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Abstract

Spatiotemporal and motion features are two complemen-

tary and crucial information for video action recognition.

Recent state-of-the-art methods adopt a 3D CNN stream to

learn spatiotemporal features and another flow stream to

learn motion features. In this work, we aim to efficiently

encode these two features in a unified 2D framework. To

this end, we first propose an STM block, which contains a

Channel-wise SpatioTemporal Module (CSTM) to present

the spatiotemporal features and a Channel-wise Motion

Module (CMM) to efficiently encode motion features. We

then replace original residual blocks in the ResNet archi-

tecture with STM blcoks to form a simple yet effective STM

network by introducing very limited extra computation cost.

Extensive experiments demonstrate that the proposed STM

network outperforms the state-of-the-art methods on both

temporal-related datasets (i.e., Something-Something v1 &

v2 and Jester) and scene-related datasets (i.e., Kinetics-

400, UCF-101, and HMDB-51) with the help of encoding

spatiotemporal and motion features together.

1. Introduction

Following the rapid development of the cloud and edge

computing, we are used to engaged in social platforms and

live under the cameras. In the meanwhile, various indus-

tries, such as in security and transportation, collect vast

amount of videos which contain a wealth of information,

ranging from people’s behavior, traffic, and etc. Huge video

information attracts more and more researchers to the video

understanding field. The first step of the video understand-

ing is action recognition which aims to recognize the hu-

man actions in videos. The most important features for ac-

tion recognition are the spatiotemporal and motion features

∗The work was done during an internship at SenseTime.
†Corresponding author.

Figure 1. Feature visualization of STM block. First row is the input

frames. Second row is the input feature maps of Conv2 1 block.

Third row is the output spatiotemporal feature maps of CSTM.

The fourth row is the output motion feature maps of CMM. The

last row is the optical flow extracted by TV-L1.

where the former encodes the relationship of spatial features

from different timestamps while the latter presents motion

features between neighboring frames.

The existing methods for action recognition can be sum-

marized into two categories. The first type is based on two-

stream neural networks [10, 33, 36, 9], which consists of an

RGB stream with RGB frames as input and a flow stream

with optical flow as input. The spatial stream models the

appearance features (not spatiotemporal features) without

considering the temporal information. The flow stream is

usually called as a temporal stream, which is designed to

2000



model the temporal cues. However, we argue that it is in-

accurate to refer the flow stream as the temporal stream be-

cause the optical flow only represent the motion features

between the neighboring frames and the structure of this

stream is almost the same to the spatial stream with 2D

CNN. Therefore, this flow stream lacks of the ability to cap-

ture the long-range temporal relationship. Besides, the ex-

traction of optical flow is expensive in both time and space,

which limits vast industrial applications in the real world.

The other category is the 3D convolutional networks (3D

CNNs) based methods, which is designed to capture the

spatiotemporal features[27, 2, 24, 3]. 3D convolution is

able to represent the temporal features as well as the spa-

tial features together benefiting from the extended temporal

dimension. With stacked 3D convolutions, 3D CNNs can

capture long-range temporal relationship. Recently, the op-

timization of this framework with tremendous parameters

becomes popular because of the release of large-scale video

datasets such as Kinetics [2]. With the help of pre-training

on large-scale video datasets, 3D CNN based methods have

achieved superior performance to 2D CNN based methods.

However, although 3D CNN can model spatiotemporal in-

formation from RGB inputs directly, many methods [29, 2]

still integrate an independent optical-flow motion stream

to further improve the performance with motion features.

Therefore, these two features are complementary to each

other in action recognition. Nevertheless, expanding the

convolution kernel from 2D to 3D and the two-stream struc-

ture will inevitably increase the computing cost by an order

of magnitude, which limits its real applications.

Inspired by the above observation, we propose a sim-

ple yet effective method referred as STM network, to inte-

grate both SpatioTemporal and Motion features in a unified

2D CNN framework, without any 3D convolution and op-

tical flow pre-calculation. Given an input feature map, we

adopt a Channel-wise Spatiotemporal Module (CSTM) to

present the spatiotemporal features and a Channel-wise Mo-

tion Module (CMM) to encode the motion features. We also

insert an identity mapping path to combine them together as

a block named STM block. The STM blocks can be easily

inserted into existing ResNet [13] architectures by replac-

ing the original residual blocks to form the STM networks

with negligible extra parameters. As shown in Fig. 1, we

visualize our STM block with CSTM and CMM features.

The CSTM has learned the spatiotemporal features which

pay more attention on the main object parts of the action

interaction compared to the original input features. As for

the CMM, it captures the motion features with the distinct

edges just like optical flow. The main contributions of our

work can be summarized as follows:

• We propose a Channel-wise Spatiotemporal Module

(CSTM) and a Channel-wise Motion Module (CMM)

to encode the complementary spatiotemporal and mo-

tion features in a unified 2D CNN framework.

• A simple yet effective network referred as STM Net-

work is proposed with our STM blocks, which can be

inserted into existing ResNet architecture by introduc-

ing very limited extra computation cost.

• Extensive experiments demonstrate that by integrat-

ing both spatiotemporal and motion features together,

our method outperforms the state-of-the-art meth-

ods on several public benchmark datasets including

Something-Something[11], Kinetics [2], Jester [1],

UCF101 [23] and HMDB-51 [17].

2. Related Works

With the great success of deep convolution networks in

the computer vision area, a large number of CNN-based

methods have been proposed for action recognition and

have gradually surpassed the performance of traditional

methods [30, 31]. A sequence of advances adopt 2D CNNs

as the backbone and classify a video by simply aggregating

frame-wise prediction [16]. However, these methods only

model the appearance feature of each frame independently

while ignore the dynamics between frames, which results

in inferior performance when recognizing temporal-related

videos. To handle the mentioned drawback, two-stream

based methods [10, 33, 36, 3, 9] are introduced by modeling

appearance and dynamics separately with two networks and

fuse two streams through middle or at last. Among these

methods, Simonyan et al. [22] first proposed the two-stream

ConvNet architecture with both spatial and temporal net-

works. Temporal Segment Networks (TSN) [33] proposed a

sparse temporal sampling strategy for the two-stream struc-

ture and fused the two streams by a weighted average at the

end. Feichtenhofer et al. [8, 9] studied the fusion strate-

gies in the middle of the two streams in order to obtain

the spatiotemporal features. However, these types of meth-

ods mainly suffer from two limitations. First, these meth-

ods need pre-compute optical flow, which is expensive in

both time and space. Second, the learned feature and final

prediction from multiple segments are fused simply using

weighted or average sum, making it inferior to temporal-

relationship modeling.

Another type of methods tries to learn spatiotemporal

features from RGB frames directly with 3D CNN [27, 2,

4, 7, 24]. C3D [27] is the first work to learn spatiotemporal

features using deep 3D CNN. However, with tremendous

parameters to be optimized and lack of high-quality large-

scale datasets, the performance of C3D remains unsatisfac-

tory. I3D [2] inflated the ImageNet pre-trained 2D kernel

into 3D to capture spatiotemporal features and modeled mo-

tion features with another flow stream. I3D has achieved

very competitive performance in benchmark datasets with

the help of high-quality large-scale Kinetics dataset and the
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two-stream setting. Since 3D CNNs try to learn local cor-

relation along the input channels, STCNet [4] inserted its

STC block into 3D ResNet to captures both spatial-channels

and temporal-channels correlation information throughout

network layers. Slowfast [7] involved a slow path to cap-

ture spatial semantics and a fast path to capture motion at

fine temporal resolution. Although 3D CNN based methods

have achieved state-of-the-art performance, they still suffer

from heavy computation, making it hard to deploy in real-

world applications.

To handle the heavy computation of 3D CNNs, several

methods are proposed to find the trade-off between preci-

sion and speed [28, 37, 42, 41, 25, 20]. Tran et al. [28]

and Xie et al. [37] discussed several forms of spatiotem-

poral convolutions including employing 3D convolution in

early layers and 2D convolution in deeper layers (bottom-

heavy) or reversed the combinations (top-heavy). P3D [20]

and R(2+1)D [28] tried to reduce the cost of 3D convolution

by decomposing it into 2D spatial convolution and 1D tem-

poral convolution. TSM [19] further introduced the tempo-

ral convolution by shifting part of the channels along the

temporal dimension. Our proposed CSTM branch is simi-

lar to these methods in the mean of learning spatiotemporal

features, while we employ channel-wise 1D convolution to

capture different temporal relationship for different chan-

nels. Though these methods are successful in balancing

the heavy computation of 3D CNNs, they inevitably need

the help of two-stream networks with a flow stream to in-

corporate the motion features to obtain their best perfor-

mance. Motion information is the key difference between

video-based recognition and image-based recognition task.

However, calculating optical flow with TV-L1 method [38]

is expensive in both time and space. Recently many ap-

proaches have been proposed to estimate optical flow with

CNN [5, 14, 6, 21] or explored alternatives of optical flow

[33, 39, 26, 18]. TSN frameworks [33] involved RGB dif-

ference between two frames to represent motion in videos.

Zhao et al. [39] used cost volume processing to model ap-

parent motion. Optical Flow guided Feature (OFF) [26]

contains a set of operators including sobel and element-wise

subtraction for OFF generation. MFNet [18] adopted five

fixed motion filters as a motion block to find feature-level

temporal features between two adjacent time steps. Our

proposed CMM branch is also designed for finding better

yet lightweight alternative motion representation. The main

difference is that we learn different motion features for dif-

ferent channels for every two adjacent time steps.

3. Approach

In this section, we will introduce the technical details of

our approach. First, we will describe the proposed CSTM

and CMM to show how to perform the channel-wise spa-

tiotemporal fusion and extract the feature-level motion in-
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Figure 2. Architecture of Channel-wise SpatioTemporal Module

and Channel-wise Motion Module. The feature maps are shown as

the shape of their tensors. ”⊖” denotes element-wise subtraction.

formation, respectively. Afterward, we will present the

combination of these two modules to assemble them as a

building block that can be inserted into existing ResNet ar-

chitecture to form our STM network.

3.1. Channel­wise SpatioTemporal Module

The CSTM is designed for efficient spatial and tempo-

ral modeling. By introducing very limited extra comput-

ing cost, CSTM extracts rich spatiotemporal features, which

can significantly boost the performance of temporal-related

action recognition. As illustrated in Fig. 2(a), given an in-

put feature map F ∈ R
N×T×C×H×W , we first reshape F

as: F → F
∗
∈ R

NHW×C×T and then apply the channel-

wise 1D convolution on the T dimension to fuse the tempo-

ral information. There are mainly two advantages to adopt

the channel-wise convolution rather than the ordinary con-

volution. Firstly, for the feature map F
∗, the semantic in-

formation of different channels is typically different. We

claim that the combination of temporal information for dif-

ferent channels should be different. Thus the channel-wise

convolution is adopted to learn independent kernels for each

channel. Secondly, compared to the ordinary convolution,

the computation cost can be reduced by a factor of G where

G is the number of groups. In our settings, G is equal to

the number of input channels. Formally, the channel-wise

temporal fusion operation can be formulated as:

Gc,t =
∑

i

K
c
iF

∗

c,t+i (1)

where K
c
i are temporal combination kernel weights belong

to channel c and i is the index of temporal kernel, F∗

c,t+i
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Figure 3. The overall architecture of STM network. The input video is first split into N segments equally and then one frame from each

segment is sampled. We adopt 2D ResNet-50 as backbone and replace all residual blocks with STM blocks. No temporal dimension

reduction performed apart from the last score fusion stage.

is the input feature sequence and Gc,t is the updated ver-

sion of the channel-wise temporal fusion features. Here the

temporal kernel size is set to 3 thus i ∈ [−1, 1]. Next

we will reshape the G to the original input shape (i.e.

[N,T,C,H,W ]) and model local-spatial information via

2D convolution whose kernel size is 3x3.

We visualize the output feature maps of CSTM to help

understand this module in Fig. 1. Compare the features in

the second row to the third row, we can find that the CSTM

has learned the spatiotemporal features which pay more at-

tention in the main part of the actions such as the hands in

the first column while the background features are weak.

3.2. Channel­wise Motion Module

As discovered in [29, 2], apart from the spatiotemporal

features directly learned by 3D CNN from the RGB stream,

the performance can still be greatly improved by includ-

ing an optical-flow motion stream. Therefore, apart from

the CSTM, we propose a lightweight Channel-wise Motion

Module (CMM) to extract feature-level motion patterns be-

tween adjacent frames. Note that our aim is to find the mo-

tion representation that can help to recognize actions in an

efficient way rather than accurate motion information (opti-

cal flow) between two frames. Therefore, we will only use

the RGB frames and not involve any pre-computed optical

flow.

Given the input feature maps F ∈ R
N×T×C×H×W , we

will first leverage a 1x1 convolution layer to reduce the spa-

tial channels by a factor of r to ease the computing cost,

which is setting to 16 in our experiments. Then we generate

feature-level motion information from every two consecu-

tive feature maps. Taking Ft and Ft+1 for example, we

first apply 2D channel-wise convolution to Ft+1 and then

subtracts from Ft to obtain the approximate motion repre-

sentation Ht:

Ht =
∑

i,j

K
c
i,jFt+1,c,h+i,w+j − Ft (2)

where c, t, h, w denote spatial, temporal channel and two

spatial dimensions of the feature map respectively and K
c
i,j

denotes the c-th motion filter with the subscripts i, j denote

the spatial indices of the kernel. Here the kernel size is set

to 3× 3 thus i, j ∈ [−1, 1].
As shown in Fig. 2(b), we perform the proposed CMM to

every two adjacent feature maps over the temporal dimen-

sion, i.e., Ft and Ft+1, Ft+1 and Ft+2, etc. Therefore, the

CMM will produce T − 1 motion representations. To keep

the temporal size compatible with the input feature maps,

we simply use zero to represent the motion information of

the last time step and then concatenate them together over

the temporal dimension. In the end, another 1x1 2D convo-

lution layer is applied to restore the number of channels to

C.

We find that the proposed CMM can boost the perfor-

mance of the whole model even though the design is quite

simple, which proves that the motion features obtained with

CMM are complementary to the spatiotemporal features

from CSTM. We visualize the motion features learned by

CMM in Fig. 1. From which we can see that compared to

the output of CSTM, CMM is able to capture the motion
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features with the distinct edges just like optical flows.

3.3. STM Network

In order to keep the framework effective yet lightweight,

we combine the proposed CSTM and CMM together to

build an STM block that can encode spatiotemporal and mo-

tion features together and can be easily inserted into the ex-

isting ResNet architectures. The overall design of the STM

block is illustrated in the bottom half of Fig. 3. In this STM

block, the first 1x1 2D convolution layer is responsible for

reducing the channel dimensions. The compressed feature

maps are then passed through the CSTM and CMM to ex-

tract spatiotemporal and motion features respectively. Typi-

cally, there are two kinds of ways to aggregate different type

of information: summation and concatenation. We experi-

mentally found that summation works better than concate-

nation to fuse these two modules. Therefore, an element-

wise sum operation is applied after the CSTM and CMM to

aggregate the information. Then another 1x1 2D convolu-

tion layer is applied to restore the channel dimensions. Sim-

ilar to the ordinary residual block, we also add a parameter-

free identity shortcut from the input to the output.

Because the proposed STM block is compatible with the

ordinary residual block, we can simply insert it into any ex-

isting ResNet architectures to form our STM network with

very limited extra computation cost. We illustrate the over-

all architecture of STM network in the top half of Fig-

ure 3. The STM network is a 2D convolutional network

which avoids any 3D convolution and pre-computing op-

tical flow. Unless specified, we choose the 2D ResNet-50

[13] as our backbone for its tradeoff between the accuracy

and speed. We replace all residual blocks with the proposed

STM blocks.

4. Experiments

In this section, we first introduce the datasets and the

implementation details of our proposed approach. Then

we perform extensive experiments to demonstrate that the

proposed STM outperforms all the state-of-the-art meth-

ods on both temporal-related datasets (i.e., Something-

Something v1 & v2 and Jester) and scene-related datasets

(i.e., Kinetics-400, UCF-101, and HMDB-51). The base-

line method in our experiments is Temporal Segment Net-

works (TSN) [33] where we replace the backbone to

ResNet-50 for fair comparisons. We also conduct abundant

ablation studies with Something-Something v1 to analyze

the effectiveness of our method. Finally, we give runtime

analyses to show the efficiency of STM compare with state-

of-the-art methods.

4.1. Datasets

We evaluate the performance of the proposed STM on

several public action recognition datasets. We classify these

Figure 4. Difference between temporal-related datasets and scene-

related datasets. Top: action for which temporal feature matters.

Reversing the order of frames gives the opposite label (opening

something vs closing something). Bottom: action for which scene

feature matters. Only one frame can predict label (horse riding).

datasets into two categories: (1) temporal-related datasets,

including Something-Something v1 & v2 [11] and Jester

[1]. For these datasets, temporal motion interaction of ob-

jects is the key to action understanding. Most of the actions

cannot be recognized without considering the temporal re-

lationship; (2) scene-related datasets, including Kinetics-

400 [2], UCF-101 [23] and HMDB-51 [17] where the back-

ground information contributes a lot for determining the ac-

tion label in most of the videos. Temporal relation is not as

important as it in the first group of datasets. We also give

examples in Figure 4 to show the difference between them.

Since our method is designed for effective spatiotemporal

fusion and motion information extraction, we mainly focus

on those temporal-related datasets. Nevertheless, for those

scene-related datasets, our method also achieves competi-

tive results.

4.2. Implementation Details

Training. We train our STM network with the same

strategy as mentioned in TSN [33]. Given an input video,

we first divide it into T segments of equal durations in order

to conduct long-range temporal structure modeling. Then,

we randomly sample one frame from each segment to obtain

the input sequence with T frames. The size of the short side

of these frames is fixed to 256. Meanwhile, corner crop-

ping and scale-jittering are applied for data argumentation.

Finally, we resize the cropped regions to 224×224 for net-

work training. Therefore, the input size of the network is

N × T × 3 × 224 × 224, where N is the batch size and

T is the number of the sampled frames per video. In our

experiments, T is set to 8 or 16.

We train our model with 8 GTX 1080TI GPUs and each

GPU processes a mini-batch of 8 video clips (when T = 8)

or 4 video clips (when T = 16). For Kinetics, Something-

Something v1 & v2 and Jester, we start with a learning rate

of 0.01 and reduce it by a factor of 10 at 30,40,45 epochs

and stop at 50 epochs. For these large-scale datasets, we

only use the ImageNet pre-trained model as initialization.
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Table 1. Performance of the STM on the Something-Something v1 and v2 datasets compared with the state-of-the-art methods.

Method Backbone Flow Pretrain Frame
Something-Something v1 Something-Something v2

top-1 val top-5 val top-1 test top-1 val top-5 val top-1 test top-5 test

S3D-G [37] Inception ImageNet 64 48.2 78.7 42.0 - - - -

ECO [42]

Kinetics

8 39.6 - - - - - -

ECO [42] BNInception+ 16 41.4 - - - - - -

ECOENLite [42] 3D ResNet-18 92 46.4 - 42.3 - - - -

ECOENLite Two-Stream [42] X 92+92 49.5 - 43.9 - - - -

I3D [2]
3D ResNet-50 Kinetics

32 41.6 72.2 - - - - -

I3D+GCN [2] 32 43.4 75.1 - - - - -

TSN [33] ResNet-50 Kinetics
8 19.7 46.6 - 27.8 57.6 - -

16 19.9 47.3 - 30.0 60.5 - -

TRN Multiscale [40]
BNInception ImageNet

8 34.4 - 33.6 48.8 77.64 50.9 79.3

TRN Two-Stream [40] X 8+8 42.0 - 40.7 55.5 83.1 56.2 83.2

MFNet-C101 [18] ResNet-101 Scratch 10 43.9 73.1 37.5 - - - -

TSM [19]
ResNet-50 Kinetics

16 44.8 74.5 - 58.7 84.8 59.9 85.9

TSM Two-Stream [19] X 16+8 49.6 79.0 46.1 63.5 88.6 63.7 89.5

STM ResNet-50 ImageNet
8 49.2 79.3 - 62.3 88.8 61.3 88.4

16 50.7 80.4 43.1 64.2 89.8 63.5 89.6

Table 2. Performance of the STM on the Jester compared with the

state-of-the-art methods.
Method Backbone Frame Top-1 Top-5

TSN [33] ResNet-50
8 81.0 99.0

16 82.3 99.2

TRN-Multiscale [40] BNInception 8 95.3 -

MFNet-C50 [18] ResNet-50 7 96.1 99.7

TSM [19] ResNet-50
8 94.4 99.7

16 95.3 99.8

STM ResNet-50
8 96.6 99.9

16 96.7 99.9

For the temporal channel-wise 1D convolution in CSTM,

first quarter of channels are initialized to [1,0,0], last quar-

ter of channels are initialized to [0,0,1] and other half are

[0,1,0]. All parameters in CMM are randomly initialized.

For UCF-101 and HMDB-51, we use Kinetics pre-trained

model as initialization and start training with a learning rate

of 0.001 for 25 epochs. The learning rate is decayed by a

factor 10 every 15 epochs. We use mini-batch SGD as opti-

mizer with a momentum of 0.9 and a weight decay of 5e-4.

Different from [33], we enable all the BatchNorm layers

[15] during training.

Inference. Following [34, 7], we first scale the shorter

spatial side to 256 pixels and take three crops of 256× 256
to cover the spatial dimensions and then resize them to

224 × 224. For the temporal domain, we randomly sample

10 times from the full-length video and compute the soft-

max scores individually. The final prediction is the averaged

softmax scores of all clips.

4.3. Results on Temporal­Related Datasets

In this section, we compare our approach with the state-

of-the-art methods on temporal-related datasets including

Something-Something v1 & v2 and Jester. Something-

Something v1 is a large collection of densely-labeled video

clips which shows basic human interactions with daily

Table 3. Performance of the STM on the Kinetics-400 dataset com-

pared with the state-of-the-art methods.
Method Backbone Flow Top-1 Top-5

STC [4] ResNext101 68.7 88.5

ARTNet [32] ResNet-18 69.2 88.3

ECO [42]
BNInception

70.7 89.4
+3D ResNet-18

S3D [37] Inception 72.2 90.6

I3D RGB [2]
3D Inception-v1

71.1 89.3

I3D Two-Stream [2] X 74.2 91.3

StNet [12] ResNet-101 71.4 -

Disentangling [39] BNInception 71.5 89.9

R(2+1)D RGB [28]
ResNet-34

72.0 90.0

R(2+1)D Two-Stream [28] X 73.9 90.9

TSM [19] ResNet-50 72.5 90.7

TSN RGB [33]
BNInception

69.1 88.7

TSN Two-Stream [33] X 73.9 91.1

STM ResNet-50 73.7 91.6

objects. This dataset contains 174 classes with 108,499

videos. Something-Something v2 is an updated version of

v1 with more videos (220,847 in total) and greatly reduced

label noise. Jester is a crowd-acted video dataset for generic

human hand gestures recognition, which contains 27 classes

with 148,092 videos.

Table 1 lists the results of our method compared with

the state-of-the-art on Something-Something v1 and v2.

The results of the baseline method TSN are relatively low

compared with other methods, which demonstrates the im-

portance of temporal modeling for these temporal-related

datasets. Compared with the baseline method, our STM net-

work gains 29.5% and 30.8% top-1 accuracy improvement

with 8 and 16 frames inputs respectively on Something-

Something v1. On Something-Something v2, STM also

gains 34.5% and 34.2% improvement compared to TSN.

The rest part of Table 1 shows the other state-of-the-art

methods. These methods can be classified into two types as

shown in the two parts of Table 1. The upper part presents

the 3D CNN based methods, including S3D-G [37], ECO

[42] and I3D+GCN models [35]. The lower part is 2D

CNN based methods, including TRN [40], MFNet [18] and

TSM [19]. It is clear that even STM with 8 RGB frames

2005



Table 4. Performance of the STM on UCF-101 and HMDB-51 compared with the state-of-the-art methods.

Method Backbone Flow Pre-train Data UCF-101 HMDB-51

C3D [27] 3D VGG-11 Sports-1M 82.3 51.6

STC [4] ResNet101 Kinetics 93.7 66.8

ARTNet with TSN [32] 3D ResNet-18 Kinetics 94.3 70.9

ECO [42] BNInception+3D ResNet-18 Kinetics 94.8 72.4

I3D RGB [2]
3D Inception-v1 ImageNet+Kinetics

95.1 74.3

I3D two-stream [2] X 98.0 80.7

TSN [33] ResNet-50 ImageNet 86.2 54.7

TSN RGB [33]
BNInception ImageNet+Kinetics

91.1 -

TSN two-Stream [33] X 97.0 -

TSM [19] ResNet-50 ImageNet+Kinetics 94.5 70.7

StNet [12] ResNet50 ImageNet+Kinetics 93.5 -

Disentangling [39] BNInception ImageNet+Kinetics 95.9 -

STM ResNet-50 ImageNet+Kinetics 96.2 72.2

as input achieves the state-of-the-art performance compared

with other methods, which take more frames and optical

flow as input or 3D CNN as the backbone. With 16 frames

as input, STM achieves the best performance in the valida-

tion sets of both Something-Something v1 and v2, and just

a little lower in the top1 accuracy in the test sets, which

adopts only 16 RGB frames as input.

Table 2 shows the results on the Jester dataset. Our STM

also gains a large improvement compared to the TSN base-

line method, and outperforms all the state-of-the-art meth-

ods.

4.4. Results on Scene­Related Datasets

We evaluate our STM on three scene-related datasets:

Kinetics-400, UCF-101, and HMDB-51 in this section.

Kinetics-400 is a large-scale human action video dataset

with 400 classes. It contains 236,763 clips for training

and 19,095 clips for validation. UCF-101 is a relatively

small dataset which contains 101 categories and 13,320

clips in total. HMDB-51 is also a small video dataset with

51 classes and 6766 labeled video clips. For UCF-101

and HMDB-51, we followed [33] to adopt the three train-

ing/testing splits for evaluation.

Table 3 summaries the results of STM and other com-

peting methods on the Kinetics-400 dataset. We train STM

with 16 frames as input, and the same for evaluation. From

the evaluation results, we can draw the following con-

clusions: (1) Different from the previous temporal-related

datasets, most actions of Kinetics can be recognized by

scene and objects even with one still frame of videos, there-

fore the baseline method without any temporal modeling

can achieve acceptable accuracy; (2) Though our method

is mainly focused on temporal-related actions recognition,

STM still achieves very competitive results compare with

the state-of-the-art methods. Top-1 accuracy of our method

is only 0.5% lower than the two-stream I3D, which in-

volves both 3D convolution and pre-computation optical

flow. However, STM outperforms major recently proposed

3D CNN based methods (the upper part of the Table 3) as

well as 2D CNN based methods (the lower part of the Table

3) and achieve the best top-5 accuracy compared with all

the other method.

We also conduct experiments on the UCF-101 and

HMDB-51 to study the generalization ability of learned spa-

tiotemporal and motion representations. We evaluate our

method over three splits and report the averaged results in

Table 4. First, compared with the ImageNet pre-trained

model, Kinetics pre-train can significantly improve the per-

formance on small datasets. Then, compare with the state-

of-the-art methods, only two methods, I3D two-stream and

TSN two-Stream, performs a little better than ours while

both of them utilize optical flow as their extra inputs. How-

ever, STM with 16 frames as inputs even outperforms I3D

with RGB stream on UCF101, which also uses Kinetics as

pre-train data but the 3D CNN leads to much higher com-

putation cost than ours.

4.5. Ablation Studies

In this section, we comprehensively evaluate our pro-

posed STM on Something-Something v1 dataset. All the

ablation experiments in this section use 8 RGB frames as

inputs.

Impact of two modules. Our proposed two modules can be

inserted into a standard ResNet architecture independently.

To validate the contributions of each component in the STM

block (i.e., CSTM and CMM), we compare the results of the

individual module and the combination of both modules in

Table 5. We can see that each component contributes to the

proposed STM block. CSTM learns channel-wise tempo-

ral fusion and brings about 28% top-1 accuracy improve-

ment compared to the baseline method TSN while CMM

learns feature-level motion information and brings 24.4%

top-1 accuracy improvement. When combining CSTM and

CMM together, we can learn richer spatiotemporal and mo-
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Model Top-1 Top-5

TSN 19.7 46.6

CSTM 47.7 77.9

CMM 44.1 74.8

STM 49.2 79.3

Table 5. Impact of two mod-

ules: Comparison between

CSTM, CMM and STM.

Aggregation Top-1 Top-5

TSN 19.7 46.6

Summation 49.2 79.3

Concatenation 41.8 73.2

Table 6. Fusion of two modules:

Summation fusion is better.

Stage STM Blocks Top-1 Top-5

2 1 38.7 70.1

3 1 40.6 71.6

4 1 41.5 72.6

5 1 41.5 71.8

2-5 4 47.9 78.1

2-5 16 49.2 79.3

Table 7. Location and number

of STM block: Deeper location

and more blocks yeild better per-

formance.

Type Channel-wise Ordinary

Top-1 Acc. 47.7 46.9

Param. 23.88M 27.64M

FLOPs 32.93G 40.59G

Table 8. Type of temporal con-

volution in CSTM: Channel-

wise temporal convolution yields

better performance.

tion features and achieve the best top-1 accuracy, especially,

the gain over the baseline is 29.5%.

Fusion of two modules. There are two ways to combine

CSTM and CMM: element-wise summation and concate-

nation. The element-wise summation is parameter-free and

easy to implement. For concatenation fusion, we first con-

catenate outputs of CSTM and CMM over the channel di-

mension, and the dimension of concatenate features is 2C.

Then a 1x1 convolution is applied to reduce the channels

to C. We conduct the experiments to study the two fusion

ways as shown in Table 6, though summation aggregation is

simple, it still outperforms concatenation by 7.4% at top-1

accuracy and 6.1% at top-5 accuracy.

Location and number of STM block. ResNet-50 archi-

tecture can be divided into 6 stages. We refer the conv2 x

to conv5 x as stage 2 to stage 5. The first four rows of Ta-

ble 7 compare the performance of replacing only the first

residual block with STM on different stages in ResNet-50,

from stage 2 to stage 5, respectively. We conclude from

the results that replacing only one residual block already

yield significant performance improvement compared to the

baseline TSN, which demonstrates the effectiveness of the

proposed STM block. One may notice that replacing the

STM block at latter stage (e.g., stage 5) yield better accu-

racy than early stage (e.g., stage 2). One possible reason

is that temporal modeling is beneficial more with larger re-

ceptive fields which can capture holistic features. We then

replace one block for each stage (i.e., replacing four blocks

in all) and leads to better results. When replacing all origi-

nal residual blocks with STM blocks (i.e., 16 blocks in all),

our model achieves the best performance.

Type of temporal convolution in CSTM. We choose

channel-wise temporal convolution in CSTM to learn tem-

poral combination individually for each channel. We also

make comparison with ordinary temporal convolution in

CSTM module and the result is shown in Table 8. With

channel-wise convolution, we can achieve better perfor-

mance with few parameters and FLOPs.

4.6. Runtime Analysis

Our STM achieves the new state-of-the-art results on

several benchmark datasets compared with other methods.

Table 9. Accuracy and model complexity of STM and other state-

of-the-art methods on Something-Something V1 dataset. Single

crop STM beats all competing methods with 62 videos per sec-

ond with 8 frames as input. Measured on a single NVIDIA GTX

1080TI GPU.
Model Frame FLOPs Param. Speed Acc.

I3D [2] 64 306G 28.0M 6.4 V/s 41.6

ECO [42] 16 64G 47.5M 46.3 V/s 41.4

TSM [19]
8 32.9G

23.9M
80.4 V/s 43.8

16 65.8G 40.6 V/s 44.8

STM
8 33.3G

24.0M
62.0 V/s 47.5

16 66.5G 32.0 V/s 49.8

More importantly, it is a unified 2D CNN framework with-

out any time-consuming 3D convolution and optical flow

calculations. Table 9 shows the accuracy and model com-

plexity of STM and several state-of-the-art methods on

Something-Something v1 dataset. All evaluations are run-

ning on one GTX 1080TI GPU. For a fair comparison, we

evaluate our method by evenly sampling 8 or 16 frames

from a video and then apply the center crop. To evaluate

speed, we use a batch size of 16 and ignore the time of data

loading. Compared to I3D and ECO, STM achieves approx-

imately 10x and 2x less FLOPs (33.3G vs 306G, 64G) while

5.9% and 6.1% higher accuracy. Compared to TSM16F, our

STM8F gains 2.7% higher accuracy with 1.5x faster speed

and half FLOPs.

5. Conclusion

In this paper, we presented a simple yet effective net-

work for action recognition by encoding spatiotemporal and

motion features together in a unified 2D CNN network.

We replace the original residual blocks with STM blocks

in ResNet architecture to build the STM network. An

STM block contains a CSTM to model channel-wise spa-

tiotemporal feature and a CMM to model channel-wise mo-

tion representation together. Without any 3D convolution

and pre-calculation optical flow, our STM receives state-of-

the-art results on both temporal-related datasets and scene-

related datasets with only 1.2% more FLOPs compared to

TSN baseline.
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