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(a) Input (b) RC [6] (c) CBS [11] (d) CNTX [9] (e) SVO [5] (f) Ours

Figure 1. Salient object detection: This figure compares our results to those of the “Top-4” algorithms according to [4]. (b) [6] consider

only color distinctness, hence, erroneously detect the red surface as salient. (c) [11] rely on shape priors and thus, detect only the beard

and arm. (d) [9] search for unique patches, hence, detect mostly the outline of the statue. (e) [5] add an objectness measure to [9]. Their

result is fuzzy due to the objects in the background (tree and clouds). (f) Our algorithm accurately detects the entire statue, excluding all

background pixels, by considering both color and pattern distinctness.

Abstract

What makes an object salient? Most previous work as-
sert that distinctness is the dominating factor. The differ-
ence between the various algorithms is in the way they com-
pute distinctness. Some focus on the patterns, others on the
colors, and several add high-level cues and priors. We pro-
pose a simple, yet powerful, algorithm that integrates these
three factors. Our key contribution is a novel and fast ap-
proach to compute pattern distinctness. We rely on the inner
statistics of the patches in the image for identifying unique
patterns. We provide an extensive evaluation and show that
our approach outperforms all state-of-the-art methods on
the five most commonly-used datasets.

1. Introduction

The detection of the most salient region of an image

has numerous applications, including object detection and

recognition [13], image compression [10], video summa-

rization [16], and photo collage [8], to name a few. There-

fore, it is not surprising that much work has been done on

saliency detection. Different aspects of distinctness have

been examined before. Some algorithms look for regions of

distinct color [6, 11]. As shown in Figure 1(b) this is insuf-

ficient, as some regions of distinct color may be non-salient.

Other algorithms [5, 9] detect distinct patterns, such as the

boundaries between an object and the background. As il-

lustrated in Figure 1(d), this could lead to missing homoge-

neous regions of the salient object.

In this paper, we introduce a new algorithm for salient

object detection, which solves the above problems. It in-

tegrates pattern and color distinctness in a unique manner.

Our key idea is that the analysis of the inner statistics of

patches in the image provides acute insight on the distinct-

ness of regions. A popular and efficient method to reveal the

internal structure of the data is Principal Component Anal-

ysis (PCA). It finds the components that best explain the

variance in the data. Therefore, we propose to use PCA to

represent the set of patches of an image and use this rep-

resentation to determine distinctness. This is in contrast

to previous approaches that compared each patch to its k-

nearest neighbors [9, 5], without taking into account the in-

ternal statistics of all the other image patches.
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We test our method on the recently-published benchmark

of Borji et al. [4]. This benchmark consists of five well-

known datasets of natural images, with one or more salient

objects. In [4], many algorithms are compared on these

datasets and the “Top-4” algorithms, which outshine all oth-

ers, are identified. We show that our algorithm outperforms

all “Top-4” algorithms on all the data-sets of the benchmark.

Furthermore, our method is computationally efficient.

The rest of this paper is organized as follows. We begin

by describing our approach, which consists of three steps:

pattern distinctness detection (Section 2.1), color distinct-

ness detection (Section 2.2) and finally incorporating priors

on human preferences and image organization (Section 2.3).

We then proceed to evaluate our method both quantitatively

and qualitatively in Section 3.

2. Proposed approach
The guiding principle of our approach is that a salient

object consists of pixels whose local neighborhood (region

or patch) is distinctive in both color and pattern. As illus-

trated in Figure 2, integrating pattern and color distinctness

is essential for handling complex images. Pattern distinct-

ness is determined by considering the internal statistics of

the patches in the image. A pixel is deemed salient if the

pattern of its surrounding patch cannot be explained well by

other image patches. We further consider the color unique-

ness of the pixel’s local neighborhood. Finally, we incorpo-

rate known priors on image organization. In what follows,

we elaborate on each of these steps.

2.1. Pattern Distinctness

The common solution to measure pattern distinctness is

based on comparing each image patch to all other image

patches [5, 9, 19]. A patch that is different from all other

image patches, is considered salient. While this solution

works nicely in many cases, it overlooks the correlation be-

tween pixels and hence errs in some cases. Furthermore,

this solution is inefficient as it requires numerous patch-to-

patch distance calculations.

Instead, by analyzing the properties of patches of natural

images, we make several observations that improve detec-

tion accuracy via a fast and simple solution. Our first obser-

vation is that the non-distinct patches of a natural image are

mostly concentrated in the high-dimensional space, while

distinct patches are more scattered.

This phenomenon is evident from the plots in Figure 3

that were obtained as follows. For each one of 100 images,

randomly selected from the ASD data-set [1], we first ex-

tract all 9 × 9 patches and compute the average patch. We

then calculate the distance between every patch and the av-

erage patch and normalize by the maximum distance. Since

the data-set is available with a labeled ground-truth, we an-

alyze separately distinct and non-distinct regions. The solid

(a) Input (b) Pattern distinctness

(c) Color distinctness (d) Final saliency

Figure 2. System overview: Our pattern distinctness (b), captures

the unique textures on the statue, but also part of the tree in the

background. Our color distinctness (c), detects the statue fully, but

also the red podium and part of the sky. In the final result (d), only

the statue is maintained, as it is the only part detected by both.

lines in Figure 3 show the cumulative histograms of the dis-

tances between non-distinct patches and the average patch.

The dashed lines represent statistics of distinct patches only.

As can be seen, non-distinct patches are much more con-

centrated around the average patch than distinct patches.

For example, using the L1 metric, 60% of the non-distinct

patches are within a distance of 0.1, while only less than

20% of the distinct patches are within this distance.

Figure 3. Scatter distinguishes between distinct and non-
distinct patches: This figure presents the cumulative histograms

of the distances between distinct (dashed lines) and non-distinct

(solid lines) patches to the average patch. Both L1 and PCA

approaches show that non-distinct patches are significantly more

concentrated around the average patch than non-distinct patches.
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The plots of Figure 3 suggest that one could possibly

identify the distinct patches by measuring the distance to

the average patch. In particular, we use the average patch
pA under the L1 norm:

pA =
1

N

N∑

x=1

px. (1)

An image patch px is considered distinct if it is dissimilar

to the average patch pA.

Note that computing the distance between every patch

and the average patch bares some conceptual resemblance

to the common approach of [5, 9, 19]. They try to mea-

sure the isolation of a patch in patch-space by computing

the distance to its k-nearest neighbors. Instead, we pro-

pose a significantly more efficient solution, as all patches

are compared to a single patch pA.

At a first thought, this simple idea might not make much

sense. Suppose that a certain patch appears in two differ-

ent images. These two images could have the same average

patch, thus the distance of the patch to the average would be

equal. However, the saliency of this patch should be totally

different, when the images have different patch distribu-

tions. This is illustrated in Figure 4. In this figure the patch

px (marked in red) should be considered as salient in im-

age Im2 and non-salient in image Im1. Yet, the Euclidean

distance between px and the average patch pA (dashed pur-

ple line) is the same for both images. Were we to rely on

this distance to determine distinctness we would likely fail.

This behavior is also one of the downfalls of the k-nearest

patches approach. As can be seen in Figure 4, the patch px
has the same k-nearest patches in both images (contained

within the dashed red circle) and hence will be assigned the

same level of distinctness by [5, 9].

So, how come it works? Using either L2 or L1 to mea-

sure distances between patches ignores the internal statis-

tics of the image patches. The reason patch px should be

considered as distinct in image Im2 is that it is inconsis-

tent with the other patches of image Im2. The statistics of

patches in each image are different, as evident from the dis-

tributions of the patches in Figure 4. This is overlooked by

the conventional distance metrics.

Our second observation is that the distance to the aver-

age patch should consider the patch distribution in the im-

age. We realize this observation by computing the principal

components, thus capturing the dominant variations among

patches. We then consider a patch distinct if the path con-

necting it to the average patch, along the principal compo-
nents, is long. For each patch we march along the principal

components towards the average patch and compute the ac-

cumulated length of this path.

Mathematically, this boils down to calculating the L1

norm of px in PCA coordinates. Thus, pattern distinctness

Figure 4. Saliency should depend on patch distribution: Im1

and Im2 represent two different images whose principal compo-

nents are marked by the solid lines. The images share the average

patch pA. The patch px is highly probable in the distribution of

Im1 and hence should not be considered distinct in Im1, while

the same patch is less probable in image Im2 and hence should

be considered distinct in Im2. The L2 distance (purple line) and

L1 distance (green line) between px and pA are oblivious to the

image distributions and therefore will assign the same level of dis-

tinctness to px in both images. Instead, computing the length of

the paths between px and pA, along the principal components of

each image, takes under consideration the distribution of patches

in each image. The path for image Im2 (dashed blue line) is

longer than the path for image Im1 (dashed orange line), correctly

corresponding to the distinctness level of px in each image.

P (px) is defined as:

P (px) = ||p̃x||1, (2)

where p̃x is px’s coordinates in the PCA coordinate system.

As shown in Figure 4, the path from px to pA along

the principal components of image Im2 (marked in blue)

is much longer than the path along the principal compo-

nents of image Im1 (marked in orange). Hence, the patch

px will be considered more salient in image Im2 than in

image Im1.

Figure 5 provides further visualization of the proposed

pattern distinctness measure. In this image, the drawings

on the wall are salient because they contain unique patterns,

compared to the building’s facade. The path along the prin-

cipal components, between the average patch and a patch on

the drawings, contains meaningful patterns from the image.

Implementation details: To disregard lighting effects we

a-priori subtract from each patch its mean value. To detect

distinct regions regardless of their size, we compute the pat-

tern distinctness of Eq. (2) in three resolutions: 100%, 50%

and 25% and average them. Finally, we apply morphologi-

cal operations to fill holes in the pattern map [20].

Computational efficiency: A major benefit of using the

approach described above is its computational efficiency,
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Average Non-distinct Distinct

patch pA patch patch

(a)

(b) Pattern distinctness P (c)
Figure 5. The principal components: (a) An image with its av-

erage patch and samples of a non-distinct and a distinct patch. (b)

Our pattern distinctness P . (c) The absolute value of the top six

principal components, added to the “red” patch along the PCA

path to pA. It can be seen that the path from the “red” patch to pA
adds patterns that can be found in the image.

in comparison to the k-nearest patches approach. To com-

pute the PCA, we use only patches that contain patterns and

ignore homogeneous patches. To quickly reject homoge-

neous regions we compute SLIC super-pixels [2] and keep

the 25% with highest variance. We then take all the patches

from within these super-pixels and use them to compute the

PCA.

We compare our accuracy and run-times against those of

the k-nearest neighbours approach, using both accurate and

approximate search [18]. The evaluation was performed

on three well known datasets [1, 3, 15]. Table 1 sum-

marizes our results. To measure accuracy, we report the

Area-Under-the-Curve (AUC) and Average Precision (AP)

(the higher the better). In addition, we compare run-times.

Our approach is more accurate than both Exact-KNN and

Method Accuracy Run time Speedup

AUC AP (sec/image)

ASD [1]

Exact-KNN 0.794 0.483 39.58 1

Approx-KNN [18] 0.767 0.467 1.63 24.28

PCA-Single-res 0.788 0.466 0.04 989.5
PCA-Multi-res 0.808 0.507 0.26 152.23

SED1 [3]

Exact-KNN 0.838 0.575 42.63 1

Approx-KNN [18] 0.826 0.6 1.59 26.84

PCA-Single-res 0.842 0.58 0.04 1068.37
PCA-Multi-res 0.849 0.602 0.3 142.1

MSRA [15]

Exact-KNN 0.855 0.628 39.64 1

Approx-KNN [18] 0.858 0.648 1.56 25.41

PCA-Single-res 0.85 0.619 0.03 1321.33
PCA-Multi-res 0.893 0.723 0.25 158.56

Table 1. Accuracy and run-time of pattern distinctness: Our

PCA-based approach offers an incredible speedup over the KNN

methods, together with an improvement in accuracy. The method

was tested on images of a maximal dimension of 150 pixels (ex-

cluding the multi-resolution PCA), on a Pentium 2.5GHz CPU,

4GB RAM.

Approximate-KNN, while being significantly faster than

both.

A benefit of a faster solution is enabling analysis of im-

ages at higher resolutions. This is crucial for some images,

as illustrated in Figure 6. Computing pattern distinctness of

the input image leads to mediocre detection results for both

KNN approaches (Figure 6(b),(c)) as well as for single res-

olution PCA (Figure 6(d)). By using multiple resolutions,

our PCA approach leads to much finer results, while still

being orders of magnitude faster than the KNN approaches.

2.2. Color Distinctness

While pattern distinctness identifies the unique patterns

in the image, it is not sufficient for all images. This is il-

lustrated in Figure 7(a), where the golden statue is salient

only due to its unique color. Much like previous ap-

proaches [6, 11], we adopt a two step solution for detect-

ing regions of distinct color. We first segment the image

(a) Input (b) Exact-NN [35s] (c) ANN [1.61s] (d) PCA-Single [0.04s] (e) PCA-Multi [0.3s]
Figure 6. Processing at high resolution results in higher accuracy: Thanks to the efficiency of our PCA approach, we are able to process

images at multiple higher resolutions leading to improved accuracy, while maintaining significantly lower run-times.
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(a) Input (b) Color distinctness
Figure 7. Color distinctness: Color is a crucial cue in image

saliency. In this particular image, due solely to color distinctness,

the golden statue catchs our attention.

into regions and then determine which regions are distinct

in color.

The first step is solved by using the SLIC super-

pixels [2], already computed in Section 2.1 to construct the

PCA basis. We solve the second step by defining the color

distinctness of a region as the sum of L2 distances from all

other regions in CIE LAB color-space. Given M regions,

the color distinctness of region rx is computed by:

C(rx) =
M∑

i=1

||rx − ri||2. (3)

This calculation is efficient due to the relatively small num-

ber of SLIC regions in most images. For further robustness,

we compute color distinctness at three resolutions: 100%,

50% and 25% and average them.

Figure 7(b) demonstrates a result of our color distinct-

ness. The golden statue was properly detected, however,

also a meaningless dark gap between the statues was de-

tected as distinct in color.

2.3. Putting it all together

We seek regions that are salient in both color and pat-

tern. Therefore, to integrate color and pattern distinctness

we simply take the product of the two:

D(px) = P (px) · C(px). (4)

This map is normalized to the range [0, 1].
To further refine our results, we next incorporate known

priors on image organization. First, we note that the salient

pixels tend to be grouped together into clusters, as they typ-

ically correspond to real objects in the scene. Furthermore,

as was shown by [7, 12, 14], people have a tendency to place

the subject of the photograph near the center of the image.

To take these observations under consideration, we do

the following. We start by detecting the clusters of dis-

tinct pixels by iteratively thresholding the distinctness map

D(px) using 10 regularly spaced thresholds between 0 and

1. We compute the center-of-mass of each threshold result

and place a Gaussian with σ = 10000 at its location. We as-

sociate with each of these Gaussians an importance weight,

corresponding to its threshold value. In addition, to accom-

modate for the center prior, we further add a Gaussian at the

center of the image with an associated weight of 5. We then

generate a weight map G(px) that is the weighted sum of

all the Gaussians.

Our final saliency map S(px) is a simple product be-

tween the distinctness map and the Gaussian weight map:

S(px) = G(px) ·D(px). (5)

We present a few examples of our saliency detection in

Figure 8. We note that none of the three considerations:

pattern, color or organization (Figures 8(b,c,e)), suffices to

achieve a good detection. The pattern distinctness suffers

from non-salient distinct patterns, such as the fish drawings

on the blue wall (top row). The color distinctness may cap-

ture background colors, such as the sky in the penguin road

sign (bottom row). The organization map offers a fuzzy

map. Yet, by combining the three maps, a high quality de-

tection is achieved (f).

3. Empirical evaluation
To evaluate our approach, we compare it to the state-of-

the-art according to the benchmark proposed just recently

in [4]. This benchmark suggests five well accepted datasets:

1. MSRA [15]: 5,000 images labeled by nine users.

Salient objects were marked by a bounding box.

2. ASD [1]: 1000 images from the MSRA dataset, for

which a more refined manually-segmented ground-

truth was created.

3. SED1 [3]: 100 images of a single salient object anno-

tated manually by three users.

4. SED2 [3]: 100 images of two salient objects annotated

manually by three users.

5. SOD [17]: 300 images taken from the Berkeley Seg-

mentation Dataset for which seven users selected the

boundaries of the salient objects.

According to [4], the “Top-4” highest scoring salient ob-

ject detection algorithms are: SVO [5], CR [6], CNTX [9],

and CBS [11]. Therefore, we compare our results to theirs.

Accuracy: Figure 9 shows the Area-under-the-curve

scores for each of the datasets and an overall score of the

combined performance over all of the datasets. Unlike the

“Top-4” approaches, which perform well on a single dataset

and less so on others, our approach significantly outper-

forms all other methods on all of the datasets (Table 2).

To further evaluate our method, we test it on the dataset

of Judd et al. [12]. This dataset is aimed at gaze-prediction,

which differs from our task of salient object detection. Still,

we show in Figure 10 that our method offers comparable

results to the best performing algorithm of the “Top-4” [5].
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(a) Input (b) Pattern (c) Color (d) Pattern (e) Organization (f) Final

distinctness distinctness & Color priors saliency
Figure 8. Combining the three considerations is essential: Given an input image (a), we compute for each pixel its pattern distinctness

(b) and its color distinctness (c). The two distinctness maps are combined (d) and then integrated with priors of image organization (e), to

obtain our final saliency results in (f). As can be seen, the final saliency maps are more accurate than each of the components.

Figure 9. Detection accuracy: We present Area-Under-the-Curve

(AUC) scores of the “Top-4” algorithms [4] and ours on five well

known datasets. Our approach outperforms all other algorithms on

all the datasets and in the overall score.

Run-time: Typically, more accurate results are achieved

at the cost of a longer run-time. However, this is not our

case, as we achieve the most accurate results, while main-

taining low run-times, as demonstrated in Figure 11. In par-

ticular, the fastest algorithm among the “Top-4” is RC [6],

but it is ranked lowest in Table 2. The most accurate algo-

rithm among the “Top-4” is SVO [5], but its running times

Rank
Datasets

MSRA ASD SED1 SED2 SOD Overall
1 Ours Ours Ours Ours Ours Ours

2 CBS CBS CNTX RC SVO SVO

3 SVO SVO SVO CNTX CNTX CBS

4 CNTX RC CBS SVO RC CNTX

5 RC CNTX RC CBS CBS RC

Table 2. Algorithm ranking: Our method outperforms all other

methods on all datasets as well as in the overall score.

Figure 10. Gaze Prediction: Our approach offers comparable re-

sults on the gaze-prediction dataset of Judd et. al [12] to that of

the top scoring method, SVO [5].

are significantly longer than others (over one minute per im-

age). Such long processing time could render it inapplicable

for some applications. Our method, on the other hand, pro-

vides even higher accuracy than SVO, while maintaining a
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Figure 11. Run-time: Our method has a good average run-

time per image, compared to the state-of-the-art techniques, while

achieving higher accuracy. The reported run-times were computed

on the SED1 dataset [3], on a Pentium 2.5GHz CPU, 4GB RAM.

reasonable run-time of ∼ 3.5 seconds per image.

Qualitative evaluation: Figure 12 presents a qualitative

comparison of our method with the current state-of-the-art.

It can be seen that while SVO [5] detects the salient regions,

parts of the background are erroneously detected as salient.

By relying solely on color, RC [6] can mistakenly focus on

distinct background colors, e.g., the shadow of the animal is

captured instead of the animal itself. Conversely, CNTX [9]

relies mostly on patterns, hence, it detects the outlines of the

flower and the cat, while missing their interior. The CBS

method [11] relies on shape priors and therefore often de-

tects only parts of the salient objects (e.g., the flower) or

convex background regions (e.g., the water of the harbor).

Our method integrates color and pattern distinctness, and

hence captures both the outline, as well as the inner pixels

of the salient objects. We do not make any assumptions on

the shape of the salient regions, hence, we can handle con-

vex as well as concave shapes.

4. Conclusion

Let’s go back to the title of this paper and ask ourselves

what makes a patch distinct. In this paper we have shown

that the statistics of patches in the image plays a central role

in identifying the salient patches. We made use of the patch

distribution for computing pattern distinctness via PCA.

We have shown that we outperform the state-of-art re-

sults, while not sacrificing too much run-time. This is done

by combining our novel pattern distinctness estimation with

standard techniques for color uniqueness and organization

priors.

A drawback of our algorithm is not using hight-level

cues, such as face detection or object recognition. This

can be easily addressed, by adding off-the-shelf recognition

tools.
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(a) Input (b) SVO [5] (c) RC [6] (d) CNTX [9] (e) CBS [11] (f) Ours
Figure 12. Qualitative comparison. Salient object detection results on ten example images, two from each dataset in the benchmark of [4].

It can be seen that our results are consistently more accurate than those of other methods.
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