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Abstract

Transferring objects from one place to another place is

a common task performed by human in daily life. During

this process, it is usually intuitive for humans to choose an

object as a proper container and to use an efficient pose

to carry objects; yet, it is non-trivial for current computer

vision and machine learning algorithms. In this paper, we

propose an approach to jointly infer container and human

pose for transferring objects by minimizing the costs asso-

ciated both object and pose candidates. Our approach pre-

dicts which object to choose as a container while reason-

ing about how humans interact with physical surroundings

to accomplish the task of transferring objects given visual

input. In the learning phase, the presented method learns

how humans make rational choices of containers and poses

for transferring different objects, as well as the physical

quantities required by the transfer task (e.g., compatibility

between container and containee, energy cost of carrying

pose) via a structured learning approach. In the inference

phase, given a scanned 3D scene with different object can-

didates and a dictionary of human poses, our approach in-

fers the best object as a container together with human pose

for transferring a given object.

1. Introduction

Given a set of containees (red in Figure 1(a)), which ob-

ject to serve as a container, and what pose is proper to trans-

fer those containees to another place? When transferring

an object from one place to another, a person will consider

the physical quantities during the transfer task, e.g., com-

patibility between container and containees, energy cost of

carrying pose, etc. In this paper, we propose an approach to

learn how humans make rational choices and reason about a

proper container (green) and a pose (orange) for transferring

objects from one place to another, as shown in Figure 1(b).

The overview of our approach is illustrated in Figure 2.

∗ Corresponding author (liangwei@bit.edu.cn).

Figure 1. Which container and what pose is proper to transfer the

given objects to another place? (a) Given a scanned scene as the

input, we first detect all the objects: the objects bounded by the

red rectangle are the targeted containees and the ones bounded by

the blue rectangles are the candidate containers. (b) Our approach

infers the best object as a container (green) as well as choosing the

best pose (orange) from a pose dictionary.

Our approach takes a 3D scanned scene as the input, and

uses a learned structured SVM to analyze the compatibility

between containees, container and pose. By assuming the

human judgments are near-optimal, we formulate the pre-

sented study as a ranking problem, and infer the best con-

tainer and pose to carry out the transfer task.

Solving this inference problem will allow computers to

predict and reason about how humans perform transfer tasks

in everyday environments, and hence achieve better un-

derstanding and visual perception of the affordance of our

physical surroundings.

This paper makes the following three major contribu-

tions:

• We propose a new task by joint inference of optimal

container and human pose for transferring objects from

one place to another.

• We present a ranking-based framework capable of rea-

soning about and selecting the best container and hu-

man pose to perform a transfer task.

• We propose a 3D scanned objects dataset, on which

we perform experiments to validate the effectiveness

of our framework, demonstrating that the performance

of our approach is close to human judgment.
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Figure 2. Overview of our approach. The input consists of the target containees and a set of candidate containers scanned from a real-world

scene for the transfer task. In the learning phase, our approach learns how humans transfer different objects with different containers and

poses. In the inference phase, our approach reasons about the best container and pose for performing the given transfer task.

1.1. Related Work

Understanding Affordance and Tool: Understanding

object affordance [6, 8] from images and videos is a chal-

lenging task in computer vision. Instead of focusing on the

appearance or the geometry of a given object [11, 25, 33],

the concept of affordance tries to recognize objects based

on their functionality and the end states of the objects,

making understanding tool-use a perfect topic in the field

of affordance. For instance, a hammer could be used to

change the location of nails; a saw or an axes may be used

to change the appearance of wood; containers are used to

change the organization of their contained objects. Re-

cently, physics-based reasoning approaches have been suc-

cessfully applied in computer vision to reason about affor-

dances [31, 12, 35, 36, 37, 39, 33, 30] given visual inputs.

Container can be viewed as half-tool [1] in which con-

tainability is the key affordance. Human cognition on con-

tainers has been extensively studies in the field of cognitive

science, including some recent work on containability [22]

with rigid body simulation, basin experiment [3, 19] and

pouring prediction [18] with fluid simulation. In contrast,

the problem of container has been rarely studied in the field

of computer vision. Some recent notable work tried to in-

tegrate simulation [34], reasoning about containability and

containment relations [23, 29, 28].

In this paper, we analyze how compatible a container

and a pose are with respect to transferring the targeted con-

tainees. Different from previous work, we not only define a

transfer task and several attributes encoding geometry fea-

tures and physical concepts, but also define human energy

cost to carry out the task.

Human Pose Prior: Analyzing the pose during the inter-

actions with an object is another effort to understand the

affordance of objects. In computer vision, recent work tried

to use human pose prior to analyze the functionality of ob-

jects or scenes [2, 7, 9, 13, 14, 15, 17, 38, 26]. The human

pose is an important prior. Human pose inference and object

understanding can also reinforce each other in analyzing in-

teraction activities. Kim et al. proposed a data-driven ap-

proach to infer the human pose in using an object based on

geometry features [15]. Yao et al [31] used human poses to

discover the functionality of an object for computer vision

tasks such as object detection. They further demonstrated

that pose estimation can be inferred from the functionality

of the object [32]. Moreover, the specific human pose and

object form a unique human-object interaction for a certain

functionality of the object.

In comparison with previous approaches, our approach

infers human pose and containers jointly during transferring

objects. We consider not only the appearance of the human

poses, but also the semantic meaning and physical cost of

the poses.

2. Problem Formulation

We define an object transferring task T (O) to transfer

the targeted containees O from one place to another place.

The goal of our approach is to infer an optimal container c∗

to contain the containees and an optimal pose p∗ to carry the

container. The solution of the transfer task is represented by

a tuple s∗ = (c∗, p∗).
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2.1. Ranking Function

We formulate the optimization of s as a ranking problem.

The ranking function is defined as

R(sij) = 〈ω,Ψ(sij , T (O))〉, (1)

where Ψ(·) is a joint feature vector defined by the task

T (O) and the possible solution sij = (ci, pj), and ω is

the coefficient vector of feature vector Ψ(·). Here, ci ∈
{c1, c2, · · · , cI} represents a candidate container, I is the

number of candidate containers, and pj ∈ {p1, p2, p3} rep-

resents a candidate pose. In this paper, we consider three

common poses: carrying around waist p1, carrying around

chest p2 and carrying above head p3. The dictionary of

these poses can be extended easily.

The joint feature Ψ(·) models the relations among task,

container and pose. We decompose it into two terms:

Ψ(sij , T (O)) = ψ(O, ci) + φ(ĉi, pj), (2)

where ψ(O, ci) models the compatibility between con-

tainees in the given task and the candidate container,

φ(ĉi, pj) models the compatibility between the container

and the pose when the pose is taken to carry a container ĉi,
and ĉi represents the container ci contains the containees,

which has different attributes from original ci, e.g. mass and

height.

2.2. Compatibility of Containee and Container

ψ(O, ci) is a joint feature of containees and container,

evaluating the compatibilty between them. We consider

three factors: containability ψc(O, ci), efficiency ψe(O, ci)
and stability ψs(O, ci). ψ(O, ci) is defined by the sum of

these three terms:

ψ(O, ci) = ψc(O, ci)
︸ ︷︷ ︸

containability

+ψe(O, ci)
︸ ︷︷ ︸

efficiency

+ψs(O, ci)
︸ ︷︷ ︸

stability

. (3)

Containability ψc(O, ci) models the compatibility be-

tween the container and containees from the perspective of

volume. We define a volume ratio: η = VO

Vci

m where VO
and Vci represent the volume of containees and container,

respectively. Then we have

ψc(O, ci) =







e−
(η−µ)2

2δ2 η ≤ 1

0 η > 1

, (4)

where µ is the mean of the best ratio and δ is the coefficient,

which are learn from human study.

Efficiency ψe(O, ci) models the efficiency of the con-

tainer choice. It is intuitive that when a person tries to ac-

complish an object transferring task, they prefer to choose

a lighter-weighted container rather than a heavier one, re-

sulting in spending less extra work in carrying. ψe(O, ci) is

defined as:

ψe(O, ci) =
1

1 +MO/Mci

, (5)

where MO is the mass of containees, and Mci is the mass

of container.

Stability ψs(O, ci) models the stability of containees in

a container. Considering the case in which a higher mass

center of containees increases the risk of spill out, we model

ψs(O, ci) by the height of mass center:

ψs(O, ci) =







1− 1

1+HO/Hci

HO ≤ Hci

1 HO > Hci

, (6)

where HO is the height of containees’ mass center, and Hci

is the height of the container’s mass center.

2.3. Compatibility of Container and Pose

φ(ĉi, pj) is a joint feature of container and pose, where

ĉi represents the container with updated attributes when it

is containing the containees. We adopt two terms to model

the compatibility between container and pose: convenience

φc(ĉi, pj) and energy cost φe(ĉi, pj).

φ(ĉi, pj) = φc(ĉi, pj)
︸ ︷︷ ︸

convenience

+φe(ĉi, pj)
︸ ︷︷ ︸

energy

, (7)

φc(ĉi, pj) evaluates the convience of the pose which is taken

to carry the container. φe(ĉi, pj) is the energy cost when a

person carries container ĉi with pose pj .

Convenience φc(ĉi, pj) models the compatibility be-

tween the container and the pose. In the results reported by

Knapik et al. [16], it is suggested that lower load placement

is preferred for stability; people prefers to carry objects on

the hands because this pose is more convenient with high

movement freedom. However, the load location is also re-

stricted by the appearance of the object. Higher load place-

ment occupies more spaces than the space occupied using

lower load placements. Thus, there is a trade-off between

the convenience and afforhdance. According to Knapik’s

study, we define φc(ĉi, pj) as

φc(ĉi, pj) = λ(Hpj
−Wĉi + a) + (1− λ)

b

Hpj
−Wĉi + c

,

(8)
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Figure 3. Examples of voxelization. For each pair, the top row

shows the original meshes, and the bottom shows the voxelization

results.

where a, b, c are the coefficients learned by cross-validation,

λ is a trade-off parameter,Hpj
is the height of the load loca-

tion with the pose pj , and Wĉi is the width of the container

if it is containing the containees.

Energy φe(ĉi, pj) models how much work a person does

when they take a pose to carry the container. We adopted

the results reported in Knapik’s study [16] to estimate the

energy cost of carrying a container. Assuming the carried

container is near the center of the person who takes the car-

rying pose, the basic energy cost of the pose is:

M =1.5W + 2(W +Mĉi)(
Mĉi

W
)2

+N(W +Mĉi)(1.5V
2 + 0.35V G), (9)

where W is the weight of the person (set as 65 kg), Mĉi

is the mass sum of the container and containees, V is the

walking velocity (set as 4.2 km/h), and G is the slope or

grade (set as 1). In this paper, we assume that this energy

cost will not change over time.

A ratio is applied to approximate real energy costs for

different poses. The ratio is calculated by the distance to the

mass center of a person. In our experiments, we use the ratio

of 1.2, 1.5, and 1.9 for carrying around chest p2, carrying

around waist p1 and carrying above head p3, respectively.

Thus, φe(ĉi, pj) is defined as

φe(ĉi, pj) = γpj
M, (10)

where γpj
is the ratio of pose pj .

2.4. Physical Attributes Estimation

In this section, we introduce how to estimate volume of

container and containees in the task, which is used in the

ranking function.

Figure 4. 9 examples of simulation. The plot shows the energy

changes during the simulation. The x-axis refers to the sequence

of the simulation, the y-axis refers to the energy of the system, the

purple line indicates the initial energy, and the orange line indi-

cates the lowest energy.

Volume of container. We apply voxelization to estimate

the volume of 3D model. The raw input of our approach

is reconstructed 3D models using a depth camera. Inspired

by Yu’s work [33], we voxelize the input 3D mesh and fill

up the inside space. Figure 3 shows some examples. Then

we count the number of voxels as the estimation of the con-

tainer’s volume. For each container ci, we define the vol-

ume Vci =
L∑

l=0

vl, where vl is the unit volume of voxel, L is

the number of voxel which is filled in the container.

Volume of containees. Since each container may be able

to contain more than one containees, we estimate the vol-

ume of containees using a physics-based simulation ap-

proach. One simple way is to randomly put containees

into a container, and count the volume of the objects after

reaching the stable state, resulting in an estimated volume

of containees. However, such estimation may not be accu-

rate enough to reflect the volume in real-world, as the ob-

jects may be accidentally stable supported by the container,

making the estimated volume larger than the expected.

Inspired by the intuitive physics theory [27, 20], we fur-

ther add the disturbance during the simulation, preventing

accidental stable events. Specifically, we put all the con-

tainees into one container while shaking the container. All

configurations are recorded through the shaking process.

Lower is the potential energy, more stable is the system.

When the potential energy of the configuration goes beyond

the adjacent peak, it slips to another local optimal configura-

tion. The minimal space occupied in the simulation process
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Figure 5. Some 3D mesh examples of containees (left) and containers (right) in our dataset.

is used as the volume of containees. As shown in Figure 4,

a minimal energy is reached during the simulation which is

marked with an orange line.

3. Learning Human Utilities

3.1. Rational Choice Assumption

Rational choice assumption means that human choices

are rational and near-optimal [4, 5, 10, 24]. In this case,

when a person chooses a container and a pose to transfer

objects from a place to another, the choice obeys the rule of

minimizing the transfer cost, considering the attributes of

containees, container and pose.

Under the rational choice assumption, we consider the

choices made by human are near-optimal. Assuming that

the rational configuration is s∗ = (c∗, p∗), for a random

configure sij = (ci, pj), it will have lower score than the

rational choice in one task. That is, in one task T (O), for

all i, j, s∗ 6= sij , we have

R(s∗) > R(sij). (11)

3.2. Learning and Inference

Learning the coefficient vector ω on training data is

solved by a structured learning appraoch. The optimization

function is

min
1

2
ω · ω + λ

∑

k

ξ2k, (12)

s.t. ∀s ∈ C × P \ s∗,

〈ω ·Ψ(s∗, T (Ok))〉 − 〈ω ·Ψ(s, T (Ok))〉 > 1− ξ2k,

ξk ≥ 0,

where ξ is the slack variable to avoid overfitting, λ is the

trade-off parameter to keep the balance between maximiz-

ing the margin and satisfying the constraints, k is the num-

ber of tasks in training dataset, C = {c1, c2, · · · , cI}, and

P = {p1, p2, p3}.

In the inference phase, we reason about the optimal con-

tainer and pose by maximize our ranking function:

s∗ = argmax
s

〈ω ·Ψ(s, T (O)), 〉 (13)

where s ∈ C × P .

4. Experiments

In this section, we first introduce our dataset. Then we

evaluate our approach from four aspects: (i) accuracy of

our approach on different scale dataset; (ii) validation of

features; (iii) containability of object; and (iv) expansibility

on depth data.

4.1. Dataset

We collect a 3D object dataset for our experiment, in-

cluding 302 scanned 3D objects, ranging from typical tools,

household objects, to large pieces of furniture. All meshes

are captured by consumer-level RGB-D sensors, and are di-

vided into containee and container based on geometry and

category. Some examples are shown in Figure 5.

Using this dataset, we design a transferring task dataset

with a collection of 400 tasks, each of which is to move

given objects from one place to another. Those tasks

are generated randomly. Each task includes targeted con-

tainees, twelve candidate containers and three poses.

To annotate those tasks, we build a questionnaire system

to collect human data, where users were shown the image

of a task. They were asked to choose the best container to

hold containees and a proper pose to carry the container.

We collect the data from over 200 people whose ages range

from 18 to 56. We select the most frequent answer as the
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Figure 6. Ranking results using the proposed approach. Top: the target containees. Middle: the candidate containers. Bottom: rankings of

configurations, in which the red bar is the position of the ground truth.

ground truth for each task. We use 268 tasks as training data

and 132 tasks as testing data.

4.2. Inference of Container and Pose

Since each task includes 12 candidate containers and 3

poses in our dataset, there are 36 potential candidate config-

urations in total in each task. The goal of the inference is to

rank those configurations and evaluate the results by com-

paring with ground truth. Figure 6 showcases five exam-

ples of the configuration ranking and the comparison with

ground truth. Most ground truths fall in the top 10 configu-

rations.

Since human judgments have variations and the choices

Figure 7. The top 3 container under different human poses in two

tasks (left and right). First row show the containees, and the re-

maining rows are inferred container and the human pose. The

number below a container is the score of the configuration es-

timated by our approach. The highlighted configuration is the

ground truth.

of human are near-optimal, we evaluate our results of pre-

diction using a top-12 criteria: if the ground truth is one

of the top 12 configurations of the predicted objects, we

consider the prediction as a correct prediction. Under this

evaluation, the accuracy of our approach is 66.67%.

To evaluate the influence of container and pose during

ranking, we analyze the top 3 containers with a fixed pose.

Figure 7 illustrates the scores of the top 3 containers to-

gether with the score of ground truth (highlighted) of two

cases. From the third column of the first case and the first

two columns of the second case, we find that our algorithm

learned a diverse human poses choosing for different con-

tainers.

In the first case (left), the configuration of the ground

truth get the highest score. It is interesting that the ground

truth pose (p1) is not the most energy-saving pose compared

with p2. The reason is that carrying with p1 will decrease

Figure 8. Accuracy of different features omitted in Small, Middle,

Large and Total sets, respectively.

2938



Model Testing Set Top 3 Top 6 Top 9 Top 12 Top 15 Top 18 Top 24

Omit ψc term

Small 20.93% 44.19% 51.16% 63.95% 70.93% 79.07% 93.02%

Middle 21.95% 26.83% 56.10% 65.85% 75.61% 80.49% 92.68%

Large 20.00% 20.00% 40.00% 60.00% 60.00% 60.00% 80.00%

Total 21.21% 37.88% 52.27% 64.39% 71.97% 78.79% 92.42%

Omit ψe term

Small 16.28% 33.72% 48.84% 63.95% 76.74% 80.23% 96.51%

Middle 12.20% 41.46% 51.22% 65.85% 68.29% 75.61% 90.24%

Large 60.00% 60.00% 60.00% 60.00% 60.00% 80.00% 100.00%

Total 16.67% 37.12% 50.00% 64.39% 73.48% 78.79% 94.70%

Omit ψs term

Small 10.47% 19.77% 33.72% 47.67% 61.63% 75.58% 86.05%

Middle 4.88% 12.20% 26.83% 53.66% 60.98% 65.85% 80.49%

Large 40.00% 40.00% 40.00% 40.00% 80.00% 80.00% 100.00%

Total 9.85% 18.18% 31.82% 49.24% 62.12% 72.73% 84.85%

Omit φc term

Small 9.30% 17.44% 24.42% 39.53% 50.00% 59.30% 81.40%

Middle 7.32% 14.63% 19.51% 34.15% 56.10% 65.85% 80.49%

Large 40.00% 60.00% 60.00% 100.00% 100.00% 100.00% 100.00%

Total 9.85% 18.18% 24.24% 40.15% 53.79% 62.88% 81.82%

Omit φe term

Small 17.44% 34.88% 50.00% 62.79% 72.09% 82.56% 91.86%

Middle 12.20% 39.02% 63.41% 75.61% 78.05% 82.93% 90.24%

Large 60.00% 60.00% 80.00% 100.00% 100.00% 100.00% 100.00%

Total 17.42% 37.12% 55.30% 68.18% 75.00% 83.33% 91.67%

Whole feature

Small 17.44% 34.88% 51.16% 65.12% 73.26% 81.40% 94.19%

Middle 17.07% 46.34% 58.54% 65.85% 70.73% 70.73% 87.80%

Large 40.00% 40.00% 60.00% 100.00% 100.00% 100.00% 100.00%

Total 18.18% 38.64% 53.79% 66.67% 73.48% 78.79% 92.42%

Table 1. Results using different models tested in different datasets. Top n indicates the ratio of the ground truth ranked in the first n

configurations.

the cost of convenience. We can also observe the similar

results on the other containers. For example, the container

of the second column with pose p1 has a higher score than

the other two poses.

In the second case (right), the configuration of the

ground truth get the third high score. The container

achieved the highest score has less volume than the third

highest score container. Human may think that the first con-

tainer has no enough volume to contain those containees

due to noise of perception. In such situation, people tend

to choose the container with a little surplus space for object

transferring task.

4.3. Validation of Features

To analyze the usefulness of each term of the feature in

our model, we compare the accuracy of the model by turn-

ing off some terms.

In this experiment, we designed four testing set:

“Small”, “Middle”, “Large” and “Total”. The containees

whose diameter are smaller than 15 cm are clustered as the

“Small” set, the containees whose diameter are larger than

15 cm and smaller than 65 cm are clustered as the “Middle”

set, the containees whose diameter are larger than 65cm are

clustered as the “Large” set, and “Total” is the set that in-

cludes all of the testing data in different scales. We test the

model with all the features, and compare to the models with

one feature omitted. A bar plot is shown in Figure 8.

The more detailed analysis of the ranking accuracy is

listed in Table 1. Both the model that omits φc and the

model that omits ψs have a marked performance drop in ac-

curacy, indicating the importance of this two feature terms.

The model that omits φe achieves a higher accuracy than

the whole feature model in the “Middle” set except for the

evaluations of Top 3 and Top 6. The reason is that human

is not sensitive to the energy cost when the differences of

energy changes are not significant.

4.4. Containability of Object

The 3D meshes in our dataset are manually divided into

containee set and container set. However, in reality, many

objects are multi-functional, i.e., an object can be served

as both containee and container based on different contexts

information. We try to use our approach to infer the affor-

dance, more specifically, the containability of objects. In

this experiment, the candidate container set is not labeled.

We merge the target objects set and the container set as the

candidate container set. For each task, we use the highest

score among the scores of a certain object in different car-
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Figure 9. Each row illustrates the top 5 objects used as the ”con-

tainer” in a task. The objects on the left of the vertical line are the

containees. The highlighted objects are in ”containee” sets.

rying poses to represent the score of this object and rank

according to the scores.

Figure.9 shows three examples of this experiment. We

list the top 5 candidate ”containers”. Our approach in-

ferred not only the ordinary containers but also some normal

objects labelled as containee in our previous experiments

which annotate container by geometry and category of an

object. In the first task, a toy car with a crate is inferred as a

good container. In the second task, a stool is inferred. In the

third task, a hat is inferred. The common ground of those

objects is that they have the functional basis which is able

to contain the containees, further, our approach inferred the

affordance of the object in containing task.

4.5. Testing on Depth Input

To test the performance of our approach with different

kind of input, we use the depth of the task scene as the in-

put of our approach. Given a RGB-D scene, as shown in

Figure.10, we segment the objects and re construct them

using the default functionalities provided by the Structure

Sensor SDK. After that,we normalize the scale according to

the depth of objects. The target objects are labelled man-

ually. After that, we retrive the segmented objects in our

dataset to find the most similar 3D model[21]. Then we

use the depth of the objects to recover the scale of each 3D

model. The last step is to use our approach to estimate score

of all solutions.

We test 30 scenes and the accuracy is about 63.33%,

close to the global accuracy described in Section 4.2. We

find that some bad matching from the depth to the 3D model

may lead to the failure.

5. Limitations and Future work

In this paper, we propose an approach to jointly infer

container and human pose for transferring objects. We for-

mulate the optimization of container and pose inference as

a ranking problem, considering the compatibility of con-

Figure 10. Three examples of our tests on the depth input. (a)(b)(c)

are the task scene captured by RGB camera. (d)(e)(f) is the corre-

sponding scene captured by Kinect2 depth camera. The objects in

the red bounding box is the target objects.

tainee, container and pose. Our current work has several

limitations that we will address in future research.

Currently, the input of our approach is the labeled 3D

scene. In the future, we would like to recognize the task

scene in an unsupervised fashion. In addition, extending the

presented work using 2D information instead of 3D would

be an interesting directions. Furthermore, current objects

in the dataset only includes rigid objects; incorporating liq-

uid, sand, deformable objects would also make a promising

future direction.

Our approach also has some limitations in human pose

recognition. Currently, we do not incorporate the grasping

pose during the interactions with containers. In the future, it

would make a finer-grained recognition if we could generate

the proper pose while taking grasping into consideration.
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