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Abstract

Many people search for foreground objects to use when

editing images. While existing methods can retrieve candi-

dates to aid in this, they are constrained to returning objects

that belong to a pre-specified semantic class. We instead

propose a novel problem of unconstrained foreground ob-

ject (UFO) search and introduce a solution that supports

efficient search by encoding the background image in the

same latent space as the candidate foreground objects. A

key contribution of our work is a cost-free, scalable ap-

proach for creating a large-scale training dataset with a va-

riety of foreground objects of differing semantic categories

per image location. Quantitative and human-perception ex-

periments with two diverse datasets demonstrate the advan-

tage of our UFO search solution over related baselines.

1. Introduction

Image-based search, the task of retrieving images based

on an image query, is a popular research problem with many

applications [16, 23, 1, 28, 7]. While it is often used to

find visually or semantically similar images to the query

image, a less explored subproblem in this domain is search-

ing for content to edit the query image. Yet the importance

of this subproblem is evidenced by the existence of many

stock image websites, for example shutterstock.com,

www.istockphoto.com, and stock.adobe.com to

name a few, which contain tens of millions of images of

objects on a white or plain background to make it easy to

cut out just the foreground object to use it in another image.

Whether a user is placing an object on top of a complete im-

age (compositing) or using an object to partially fill a hole

(created, for example, by removing another object or area),

an important part of the creative process is to find a large

variety of content that is compatible with the surrounding

background in order to explore multiple possible outcomes.

The most relevant related work to this subproblem are

compositing-aware methods which require a user to specify

the desired object type to be pasted into a query image, and
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Figure 1. We propose a method to search for foreground objects

that are semantically compatible with a background image. In this

example, our approach takes the background image with a hole on

the table, searches in a large object database consisting of multiple

semantic classes, and returns compatible foreground objects. This

example illustrates how UFO search can be used for hole filling

(using [4] to fill in the gaps around the object) and compositing.

then search for suitable objects [11, 30].1 While specifying

the object type to be inserted can guide the search process,

it also introduces a limitation that creatives cannot explore

many possible image modifications representing a variety of

objects that can be inserted into a query image believably.

In this paper, we propose the problem of unconstrained

foreground object search (UFO search). Specifically, the

goal is to search for foreground objects that are semanti-

cally compatible with a background image without any con-

straint on what objects to retrieve. An object is compatible

with a background image if it can be realistically compos-

ited into the image or used to aid hole filling, as illustrated

in Figure 1. Here, we focus on semantic compatibility as

other methods address correcting geometrical errors [12, 2]

and low-level color and appearance differences [24, 31].

1Of note, search is a valuable approach since deep learning based meth-

ods that synthesize realistic-looking content are unable to do so for large

holes with complex surrounding structures [15, 27, 8, 29].
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We also introduce a novel solution for UFO search. In-

spired by [30], our network projects background images and

foreground objects into a high-level feature space, without

requiring object labels, such that compatible objects and

backgrounds are near each other. These high-level features

are then used for efficient search. A key contribution of our

work is a cost free, scalable approach for creating a large

(noisy) dataset for training unconstrained foreground object

search methods. Experiments demonstrate the effectiveness

of our UFO search method over numerous related baselines.

2. Related Work

Constrained Foreground Object Search is the task of re-

trieving foreground objects that are compatible with the

background image given the desired object type. Early

works such as Photo Clip Art [11] retrieved foreground ob-

jects of a given class based on handcrafted features such as

camera orientation, lighting, resolution and local context.

More recently, Tan et al. [21] used off-the-shelf deep CNN

features from the context to find suitable foreground persons

particularly for person composition. Zhao et al. [30] used

end-to-end feature learning to adapt to different object cat-

egories. In contrast, our approach has no constraint on what

objects to retrieve and our experiments demonstrate it can

retrieve compatible object candidates of different classes.

Predicting Compatibility. Prior work [31] has demon-

strated it is possible to solve a related problem of predicting

whether a composite and image are compatible. However,

while [31] focuses on low-level compatibility (e.g., color,

lighting, texture), we aim to stay largely agnostic to low-

level properties (since properties such as lighting and color

differences can be corrected in post-processing) and instead

address semantic compatibility. Experiments show the ad-

vantage of our solution over [31] for the UFO search task.

Context-based Reasoning has been used in object recog-

nition and detection [6]. Some works model the interaction

of existing content in the image. For example, early works

[3, 19] incorporated context cues for object recognition and

Bell et al. [5] recently proposed a recurrent neural network

for object detection. Our method more closely aligns with

methods that make predictions about missing content based

on image context. For example, one work proposes solving

object detection based on context cues only [22]. Another

work trains a standalone object-centric context representa-

tion to detect missing objects [20]. While these methods fo-

cus on the binary decision of whether there should be an ob-

ject of a semantic class at a specific location, our approach

addresses a distinct problem of searching for foreground ob-

ject instances that are compatible with the context. More-

over, the compatible foreground objects may be a subset of

a semantic class or come from different classes.

Scene Completion methods [7, 26, 32], like our work, in-

volve inserting foreign content into an image. However,

such methods address a distinct problem from our proposed

UFO search problem. The former assumes the goal is to

find a patch to insert into a scene image. Consequently, it

must find a patch that seamlessly matches every background

element in the scene. In contrast, UFO Search only finds a

compatible object. This distinction provides an advantage

over Scene Completion methods since UFO search meth-

ods can work in a general-purpose pipeline that positions

a foreground object over the majority of the hole, and then

applies any downstream post-processing methods (exempli-

fied in Figure 1) to fill the gaps.

3. Methods

We propose a method for retrieving foreground objects

from a database that are semantically compatible with a

given image at a specified location. Our approach learns

how to represent both the background image and each can-

didate foreground object in a shared search space that sup-

ports efficiently ranking the compatibility of all foreground

objects. The architecture and training scheme for our ap-

proach are summarized in Figure 2 and described below.

3.1. Deep Learning Architecture

We propose a deep neural network that consists of two

encoders which characterize the background image and

foreground objects respectively by projecting them into a

high-level feature space where compatible objects and im-

age are near each other spatially. The approach is inspired

by [30], though our architecture is more straight-forward

and does not require an object label. The input to the fore-

ground encoder is a foreground object on the background of

mean image value, and the input to the background encoder

is the background image with a hole2 (needed for masking

out the original object at that location in the training set) at

the desired object location. The high-level feature outputs

from the foreground objects can be stored in an index so that

the objects can be retrieved given the feature corresponding

to a background image.

Both encoders are derived from the popular VGG-

19 [18] architecture (up to fc6 layer), that takes as input im-

ages of size 224×224 and outputs 4096 dimensional feature

embeddings. For the foreground object encoder, our goal is

to capture the semantics of foreground objects. Since that is

already captured well in the VGG-19 [18] architecture, we

keep the weights that were pretrained for the ILSVRC-2014

competition [17] fixed during training. In contrast, for the

background encoder, we initialize the weights with those

pretrained for the ILSVRC-2014 competition [17] and then

modify them during training. The encodings of the back-

ground image and foreground objects are then converted to

2The hole is filled with the mean image value.
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Figure 2. Architecture and training scheme of UFO search. Given a background image with a hole, we first sample foreground objects

to overlay in the hole. Then the pretrained discriminator takes the overlaid image and identifies compatible and incompatible foreground

objects. We use two encoders to encode the background image and foreground objects respectively. The triplet loss encourages the

compatibility between the background and positive samples to be larger than its compatibility with negative samples.

unit feature vectors with ℓ2 normalization and used to com-

pute compatibility, by measuring their cosine similarity.

3.2. Loss Function

We adopt as our loss function a triplet loss [25] that

takes as input a background image, positive sample, and

negative sample. This function encourages the compati-

bility between a background image and a good foreground

object (i.e., positive sample) to be larger than its compat-

ibility with a bad foreground object (i.e., negative sam-

ple). Formally, given a background image Ib, positive

sample I
p
f , and negative sample Inf , we want to enforce

C(Ib, I
p
f ) > C(Ib, I

n
f ). The triplet loss is a hinge loss

L(Ib, I
p
f , I

n
f ) = max(0, C(Ib, I

n
f )+M −C(Ib, I

p
f )) where

M is a positive margin to encourage a gap between the pos-

itive and negative sample. The training objective is to min-

imize the loss over all the sampled triplets.

3.3. Training Data Generation

We generate a training dataset that consists of triplets

that contain a (1) background image, (2) compatible fore-

ground object (positive), and (3) incompatible foreground

object (negative). Exemplar triplets are shown in Figure 2.

Our key challenge lies in how to generate a sufficient

number of positive samples per background image. That

is because, for each background image, we only have one

known positive sample: the foreground object that orig-

inally was there. Yet, for many scenes, numerous other

foreground objects are plausible. We introduce two mech-

anisms for identifying a diversity of compatible foreground

objects per background image: a discriminator to identify

a noisy set of compatible foreground objects for each back-

ground image and a sampling module to accelerate identi-

fying plausible foreground objects for training the encoder.

Training Data Filtering. We propose a discriminator to

help filter the training data for effective training samples.

We design it to take as input a given background image

with the foreground object overlaid in the hole and output

a prediction of whether they are compatible. Note that this

discriminator is distinct from that employed for our UFO

search encoder (described in Section 3.1). While our UFO

search encoder learns how to represent the foreground ob-

jects and background image de-coupled in a complex, high-

level feature space, the discriminator instead takes them

coupled as input, with the foreground object overlaid on the

background image. Consequently, while our UFO search

encoder returns an efficient representation for search where

objects that are compatible are close and objects that are

not compatible are far away, the discriminator outputs a

“yes”or “no”answer for a single pair of a foreground ob-

ject and background image. We will show in Section 4 that

the discriminator alone is unsuitable for solving our com-

patibility problem (in terms of accuracy and speed) but is

valuable for boosting the performance of our UFO search

encoder by generating noisy yet richer training triplets.

For the discriminator’s architecture, we adapt VGG-

19 [18] by replacing the last fully connected layer to pro-

duce a scalar value that indicates the compatibility score.

To encourage the network to utilize high-level features so

it focuses on semantic compatibility, we initialize with the

weights pretrained for the ILSVRC-2014 competition [17]

and freeze all the convolutional layers. We train all the
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Figure 3. Examples of positive and negative samples used to train

the discriminator for compatibility prediction. The positive sam-

ples (the left column) are created by overlaying the original object

in the hole. The foreground objects in negative samples (the mid-

dle and right column) are randomly sampled from other images.

fully connected layers from scratch using a sigmoid cross-

entropy loss. For training data, we generate compatible

training examples by overlaying the original foreground ob-

ject in the hole, and generate incompatible examples by

selecting a random foreground object from another back-

ground image, resizing the object to fit in the hole, and then

positioning it at the center of the hole. Examples of com-

patible and incompatible samples that we feed to train our

discriminator are shown in Figure 3. Note that in the hole

we overlay the object alone rather than the original patch

containing the object. Otherwise the discriminator will sim-

ply learn to use low-level cues such as boundary continuity

rather than semantics for classification.

We restrict training triplets to only include fore-

ground objects that the discriminator confidently deems are

(in)compatible when training the encoder. A foreground is

deemed compatible with a given background if the discrim-

inator predicts the compatibility score to be higher than a

threshold thigh and incompatible if the score is lower than

a threshold tlow. Despite training with a single ground truth

object per background image, we show in the experiments

that the discriminator can sufficiently rank the compatibil-

ity of diverse foreground objects. The success of training a

classifier to rank has similarly been observed in prior work,

e.g. Zhu. et.al [31] for the task of ranking the realism of

image composites by low-level appearance.

Collecting Candidate Positive Examples Faster. While

the discriminator solves an easier task than our UFO search

method by solving a “yes” or “no” problem for a coupled

input, it does so at the expense of efficiency. That is be-

cause naively applying the pretrained discriminator can re-

quire comparing each background image against almost ev-

ery foreground object in a database before locating a suffi-

cient number of high scoring compatible examples.

To speed up the discriminator’s role in generating train-

ing data, we introduce two heuristics for sampling plausi-

ble foreground objects. First, we retrieve the top KC most

similar background scenes, and put the objects within those

scenes into the sample set. The assumption is that simi-

lar backgrounds are likely to offer (possibly a diversity of)

compatible objects. For example, for a given grass scene,

we can find similar scenes such as a picnic on a lawn. The

sitting persons or folding chairs in the picnic scene are also

likely to be compatible with the grass scene. Second, we

sample the top KG foreground objects that are most similar

to the original object, motivated by the assumption they are

more likely to be compatible with the given context. For ex-

ample, if a dog is running on the grass in the original image,

it is likely that dogs in other scenes will also be compatible.

In a database of over 60,000 objects, we observe a more

than 20x speed up from the two proposed heuristics (from

731 to 32 random samples on average) to find another com-

patible object other than the original object in the hole.

3.4. Implementation

At training time, we employ the Adam solver [10] with

fixed parameters β1 = 0.5 and β2 = 0.999. The initial

learning rate is set to lr = 0.00001 to train the encoder and

lr = 0.00002 to train the discriminator. We set the positive

margin M , which encourages a gap between the positive

and negative sample, to 0.3, with the threshold thigh for

identifying positive samples in compatibility prediction set

to 0.8 and the threshold tlow for identifying negative sam-

ples in compatibility prediction set to 0.3. All the back-

ground and foreground input images are set to a size of

224× 224. We train the discriminator beforehand and then

fix the discriminator when training the encoder. Training

with PyTorch [14] takes 63 hours for 142,300 iterations on

a single NVIDIA GeForce GTX 1080 Ti card.

At test time, we apply the background encoder to retrieve

the most compatible foreground objects for a given back-

ground image with a hole. Compatible objects are found

using nearest neighbor search between features describing

the background image and foreground object. We speed up

nearest neighbor search by using Faiss [9] to build an in-

dex for the evaluation set of foreground objects. After the

speedup, it takes <0.1 seconds to retrieve top 25 compatible

objects from a database of over 10,000 objects.

4. Experiments

We now examine the power of our UFO search approach

in finding compatible foreground objects for a given hole

in a background image. We examine the following ques-

tions: (1) How often do related baselines re-purposed for

UFO search retrieve compatible foreground objects?, (2)

How often does our UFO search method retrieve compat-
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ible foreground objects?, and (3) How do our different de-

sign decisions contribute to the performance of our method?

We conduct experiments on two datasets, with a quantitative

evaluation in Section 4.1 and user evaluation in Section 4.2.

4.1. Quantitative Evaluation

We first conduct experiments using background images

with holes that have various positions and sizes.

Dataset: Since large-scale datasets identifying all com-

patible foreground objects for a background image with a

hole do not exist, we use as a proxy the image composit-

ing dataset CAIS [30]. CAIS contains background images

with a hole, an assigned category for the type of object

that should fill the hole, and at least one compatible fore-

ground object in that category. Although designed for con-

strained foreground object search, CAIS is also valuable for

the more general problem of UFO search since most back-

ground images with holes unambiguously match only one

object category from the eight foreground object categories

represented3. The training set contains one compatible ob-

ject for each of the 86,800 background images, using the

original object in each image. The test set contains ∼16-

140 compatible objects per image for 80 background im-

ages, with 10 background images for each object category.

Baselines: We compare our approach to four baselines:

Shape [30]: This adopts a naive strategy of ranking com-

patibility based on the extent to which the foreground ob-

ject’s aspect ratio (i.e., width/height) matches the hole’s as-

pect ratio. For example, a tall hole would match a tree or

pedestrian better than a car.

RealismCNN [31]: It uses a discriminator to predict the

realism of image composites in terms of low-level cues such

as color, lighting, and texture compatibility. After overlay-

ing each foreground object into the hole (as in Figure 3), the

pretrained model ranks the compatibility of all objects.

Two constrained search methods: Since constrained

search methods require a category as input and so are not

directly useful, we examine two ways to adapt them for an

unconstrained setting. First, we train a classifier to decide

which category to fill in the hole4 and then apply a con-

strained search method to retrieve suitable instances within

that category. We call this Constrained Foreground Object

Search - Classifier (CFO-C Search). Note that it has the

limitation that it requires collecting class labels to train the

classifier and so would not recover from the errors of the

classifier. The second approach retrieves the top 100 ob-

jects for each of the eight categories using the constrained

search method and then applies our trained discriminator to

rank the retrieved 800 (100x8) objects. We call this Con-

strained Foreground Object Search - Discriminator (CFO-

3boat, bottle, car, chair, dog, wall painting, person, and plant
4The classifier employs the VGG architecture with weights pretrained

on ImageNet, and achieves overall accuracy of 63.75%.

D Search). Note that CFO-D Search becomes less prac-

tical with more categories and more retrievals, because it

requires expensively traversing every retrieval with the dis-

criminator and ranking all the retrievals. We evaluate both

approaches using the constrained search algorithm [30].

Ablated Variants: We evaluate ablations of our UFO

Search to assess the influence of different design decisions:

- No BG Training: It uses the pretrained weights for

the ILSVRC-2014 competition [17] as the background en-

coder’s weights. This is valuable for assessing the benefit of

training the background encoder when training UFO search.

- No Discriminator: It does not use our training data gener-

ation scheme, described in Section 3.3. Instead, it uses one

compatible foreground object per background image (i.e.,

the original one in the hole) and many incompatible samples

(i.e., all foreground objects in other background images).

- Discriminator Only: The discriminator described in Sec-

tion 3.3, which we use for training data generation, is in-

stead used to predict compatibility at test time. Recall that

a limitation of this approach is that it requires overlaying

each foreground object in the hole of each test background

image, which is very computationally expensive.

- Regression: This approach matches the No Discrimina-

tor approach except that it trains for the regression prob-

lem (i.e., using Mean Square Error (MSE)) instead of the

ranking problem (i.e., using the triplet loss). To do so, it

regresses to the feature of the original foreground object in

the hole from the background image using the MSE loss

function. We evaluate on a simplified situation (without the

discriminator) to assess the training approach on its own.

Evaluation Metrics: We use mean Average Precision

(mAP) for evaluation, which is a common metric in im-

age retrieval. We report mAP for each category as well as

overall, by averaging over all category mAPs. To make our

findings compatible with the constrained foreground object

search methods (CFO-C Search and CFO-D Search), we

evaluate the mAP for the top 100 retrievals. This is because

CFO methods do not rank all objects in all categories. We

share the mAP results with respect to all the retrievals for

all other methods in the Supplementary Materials.

Overall Results: Results are shown in Table 1.

Overall, our UFO Search method outperforms the four

related baselines: Shape, RealismCNN [31], CFO-C, and

CFO-C. For example, mAP is 32.17% for UFO Search,

which is over 24 percentage points better than for Shape

and RealismCNN. These results reveal that relying on hole

shape alone or low-level compatibility alone is not very in-

formative, and demonstrates the advantage of addressing se-

mantic compatibility directly. UFO Search also results in a

1.49 percentage point improvement over the next best con-

strained search baseline. This shows that UFO Search not

only offers a scalable end-to-end solution that avoids requir-

ing a separate class predictor (required by CFO-C) or large
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Method boat bottle car chair dog painting person plant overall

Shape [30] 7.47 1.16 10.40 12.25 12.22 3.89 6.37 8.82 7.82

RealismCNN [31] 12.33 7.19 7.55 1.81 7.58 6.45 1.47 12.74 7.14

CFO-C Search [30] 57.48 14.24 18.85 21.61 38.01 27.72 47.33 20.20 30.68

CFO-D Search [30] 55.48 8.93 24.10 18.16 57.82 21.59 27.66 23.13 29.61

Ours: UFO Search 59.73 21.12 36.63 19.27 36.51 25.84 27.11 31.19 32.17

Ours: No BG Training 49.09 0.62 3.23 9.01 7.37 11.66 7.30 22.02 13.79

Ours: No Discriminator 58.07 17.22 20.71 21.93 37.05 24.57 27.11 25.05 28.97

Ours: Discriminator Only 48.71 8.35 21.42 17.32 50.61 20.28 22.14 17.35 25.77

Ours: Regression 55.33 9.90 18.31 17.42 27.79 23.76 35.66 10.83 24.87

Table 1. Mean Average Precision for the top 100 retrievals of four baselines, our UFO search method, and its four ablated variants.

computational costs (required by CFO-D as more categories

and retrievals are considered), but also yields improved pre-

diction accuracy. This highlights a benefit of directly learn-

ing to solve the unconstrained search problem rather than

modifying constrained search methods.

Our analysis also shows how our UFO Search compares

to the baselines for different object categories. As shown in

Table 1, our UFO Search outperforms all baselines on the

following four object categories: boat, bottle, car, and plant.

The top-performer for the other four categories is shared

between three baselines. One reason our UFO Search per-

forms poorer at times is that for the person category it can

mistakenly retrieve boats for surfing scenes and dogs for

park scenes. Our UFO Search also at times mistakenly re-

trieve boats and chairs for the painting category. Addition-

ally, for the dog category, it at times mistakenly retrieve cars

and persons for street scenes. These findings suggest that

our approach understands the context semantically, but does

not always capture well the potential interaction between

the inserted object and the context for specific categories

such as person, painting, and dog. We hypothesize dis-

criminator based methods (CFO-D Search and Ours: Dis-

criminator Only) can perform better than our UFO Search

method for the dog category because it can be easier to rec-

ognize which foreground objects are incompatible for the

hole’s size and shape when overlaying the foreground ob-

ject directly in the hole (as the discriminator methods do).

UFO Design Analysis Results: Results in Table 1 also

illustrate the benefit of design choices for our UFO Search.

The poor performance from the Discriminator Only

demonstrates that the triplets sampled by the discrimina-

tor are imperfect; i.e., mAP score is 25.77%. Moreover,

it performs worse than our UFO Search both in terms of

accuracy (i.e., mAP score is 6.4 percentage points worse)

and speed (i.e., we observe over a 3000x slow down from

0.1 to 365.6 seconds when relying on the discriminator in-

stead of UFO Search to perform retrieval from a database

of 60,000 objects). These findings highlight a strong advan-

tage of learning how to represent the background image and

foreground objects de-coupled in a complex, high-level fea-

Figure 4. Positive and negative samples that are deemed compati-

ble and incompatible with the background image by our discrimi-

nator. As shown, it can identify multiple compatible objects.

ture space that supports efficient search, as our UFO Search

does, rather than coupling the background image and fore-

ground object as input, as the discriminator requires.

The gain of UFO Search over No Discriminator demon-

strates the advantage of employing our training data gener-

ation method; i.e., we observe more than a three percent-

age point boost. The encoder in UFO Search benefits from

learning using the noisy training data sampled by the dis-

criminator. Figure 4 exemplifies that the discriminator can

identify multiple compatible objects, despite having trained

with a single positive ground truth per background image.

The weaker performance of Regression versus No Dis-

criminator illustrates the advantage of training for the rank-

ing problem (by using the triplet loss); i.e., No Discrimina-

tor yields more than a four percentage point boost over Re-

gression. We attribute this performance gain to a benefit of

training with both positive and negative samples in the rank-

ing problem, rather than only positive samples when train-

ing for regression. Training with both positive and negative

samples better shapes the feature space by pushing compat-

ible objects closer to the background encoding and incom-

patible objects farther away from the background encoding.
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Finally, the poor performance of No BG Training com-

pared to the three methods that train the background en-

coder (i.e., UFO Search, No Discriminator, Regression)

demonstrates the benefit of feature learning.

4.2. User Evaluation

We next conduct user evaluation on a more diverse

dataset consisting of 79 object categories.

Dataset: We employ MS-COCO [13] to create a diverse

dataset of 79 foreground object categories. We use the ob-

ject segmentation mask annotations to decompose each im-

age into a background scene and foreground objects (see

Supplementary Materials for more details). This yields

14,350 background images and 61,069 foreground objects.

We use 14,230 background images for training and the re-

maining 120 for evaluation. To provide a large foreground

object database at test time, we use all 61,069 foreground

objects in both training and testing. This is acceptable since

we do not learn the feature space for foreground objects. In

order to evaluate the effectiveness in encoding the context

exclusively, we fix the hole size and position for all back-

ground images. Specifically, we create the holes for each

background scene by removing a square that bounds each

foreground object. Then we resize each background image

to 224× 224 with a hole of size 112× 112 in the center.

Ablated Variants: We compare with our UFO Search the

four ablated variants described in Section 4.1: No BG Train-

ing, Regression, No Discriminator, and Discriminator Only.

Evaluation Metrics: Since this dataset does not identify

multiple compatible foreground objects per background im-

age, we conduct a user study to measure the Precision@K

(P@K), which is the percentage of compatible foreground

objects in the top K retrievals. We show users a background

image and K candidate foreground objects retrieved by an

image search approach. Users are asked to select the fore-

ground objects that are not compatible with the background

image. Each background image is evaluated by 3 different

users. If any user labels a foreground object as incompati-

ble, the foreground object is considered to be incompatible.

Method P@5 P@10 P@15 P@20 P@25

No Training 12.67 13.33 13.28 12.50 12.50

Regression 30.33 30.75 30.39 30.50 30.40

No D 38.50 36.58 36.11 35.54 35.57

D Only 36.33 37.25 36.00 35.46 35.77

UFO Search 41.83 40.33 39.39 38.96 38.83

Table 2. User study results showing the percentage of retrieved

foreground objects in the top K retrievals that are deemed compat-

ible by users. No D = No Discriminator, No Training = No BG

Training, D Only = Discriminator Only.

Overall Results: Quantitative results are shown in Ta-

ble 2 for using our UFO Search for the top 5, 10, 15, 20,

and 25 retrievals respectively. Qualitative results are shown

in Figure 5. The top two examples illustrate that our UFO

Search can retrieve only one type of object when only one

object type is compatible; specifically, it retrieves only fris-

bees and catchers for the dog and baseball field respectively.

Also shown is that our UFO Search can retrieve compatible

objects that are from different categories when numerous

object types are appropriate for the scene. Specifically, our

approach retrieves carrots, oranges, bananas, cakes, sand-

wiches and hot dogs for a hole on a plate on a table (second

to bottom example) and retrieve horses, motorbikes, cars

and cows for the hole in the grass (bottom example).

UFO Design Analysis Results: Our UFO Search method

outperforms all its ablated variants for every retrieval size,

increasing the search precision by 3.33, 3.08, 3.28, 3.42,

and 3.06 percentage points compared to the next best ab-

lated variant in top 5, 10, 15, 20, 25 retrievals respectively.

This aligns with and reinforces our findings in Section 4.1.

Qualitative comparisons in Figure 5 illustrate strengths

of our design choices. For the first example, while the top

retrievals of UFO Search are all compatible frisbees, the No

Discriminator retrieves umbrellas which have similar shape

to frisbees but are not compatible in the context. For the sec-

ond baseball field example, all ablated variants accurately

retrieve the person category, however only our UFO Search

method recognizes that a catcher is the only suitable activ-

ity for the context. The last example shows the retrievals of

Discriminator Only can be noisy, containing incompatible

objects such as a toaster, but also is effective in retrieving

compatible objects of multiple categories, such as horses,

bikes and cars. We attribute this diversity of categories from

the discriminator as a core reason why the encoder of our

UFO Search method is able to learn to retrieve compati-

ble objects from multiple categories, as shown in the UFO

retrieval of the last example. The discriminator can effec-

tively generate triplets for training the encoder. In contrast,

No Discriminator only retrieves cars although multiple ob-

ject types are appropriate for the scene. Further analysis of

the retrieval diversity is in the Supplementary Materials.

5. Conclusion

We introduce a novel problem of searching for compati-

ble foreground objects to edit images without constraints on

object types. We also propose a solution with an efficient,

scalable approach for generating a large training dataset.

Experiments demonstrate advantages of our approach for

efficiently and accurately retrieving compatible foreground

objects from large-scale, diverse datasets. We offer this

work to support people in efficiently editing their images.
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Figure 5. Qualitative results on MS-COCO [13]. For the top two examples, our approach retrieves objects from the only object type from

MS-COCO (frisbee and catcher, respectively) that is really compatible with the context. The bottom two examples demonstrate that our

approach has the potential to retrieve compatible objects of different categories when many object types are appropriate for the scene.
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