∈
Y, the posterior becomes:

p(y | x) =
1

Z(x)

n∏
i

φconfi (yi,x) ·
n∏
i

φrepri (yi,x)·

n∏
i

φvisi (yi,x) ·
n∏
i

φleni (yi,x) ·
∏

(i,j)∈Ekin

ψtran
i,j (yi, yj)·

∏
(i,j)∈Ekin

ψrot
i,j (yi, yj) ·

∏
(i,j)∈Ecol

ψcol
i,j (yi, yj) (1)



where Z(x) is the partition function, Ekin are the graph
edges that model the kinematic constraints between the
body parts and Ecol are the edges that model the colli-
sion between symmetric parts. The unary potentials are
composed of the detection confidence φconfi (yi,x), repro-
jection error φrepri (yi,x), body part multi-view visibility
φvisi (yi,x) and the body part length φleni (yi,x) potential
functions. The pairwise potential functions encode the body
prior model by imposing kinematic constraints on the trans-
lation ψtran

i,j (yi, yj) and rotation ψrot
i,j (yi, yj) between the

body parts. Symmetric body parts are constrained not to
collide with each other by the collision potential function
ψcol
i,j (yi, yj).

Next, we first define the discrete state space, unary and
pairwise potential functions and secondly conclude with the
inference and parsing of multiple humans.

Discrete state space The state space Λi of a body part
variable Yi comprises the h hypotheses that the variable can
take. A hypothesis corresponds to a 3D body part’s position
and orientation. In order to create our global state space of
multiple human body parts Λ =

{
Λ1,Λ2, . . .Λn

}
, we em-

ploy 2D part detectors in each view separately. We rely on
the approach of [2], which produces a posterior probabil-
ity distribution of the body part position and orientation in
the 2D space. By sampling a number of samples from this
distribution, we create 2D body part hypotheses in every im-
age. In practice, the detected body parts of [2] correspond
to human body joints.

Assuming a calibrated system of c cameras, the 3D dis-
crete state space is formed by triangulation of correspond-
ing 2D body joints detected in multi-views. The triangula-
tion step is performed for all combinations of view pairs. To
create the actual global state space Λ, which is composed
of body parts and not only joints, we create a 3D body part
from a pair of 3D joints. One 3D joint corresponds to the
proximal and the other to the distal joint of the body part,
as depicted in Figure 3. The proximal joint defines the po-
sition of the 3D body part, while its orientation is derived
using the distal joint. For each body part state space Λi,
there is a number of hypotheses Λi =

{
λ1i , λ

2
i , . . . , λ

h
i

}
that

can be associated to it. Not knowing the identity of humans
creates wrong hypotheses stemming from the triangulation
of the corresponding body parts of different people. Note
that such wrong body part hypotheses can look correct in
the 3D space and can even create a completely fake skele-
ton when different people are in a similar pose, as shown
in Figure 4. Finally, the number of hypotheses of the state
space scales with the number of views, and with a number
of input 2D body joints sampled from the posteriors of the
2D part detector, but in general remains small enough for
fast inference.

Figure 3: Body part structure: Each body part is composed of
the proximal and distal joint position. A local coordinate system
is attached to its proximal joint.

Unary potentials In our approach, the unary potential
functions are designed to score in a mult-view setup with
multiple humans. Every body part hypothesis is defined by
the 3D position of its joints and part orientation. In addi-
tion, it includes the detection confidence and reprojection
error of the joints from which it occurred. We propose to
use these measurements to the estimation of the unary po-
tential functions.

At first, the detection confidence function φconfi (yi,x) is
the mean confidence of the part detector in two views. Sec-
ondly, given two joint positions p and p′, either proximal or
distal, of the body part i observed from two views and the
triangulated point χi ∈ R3, the reprojection error [15] is
measured from the following geometric error cost function:

C(χi) = d(p, p̂)2 + d(p′, p̂′)2 (2)

where d corresponds to the euclidean distance, and p̂ and p̂′

are the projections of the joint χi in the two views. In order
to express the reprojection error as the score of a hypothesis,
a sigmoid function is employed. Since the error is always
positive, the function is reformulated and integrated into the
reprojection error potential function φrepri (yi,x). The final
potential function becomes:

φrepri (yi,x) =
1

1 + exp(C̄(χi))
. (3)

To take advantage of the multi-view information, we
introduce the body part multi-view visibility potential
φvisi (yi,x) which weights a hypothesis based on the num-
ber of views in which it has been observed. To compute the
number of views, we project the hypothesis to each view
and search in a small radius (5 pixels) for an instance of
the part detector. Then, we normalize the estimated number
of visible views with respect to the total number of cameras.
Consequently, hypotheses that occur from ambiguous views
(e.g. opposite cameras) or false positive hypotheses (Figure
4) are implicitly penalized by obtaining a smaller visibility
weight. Thus, the visibility term is complementary to the



reprojection error. Finally, we model the length of a body
part with the length potential function φleni (yi,x). We use
a one dimensional Gaussian distribution and ground-truth
data to learn the mean and standard deviation of the length
of each body part. This potential function mainly penalizes
body parts that occur from joints of different individuals.

In the formulation of the posterior (1), we consider the
dependence between unary potential functions. The confi-
dence of the part detector, which also contributes to the cre-
ation of the 3D hypotheses, is the most important potential
function. However, false positive detections or triangula-
tions with geometric ambiguity should be penalized. This
is achieved by the reprojection and multi-view visibility po-
tential functions. For instance, a wrongly detected 2D joint,
with a high detection confidence, should normally have a
high reprojection error. Hence, the score of the reprojection
potential of a false positive part is low. Furthermore, part
hypotheses that have been created from different individu-
als with similar poses can have small reprojection error but
they are penalized from the multi-view visibility potential.
Finally, true positive joint detections of different individuals
create wrong body part hypotheses with high detection con-
fidence but they are penalized by the part length potential
function.

Figure 4: Body parts state space: The body part hypotheses
are projected in two views. Fake hypotheses which form reason-
able human bodies are observed in the middle of the scene (yel-
low bounding box). These are created by intersecting the joints of
different humans with similar poses because the identity of each
person is not available.

Pairwise potentials The paradigm of pictorial structures
in the 2D space has successfully modelled the relations be-
tween body parts [4, 10, 12]. We follow the same idea
and express a body part in the local coordinate system of
a neighbouring part (Figure 2). We model the rotation or
translation between the body parts using Gaussian distribu-
tions. Furthermore, the symmetric parts are forced not to
collide for recovering from false positive detections.

Initially, the state vector Yi of the part i is expressed
in a local coordinate system. To define the local coor-
dinate system, we build on the geometric vectors, which
are defined from the proximal and distal joints of the part
i and its neighbour j. Then, the matrix transformation

Hi(Yi) ∈ R4×4 includes the rotation and translation of the
part i from its local to the global coordinate system. The in-
verse transformation H−1i (Yi) maps the part i back to the
local coordinate system. We denote as Yij ∈ R4×4 the
transformation for expressing the part i to the local coor-
dinate system of the part j and it is given from:

Yij = H−1j (Yi) ·Hi(Yi). (4)

We assume independence between the rotation Y R
ij and

the translation Y T
ij of the Yij = [Y R

ij , Y
T
ij ] transformation

and learn two different priors, based on the type of the con-
straint (Figure 2). For the rotation yRij , we consider only
the case of hinge joints for imposing fewer constraints to
our prior model. Thus, we fix the two axes of rotation and
learn a prior for the third one. Since the prior captures the
rotation only along one axis, it is modelled by a Gaussian
distribution:

ψrot
i,j (yi, yj) = N (yRij | µR

ij , σ
R
ij) (5)

where µR
ij is the mean and σR

ij the variance. In order to
model the whole rotational space, a von Mises distribution
would be required. But in our experiments, we have seen
that an approximation with a Gaussian is sufficient. The
translation yTij is modelled using a multivariate Gaussian
distribution:

ψtran
i,j (yi, yj) = N (yTij | µT

ij ,Σ
T
ij) (6)

with mean µT
ij and covariance ΣT

ij . For relaxing the compu-
tations, the diagonal of the covariance is only estimated.

In addition, we model the relation between the symmet-
ric body parts to avoid collisions between them. This prob-
lem occurs because of false positive (FP) detections that can
occur. To that end, a body part is defined as a pair of spheres
where each sphere is centred on the part’s joints. Then, the
collisions of symmetric parts are identified by estimating
the sphere-sphere intersection [18]. We model this relation
by penalizing the collided part hypotheses with a constant
δ:

ψcol
i,j (yi, yj) = δ · inter(yi, yj) (7)

where inter(yi, yj) ∈ {0, 1} is the sphere-sphere intersec-
tion function.

We use ground-truth data to learn the pairwise potential
functions. Since the world coordinate system is cancelled
by modelling the relation of the body parts in terms of lo-
cal coordinate systems, we are not dependent on the camera
setup, in contrast to [2]. Thus, we can learn the prior model
from one dataset and use it during inference to any other
dataset. Moreover, our prior model is stronger than a binary
voting for a body part configuration [8] and less compu-
tational expensive than [24]. During inference of multiple
humans, our prior model constrains the body parts of each
individual to stay connected.



2.2. Inference of multiple humans

The final step for obtaining the 3D pose of multiple hu-
mans is the inference. The body part hypotheses of all hu-
mans share the same state space. In addition, the state space
includes completely wrong hypotheses due to the unknown
identity of the individuals and false positive detections as
well. However, our body prior and the scores of the unary
potentials allow us to parse each person correctly.

Here, we seek to estimate the posterior probability of
equation (1). Since our graphical model does not have a
tree structure, we employ the loopy belief propagation al-
gorithm [6] for estimating the marginal distributions of the
body parts. Estimating the number of humans jointly in all
views using a detector [11], we know how many skeletons
we have to build. The body parts of each individual are
sampled from the marginal distributions and projected to
all views. We choose views with small overlap (< 30%)
between the detection boding boxes for avoiding mixing up
the body parts of different individuals. Gradually, all the 3D
poses are parsed based on the detection input. Body parts
that have not been detected from the part detectors from one
or any view, are not parsed. As a result, we allow a 3D hu-
man pose to lack body parts.

Our framework for multiple human 3D pose estimation
applies exactly the same on single humans. In the next sec-
tion, we demonstrate it by evaluation our model both on
single and multiple human 3D pose estimation.

3. Experiments

In this section, we evaluate our approach on single and
multiple human pose estimation on four datasets. At first,
we use the HumanEva-I [22] and KTH Multiview Football
II [8] datasets to demonstrate that our model is directly ap-
plicable to single human 3D pose estimation. We compare
our results with two relevant multi-view approaches [2, 8].
Since we are not aware of a multiple human dataset, we
have annotated the Campus dataset [5] (Figure 7) and intro-
duce our own Shelf dataset for multiple human evaluation
(Figure 1).

The model that we employ for the experiments is com-
posed of 11 body parts (Figure 2). For each evaluation
dataset, we use the training sequences to learn our model’s
appearance term but the body prior is learned only once.
Our part detector is based on the 2D part detector of [2]
and the human detector of [11]. Since our body prior is
not dependent on the camera setup and consequently on the
evaluation dataset, we learn the body prior for the pairwise
potentials from a training subset of the Campus dataset [5]
and use it during all the evaluations.

Camera 1 Camera 2 Camera 3

Figure 5: HumanEva-I: The 3D estimated body pose is projected
across each view for the Box sequence.

3.1. Single human evaluation

We first evaluate our method on single human 3D pose
estimation for demonstrating that it performs as well as
start-of-the-art multi-view approaches [2, 8]. The purpose
of this experiment is to highlight that we can achieve simi-
larly good or even better results than other methods without
the need to learn a calibration-dependent body prior [2] or
a weak prior [8] for relaxing the computations.

Camera 1 Camera 2 Camera 3

Figure 6: KTH Multiview Football II: The 3D estimated body
pose is projected across each view for the player 2 sequence.

HumanEva-I: We evaluate on Box and Walking se-
quences of the HumanEva-I [22] dataset and compare with
[2, 24]. We share similar appearance term only for the 2D
single view part detection with [2] and employ different
body models. Table 1 summarizes the results of the aver-
age 3D joint error. Notably, Amin et al. [2] report very low
average error but we also achieve similar results. Cases in
which we have observed failures are related to lack of cor-
rect detected joints from at least two cameras.

Sequence Walking Box
Amin et al. [2] 54.5 47.7
Sigal et al. [24] 89.7 -
Our method 68.3 62.7

Table 1: Human-Eva I: The results present the average 3D joint
error in millimetres (mm).

KTH Multiview Football II: In this sequence, we eval-
uate on Player 2 as in the original work [8]. We follow the
same evaluation process as in [8] and estimate the PCP (per-



centage of correctly estimated parts) scores for each set of
cameras. The results are summarized in Table 2. We out-
perform the method of [8] on two cameras and lose some
performance for the legs using three cameras due to de-
tection failures. Note that overall we obtain similar results
with significant fewer computations due to our discrete state
space. Our approach runs on around 1 fps for single human
3D pose estimation, given the 2D detections. The experi-
ments are carried out on a standard Intel i5 2.40 GHz laptop
machine and our method is implemented in C++ with loop
parallelizations.

Bur. [8] Our Bur. [8] Our
Body Parts C2 C2 C3 C3
Upper Arms 53 64 60 68
Lower Arms 28 50 35 56
Upper Legs 88 75 100 78
Lower Legs 82 66 90 70
All Parts (average) 62.7 63.8 71.2 68.0

Table 2: KTH Multiview Football II: The PCP (percentage of
correctly estimated parts) scores, for each camera, are presented
for our method and [8]. One can observe that we have mainly
better results for the upper limbs.

3.2. Multiple human datasets and evaluation

Multiple human 3D pose estimation is a problem which
has not yet been extensively addressed. One can observe
that from the available literature and evaluation datasets.
While for single humans there are standard evaluation
datasets such as HumanEva [22], there is no standard
benchmark on multiple human 3D pose estimation. In this
work, we propose our own Shelf dataset which consists
of disassembling a shelf (Figure 1). The Shelf dataset in-
cludes up to four humans interacting with each other. We
have produced manual joint annotation in order to evaluate
our method. Furthermore, we have annotated the Campus
dataset [5] which is composed of three humans performing
different actions. We evaluate our method on both datasets.

Since we are not aware of another method which per-
forms multiple human 3D pose estimation, we chose a sin-
gle human approach [2] to compare to and perform 3D pose
estimation for each human separately. Of course, this way
of evaluation is not to our favour because evaluating on each
human separately, knowing their identity, excludes body
part hypotheses that belong to other humans and simplifies
the inference. In our method, the body parts of all humans
lie in the same state space. We evaluate our method for mul-
tiple humans simultaneously and for each one separately.

Campus: Assuming first that the identity of each human
is known, we have evaluated our method and the one from
[2] to each human separately and achieve similar results.
This is the single human inference (Table 3). More interest-

Camera 1 Camera 2 Camera 3

Figure 7: Campus: The 3D estimated body pose is projected
across each view.

ing are the results when we apply our framework by consid-
ering all the humans together and with unknown identities.
This is the multiple human inference (Table 3). We have
achieved the same good results. This proves that our model
is robust to including the body parts of all humans, without
knowing their identity, in the same state space.

Inference Single Human Multiple Human
Amin et al. [2] Our Our

Actor 1 81 82 82
Actor 2 74 73 72
Actor 3 71 73 73
Average 75.3 76 75.6

Table 3: Campus: The 3D PCP (percentage of correctly esti-
mated parts) scores are presented. On single human inference, the
identity of each actor is known. On the multiple human inference,
the body parts of all actors lie in the same state and the identity of
each actor is unknown.

Shelf1: On the proposed dataset, we follow the same
evaluation protocol of single and multiple human inference.
First, we detect humans in all views and then extract their
body parts. Next, we run our method and finally evaluate on
the detections. We obtain better results than [2] for single
and multiple human inference (Table 4). In cases of occlu-
sion, our model better recovers 3D human poses compared
to [2], because of the multi-view potential terms. In the
multiple human inference, we have achieved similar results
as in the single human inference. This proves that including
the body parts of different individuals in a common state
space did not result in reduced performance. The actors are
correctly inferred under self-occlusion or under occlusion
by other objects.

1http://campar.in.tum.de/Chair/MultiHumanPose

http://campar.in.tum.de/Chair/MultiHumanPose


Inference Single Human Multiple Human
Amin et al. [2] Our Our

Actor 1 65 66 66
Actor 2 62 65 65
Actor 3 81 83 83
Average 69.3 71.3 71.3

Table 4: Shelf: The 3D PCP (percentage of correctly estimated
parts) scores are presented. On single human inference, the iden-
tity of each actor is known. On the multiple human inference, the
body parts of all actors lie in the same state and the identity of each
actor is unknown.

4. Conclusion

We have presented the 3D pictorial structures (3DPS)
model for recovering 3D human body poses using the multi-
view potential functions. We have introduced a discrete
state space which allows fast inference. Our model has suc-
cessfully been applied to multiple humans without knowing
the identity in advance. The model is also applicable to
single humans where we achieved very good results during
evaluation. Self and natural occlusions can be handled by
our algorithm. We do not require a background subtraction
step and our approach relies on 2D body joint detections in
each view, which can be noisy. In addition, we have intro-
duced two datasets for 3D body pose estimation of multiple
humans.
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